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1. Introduction 

Let X be a random variable with values in a measurable space (E,E), 

and suppose that the distribution of X belongs to a full exponential 

family of distributions, i.e. the distribution of X has a density fe 

with respect to a given a-finite measure on (E,E), which has the form 

1 = ~(e) exp«e,T(x» + b(x)), (x € E). 

where T:E ~ mP, b:E ~ m and e € 8 c mP with 

Here 

8 = {e € mP:~(e) = fexp«e,T(x» + b(x))~(dx) < oo}. 

p 
denotes the inner product on mP, <y,z> = ~ Ykzk 

k=1 
for 

Suppose one observation x of X is availabe. Barndorff-Nielsen's 

[2, Theorem 9.13] main result on estimating e on the basis of x 

states that the maximum-likelihood estimator e = e(x) exists and is 

unique if and only if the observed value T(x) of the sufficient stati-

stic belongs to the interior of the convex hull of the support of the 

measure -1 
~T on 

Especially for discrete exponential families, it can be difficult to 

verify whether Barndorff-Nielsen's condition is satisfied. The purpose of 

this paper is to present an alternative condition, and to show by a num-
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ber of examples, how the condition works in practice. It should be 

stressed that our condition does not rely on first transforming the ob-

servation by the sufficient statistic T. The first example involves the 

Cox regression model, where a necessary and sufficient condition is given 

for Cox's partial likelihood to attain its maximal value at a unique 

point. Amazingly enough, this condition does not seem to have been 

noticed before. 

2. ML-estimation in some discrete exponential families 

Suppose X is a discrete random variable with values in a finite or 

countable set E. Assume that the distribution of X belongs to a full 

exponential family, i.e. 

(2.1) 1 = ~(9) exp«9,T(x» + b(x)) 

with T:E ~ mP, b:E ~m. To avoid technicalities we shall assume the 

parameter space to be all of mP, so that 

f or all 9 € mP . 

~(9) = ~ exp«9,T(x» + b(x)) < 00 

x€E 

Based on an observation x of X, we wish to estimate 9. 

Barndorff-Nielsen's Theorem [2J shows that the ML-estimator 9 = 9(x) of 

'9 exists and is unique if and only if the observed value T(x) of the 

sufficient statistic belongs to the interior of the convex hull in mP 
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of the points T(y). y E E. 

Inspired by the first example below. the Cox regression model. we 

shall present an alternative condition. The idea is to write the likeli-

hood function (2.1) in the form 

(2.2) [1 + 
-1 

~ exp«a.T(y) - T(x» + bey) - b(x»] 
y'#x 

and then exploit some simple analytic properties of functions of this 

form. 

If X = (Xl.···.~) is a vector of independent components where the 

distribution of each X. belongs to an exponential family. it will prove 
1 

useful to write the total likelihood as a product of functions of the 

form appearing on the right of (2.2). 

Thus. consider a function f:mP ~ (0. 00 ) of the form 

(2.3) f(a) 
K -1 = 11 [1 + ~ a .. exp<a.v .. >] 

i=l 'EA IJ IJ 
J i 

for K a positive integer. Ai for each i a finite or countably in-

finite index set. all a ij > 0 and vij E mP . 

called the structure vectors for f. 

The vectors v.. wi 11 be 
IJ 

As it stands f is defined for all a E mP . but to ensure that 
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f > 0, we make the following 

Assumption For all i, the series 

a. (0) = 
1 

2: a .. exp<O, v .. > 
·EA IJ IJ 
J i 

converges for all 0 E ffiP. 

We note the following facts, easily understood for instance, as 

properties of Laplace transforms: 

The series a.(O) converges for all 0 E ffiP iff the series 
1 

Bllv .. 11 
IJ 2: a .. e 

.EA IJ 
J i 

o 

converges for all B 2 o. In that case a. is twice differentiable with 
1 

gradient 

(2.4) 

and Hessian 

(2.5) 

Notation: for 

Da.(S) = 
1 

2: a .. e 
. EA IJ 

<O,v .. > 
IJ v .. 

IJ 
J i 

2 
D a. (0) 

1 

<O,vi / 02 
= 2: a .. e v .. 

