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1. Introduction 

Many papers have over the last few years been devoted to the estimation 

and test of long-run relations under the heading of cointegration, Gran­

ger (1981), Granger and Weiss (1983), Engle and Granger (1987), Stock 

(1987), Phillips and Ouliaris (1986). (1987), Johansen (1988b), canonicaL 

anaLysis, Box and Tiao (1981), Velu, Wichern and Reinsel (1987). PeTIa and 

Box (1987), reduced rank regression, Velu, Wichern, and Reinsel (1986), 

and Ahn and Reinsel (1987), common trends, Stock and Watson (1987), 

regression with integrated regressors, Phillips (1987), Phillips and Park 

(1986a), (1986b), (1987), as well as under the heading testing for unit 

roots, see for instance Sims, Stock, and Watson (1986). There is a 

special issue of Oxford Bulletin of Economics and Statistics (1986) 

dealing mainly with cointegration and a special issue of Journal of 

Economic Dynamics and Control (1988) dealing with the same problems. 

The solution we propose to this problem is to start with a rela­

tively simple model specifying a vectorvalued autoregressive process 

(VAR) with independent Gaussian errors, and formulate the hypothesis of 

reduced rank or the hypothesis of the existence of cointegration vectors 

in a simple parametric form which allows the application of the method of 

maximum likelihood and likelihood ratio tests. In this way we can derive 

estimates and test statistics for the hypothesis of of a given number of 

cointegration vectors, as well as estimates and tests for linear hypo­

theses about the cointegration vectors and their weights. We have also 

derived the asymptotic properties of these statistics, and illustrated 

the methods by money demand data from the Danish and Finnish economy. 
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We will consider the case where the observed data is a sequence af 

random vectors X with components (Xl , ... ,X ) drawn sequentially from a t t pt 

p-dimensional Gaussian distribution with mean ~t and variance matrix A, 

where ~t depends linearly on the past k values of the process. 

Thus we consider the model 

(1.1) (t = 1, ... , T) 

where c 1 , ... ,cT are i.i.d. Np(O,A) and X-k+1 , ... ,XO are fixed. 

The unrestricted parameters (ill' ... ,ilk,A) have to be estimated on 

the basis of T observations from a vector autoregressive process. 

In general economic time series are non-stationary processes, and 

VAR-systems like (1.1) have usually been expressed in first differenced 

form. Unless the difference operator is also applied to the error pro-

cess and explicitly taken account of, differencing implies loss of infor-

mation in the data. Using A = 1-L, where L is the lag operator it is 

convenient to rewrite the model (1.1) as 

(1.2) 

where 

(i = 1, ... , k-1 ) 

and 

(1.3) 

Notice that model (1.2) is expressed as a traditional first differenced 

VAR-model except for the term ilXt _k . It is the main purpose of this 

paper to investigate the coefficient matrix il as to the information it 

may convey concerning long-run information in the chosen data. Three 

cases can be considered: 
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(i) Rank(IT) = p, i.e. the matrix IT has full rank, indicating that the 

vector process Xt is stationary. 

(ii) Rank (IT) = 0, i.e. the matrix IT is the null vector and (1.2) corre­

sponds to a traditional differenced vector time series model. 

(iii) ° < rank(IT) = r < p implying that there are pxr matrices a and ~ 

such that IT = a~'. 

The cointegration vectors ~ have the property that ~'Xt is statio­

nary even though Xt is self is non-stationary, see Theorem 3.1 for a 

precise formulation. In this case (1.2) can be interpreted as an error 

correction model, see Engle and Granger (1987), Davidson (1986) or Johan­

sen (1988a). 

Thus the main hypothesis we shall consider here is 

(1.4) 

where a and ~ are pxr matrices. This can also be formulated as the 

condition that rank(IT) ~ r. 

We shall further investigate linear hypotheses expressed in terms 

of the coefficients a and ~. 

We have chosen to illustrate the procedures by data from the Danish 

and Finnish economy on the demand for money. The relation m = f(y,p,c) 

expresses money demand m as a function of income y, the price level p and 

the cost of holding money c. Since price homogeneity was clearly accep­

ted by the data the empirical analysis here will be on real money, real 

income and some proxies measuring the cost of holding money. All variab­

les are expressed in logarithmic form, since multiplicative effects are 
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assumed. 

The two data sets differ both as to which variables are included 

and the length of the sample. More interestingly, however, the institu-

tional relations in the two economies have been quite different in the 

sample period. In Denmark the market forces have been allowed to play 

much more freely than in Finland, where both interest rates and prices 

have been subject to regulation for most of the sample period. One would 

expect this to show up in the empirical results and so it does. 

For the Danish data m2 was chosen because the data available on 

quarterly basis has been collected using more homogeneous definitions for 

m2 than for ml. The cost of holding money was measured by the difference 

b t th bank d · .d f . e ween e epos1t rate, 1, or 1nterest bearing deposits (which 

are the main part of ro2) and the bond rate, i? which plays a very impor-

tant role in the Danish economy. The two interest rates were included 

unrestrictedly in the analysis, but subsequently tested for equal coeffi-

cients with opposite signs. The inflation rate, Ap, was also included as 

a possible proxy for the cost of holding money, but since it did not 

enter significantly into the cointegration relation for money demand it 

was omitted from the present analysis. 

For the Finnish data ml was chosen, since the ml cointegration 

relation was found to enter the demand for money equation more signifi-

cantly and hence illustrated the methodology better. Since th interest 

rates have been regulated a good proxy for the actual costs of holding 

money is difficult to find. The inflation rate, Ap, is a natural candi-

date and therefore included in the data set. Moreover, the marginal rate 

of . t .m 1n erest,l, of the Bank of Finland is included in spite of the fact 
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that the marginal rate measures the restrictedness of money rather then 

the cost of holding money. It has however been chosen as a determinant 

of the Finnish money demand in other studies and therefore is also inclu­

ded here. All series are quarterly and the data is given in Appendix A. 

The structure of the paper is the following. In Section 2 we give 

the derivation of the maximum likelihood estimators and likelihood ratio 

tests expressed in terms of eigenvectors and eigenvalues of suitable 

product moment matrices. The results are illustrated by the above men­

tioned data, and the interpretation of the results is discussed. In 

Section 3 we have then given a systematic account of the statistical and 

probabilistic results that are necessary to justify the analysis as 

described in section 2. 

2. Maximum likelihood estimation and likelihood ratio tests of 

cointegration vectors 

2.1. A survey of the various hypotheses and the initial analysis of 

the data 

In the following we will use model (1.1) in the form (1.2): 

(2.1) AXt = T1AXt _1 + ... + Tk-1AXt-k+1 - ITXt _k + et 

The reason for this is that the parameters 

(T1 ,·· .,Tk _1 ,IT,A) 

are variation independent and, since all the models we are interested in 

are expressed as restrictions on IT, it is possible to maximize over all 
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the other parameters once and for all. The hypotheses we shall consider 

and discuss in this section are given as follows 

H· 2· IT = a{3' , 

* H3: IT = a<p'H' or {3 = H<p, 

H3: IT = A..p{3' or a = A..p, 

H4 : IT = A..p<p'H' or (3 = H<p and a = A..p. 

The matrices A(pxm) and H(pxs) are known and define the restric-

tions on the parameters a(pxr) and (3(pxr). The restrictions reduce the 

parameters to <p(sxr) and ..p(mxr), where r ~ s ~ p and r ~ m ~ p. 

hypotheses are special cases of H4 if we choose either A or H as the 

identity matrix. Thus it is to be expected that the analysis of these 

models are similar in nature, and this is what we hope to demonstrate in 

this section. The relation between the various hypotheses are illustra-

ted in Figure 1. 

[Figure 1.] 

All these hypotheses are restrictions of the matrix IT which under 

H . 2 1 contalns p parameters. Under the hypothesis H2 there are pr + (p-r)r 

* parameters which are further restricted to sr + (p-r)r under H3 and mr + 

(p-r)r under H3 . Finally mr + (s-r)r parameters remain under H4 . Note 

also that the parameters a and {3 are not identified in the sense that 

given any choice of a and (3, then for any non-singular matrix f(rxr), the 

choice af and {3(f,)-1 will give the same matrix IT, and hence determine 

the same probability distribution for the variables. One way of expres-
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sing this is to say that what the data can determine is the space spanned 

by the columns in~. the cointegration space, and the space spanned by a. 

It is of course possible to normalize ~, for example by choosing one of 

the coefficients to unity, but this would be correct only if we know 

apriori that the corresponding variable enters the cointegration relation 

with a non-zero coefficient. Since we are here mainly interested in 

drawing conclusions about which cointegration vectors are present in the 

data and since the hypotheses we have formulated above do not depend on 

any normalization of ~ we will avoid arbitrary normalizations, except in 

the case r = 1, where the interpretation is reasonably clear. 

Note also that for each value of r ( 0 ~ r ~ p) there is a corre-

sponding hypothesis H2 (r). The analysis which follows the procedures in 

Johansen (1988b) makes it possible to make inference about the value of r 

We shall now turn to the maximum likelihood estimation of the 

parameters in the unrestricted model (2.1). These results are all well 

known but we shall give the formulae here mainly to establish the 

notation, since it will be useful for the discussion of the properties of 

the estimators and tests later. We shall not include fixed regeressors 

in the model, but the theory can easily be modified to cover this case 

too. In the example we shall use a constant term and seasonal dummies. 

For fixed value of IT the maximum likelihood estimation consists of 

a regression giving the normal equations 

T k-l T 
(2.2) ~ AXtAXt _: = ~ f. ~ AXt .AXt . 

t=l 1 j=l J t =l -J -1 

T 
IT ~ Xt_kAXt_i, (i = 1, ... ,k-l). 

t=l 
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Now introduce the notation for the product moment matrices 

(2.3) 

(2.4) 

and 

(2.5) 

M .. 
IJ 

-1 T , 
Mkk = T 2 Xt-kXt - k , 

t=l 

(i,j = 0, ... ,k-1) 

(i = 0, ... , k-1 ) 

and let M~ denote the matrix with elements M .. , (i,j, = 1, ... ,k-1). 
7'<7'< 1 J 

Similarly let Mk* denote the matrix with elements Mkj' (j = 1, ... ,k-1). 

Then (2.2) can be written as 

k-1 

and can be 

(2.6) 

MO. = 2 T .M .. - lIMk . 
1 . 1 J Jl 1 

J= 

solved for T. to give 
J 

~ () k-1 ij k-1 ij *j 
T. IT = 2 MO.M + IT 2 Mk.M = MO*M 

J i=l 1 i=l 1 

This leads to the definition of the residuals 

(2.7) 

(2.8) 

k-1 *j 
ROt = AXt -.21MO*M AXt _j , 

J= 
k-1 *j 

Rkt = Xt - k -.2 Mk*M AXt _j , 
J=l 

i.e. the residuals we would obtain by regressing AXt and Xt - k on 

AXt _1 ,··· ,AXt _k+1 · 

The concentrated likelihood function becomes 

(2.9) 
T 

I I-T/2 -1 
A exp{- 2 (ROt + ITRkt)'A (ROt + ITRkt )/2}. 

t=l 

We can now express the estimates under the model HI by introducing the 

notation 

(2.10) 
-1 T, -1 

Sij = T t:1RitRjt = Mij - Mi*M**M*j (i,j = O,k). 

We shall formulate these well known results in 
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THEOREM 2. 1 : In the model 

k-1 
AXt = ~ r .AXt . - ITX t -k + et' 

. 1 J - J 
J= 

the parameters are estimated by ordinary least squares and we get 

(2.11) IT = 

and 

(2.12) 

(2.13) L -2/T(H ) = IAI max 1 . 

The estimate of IT should then be inserted into (2.6) to get the estimate 

of r .. 
J 

We shall now apply model (2.1) including constant term and seasonal 

dummies to the Danish and Finnish money demand data described in the 

introduction. It was found that for k = 2 the residuals for the Danish 

data clearly passed the test for being uncorrelated. For the Finnish 

data the test statistic for the residuals in the equation for Ay is 

almost significant. Looking at the autocorrelogram, see Appendix B, 

gives the impression that there is some seasonality left in the residu-

als, but since it is rather small we have chosen to ignore his. Accor-

dingly the model (2.1) with k = 2 was fitted to both data sets. After 

conditioning on the two first data realizations the number of observa-

tions left for estimation was 46 in the Danish and 104 in the Finnish 

data. The estimates r 1 ,IT and A are given in Appendix B together with 

some of the details of the statistical analysis. Here we shall give only 

the estimates of IT. 
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[TABLE I] 

2.2. Derivation of the estimate of a and P under the hypothesis H = ap' 

as well the likelihood ratio test for this hypothesis 

Now consider the model H2 , where H = aP'. The estimation of 

T1 , ... ,Tk - 1 is the same as before leading to (2.9). For fixed ~ it is 

now easy to estimate a and A by regressing ROt on ~'X k and obtain 
t-

(2.14) 

(2.15) 

~ ,-1 
a(p) = -SOkP(P Skk~) 

A(P) = SOO - SOk~(~'SkkP)-l~'SkO· 
Further we get 

(2.16) 

It was shown in Johansen (1988b) how one proceeds to estimate ~ by 

applying the identity 

(2.17) Isoo - SOkP(P'Skk~)-l~'SkOI = 

ISool Ip'skk~ - ~'SkOSo~lsok~I/I~'skk~l, 
which is easily minimized among all pxr matrices~. We shall formulate 

the results in 

THEOREM 2.2: Under the hypothesis 

the maximum LikeLihood estimator of ~ is found by the foLLowing proce-

dure: First soLve the equation 

giving the eigenvaLues Al ) ... ) Ap and eigenvectors 

normaLized such that V'SkkV = I. The choice of ~ is now 

v = 
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A. A. 

(2.19) ~ = (v1 ,·· .,vr ), 

which gives 

(2.20) 

The estimates of the other parameters are found by inserting ~ into the 

above equations. In particuLar we find 

(2.21) a = - SOk~' 

(2.22) IT = - SOk~~" 
A. 

(2.23) A = SOO - aa' , 

We can now immediateLy write down the LikeLihood ratio test statistic for 

the hypothesis H2 in H1 , since H1 is a speciaL case of H2 for the choice 

r = p. 

P A. 

(2.24) = -T 2 Ln(1-A.). 
i=r+1 L 

It was shown in Johansen (1988b) that the estimates of IT and A were 

consistent and that the asymptotic distribution of the test statistic can 

be tabulated by simulation. 

Remark. Many computer packages contain procedures for solving the 

eigenvalue problem 

IAI - AI = 0, 

where A is symmetric. One can easily reduce (2.18) to this problem by 

first decomposing Skk = CC' for some non-singular pxp matrix C. Now 

(2.18) is equivalent to 

I -1 -1 ,-11 
AI - C SkOSOO SOkC = 0, 

which has the same eigenvalues A1 > ... Ap but eigenvectors e 1 ,···,ep ' 

where v. 
1 

-1 
= C' e .. 

1 
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Let us now apply these results to the Danish data. The matrices 

-1 
800 ,820 and 822 are given in Appendix C together with 820800 802 , and the 

eigenvalues and eigenvectors are given in Table 11. Note that the calcu-

lation of all the eigenvectors allows one to estimate a and ~ for any 

value of r. 

[TABLE 11] 

[TABLE Ill] 

We shall now make inference about the number of cointegration vectors and 

we can here test a series of hypotheses as given in Table Ill. 

Consider for instance the hypothesis r ~ 1 versus the general alternative 

HI' Here the test statistic is calculated as 

-2In(Q) = -T{ln(1-A2 ) + In(1-A3 ) + In(1-A4 )} 

= -46{ln(1-.1940) + In(1-.1269) + In(1-.0138)} = 16.80. 

A comparison with the 95% quantile in the asymptotic distribution 

given as 23.8 in Table Ill, shows that this value is not Significant. 

Hence there is no evidence in the Danish data that more than one cointe-

gration relation exists. If on the other hand we test the hypothesis 

that r = 0 we find from Table III that this is strongly rejected, and 

hence we conclude that the data indicates that only one cointegration 

vector is found in the Danish data. This hypothesis will be maintained 

in the following. 

From Table 11 we estimate the cointegrating relation as the first 

column in V. In this case it seems natural to normalize it by the coef-

ficient of m2 equal -1. Hence we divide the vector ~ by 19.39. Then 

~' = (-1.00, +.96, - 6.73, +5.42). 

This makes it straightforward to interprete the cointegration vector in 
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terms of an error correction mechanism measuring the exess demand for 

money, where the equilibrium relation is given by 

m2 = .096y - 6.73ib + 5.42id + const. 

Similarly a is found as the first column in the matrix -S02V, but now 

normalized by multiplying by 19.39, 

a' = ( -.317, -.077, -.006, +.024). 

The normalized coefficients of a can now be interpreted as the weights 

with which exess demand for money enters the four equations of our sy­

stem. In this case it is natural to give them an economic meaning in 

terms of the average speed of adjustment towards the estimated equili­

brium state, such that a low coefficient indicates slow adjustment and a 

high coefficient indicates rapid adjustment. It is seen that in the 

first equation which measures the changes in money balances, the average 

speed of adjustment is approximately 0.32, whereas in the remai-ning 

three equations the adjustment coefficients are very low. 

observation will be followed by a formal test in section 2.4. 

This 

For the Finnish data we find from Table III that at least 2 but 

possibly 3 cointegration vectors are present. We shall assume in the 

following that 3 cointegration relations exist, but keep in mind that 

this conclusion is based on rather vague evidence. 

We then find ~ as the first three columns of V from Table 11 and a 

as the corresponding columns of -S02V. 

The interpretation of ~ and a is not straightforward in this case. 

A thorough understanding of the economic problem seems to be mandatory in 
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order to illucidate the role of the various cointegration vectors estima-

ted by~. We shall indicate here that a preliminary and heuristic inter-

pretation is possible by considering the estimates in Table 11. First 

note that for the three first eigenvectors we find, that the first two 

coefficients are equal with opposite sign: ~i2 = - ~i1 i = 1,2,3, and 

that ~2 is approximately proportional to (0,0,0,1). Thus it follows that 

~1'~2 and ~3 can be approximately represented as linear combinations of 

the vectors (-1,1,0,0), (0,0,0,1), and (0,0,1,0). This would imply that 

m1 y, i m and Ap are stationary, and hence that the only interesting 

cointegration we have found is between m1 and y. 

We shall formulate this finding as a precise hypothesis about a 

linear restriction on ~ and test this hypothesis in the next section. 

This completes the investigation of the model H2 in HI and we shall 

now turn to the model H; in H2 . 

2.3. Linear hypotheses concerning p. Estimation and test 

The model * H3 : ~ = H~ is a formulation of a linear restriction on 

the cointegration vectors. The hypothesis specifies the same restriction 

on all the cointegration vectors. The reason for this is the following: 

If we have two cointegration vectors in which m and y, say, enter then 

any linear combination of these relations will also be a cointegrating 

relation. Thus it will in general always be possible to find some rela-

tion which has, say, equal coefficients with opposite sign to m and y, 

corresponding to a long-run elastiCity of 1. This is clearly not inte-

resting, and only if all rows of ~ show the same unit elasticity is it 
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meaningful to say that we have found a unit elasticity. 

Under * H3 we have the restriction ~ = H~ where H is (pxs) but that 

means that the estimation of Tl , ... ,Tk - l and a and A are as just de-

scribed for fixed ~ = H~, and ~ now has to be chosen to minimize 

(2.25) 

over the set of all sxr matrices~. This problem has the same kind of 

solution as above and we can formulate the results in 

THEOREM 2.3: Under the hypothesis 

~: ~ = H~, 
we can find the maximum LikeLihood estimator of ~ as foLLows: First we 

soLve 

(2.26) 

~~ ) ) ~ ~ (~~) V~'H'S HV~ to give 1~1 ... AS and V = v1 , ... ,vs normaLized by kk = I. 

We now choose 

(2.27) 

and find the estimates of a,IT,A and T. from (2.21),(2.22),(2.23) and 
J 

(2.6) . The maximized LikeLihood becomes 

r 
L -2/T(H~) = Is I IT (1-A~), 

max 3 00 i=1 L 
(2.28) 

h · h· h L k L h d f h h h H~ H w LC gLves t e i e i 00 ratio test 0 t e ypot esis 3 in 2 as 

~ r ~ A 

-2Ln(Q;H3IH2) = T 2 Ln{(1-A.)/(1-A.)}. 
i=1 L L 

(2.29) 

The asymptotic distribution of this statistic was shown in Johansen 

(1988b) to be X2 with r(p-s) degrees of freedom. 
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Now consider the hypothesis that there is proportionality between 

money and income as the transactions demand for money would predict. 