. EA IJ IJ 
J i 

( ) mP 11 11 = <v,v>1/2 v = v1,···,vp Em, V is the Euclidean 



norm and 02 
v 
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is the pxp matrix 

Returning now to (2.3) it is clear that f > ° is twice differenti-

able. Introducing L = log f the properties of f that we shall use may 

be summarized as follows, where given a collection of vectors v € mP, 

span{v} (conv{v}) denotes the linear subspace (convex hull) spanned by 

the collection, and where for A a pxp symmetric matrix, A > ° means 

that A is positive definite. 

Theorem (a) The function L = log f is concave. It is strictly concave 

if and only if either of the following three conditions is satisfied: 

(a i) span{v .. : i = 1,···,K, j € A.} = mP, 
IJ 1 

(a ii) there exists B € mP such that - D2L(B) > 0, 

(a iii) for all B € mP, - D2L(B) > 0, 

(b) The function f attains its maximal value at a unique point 9 € mP 

if and only if either of the following two conditions is satisfied: 

(b i) 

(b ii) 

° € int conv{v .. : i = 1,···,K, j € A.}, 
IJ 1 

there does not exist a € mP with a # ° such that 

for all i,j, <a,vij> ~ 0. 

In particular, if either condition is satisfied, L is strictly concave. 0 

A proof is sketched in the appendix. The reader should consult Albert and 
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Anderson [lJ for results very similar in appearance to this theorem. They 

consider likelihood functions for independent observations from different 

multinomial distributions and are led to study the behaviour of functions 

given by an expression similar to (2.2), but where differences between 

parameter vectors rather than differences between T-values appear in the 

exponents. Nevertheless, their results on existence and uniqueness of 

maximum likelihood estimators certainly follow from ours. It should be 

stressed however that the statistical emphasis in [lJ and this paper, 

concerns two very different matters. 

The reader is reminded, that in the examples to follow, functions of 

the form (2.3) appear as products of exponential family likelihoods with 

each factor looking like the right hand side of (2.2). Of course that 

expression itself is (2.3) with K = 1, Al = E~{x}, a 1j = 

exp(b(j) - b(x)), v1j = T(j) - T(x). 

3. Examples 

3.1. The Cox regression model 

In its simplest form, the Cox model (Cox [4J), models N independent 

strictly positive random variables Y1'···'YN' such that 

[ 
t <9,z (s» J 

P(Yv > t) = exp - fOA(s)e v ds, 

with A an unknown baseline hazard, 9 € mP an unknown vector of 

regression parameters, and, for each v and s, z (s) 
v 

a p-vector of 
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observed, time dependent covariates. 

The more sophisticated versions may allow for censorings or 

truncations, and the covariates may be random. Always however, inference 

about e is made on the basis of Cox's partial likelihood C(e) (Cox 

[4,5]) which has the following form: on a possibly random interval of 

observation, K ~ N of the values of the y are observed, 

o < t1 < ••• < tK say, and then 

v 

exp<e,Z (t.» v. 1 
1 

K 
c(e) = IT 

i=l ~ exp<e,z (t.»' 
ER v 1 v . 

1 

with v. the v for which Y = t., and RI' the risk set of v under 
1 v 1 

observation just before time t. , 
1 

in particular 

Rewriting C in the form (2.3) gives 

v. E R. always. 
1 1 

K 
c(e) = IT [1 + ~ exp<e,Z (t.) - Z (t.»]-l 

v 1 Vi 1 i=l v E R.'v. 
1 1 

so the structure vectors are the contrast covariate vectors 

Zv(t I.) - Z (t.) for i = 1,···,K, v E R.'v .. The Theorem now shows that v. 1 1 1 
1 

log C is concave always and strictly concave iff 

span{z (t.) - Z (t.) 
V 1 V. 1 

1 

i = 1,···,K, v E R.'v.} = mP . 
1 1 
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Further, the Cox estimator that maximizes C, exists and is unique iff 