Then the coefficients to money and income would be equal with opposite 

sign. 

For the Danish data we have found one cointegration vector, and the 

restriction can, in the above matrix formulation, be expressed as 

(3 = 

We shall then solve (2.26) which now gives three eigenvalues and eigen-

vectors, see Table IV. 

* * A The test of H3 in H2 consists of comparing ~1 and ~1 by the test 

* A -2ln(Q) = T{ln(l-~I)- In(I-~I)} = 46{ln(I-.4999) -In(I-.5004)} = .046. 

2 The asympotic distribution of this quantity is given by the ~ distribu-

tion with degrees of freedom r(p-s) = 1(4-3) = 1. It is clearly not 

significant, and we can thus accept the hypothesis that for the Danish 

data the coefficients to m2 and y are equal with opposite sign. 

In the Finnish data we have found three cointegration vectors and 

the hypothesis about proportionality between money and income can be 

formulated as 

o 0] o 0 <p, 
1 0 
o 1 
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We find the three eigenvalues from Table IV, and the test becomes 

* * * A A A 
-2ln(Q) = T{ln(1-A1)+ln(1-A2)+ln(1-A3)-ln(1-A1)-ln(1-A2)-ln(1-A3)}= 3.82, 

which should be compared with X~95(r(p-s)) = X~95(3(4-3)) = 7.81. 

Thus we accept the hypothesis of equal coefficients with opposite sign 

for m1 and y. 

[TABLE IV] 

For the Danish data we also want to test the hypothesis that the 

coefficients for the bond interest rate and the deposit interest rate are 

equal with opposite sign. This would imply that the cost of holding 

money can be measured as the difference between the bond yield and the 

yield from holding money in bank deposits. 

formulated as 

[ 1 0] 
f3 = -~ ~ <p, <p =rf312] 

° -1 ~34 

This hypothesis H** 
2 

is 

** Under this hypothesis we get from (2.25) two eigenvalues Al = .4828 and 

** ** A2 = .0473. The first eigenvector is VI = ( -16.92, -127.71) and the 

** -3 corresponding a = (-16.24, -4.02, +.08, +1.64)x10 . The test for 

the hypothesis is given by 

-2ln(Q) = 46ln{(1-.4838) - In(1-.4999)} = 1.46 

which should be compared with the X2 quantiles with r(sl-s2) = 1(4-3) = 1 

degree of freedom. Again this is not Significant and we conclude the 

analysis of the cointegration vectors for the Danish demand for money by 

the estimate 

** f3 = ( -1.00, +1.00, -7.55, +7.55), 

where we have normalized it by the coefficient to m2 (16.92). The corre-

sponding estimate of a is multiplied by 16.92 and is given by 



18 

** a = (-.275,-.068,.001, .028). 

It is also possible to test these hypotheses using the Wald test 

(3.41) given in Corollary 3.17, which are easily calculated from Table 

11. For the Danish data we first test that m2 and y have equal coeffi-

cients with opposite sign, i.e. sum to zero. We choose K' = (1,1,0,0) 

and calculate the statistic 

1/2 
U 46 (-19.39+18.61) -- 244 

1 {(1/.5004-1)[(-14.77+25.04)2+(10.27-26.05)2+(-12.39+1.29)2J) 1/2- . 

The second test that the coefficients to the bond interest rate and the 

deposit interest rate are equal with opposite sign is calculated in the 

same way: 

461/ 2 (-130.40 + 105.05) 

U2 = {(1/.5004-1)((-17.44-73.35)2+(29.81-83.90)2+(.54-24.94)2}1/2 = 
-1.56 

Both these statistics are asymptotically normalized Gaussian and the 

values found are hence not significant. 

The test for the Finnish data can likewise be performed using the Wald 

test (3.40) We can formulate the hypothesis in question as 

K'~ = (l,l,O,O)~ = O. 

Then we find from Table 11 
AA 2 

K'~~'K = (1.38 + 2.22) = 12.96 

and 

K'~(D-1- I)-l~'K = (-2.93+2.86)2 + (4.58-6.06)2 + (-11.13+10.24)2= .834 

.3093-1-1 .2260-1-1 .0731-1-1 
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and the test statistic becomes 

104x.834112.96 = 6.22 

h · h h Id I b d . h the v 2 w IC s ou a so e compare WIt ~ quanti le with 3 degrees of 

freedom as before. 

Note that with the restriction of proportionality we now have three 

cointegration vectors restricted to a three dimensional space defined by 

the restriction that m1 and y have equal coefficients with opposite sign. 

* Thus the hypothesis H2 is really the hypothesis of a complete specifica-

tion of sp(~). In this space we can choose to present the results in any 

basis we want and it seems natural to consider the three variables m1 -

.m d A y, I an ilP. Thus the conclusion about the Finnish data is that in fact 

the two last variables i m and Ap are already stationary, and the two 

first y and m1 are cointegrated. 

Notice that the Wald test in all cases gives a value of the test 

statistic which is larger than the value for the likelihood ratio test 

statistic. This just emphasises the fact that we are relying on asympto-

tic results and a careful study of the small sample properties is neces-

sary. 

We shall conclude this section by giving the final estimate of IT as 

obtained under the various restrictions we have accepted above. 

[TABLE V] 

2.4. Test and estimation of restrictions on a 

Let us now turn to the hypothesis H3 where a is restricted by a = A~ in 

the model H2 . Here A is a (pxm) matrix. It is convenient to introduce 
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~ 

B(px(p-m)) such that B'A = 0, B'B = I. Then the hypothesis H3 is given 

by 

(2.30) B'a = O. 

We shall now turn to the concentrated likelihood function (2.9) and 

express it in the variables given by 

(2.31) 

(2.32) 

A'(ROt + a~'Rkt) = A'ROt + A'A~~'Rkt' 

B'(ROt + a~'Rkt) = B'ROt · 

In the following we shall factor out that part of the likelihood function 

which depends on B'ROt since it does not contain the parameters ~ and ~. 

Again to save notation we shall define Aaa = A'AA, Aab = A'AB ,Sak.b = 

Sak - SabSb~1Sbk = A'Skk - A'SOOB(B'SOOB)-1B'SOk' etc. 

We now get a factor corresponding to the marginal distribution of 

B'R given by Ot 

(2.33) 

which gives the estimate 

(2.34) 

and the maximized likelihood function 

(2.35) -2/T / / 
Lmax = Sbb . 

The other factor corresponds to the conditional distribution of A'ROt and 

Rkt conditional on B'ROt and is given by 

T 
(2.36) /A'A/ T/ 2 /A /-T/2exp{_ ~ (A'R + A'A~~'R - AabAbb-1B'ROt) , 

aa.b t=1 Ot kt 

Aaa.~1(A'ROt + A'A~~'Rkt - AabAb~1B'ROt)/2}. 
It is a well known result from the theory of the multivariate normal 

-1 
distribution that the parameters Abb,AabAbb and 

-1 
independent and hence that the estimate of AabAbb 

A b are variation aa. 

is found by regression 
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for fixed ~ and ~ giving 

(2.37) 

and new residuals defined by 

Rat = A'ROt - SabSb~1B'ROt' 
~ -1 , 
Rkt = Rkt - SkbSbb B ROt· 

In terms of Rat and Rkt the concentrated likelihood function now has the 

form (2.9) which means that the estimation of ~ follows as before, and we 

can formulate 

THEOREM 2.4: Under the hypothesis 

the maximum LikeLihood estimator of ~ is found as foLLows: First soLve 

the equation 

(2.38) 

giving ~1 ) ... ) ~ ) ~ 1 m m+ 

such that Y'Skk.bY = I. 

Now take 

(2.39) 

which gives the estimates 

(2.40) 

and 

(2.41) 

(2.42) 

rv ,-1 rv 

~ = - (A A) Sak.b~ 

= ~p = 0 and Y = (~1' .. . '~p) normaLized 

and the maximized LikeLihood function 

(2.43) 

The estimate of A can be found from (2.34),(2.37) and (2.41), and stiLL 



22 

T. is estimated from (2.6). 
J 

The LikeLihood ratio test statistic of H3 in H2 is 

r '" 
(2.44) -2Ln(Q;H3IH2) = T L Ln{(1-~.)/(1-A.)}. 

i=1 L L 

The asymptotic distribution of this test statistic is found in Theorem 

3.14 and is given by a X2 distribution with rep-m) degrees of freedom. 

The following very simple corollary is useful for explaining the 

role of single equation analysis: 

COROLLARY 2.5: If m = r = 1 then the estimate of ~ is found as the 

coefficients of Xt -k in the regression of A'AX t on Xt -k , B'Xt , and 

AX t -1 ,··· ,AXt -k-r1' 

PROOF: It suffices to notice that when m = r = 1 then only one 

cointegration vector has to estimated. It is seen from (2.38) that since 

the matrix 8 8 -18 is singular and in fact of rank 1, then only 1 
ka.b aa.b ak.b 

eigenvalue is non zero, and the corresponding eigenvector is proportional 

to which is exactly the regression coefficient to Rkt we 

would get by regressing A'ROt on B'ROt and Rkt . This can of course be 

seen directly from (2.36) since A'A~ is lxl and can be absorbed into ~, 

which shows that ~ is given by the regression as described. 

In particular if A' = (1,0,0,0) then the least squares regression 

of the difference of the first variable on the remaining variables and 

their differences will be the maximum likelihood estimator. 

We shall now apply these results to the Danish data. We want to 

test the hypothesis that the cointegration relation only enters the first 

equation. Thus we let 
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and find the eigenvalues of (2.46), see below, since we maintain the 

hypothesis that ~ has the form that was found in the previous section. 

Thus there are two eigenvalues ~1 = .4200 and ~2 = 0, giving an eigenvec­

tor corresponding to ~1 of ( -18.56, -135.68), and a corresponding esti-

~ ~ 
mate of a, a = ( -13.21, 0.00, 0.00. 0.00)x10 . 