o € int conv{z (t.) - z (t.) 
V 1 v. 1 

i = 1,···,K, v € R.'v.} 
1 1 

1 

or equivalently, there is no a € mP, a # 0 such that for all i, 

v € R.'v. 
1 1 

(a,z (t.) - z (t.» ~ O. v 1 v. 1 
1 

Thus, for estimating 8, the behaviour of the contrast covariate vectors 

z (t.) - z (t.) 
V 1 v. 1 

for i=I,···,K,v is crucial, and it is seen 
1 

that 8 may be estimated uniquely by maximizing the partial likelihood, 

except in the cases where there is some linear combination of the p 

covariates such that at each t., the value of the linear combination 
1 

for v. 
1 

exceeds or equals the value for all other 

It is known of course, that in a survival study with, say, age as one 

covariate, 8 cannot be estimated if it is always the oldest individual 
age 

in the risk group that is observed to die. We now see that as a 

consequence of the mathematical structure of the partial likelihood, 

with e.g. blood pressure a second covariate, 8 cannot be estimated if 

always the individual in the risk set, with, say, the smallest value of 

3 x age minus 7 x blood pressure, is observed to die! 

An example, where the Cox-analysis does not yield a unique estimator 

for 8 is recorded in Bryson and Johnson [3J. 0 
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All the following examples involve genuine exponential models. where 

we discuss which observations are extreme. i.e. are such that the 

ML-estimator either does not exist. or if it does. is not unique. 

3.2 The dose-response model. Let d1 < ••• < dk be real numbers and for 

i = 1.···.k consider n i ~ 1 i.i.d. 0 - 1 valued random variables 

x. .. j = 1.···. n. . such that IJ 1 

(3.1) 
exp(91 + 92di ) 

P(x .. = 1) = 1 - P(X .. = 0) = 1 (9 9 d ) IJ IJ + exp 1 + 2 i 

with all X .. mutually independent. 
IJ 

From Barndorff-Nielsen [2] or Larsen [10] it is known that an obser-

vation vector (xij ) is extreme iff there is a critical iO such that 

either 

x .. = 0 for i < i O' all j. x .. = 1 for i ) i O' all j 
IJ IJ 

or 

x .. = 1 for i < i O' all j. x .. = 1 for i ) i O' all j 
IJ IJ 

with arbitrary values allowed for x ... j = 1. ···.n .. 
10 J 10 

The proof is based on Barndorff-Nielsen's theorem quoted above and 

involves drawing a convex polygon with 2k sides in ffi2 and deciding 
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whether T((x .. » is in the interior of this polygon. with T((x .. » = 
IJ IJ 

( }; x ..• }; d.x .. ) the observed value of the minimal sufficient 
. . IJ . . 1 IJ 1.J 1.J 

statistic. 

We shall now see how our Theorem may be used to give an easy proof. 

The likelihood is written in the form (2.3) with each x .. 
IJ 

one factor which. cf. (3.1). is 

if x .. 
IJ = 1. 

if x .. = O. 
IJ 

Thus. referring to (2.3). index i there is the double index 

and each A .. 
IJ 

contains one element with structure vector 

v .. =(-l,-d.) if x .. =l 
IJ 1 IJ 

v .. = ( IJ 1. if 

contributing 

ij. K = };n. 
1 

Immediately. using part (a) of the Theorem. it is seen that if k ~ 2 

the log-likelihood is always strictly concave. Further. since all vectors 

vij sit on the two parallel lines (- 1.t)t€rn and (l.t)t€rn in rn2 . 

appealing to Figure 1 and using (b i) from the Theorem. it is seen that 

there is a unique ML-estimator iff 

with d1+ (d1_) the largest (smallest) value of d. for i such that 
1 



11 

Xij = 1 for some j, and similarly dO+ (dO_) the largest (smallest) 

d. for i such that x .. = 0 for some j. 
1 IJ 

Fig. 1 The structure vectors for the dose-response model. 

It is not difficult to see that this criterion for existence and 

uniqueness of the ML-estimator is equivalent to that given by 

Barndorff-Nielsen and Larsen. Rather than present the argument, we only 

mention that the equivalence is established even more easily using (b ii) 

of the Theorem, as the following more elaborate example will show. Our 

point in proceeding via (b i) has been to show the difference between our 

approach and that of Barndorff-Nielsen (deciding whether a given point 

belongs to the interior of a trapezoid determined by the observations as 

opposed to deciding whether a point determined from the observations 

belongs to a given convex polygon with 2k sides). o 

3.3. Logistic regression with 2 independent variables. Let d < ••• < d 
1 k 

as before and let e 1 < ••• < em' For each i = 1,···,k, j = 1,···,m let 

X. . for /.l = 1,···, n.. be i. i . d. 0 - 1 
IJ/.l IJ 

valued random variables with 

= 1) = 1 - P(X .. 
1 J/.l 



and all X.. independent. 
lJ/-l 
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There need not be observations corresponding to all km combinations 

(d.,e.), so we allow for n .. = O. However, to ensure that observations 
1 J lJ 

are present for each d. 
1 

i, };n .. > 0 for all j. 
i lJ 

Let 

and each e., 
J 

we assume };n .. > 0 
. lJ 
J 

for all 

(xij/-l) denote the observation vector. Proceeding as in the 

previous example, the likelihood is written in the form (2.3), each x .. 
1 J/-l 

contributing one factor with the structure vectors Vij/-l € ffi3 for i = 

1,···,k, j = 1,···,m s J.l = 1 ••• n , , ij given by 

= [((-v .. 
1 J/-l 

l,-d.,-e.) 
1 J 

1, d i , e j ) 

if 

if 

x .. = 1 
1 J/-l 

x .. = O. 
1 J/-l 

Suppose (xij/-l) is an extreme observation, so that there is not a unique 

ML-estimator. By (b ii) from the Theorem, we can find a = (a1 ,a2 ,a3 ) # 0 

such that <a,v .. > l 0 for all 
1 J/-l 

i.e. for all i,j with n .. l 
lJ 

1, 

(3.2) a1 + a 2d i + a3e j 

Of course, if all x .. 
1 J/-l = 1 

assume at least one x .. = 1 
lJ/-l 

~ 0 if x .. = 1 for all /-l 
1 J/-l 

l 0 if x .. = 0 for all /-l lJ/-l 
= 0 if there is /-l,/-l' such that 

x .. = 1, x .. , = 0 
1 J/-l 1 J/-l 

(or = 0), the observation is extreme, so 

and one x.. = o. Then, because of 
1 J/-l 
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(3.2), a2 = a3 = 0 would force a 1 = 0 which is impossible, hence 

(a2 ,a3 ) ~ (0,0) and the equation a 1 + a2d + a3e = 0 defines a straight 

line in the (d,e)-plane. Since a 1 + a2d + a3e > 0 for all points (d,e) 

on one side and < 0 for all (d,e) on the other side of the line, it 

emerges that an extreme observation (xij~) has the structure shown in 

Figure 2, where each x .. 
IJ~ 

on line :> 
all x .. 

IJ~ 

allowed 

is attached to the point 

e 

(d. ,e.). 
1 J 

~ all x .. = 0 
~ IJ~ 

----------------------------,~~---------:> d 

" all x.. = 1 
IJ~ 

Fig. 2 The extreme observations for logistic regression. 

If conversely, the observation pattern is as shown in Fig. 2, 

trivially a ~ 0 can be found such that (3.2) holds. Thus we have shown 

that an observation (xij~) is extreme iff either for all i,j,~ x.. = 
IJ~-

1 (or = 0) or else there is a straight line in the (d,e)-plane 

separating x.. = 1 from x.. = 0 with arbi trary 
IJ~--~--~~--~lJ~ 

tions allowed on the line itself. 

o - 1 configura-

In particular, in order for the ML-estimator to be unique, it is (of 

course) necessary that the points (d. , e .) wi th n.. ~ 1 do not I ie on 
1 J IJ 

a straight line. 

i--
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The generalization to more than 2 independent variables is immediate. 
o 

3.4 The Bradley-Terry model (See Zermelo [12] for the model and an 

early derivation of the criterion obtained below for an observation to be 

extreme). In a tournament with k players, when i plays against j, i 

wins with probability 

(3.3) e 
9. 

1 

9. 9. 
e 1+e J 

and loses (j wins) with the complementary probability. 

We assume that i plays against j n .. times (so n .. = n .. ) 
1J 1J J1 

the outcomes of all games mutually independent. We allow for some 

with 

n .. 
1J 

to be 0 but assume the tournament to be closed: for all i # j there 

exists such that n. . ~ 1 for 
1 1 

J.l-1 J.l 

J.l=l,···,m. 