The test statistic for this hypothesis about a is then given by 

~ * -2ln(Q) = T{ln(1-A1)-ln(1-A1)} = 46{ln(1-.4200)-ln(1-.4828)} = 5.17. 

This should be compared with the 95% quanti le X~95(r(p-m)) = 
2 

X .95(1(4-1)) = 7.81. On the basis of this we accept the hypothesis 

about a and conclude the analysis of the Danish data by giving the esti-

mate of 

~' = ( -1.00, +1.00 , -7.31, +7.31), 
~ 

a' = ( -.25, 0.00 , 0.00 , 0.00), 

from which the estimate of IT can be constructed. Thus we have reduced 

the 16 parameters in the matrix IT which describes the long-run relations 

in the data to just 2 parameters. 

This completes the estimation and 

restrictions on a and ~ respectively. 

The conclusion is thus the following: 

* ~ test of H3 and H3 concerning 

By correcting AXt and X k t-

for AXt _1 , ... ,AXt - k+1 we obtain the product moment matrices from the 

residuals: 
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(2.45) 

which form the basis for all subsequent analyses of IT. 

Under the hypothesis H2 : IT = a~' the estimates of ~ and a are 

related to the canonical variates between ROt and Rkt , see Anderson 

(1984), the estimate of ~ is given as the eigenvectors of (2.18) corre-

sponding to the r largest eigenvalues, i.e. the choice of ~ is the choice 

of the r linear combinations which have the largest correlation with the 

stationary process AXt . 

If ~ = H~ we note that ~'Rkt = which leads to solving 

(2.25) where Rkt has been replaced by H'Rkt . Thus restricting ~ to lie 

in sp(H) implies that the levels of the process should be transformed by 

w. 

If a = A~ we shall solve (2.38), where we have conditioned on 

B'ROt . In other words if we assume that the equations for B'ROt do not 

contain the parameter a, i.e. B'a = 0, then we shall also correct for 

these before solving the eigenvalue problem. 

~ * It is now clear how one should solve the model H4 = H3 n H3 , where 

restrictions have been imposed on ~ as well as on a, namely by solving 

the eigenvalue problem 

(2.46) 

This gives the final solution to the estimation problem of H4 . 

Notice how (2.46) contains the previous problems by choosing either H = I 

or A = I or both. 

Note that a linear restriction on ~ implies a transformation of the 

process, and that a linear restriction on a implies a conditioning. Thus 
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all the calculations can easily be performed starting with the product 

moment matrices S .. and using the usual operations of finding marginal 
IJ 

(transformed) and conditional variances and then apply an eigenvalue 

routine. 

The test statistic for the hypothesis H2 has an asymptotic distri­

bution that has to be tabulated by simulation, but all the hypotheses 

about ~ and a lead to test statistics that are asymptotically distributed 

as X2 with the appropriate degrees of freedom, and hence the usual tables 

can be applied. 

3. The asymptotic properties of the estimators and the test statistics 

3.1. Grangers representation theorem 

When we want to investigate the probabilistic properties of the 

estimates and the test statistics we have to make more precise as sump-

tions about the process. The basic assumption is that for 

(3.1) 
k 

IT(z) = I - IT1z - ... -ITkz 

we have that /IT(z) / = 0 implies that either /z/ > 1 or z = 1, which 

guarantees that the non-stationarity of Xt can be removed by differen­

cing. 

Now write the model defined by (3.1), see (1.2), as 

(3.2) 

where IT = I - IT1 - ... - ITk = IT(1). 

The first result that we want to prove is the fundamental result 

about error correction models of order 1 and their structure. The basic 
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result is due to Granger (1981), see Engle and Granger (1987) or Johansen 

(1988a), but we shall give a very simple proof here. 

THEOREM 3.1: (Grangers representation theorem). If 

(3.3) IT = af3' 

for a and f3 of dimension pxr and rank r and if 

(3.4) 

has fuLL rank p - r, where f3L and a L are px(p-r) of fuLL rank such that 

f3'f3~ = ° and a'aL = 0, then 

(3.5) AXt is stationary 

(3.6) 

(3.7) 

Xt is non-stationary 

f3'X t is stationary 

and hence (3.2) can be interpreted as an error correction modeL. If we 

write the process in the moving average form AXt = C(L)6 t then the foL­

Lowing representation hoLds: 

(3.8) C(l) = f3L(a~ITl(l)f3L)-la~. 

Note that the relation between (3.3) and (3.8) shows that for this 

type of process there is a very nice symmetry between the singularity of 

the "impact" matrix IT for the autoregressive representation and the 

singularity of the "impact" matrix for the moving average representation, 

in the sense that what is the null space for C(l)' is the range space for 

IT and what is the range space for IT' is the null space for C(l). It is 

this symmetry that allows the results for this type of process to be 

exceptionally simple. 
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PROOF: If we multiply the equation (3.2) by a' and a~ we get the 

equations 

a'a~'Xt + a'IT1(L)AXt = a'Et , 

a~IT1(L)AXt = a~Et· 

To discuss the properties of the process Xt we shall solve the 

equations for Xt and express it in terms of the Et'S. We therefore 

introduce the variables Zt = (~,~)-1~'Xt and Yt = (~~~L)-1~~AXt as new 

variables, from which AXt can be recovered: 

This gives the equations 

(3.9) 

(3.10) 

a'a~'~Zt + a'IT1(L)~AZt + a'IT1(L)~LYt = a'Et 

a~IT1(L)~AZt + a~IT1(L)~LYt = a~Et· 

The matrix function defining this new system consisting of Zt and Yt 

takes the form: 

_ [
a' aW ~ + a' IT 1 (z) ~ ( 1-z ) 

A(z) - a~IT1(z)~(1-z) 

For z = 1 this has determinant 

a'IT1 (zW L] 
a~IT1 (zW L . 

which is non-zero by assumption (3.3) and (3.4), hence z = 1 is not a 

root. For z # 1 we use the representation 

~ , -1 
A(z) = (a,aL) IT(z)(~'~L(1-z) ), 

which gives the determinant as 

1 A (z) 1 = 1 ( a, a L) 11 IT ( z) 11 (~ , ~ L) 1 (l-z) - (p-r ) , 

which shows that all roots of IA(z) 1 = 0 are outside the unit disk, by 

assumption (3.1). 

This shows that the system defined by (3.9) and (3.10) is inverti-

ble and that Yt and Zt are stationary processes, and hence that AXt is 
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stationary. This proves (3.5) and (3.7). By summation ofAXt we find 

t 
that Xt contains the non-stationary component ~~ 2 Ys ' which proves 

s=o 
(3.6). 

From the representation of the processes Zt and Yt we can get a 

representation ofAXt by multiplying by the matrix (~A,~~). Hence 

eeL) = (~A,~~)A(L)-I(a,a~)' 

For L = 1 we get (3.8). 

In the following when we discuss the limiting distributions we 

shall throughout assume the conditions of Theorem 3.1. We shall have to 

repeat some of the results about the process Xt given in Johansen 

(1988b). Since we assume that AXt is stationary we define the covariance 

function 

Then we define 

00 

~d 

00 

~k = -.2 Ijl~(j) 
J=-oo 

with the interpretation that 

Finally we define 

-1 
2ij = Mij - Mi*M**M*j' i,j = O,k, 

where M** is the matrix with entries Mij , i,j = 1, ... ,k-l. 



29 

3.2. A summary of technical asymptotic results 

The following technical results are given in Johansen (1988b) based 

on the results by Phillips and Durlauf (1986). We let W be a Brownian 

motion in p dimensions with covariance matrix A, and let C = C(l), see 

(3.8). 

LEMMA 3.2: As T -7 <XI we have 

and 

while 

-1/2 w 
T X[TtJ -7 CW(t) 

a.s. 
M . . -7 /..L •• , i,j = 0, ... ,k-1 

LJ LJ 
w 1 

Mki -7 ~i + C{:,dW'C', i = 0, ... ,k-1 

a.s. 
~'Mkk~ -7 ~'~~ 

-1 w 1 
T Mkk -7 CJW(u)W' (u)duC' . 

o 

The relations between 2 .. , a and ~ are given in the next Lemma. 
IJ 

LEMMA 3.3: The foLLowing reLations hoLd 

(3.11) 

(3.12) 

and hence 

(3.13) 

200 = -a~'2kO + A, 

20k~= - a(3'~k(3, 

200 = a((3'2kk(3)a' + A. 

These reLations impLy that 
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(3.14) ( ,'" -1 )-1,,,, -1 (a'A-1a)-1a'A-1. a ~OO a a ~OO = 

The properties of S .. are given in Lemma 3.4. 
IJ 

LEMMA 3.4: For T ~ 00 it hoLds that 

a.s. 
{3 , SkD ~ {3' ~O 

whereas if ~ is not in the span of {3 then 

-1 w 1 
T ~'Skk~ ~ ~'CfW(u)W'(u)duC'~, 

o 
and if O'a = 0 then 

w 1 
(3.15) o'SOk ~ 0' fdWW'C' . 

o 
Finally a technical result about the asymptotic behaviour of some of the 

quantities that enter into the calculations later. 

(3.16 ) 

(3.17) 

(3.18) 

LEMMA 3.5: For T ~ 00 we have for o'a = 0 

p 

a'SOkS~1SkOa ~ a'.20k{3({3'.2kk{3)-1{3'.2kOa = a' (.200 - A)a 

Tl/2a'SOkS~1SkOO = a'.2k0{3({3'.2kk{3)-1(T1/2{3'SkOo) + op(1) 

Tl/2{3'S 0 ~ N (0 {3'.2 (3 ® o'Ao) 
kO rx(p-r)' kk 

Hence the Limit distribution of (3.17) is Gaussian with mean zero and 

variance matrix given by a'(.200 - A)a ® o'Ao. 
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PROOF: Let (~,~) be (pxp) and of full rank, then 

SOkSk~lSkO = (SOk~,SOk~) [WSkk~ ~'Skk~ ]-1 [WSkO] 
~'Skk~ ~'Skk~ ~'SkO 

= (SOk~,SOk ~~) [WSkk~ WSkk ~~ ]-1 [ WSkO]' 
Ay~'Skk~ I ~~'SkO 

-1/2 P 
where ~ = (~'Skk~) ~ 0, for T ~ 00, see Lemma 3.4. From Lemma 3.3 

and 3.4 it follows that 

which proves (3.16). Now use the above representation for 

1/2 , -1 
T a SOkSkk SkOo, and we get the it has the same limit distribution as 

(a'2:0k~'0) [(W2:kk~)-l 0 1 [T1/2 WSkOO 1 = 

o I T1/2~~'SkOo 

(a'2:0k~)(~'2:kk~)-lT1/2~'SkOo. 