The probabilities (3.3) are unchanged if 9 = (91 ,···,9k ) is re

placed by (91 + c, •• ·,9k + c) for an arbitrary c. We therefore assume 

from now on that 9k = 0 and note that since the tournament is closed 

the parametrization of the model is unique and it makes sense to ask 

whether for a given observation, there is a unique ML-estimator of 

(91,···,9k_1)· 

The likelihood is of the form (2.3) with factors of the form 
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9.-9. 1 J 1-(1 + e ) if i has played against j and won, 

this factor corresponding to the structure vector v € mk- 1 

i j 
( ... , - 1,···,1,···) 

with all entries not shown equal to 0, and where, if i = k, re-

spectively j = k, the - 1, respectively 1, component is ignored. 

Consider now an extreme observation, so that by (b ii) of the Theorem 

there exists a = (al'···'~-l) # 0 with all <a,v> ~ O. Introducing 

~ = 0 it is seen that this is equivalent to demanding that for all 

pairs (i,j) of players with i < j, 

a. ~ a. if i has won all games against j 
1 J 

(3.4) a. ~ a. if i has lost all games against j 
1 J 

a. = a. if i has both won and lost a game against j. 
1 J 

Ordering the players in a sequence (i 1 ,···,ik ) such that 

a. < ••• < a. 
1 - - 1 

1 k 
(with the o for included), since 

(al'···'~-l) # 0 there must be a sharp inequality somewhere. With 

a. < a. , define A = {i1 ,···,i1_1 }, B = {i1,···,ik }, thus 
17.,-1 17., (., (., 

partitioning the set of players into two non-empty subsets. Clearly from 

(3.4), any game between i € A, j € B is won by i € A, and the results 

of the tournament must have the form displayed in Figure 3, where 
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a + (-) in the i 'th row, j'th column signifies that all games played 

between i and j have been won (lost) by i, while the symbol "any" 

allows for arbitrary results in the games between the players concerned. 

A 

B 

A 

any 

-

B 

+ 

any 

Fig. 3 The extreme observations for the Bradley-Terry model. 

If conversely the observation is of the form in Fig.3, if e.g. 

k € B, let f3 < 0 and define (a1'···'~-1) by a. = f3 if i € 
1 

a. = 0 if i € B. Then, with v the structure vector for a game 
1 

between i and j, <a,v) = 0 if both i,j €A or both i,j € B, 

player 

A, 

played 

while 

<a,v) = - f3 ) 0 if i € A, j € B, hence the observation is extreme. 

Thus, for a closed tournament, an observation is extreme iff it is 

possible to divide the set of players into two non-empty subsets A and 

B such that all games between i € A, j € B are always won by i. 

Special cases of extreme observations: one player wins (respectively 

loses) all his games. 

Also note that for a non-closed tournament, any observation fits with 

the pattern in Fig. 3: since the tournament is not closed, it is 

possible to find A # 0 with AC # 0 such that i € A never plays 

• J' € AC • agalnst o 
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3.5 The Rasch model. Rasch [11] proposed the following model for evalu-

ating questionnaires where k persons answer the same m questions: 

for i = 1.···.k. j = 1.···.m the probability that person i answers 

question j correctly (wrongly) is 

(3.5) 

B.+f. 
e 1 J 

B.+f. 
l+e 1 J [ !.+f.]· 

l+e 1 J 

all responses being mutually independent. Thus. there is a binary random 

variable attached to each pair (i, j) and here we shall allow for 

n .. ~ 0 LLd. copies of that binary response to be observed. general i-
1J 

zing the case n .. = 1 for all i.j usually subsumed for the question-
1J 

naire interpretation of the model. 