This proves (3.17). The asymptotic distribution of T1/2~'SkOo is found 

as follows: 

(3.19) 

If we multiply (2.1) 

k-1 
MO . = 2: f.M.. - IIMk . 

1 . 1 J J1 1 
J= 

by AX '. and sum over t we get 
t-1 

T 
+ T -1 2: c AXt '. i = 0, ... , k-1 , 

t=l t -1 

and when multiplying by Xt~k and summing over t we get 

k-1 -1 T 
(3.20) MOk = 2: f.M.k - IIMkk + T 2: CtXt _k · 

j=l J J t=l 

Now solve the equations (3.19), i = 1, ... ,k-1 for f. and insert into 
J 

(3.20) 

(3.21) 

P P 
Since Mij ~~ij and ~'Mkj ~ ~'~j' it follows that UT has the same 

distribution as 

limit 
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From 
1/2 

the central limit theorem for martingales it follows that T VT is 

asymptotically Gaussian with mean zero and variance matrix A®~'~k~. Now 

multiply by a and the second term on the left hand side of (3.21) vani-

shes since a'a = 0, and hence (3.18) is proved. 

Finally we can use Lemma 3.3 to see that 

We shall next give some results about the eigenvalues of (2.18) taken 

from Johansen (1988b) Lemma 4 and 6. 

LEMMA 3.6: The ordered eigenvaLues of the equation 

I -1 
ASkk - SkaSaa saki = a 

converge in probabiLity to (A1 , .. . ,Ar,a, ... ,a), where A1 , ... ,Ar are the 

ordered eigenvaLues of the equation 

Further we have that TA 1' ... ,TA converge in distribution to the orde-
r+ p 

red eigenvaLues of the equation 

111 
IAfBB'du - fBdB'fdBB' I = a 

a a a 

where B is a Brownian motion in p-r dimensions with variance matrix I. 

The following result is well known from the theory of canonical 

correlations and express the duality there exists between the two sets of 

canonical variates, see Anderson (1984). 
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LEMMA 3.7: Let the partitioned matrix 

[ ~, ~ ] 
be symmetric positive definite, where A is pxp and C is mxm. It then 

holds that 

I /l-A B 1= /l-p-m!A!!/l-2C - B'A-IB! = /l-m- p !C!!/l-2A - BC-1B'! 
B' /l-C 

such that the positive solutions of 

and 

are identical. If 

then 

-1 
?\Cx = B'A Bx 

?\Ay = BC-1B'y 

where y = A-IBx and x = C-1B'y and vice versa. 

3.3. Asymptotic results about the estimators 

Since the parameter ~ is not identified we can not expect to get a 

reasonable estimator for ~. We can however normalize the estimator so 

that the asymptotic properties can be formulated in a way that is useful 

for deriving further results. Choose ~ (px(p-r)) of full rank such that 

~'~ = 0, then we can decompose ~ = ~b + ~g, where b = (~,~)-1~,~. The 

following result was proved in Johansen (1988b) except for a simplified 

expression for the variance which follows from Lemma 3.3. 
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PROPOSITION 3.8: Under the hypothesis H2 IT = a~' the maximum 

LikeLihood estimator ~ has the representation 

AA_1 -1 -1 T -1 -1-1 
(3.22) T[~b -~] = ~(~'Skk~/T) ~'(T L Xt_kc~)A a(a'A a) + 0p(1), 

t=1 

which converges in distribution to 

1 1 
~(fUU'du)-1fUdV' , 

o 0 

where U and V are independent Brownian motions, see Lemma 3.4, given by 

U = ~'CW, 

V = (a'A- 1a)-1a'A- 1W, 

h ha h . f V . b V (V) _- (a'A- 1a)-1. suc t t t e varLance 0 is gLven y ar 

The expression for the variance is found as follows. In Johansen (1988b) 

it was -1 -1-1 shown that (3.22) holds with A a(a'A a) replaced by 

-1 -1-1 
LOO LOk~(~'LkOLOO LOk~) ~'~k~· 

Now apply (3.12) to replace ~'~O by an expression in a and we find 

-1 -1-1 
LOO a(a'LOO a) 

which by (3.14) equals the expression in (3.22) from which the variance 

follows easily. 

Note that the limiting distribution for fixed U is Gaussian with 

mean zero and variance 

1 
~fUU'du~' ® (a'A- 1a)-1. 
o 

Thus the limiting distribution of that part of ~ which is orthogonal to ~ 

is a mixture of Gaussian distributions. 

Next we shall find an asymptotic representation for a as well as 

the asymptotic distribution. The estimate of a has to be normalized in a 
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way similar to that of ~. 

PROPOSITION 3.9: Under the hypothesis H2 : IT = a~' the estimator 

a has the representation 

(3.23) 

which converges weakLy to a Gaussian distribution of dimension pxr with 

mean zero and variance matrix A®(~'~k~)-I. 

PROOF: The definition of a is 

a = 
A A, A._I 

-SOk~W Skk~) 

and by (3.20) we can replace ~ by ~b, which shows 

, -1~,-1 -1 
a = - SOk~(~ Skk~) b + 0p(T ) 

and hence the representation (3.23) 

T1/2(a~b~' ) T1/2(S R(R'S R)-l ) 0 (T-1/ 2 ) - a = - Okv v kkv + a + P . 

From (3.21) we find 

T1/2(~b' - a) = - T1/2UT(~'Sk~)-1 + op(l). 

which proves Proposition 3.9. 

Note that the asymptotic distribution of a is not influenced by the 
~~-1 ~~-1 

asymptotic variance of ~b ,since ~b converges so fast to ~, see Stock 

(1987) for a similar result for regression estimates of cointegration 

vectors. 

COROLLARY 3.10: Under the hypothesis HI : IT = a~' the asymptotic 

d · ·b· f TI/2(IT~ IT)· Gau·· d· . . h 0 and LstrL utLon 0 - LS SSLan Ln pxr LmenSLons WLt mean 

a variance matrix given by 

A®~ (~ , ~k~) - 1 ~' , 

which is consistentLy estimated by 
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(800 - aa')®(~~'). 

We have found the estimate a SOk~ and its asymptotic properties 

but it is convenient to have a representation of a as the solution to an 

eigenvalue problem, since this will give a function that a maximizes and 

the asymptotic properties of a and in particular the test statistics can 

be found by the usual methods. The idea is to maximize with respect to 

A, ~, as well as the matrices T., and find the likelihood profile with 
J 

respect to a. We introduce 5 such that 5 is px(p-r), (a,5) has full rank 

and 5'a = 0 i.e. sp(5) = sp(a)~or 5 = a~. 

We then find as in section 2, see (2.9), that 

Lm:;/T(a,~) = Isoo + a~'SkO + SOk~a' +a~'Skk~a' I, 

and hence for fixed a and 5 

In the last expression we have replaced ~a'a by ~ since this gives the 

same minimum. To simplify the notation we introduce Saa = a'SOOa, Sak = 
, -1 

a SOk' and Saa.5 = Saa - Sa5S55S5a etc., then 

la'al 15'olmin L -2/T(a,~) = 
~ max 

ISoolm~n Isaa . o + ~'Ska.o + Sak.o~ + ~'Skk.o~l. 

This expression is minimized by 

A -1 
~(a) = -Skk.oSka.o' 

giving a minimum value of 



Now we use the identity 

la'allo'oll SOO SOk I = 
SkO Skk 

which gives the representation 

(3.24) 
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Thus 0 and thereby a can be determined by solving the eigenvalue problem 

(3.25) 

"" " and choosing 0 = (u 1' ... ,u ), corresponding to the p-r smallest eigen-
r+ p 

values. 

We can now apply Lemma 3.7 to see that the solutions of (3.25) are 

the same as the solutions of (2.18), and that we can choose u. = 
1 

-1 A A A A 

SOO SOkvi· From (u1,.·.,ur )'SOOo = 0 it follows that we can choose a = 
"" " 

-SOO(u1 ,· .. ,ur ) = - SOk~· 

Thus we get the same solution as in section 2 but now as the solu-

tion of an optimization problem, a representation which will be conveni-

ent in the following. 

We shall now find the properties of o. We let 0 = aa + od, then d 

1\ 
= (0'0)-1 0 '0, and we have 

PROPOSITION 3.11 For T ~ ro we find the representation 

(3.26) T1/2(5d- 1 - 0) = a(~'~kOa)-1(T1/2~'SkOo) + 0p(1) 

which converges weakLy to a Gaussian distribution with mean zero and 

variance matrix a(a'(~OO- A)a)-1a , ® o'Ao. 
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PROOF: The normalization o'SOOo = I implies that o,a and dare 

bounded in probability. Now consider for i = r+l, ... ,p the equations 

(3.27) 

-1 
By Lemma 3.5 we have Ai € 0p(T ) and Lemma 3.6 shows that the coeffi-

cient to d i is of the order Op(T-1/ 2 ), which implies that ~i € Op(T-1/ 2 ). 

Thus o'SOOo = I implies that d'o'SOood g I and hence that Idl is bounded 

away from zero and finally that d-1 is bounded in probability. From 

(3.27) we then find that 

AA_1 AA_l , -1 -1, -1 
od - ° = aad = a(a SOkSkk SkOa) (a SOkSkk SkOo) + op(l) 

which by Lemma 3.5 has the required representation and limit distribu-

tion. 

3.4. The asymptotic distribution of the LikeLihood ratio test 

statistics 

We shall now find the limiting distributions of the likelihood 

ratio test statistics for the various hypotheses discussed in Section 2. 

* The tests of H2 in HI and H3 in H2 were discussed in Johansen 

(1988b). The following results were obtained: 

THEOREM 3.12: Under the hypothesis H2 : IT = a~' the statistic 

-2Ln(Q;H2IH1) has a Limit distribution which can be expressed in terms of 

a p-r dimensionaL Brownian motion B with i.i.d components as 

(A.28) 
111 

tr{fdBB'(fBB'du)-l fBdB ,}. 
000 
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2 
This distribution was tabuLated by simuLation, and approximated by a X 

distribution of the form (.85 - .58/f)X2 (f) with f = 2(p-r)2. Further it 

was found that under the hypothesis (3 = H<{> the statistic 

-2Ln(Q;H3*/H2 ) is asymptoticaLLy distributed as X2 with f = (p-s)r de-

grees of freedom. 

The reason for getting a strange limit distribution for the first 

statistic is that it involves the p-r smallest eigenvalues of (2.18) 

which are associated with the non-stationary part of the process. 

We shall now as a preliminary result consider the test of a simple hypo-

thesis concerning a or o. 

PROPOSITION 3.13: The test statistic -2Ln(Q;o/H2 ) of a simpLe 

hypothesis concerning 0 has the representation 

(3.29) -2Ln(Q;o/H2 ) = Ttr{(O'AO)-10'SOk(3((3'2kk(3)-1(3'SkOO} + 0p(1). 

and is asymptoticaLLy distibuted as X2 with r(p-r) degrees of freedom. 

PROOF: From the expression (3.24) for the likelihood profile in a 

we get the expression 

which by a Taylors expansion equals 

Ttr{(6'S006)-1(6-0)'SOO(6-0) 

Op(T(6-0)3). 
A A* AA_1 

Now replace 0 by 0 = od , see (3.26), which is also a maximizing point 

for the likelihood function, and which converges in probability to o. We 
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then find that 

and 

since ~'~oo = ~'~~a'o = O. We thus get the representation 

-2ln(Q) = tr{(o'Ao)-lTl/2(6*-0)'20k~(~'~k~)-1~'2kOTl/2(6*-0)} + op(l). 

A* 
From the representation of 0 -0 in (3.26) we then get 

-2ln(Q) =tr{(o'Ao)-lTl/20'SOk~(~,~~)-1~'SkOoTl/2} + op(l) 

which by Lemma 3.5 is asymptotically distributed as X2 with (p-r)r de-

grees of freedom. 

Consider now finally the composite hypothesis 

where A is pxm of full rank. The restriction on a can be formulated as 

sp(a) C sp(A) which corresponds to the requirement that sp(o) should 

contain the vectors in sP(A)~ the orthogonal complement of A. Thus let B 

span this space, i.e. (A,B) has full rank, and A'B = 0, then we can 

formulate the hypothesis as 

where T(mx(m-r)) has to be estimated. We shall then solve the maximiza-

tion problem, see (3.24) 

max T'Saa.kT T'Sab.k / T'SaaT T'Sab = 

T Sba.kT Sbb.k SbaT Sbb 

/Sbb.k/ /Sbb/-1max /T'(Saa.k - Sab.kSbb.~lSba.k)T///T'Saa.bT/ -. 
T 

/Sbb.k/ /Sbb/-1max /T'(Saa.b - Sak.bSk~~bSka.b)T///T'Saa.bTI. 
T 
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Hence we shall solve the equation 

(3.30) 

giving the eigenvalues ~1 > ... ~m > 0 and eigenvectors u1 ' ... ,um. We 

then choose ~ = (~ 1' ... ,~ ) corresponding to the m-r smallest eigen-r+ m 

values. It follows from Lemma 3.7, that (3.30) and (2.38) have the same 

positive solutions. The eigenvectors are related by 

'" -1 '" 
u. = S b S k bV .' i = 1, ... ,m. 

1 aa. a. 1 

From the relation 

it follows that we can take 

'" -1 '" '" -1 '" 
a = -A(A'A) A'SOO.bA(u1 ,·· .,ur ) = - A(A'A) Sak.b~' 

see (2.40). Thus we get the same solution as in section 2. 

THEOREM 3.14: The LikeLihood ratio test of the hypothesis 

H3: a = A~ or B'a = 0 

where A(pxm) and B(px(m-r)) are of fuLL rank, and A'B = 0 is denoted by 

-2Ln(Q;H3 /H2 ), see (2.44), and is asymptoticaLLy distributed as 

)(?(r(p-m)) . 

PROOF: Let us formulate the hypotheses in terms of 0 and use the 

result of Proposition 3.13 to get 

(3.31) -2In(Q;H3 /H2 ) = tr{(O'AO)-lT1/20'SOk~(~'~k~)-1~'SkOOT1/2} 

- tr{(T'Aaa.bT)-lTl/2T'Sak.b~(~'2kk.b~)-1~'Ska.bTT1/2} + 0p(l), 
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where 0 has the form (AT,B). Now a'B = 0 implies that ~'~OB = 

- ~'~kk~a'B = 0 and hence that ~'~kk.b~ = ~'(~kk - ~kOB(B,~~)-lB'~kO)~ 

= ~'~k~. From the form of 0 we get that the first term contains the 

factors 

(3.32) [T'Sak~ ]' [ T' AaaT T' Aab ]-1 [ T'Sak~ ] = 
Sbk~ AbaT Abb Sbk~ 

~'Ska.bT(T'Aaa.bT)-lTSak.b~ + ~'SkbAb~lSbk~· 
The first term of (3.32) cancels the second term in (3.31) and we get the 

representation 

(3.33) 

which by Lemma 3.5 is asymptotically distributed as X2 with rep-m) de-

grees of freedom since B'a = O. 

5. WaLd tests for hypotheses about a and ~ 

We shall consider Wald tests which are very easy to calculate once 

the eigenvectors and eigenvalues have been calculated under the hypo-

thesis H2 . Let us first consider a test for the hypothesis concerning a 

and let us express it as 

H3 : B'a = o. 

A Wald test can be constructed by sUitably normalizing the statistic B'a. 

THEOREM 3.15: Under the hypothesis H3: B'a = 0 where B is px(p-m) 

of fuLL rank the asymptotic distribution of 

(3.34) Ttr{(B'(SOO - ~')B)-l(B'~'B)} 

is X2 with (p-m)r degrees of freedom. 
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PROOF: In view of the results of Proposition 3.9 we can consider 

Ttr{Ab~lB'~b'(~'Lkk~)b~'B} 

which is asymptotically distributed as X2 with rep-m) degrees of freedom. 

To apply the test we need consistent estimates for the variance matrices, 

and we thus insert the consistent estimates 

~* ~* ~ 1~ ~~ 1 ~ 1~ 1 
R 'S ~ - b' ~'S ~b = b'- b-
~ kk - kk 

and 

B'(SOO - aa')B, 

and the result follows. If we apply the result (3.23) we get the repre-

sentation 

and we see that the Wald test is just the quadratic approximation derived 

to the likelihood ratio test in (3.33) 

One can derive a different expression for this statistic by using 

the alternative derivation of a = - SOOu, where u consists of the r 

eigenvectors of (3.25) corresponding to the r largest eigenvalues. Since 

uu' + DO' = SO~l we find the expression 

(3.35) 
AA -1 AA 

Ttr{(B'SOOoo'SOoB) (B'SOOuu'SOOB)} 

* Let us next consider the hypothesis H3 but expressed as 

H; : K'~ = o. 

where K is px(p-s) of full rank. This suggests a Wald test on the sta-

tistic K'~ and the problem is again how to normalize it. 
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THEOREM 3.16: * Under the hypothesis H3 K'{3 = 0, where K is 

px(p-s) of fuLL rank, the asymptotic distribution of 

(3.36) 

is X2 with (p-s)r degrees of freedom. 

PROOF: The idea of this test is to note that the limiting distri-
AA 1 

bution of K'{3b is a mixture of Gaussian distributions. see Proposition 

3.8, hence the asymptotic distribution of 

(3.37) (K,~(iuu'du)-1~'K)-1/2(TK'Bb-1)(a'A-1a)1/2 
o 

will be, for fixed U, a Gaussian random matrix of dimension (p-s)xr with 

mean zero and covariance matrix I®I. Since this result is the same for 

all fixed U it also holds unconditionally, from which we derive that 

(3.38) tr{(K,~(iuu'du)-1~'K)-1(TK'Bb-1)(a'A-1a)(b,-lB'KT)} 
o 

is asymptotically X2 with (p-s)r degrees of freedom. We shall now insert 

consistent estimates for the variance matrices. The first one follows 
A 

from Proposition 3.9 and the consistency of A = SOO - aa': 

AA _lAA P -1 
ba' (SOO - aa') ab' -+ a' A a. 

For the second we first apply Lemma 3.4 and the definition of U in Propo-

sition 3.8 : 

w 1 
K'~(~'Skk/T~)-l~'K -+ K'~(fUU'du)-l~'K. 

o 
We shall now show how to estimate the left hand side from the data. 

We first decompose ~ = ~c + (3e, and find from the equation 

A -1. = Ai E 0p(T ), 1 = r+1, ... ,p, 

E Op(T-1/ 2). Then the normalization that ~. and hence c. and e. 
III 
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I = ~'Skk~ = e'~'Skk~e + c'~'Skk~c + c'~'skk~e + c'~'Skk~c 

shows that 

(3.39) 

Note that K'~ = K'~c, such that 

TK'~(~'Skk~)-l~'K = TK'~(~'~'Skk~~)-l~'K. 

By (3.39) this has the same limit distribution as TK'~~'K. Combining 

these results we obtain Theorem 3.16. 

Note that the test looks like a Wald test on ITK but one has not 

normalized it by the asymptotic variance of ITK since, as is seen from 

Corollary 3.10, this will be zero when K'~ = O. 

An alternative form of the test statistic which is very easy to 

calculate is 

A A 

where D = diag(A1 , ... ,Ar ). This is seen from the identity 

~'~~(~'~oLo;lLOk~)-l~'Lkk~ - ~'Lkk~ = (a'A-1a)-1 

by inserting the estimates. 

We shall apply it to the special case when r = 1 and K' = 

(k1 , ... ,kp )' hence s = p-1, and we have only one cointegration relation 

where we want to test some linear constraint on the coefficients. We 

shall formulate the result as a Corollary. 

COROLLARY 3.17: If onLy 1 cointegration vector ~ is present (r = 

1), and if we want to test the hypothesis 

K'~ = 0 

then the test statistic 
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(3.41) 

is asymptoticaLLy normaLized Gaussian. Here A1 is the maximaL eigenvaLue 

and ~ the corresponding eigenvector of the equation 

The remaining eigenvectors form ~. 

The normalization ~'Skk~ = I implies that ~'~ is of the order of 

T-1 which shows that ~ is really normalized by T. 

Thus if there is only one cointegration vector ~ one can think of 
A_I AA 

the matrix CA -1)~~' as giving an estimate of the asymptotic "variance" 

of ~. 

A 
This result should be interpreted with care since K'~ is not asymp-

totically Gaussian and may not have an asymptotic variance but one can 

normalize a linear combination of the components of ~ in such a way that 

it becomes asymptotically Gaussian. 

A comparison with the proof of Theorem 4 (1987) shows that the 

representation of the asympototic distribution of -21nCQ;H;IH1) given 

2 there involves the same Brownian motions, such that the ~ test suggested 

here is asymptotically the same as the likelihood ratio test. Only the 

introduction of ~ makes the result more transparent. 

As a final remark one should add, that we can of course test fur-

ther restriction on ~ 

the hypothesis ** test H2 : <p 

ratio test or Wald test. 

or a, i. e. in the hypothesis H* 
2 

: ~ = H<p we can 

= HI77 and derive the corresponding likelihood 

2 
These will be asymptotically distributed as ~ 

with the appropriate degrees of freedom corresponding to the loss of 

* ** parameters in going from H2 to H2 . We shall not formulate these results 

in detail here. 

University of Copenhagen 
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M2 (REAL DEMAND FOR MONEY) . yr (REAL NATIONAL INCOME) 
QUARTERLY DATA FROM 1974:1 TO 1985:4 QUARTERLY DATA FROM 1973:1 TO 1985:4 

============================================================= -----------------------------------------.--------- >--------------------------------------------------- ~ 
1973: 1 224.7162 224.3259 221.4889 227.2918 ~ 

1974:1 1138.137457 1119.057313 1087.323038 1116.470688 1974:1 216.5592 211.3524 216.4148 211.8868 t:rJ 
Z 

1975:1 1099.228093 1133.893587 1184.096733 1332.307015 1975:1 218.9246 215.8073 222.8430 250.1341 u 
1312.702203 1318.434458 1339.031798 1324.606002 1976:1 246.9495 240.6962 235.4124 239.1914 

H 1976:1 ~ 
1977:1 1287.936212 1315.538012 1291.784214 1278.019706 1977:1 238.8918 241.9483 242.4076 243.8743 >-1978:1 1224.091112 1227.749034 1227.297212 1221. 063880 1978:1 238.5137 241.1501 247.4554 242.6897 
1979:1 1191.728770 1220.231183 1165.126856 1187.932151 1979:1 247.5116 248.8452 238.6271 234.0031 
1980:1 1135.894028 1131.120360 1101.585742 1157.760605 1980:1 236.4621 240.7253 222.4843 230.0312 rl 1981:1 1118.404654 1121.932420 1090.708796 1119.920756 1981:1 232.3390 231.1393 232.8106 230.7839 ::r' 
1982:1 1086.286620 1089.560548 1075.939195 1086.321037 1982:1 236.3070 241.5006 253.2976 247.5879 (D 

1983:1 1102.863178 1182.681762 1229.925540 1295.813977 1983:1 250.3042 246.7591 244.2551 258.6220 u 
Pi 

1984:1 1315.669097 1375.594124 1373.428687 1494.216170 1984:1 247.0589 255.7699 258.2597 244.0017 S. 
1985:1 1461.192515 1499.328375 1567.417736 1655.323700 1985:1 256.1064 253.5935 255.0615 264.7311 Ul 

P" 

P-
Pi 
r+-

Ih (BOND INTEREST RATE) IS (DEPOSITE INTEREST RATE) Pi 

QUARTERLY DATA FROM 1973: 1 TO 1985:4 QUARTERLY DATA FROM 1973: 1 TO 1985: 4 

=============================================== ===================================================== 
1973: 1 1.1208 1.1223 1.1343 1.1408 1973:1 1.0695 1. 0705 1.0760 1.0780 
1974:1 1.1547 1.1779 1.1705 1.1522 1974:1 1.0940 1.0955 1.0955 1. 0955 
1975:1 1.1342 1.1334 1.1284 1.1288 1975:1 1.0885 1.0790 1.0760 1.0740 
1976:1 1.1413 1.1531 1.1605 1.1618 1976:1 1. 0720 1.0780 1.0800 1.1030 
1977:1 1.1665 1.1630 1.1692 1.1728 1977:1 1.0970 1.0880 1.0950 1.0970 
1978:1 1.1717 1.1757 1.1711 1.1820 1978:1 1.0990 1.0880 1.0810 1.0770 
1979:1 1.1700 1.1689 1.1782 1.1804 1979:1 1~0750 1.0770 1.0860 1.1010 
1980:1 1.1910 1.1967 1.1923 1.1829 1980:1 1.1090 1.1210 1.1210 1.1070 
1981:1 1.1845 1.1928 1. 2032 1.1923 1981:1 1.1050 1.1090 1.1110 1.1090 
1982:1 1.2032 1. 2107 1.2088 1.1970 1982:1 1.1070 1.1110 1.1110 1.1100 
1983:1 1.1611 1.1383 1.1417 1.1338 1983:1 1.1060 1.0870 1.0830 1. 0850 > 1984:1 1.1341 1.1417 1.1448 1.1412 1984:1 1.0850 1.0830 1.0850 1. 0920 . 
1985:1 1.1317 1.1196 1.1070 1.1037 1.0800 1. 0756 

I-' 
1985:1 1.0903 1.0876 



1\11 (DEMAND FOR NARROW MONEY) Y (NOMINAL INCOME) 
QUARTERLY DATA FROM 1958:1 TO 1984:4 QUARTERLY DATA FROM 1958:1 TO 1984:4 

=============================================== ================================================= >-
"d 

1958:1 1122 1174 1150 1246 1958:1 3082.7 3152.8 3369.4 3348.9 "d 

1959:1 1279 1347 1395 1429 1959:1 3186.1 3415.1 3715.7 3762.0 t::rJ 
Z 

1960:1 1362 1430 1508 1496 1960:1 3711.3 3838.2 4128.4 4146.3 tJ 
>-< 

1961:1 1534 1498 1578 1644 1961:1 4201.1 4295.0 4550.0 4579.6 >< 
1962:1 1576 1588 1646 1722 1962:1 4501.7 4567.0 4857.1 4930.6 >-
1963:1 1798 1803 1827 1987 1963:1 4710.5 5111. 3 5333.3 5386.0 .-

1964:1 1849 1901 1946 2046 1964:1 5613.2 5743.1 5893.1 6304.5 
1965:1 1996 2023 1999 2087 1965:1 6136.9 6258.5 6625.1 6807.3 f-3 

1966:1 1935 2074 2030 2213 1966:1 6266.5 6836.9 7143.8 7529.4 0'" 
(t) 

1967:1 2042 2105 2016 2103 1967:1 7249.8 7484.6 7610.4 7764.6 '"'Ij 

1968:1 2151 2316 2378 2671 1968:1 8006.2 8380.7 8789.6 8971.7 
...,. 
;J 

1969:1 2552 2730 2737 3140 1969:1 9227.4 9533.8 9978.4 10273.0 ;J ...,. 
C/l 

1970:1 3455 3627 3628 3959 1970:1 10167.8 10647.5 11013.8 11762.9 0'" 
1971: 1 3218 3243 3415 3975 1971: 1 10821.1 11838.8 12063.1 12937.8 p. 

1972:1 3950 4275 4408 4974 1972:1 12668.8 13339.4 13823.0 15077.5 Pl 
.-+ 

1973:1 4644 5170 5004 6114 1973: 1 15122.9 15703.9 16774.6 19144.6 Pl 

1974:1 5376 5903 6145 7283 1974:1 18748.2 20729.5 20720.8 23975.4 
1975:1 7403 7801 7391 9450 1975:1 22581.7 24704.9 24349.4 26324.6 
1976:1 8582 8652 8504 9286 1976:1 24624.2 26960.7 27850.1 30687.2 
1977:1 9496 9996 9670 9872 1977:1 27579.1 29656.8 30356.6 32988.7 
1978:1 10058 11247 11071 11496 1978:1 30199.1 32770.8 32481. 6 36287.6 
1979:1 11442 13269 13003 14087 1979:1 34729.0 38014.1 37678.0 41367.9 
1980:1 13354 14588 14141 14979 1980:1 38549.2 42385.7 44836.8 48607.3 
1981:1 15093 15763 16045 17186 1981:1 44331.6 49379.4 49993.1 54197.1 
1982:1 16353 18664 18958 19917 1982:.1 48986.4 54811.1 55242.3 60971. 6 
1983:1 19401 21362 21403 21427 1983:1 54374.5 61662.5 63252.4 67983.3 
1984:1 20606 22026 22238 22426 1984:1 60899.4 68137.1 68628.9 

il> 
N 



P (THE PRICE LEVEL) 1nl (THE MARGINAL INTEREST RATE) 
QUARTERLY DATA FROM 1958:1 TO 1984:4 QUARTERLY DATA FROM 1958:1 TO 1984:4 

----------------------------------------------- ----------------------------------------------------------------------------------------------------- ------------------------------------------------------ ;J> 
1958:1 67 68 68 68 1958:1 11.55 18.90 10.65 14.12 "'0 

1959:1 68 68 69 70 1959:1 7.25 6.75 6.75 6.75 "'0 
l:=tj 

1960:1 71 71 72 72 1960:1 6.75 17.50 27.57 17.'74 Z 
1961:1 72 72 72 74 1961:1 11.64 13.03 12.45 15.91 0 

H 

1962:1 74 76 76 77 1962:1 19.16 25.75 27.43 27.17 ~ 

1963:1 78 79 80 81 1963:1 23.48 18.68 20.82 18.61 > 
1964:1 86 88 89 89 1964:1 14.65 18.37 19.48 21.80 
1965:1 90 92 92 93 1965:1 20.12 14.50 7.00 7.00 

f-3 1966:1 94 95 97 98 1966:1 7.00 12.23 24.61 34.24 ::r' 
1967:1 99 100 101 104 1967:1 7.00 12.96 9.62 12.85 et> 

1968:1 108 110 110 111 1968:1 9.60 7.00 7.00 7.00 '":tj ..... 
1969:1 111 112 112 112 1969:1 7.00 7.00 7.'00 7.46 ~ 

~ 

1970:1 114 114 115 116 1970:1 8.58 16.34 26.00 20.37 ..... 
r:n 

1971: 1 119 122 125 126 1971: 1 8.25 12.52 9.73 8.50 ::r' 

1972:1 127 131 133 135 1972:1 7.75 7.75 7.75 7.75 P-
p:> 

1973:1 139 144 152 156 1973:1 7.75 7.75 10.03 26.00 .-+-
p:> 

1974:1 163 169 179 182 1974:1 18.35 15.93 9.41 14.77 co 
1975:1 193 200 209 215 1975:1 13.87 19.18 17.58 27.92 0 

~ 
1976:1 225 228 237 242 1976:1 19.55 19.48 17.28 18.23 .-+-

1977:1 252 261 268 271 1977: 1 15.18 16.47 18.00 19.79 
1978:1 275 280 284 286 1978:1 18.62 9.58 9.10 9.73 
1979:1 294 300 305 311 1979:1 8.39 8.37 8.45 11.84 
1980:1 322 336 345 354 1980:1 12.31 14.92 15.99 16.55 
1981:1 365 377 384 389 1981:1 17.74 12.95 13.25 15.07 
1982:1 402 412 415 424 1982:1 13.99 13.81 13.68 15.15 
1983:1 432 448 454 467 1983:1 14.33 15.00 15.55 16.78 
1984:1 469 478 485 488 1984:1 17.50 16.70 16.38 15.55 

;» . 
w 



APPENDIX B Model (2.1) for the Danish data 

AXt = f 1AXt-1 - ITXt-2 + const + LikiQit + et 

-.46 .02 -1.18 .02 
( . 25) ( .22) (.60) (.82) 

- .01 -.45 .23 -1.21 
(.28) ( .25) (.67) (.93) 

f1 = -.05 .08 -.29 -.08 
( . 07) (.07) ( . 18) ( . 25) 

.05 .02 .39 -.05 
( . 05) (.04) ( . 11) ( .16) 

-.25 .14 -1. 98 1. 77 
( .12) ( . 17) ( . 55) (.64) 

.09 -.31 .16 .23 
( . 13) ( .19) {.63 (.72) 

-IT = .00 .00 -.02 .17 
( . 04) ( . 05) (.17) ( . 20) 

-.00 .01 .14 -.33 
( . 02) (.04) ( . 11) ( . 13) 

Estimated correlations and variances of regression residuals. 

.0312 
-.03 

.11 
.0092 
.19 ] 

Residual autocorrelations, ri (i=l,~.,8) and Box-Pierce 

Q-statistic, x2-distributed with 18 degrees of freedom. 

_=! ___________ : _____ ~ _____ ~ _____ ~ _____ ~ ____ ~ _____ ~ ____ ~ _____ ~i:~) 
-.03 -.09 

-.10 -.17 

.14 .06 

-.02 01 

.12 -.08 

.10 -.21 

.10 -.18 

.00 -.10 

.11 .02 .10 .06 

.13 -.02 .07 -.06 

.03 -.02 -.20 .00 

.00 -.24 .04 -.07 

7.8 

10.7 

10.9 

7.5 

B.l 



APPENDIX B Model (2.1) for the Finnish data 

AXt T1 AXt-1 + ITXt-2 + const + LikiQit + et 

-.21 -.22 -.10 -.01 
(.11) (.14) ( . 13) (.45) 

.04 -.69 -.06 -.16 
( . 07) ( . 09) (.08) ( . 27) 

T1 = -.16 -.02 -.23 .42 
(.08) ( . 11) ( . 10) ( . 33) 

.01 .02 .02 -.82 
( . 03) (.03) ( . 03) ( .11) 

-.12 .11 -.23 -.42 
( . 06) ( . 06) ( . 11) (.54) 

.02 -.04 -.14 -.21 
( . 04) ( . 04) (.07) ( . 33) 

IT = .09 -.10 -.48 .67 
( . 04) (.04) ( . 08) ( . 40) 

.00 .01 -.00 -.48 
( . 01) (.01) (.03) ( . 13) 

Estimated correlations and variances of regression residuals. 

[ .050 2 
.0312 ] .25 

.037 2 Cc = .19 .03 
.012 2 -.30 -.31 -.02 

Residual autoc2rrelations, ri (i=16 .. ,8) and Box-pierce 
Q-statistic, ~ -distributed with 3 degrees of freedom. 

B.2 

_:! ___________ ~ _____ ~ _____ ~ _____ ~ _____ ~ ____ ~ _____ ~ ____ ~ _____ ~i~~) 
.01 -.01 -.17 

.01 -.23 -.15 

.02 -.02 .01 -.05 .26 

.22 -.16.03 -.02 .14 

.01 -.01 -.05 -.05 -.04 .05 .10 -.08 

.02 .02 .04 -.02 -.14 .10 .08 -.04 

31. 3 

59.2 

26.0 

24.6 



APPENDIX c. 

Product moment matrices from the regression ofAXt on AXt _ l and Xt - 2 ' 

for Denmark (m2,Y,ib ,id ) and Finland (ml,y,im,Ap). The matrices are 

given in the form 

DK 

.874 .192 

.569 .865 .093 .237 

-.067 -.004 .059 -.049 .042 .067 

-.051 -.028 .013 .029 -.041 -.014 .021 .018 

-.190 -.119 .102 .028 8.798 

-.360 -.422 .022 .040 3.340 2.401 

-.143 -.078 -.034 -.004 -1.284 -.205 .370 

.007 -.007 -.024 -.018 -.561 -.145 .168 .125 

SF 

2.488 4.155 

.408 .918 3.934 4.297 

.477 .143 1. 631 .527 .549 .586 

-.135 -.082 -.012 .140 .222 .223 .046 .027 

-1.831 -1.723 .183 .065 93.538 

-.893 -1.923 -.015 .014 93.885 101. 750 

-.615 -.276 -.863 -.042 .584 -.334 2.097 

-.068 -.073 .013 -.042 1.974 2.194 .076 .134 



TABLE I 

The estimate of the unrestricted matrix IT in model H1 for the Danish and 

Finnish data. 

DK SF 

m2 .248 -.133 1.978 -1. 767 m1 .119 -.110 .227 .418 

Y -.095 .308 -.156 -.231 Y -.024 .036 .137 .214 

.b .004 -.002 .024 -.174 .m -.095 .104 .479 -.670 1 1 

.d .001 -.010 -.144 .333 Lip -.004 -.007 .003 .484 1 



TABLE II 
A 

The eigenvalues A and eigenvectors V as well as -S02V for the Danish and 

Finnish data. 

DK SF 

eigenvalues A eigenvalues A 

( .5004 .1940 .1269 .0138) ( .3093 .2260 .0731 .0295 ) 

eigenvectors V eigenvectors V 

m2 -19.39 -14.77 10.27 - 12.39 ml -2.93 4.58 -11.13 1.38 

Y 18.61 25.04 -26.05 1.29 Y 2.86 -6.06 10.24 2.22 

.h -130.40 -17.44 29.81 .54 .m 20.79 -9.23 -2.99 -1.90 1 1 

.d 105.05 -73.35 -83.90 -24.94 Ap 20.58 104.17 20.28 -21.62 1 

A 3 
- S02VxlO 

A 3 
- S02VxlO 

m2 -16.33 4.22 -2.59 -1.64 ml 11.37 4.43 -11.68 1.86 

Y -3.96 6.98 -8.00 -1.05 Y 7.69 1.25 1.16 4.55 

.h -.33 -1.38 -1.48 .66 .m 18.25 -10.23 -.66 -1.58 1 1 

.d 1.22 -1.99 -.65 -.16 Ap 1.89 3.79 1.31 -1.11 1 



TABLE III 

Test statistics for the hypothesis H2 for various values of r versus the 

general alternative HI for the Danish and Finnish data. The quantiles 

from the asymptotic distribution are taken from lohansen [9J 

H2 -2ln(Q;DK) -2ln(Q;SF) 

r ~ 3 .64 3.11 

r ~ 2 6.88 11.01 

r ~ 1 16.80 37.65 

r = 0 48.72 76.14 

95% quan tile 

4.2 

12.0 

23.8 

38.6 

90% quantile 

2.9 

10.3 

21.2 

35.6 



TABLE IV 

. * * * Elgenvalues A and eigenvectors ~ as well as -SOkH~ for the Danish and 

Finnish data under the restriction that money demand and national income 

have equal coefficients with opposite sign. 

DK 

1 ").* eigenva ues I\, 

( .4999 .1759 

eigenvectors ~ * 

m2-y [ -19.77 -8.96 

i b -131.45 .05 

id 106.00 -107.58 

* 3 - SOkH~ xlO 

m2 -16.15 2.27 

y -3.59 2.02 

.b -.33 -1.85 1 

.d 1.20 -2.07 1 

.0462 ) 

18.09 

I 16.57 

-6.46 

-.66 

-4.24 

-1.04 

.17 

ml-y 

.m 
1 

Ap 

ml 

y 

.m 
1 

Ap 

SF 

1 "'1.* eigenva ues " 

( .3093 .1994 

* eigenvectors ~ 

[ -2.% 
6.02 

20.92 -8.67 

18.56 86.87 

* 3 - SOkH~ xlO 

11.36 6.26 

7.72 2.71 

18.40 -9.78 

1.82 2.99 

.0704 ) 

-10.30 I 
-3.61 

17.05 

-10.70 

2.31 

-1.30 

1.09 



TABLE V 

The estimate of the restricted matrix IT in model H2 for the Danish and 

Finnish data. For the Danish data r = 1 and the coefficients to m2 and y 

are equal with opposite sign. The same holds for the coefficients to i b 

and id. For the Finnish data r = 3 and the coefficients of m2 and y are 

equal with opposite sign. 

DK SF 

m2 .275 -.275 2.076 -2.076 m1 .114 -.114 -.222 -.572 

Y .068 -.068 .513 -.513 y -.030 .030 -.130 -.417 

.b .001 -.001 -.008 .008 .m -.100 .100 -.474 .531 1 1 

.d -.028 .028 -.211 .211 .tip .001 -.001 -.008 -.312 1 



Figure 1 - Illustration of the relation between various 

hypotheses concerning the cointegration vectors 
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