We shall assume that for all j and i re-~nij ~ 1. ~nij ~ 1 
1 J 

spectively. and further that the system is closed in the sense that for 

all i # i' there exists a sequence (iO.···.i L) of persons with 

i = iO' i' = iL and a sequence (jO.···.jL-l) of questions such that 

(B 1 + c ••••• Bk + c;f1 - c.···.fm - c) for an arbitrary c does not 

change the probabilities (3.5). but since the system is closed. if we 

adopt the convention f = O. m 
as we do from now on. the parametrization 

is unique. 
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The problem is then to discuss when the ML-estimator for 

(9l.···.9k.fl.···.fm_l) exists and is unique. The likelihood is brought 

on the form (2.3) by allowing a factor for each of the n .. 
IJ 

responses of 

i to j. i = l.···.k. j = l.···.m. and this representation yields 

structure vectors v € IRk+m- l of the form 

i j 
( ... ,- 1 •••. ... - I, ••• ) if i answers j correctly. . . . 

(3.6) ( ... , 1 •••. ... , 1,···) if i answers j wrongly . . 
.... ~ --J ~ 

9 f 

where we show only the non-zero coordinates and use the convention that 

if j = m. the component - 1 or 1 in the position marked j is 

ignored. 

Suppose we are given an extreme observation. By (b ii) of the 

Theorem. we can find ~ = (al.···.~.~l.···.~m-l) # 0 such that 

<~.v> ~ 0 for all v of the form (3.6) specified by the observation. 

Equivalently. putting ~ = 0 m 
(and reminding the reader that 

allowed. so that several i.i.d. responses to the same question by the 

same person may occur). for all i.j 

a. + ~. 5: 0 if i always answers j correctly 
1 J 

(3.7) a. + ~. ~ 0 if i always answers j wrongly 
1 J 

a. + ~. = 0 if i answers j both correctly and wrongly. 
1 J 

Reordering persons and questions we can obtain 
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with a sharp inequality somewhere, and hence after a little reflection 

also the following table showing the sign of U. + {3.: 
1 J 

j1 jm 

i1 
< 0 any 

any > 0 
i k 

the horizontal line separating i1 < ••• < i - - L-1 

with i L- 1 < i L , and similarly the vertical line separating 

j1 ~ ••• ~ jp-1 from jp ~ ••• ~ jm with jp-1 < jp Let 

A = {i1 ,···,iL_1}, B = {j1,···,jp-1}. (Since by assumption we only know 

that (u1,···,~,{31,···,{3m-1) ~ 0, it is possible that e.g. all u i are 

equal so that A or Ac. t Th d t t th f IS emp y. ese egenera e cases mus ere ore 

be allowed as special cases of the sign configuration above). 

Referring to (3.7) it is now clear that an extreme observation has 

the following structure: 

i\.j B 

A correct any 

any wrong 

Fig. 4 The extreme observations for the Rasch model. 

I 
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For instance all responses by i € A to j € B must be correct, 

while for j € BC an arbitrary answer is allowed. 

If conversely the observation fits into the pattern from Fig. 4, then 

if e.g. m € BC we have <~.v> ~ 0 for all structure vectors v given 

by the observation provided ~ = (al'···'~;~l'···'~m-l) ~ 0 satisfies 

= { 0 a. 
1 

a 

where a > o. 

i € A 

i € AC ' 

j € B 

j € BC 

Thus an observation is extreme iff there is a subset A C {l,···,k} 

and a subset B C {l,···,m} such that (i) all questions j € Bare alway 

sanswered correctly by any i € A, and (ii) all questions j € BC are 

always answered wrongly by any i € AC. 

Special cases of extreme observations: one person always answers 

questions correctly (or wrongly), or one question is always answered 

correctly (or wrongly) by all persons. 

The criterion above for an observation to be extreme is known, see 

Fischer [8,9]. o 

3.6 A multiplicative Poisson model. The following model is proposed for 

a tournament where k teams are paired off in a given number of games, 

and where the result of any game between teams i and j consists of 
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two scores by i against j, and by j against i: i plays j 

n .. 2 0 times (so n .. = n .. ), the results of all games are independent 
1J 1J J1 

and the two scores in any given game are also independent, and if i 

plays j. the score by i against j (j against i) follows a Poisson 

distribution with expectation 

(A minimal sufficient statistic is given by the vector comprising for 

each team i. the total score obtained by i together with the total 

score against i. If a high score by a team means that the team plays 

well one would rank i as better than j if B. + f. > B. + f .. i.e. 
1 J J 1 

that team is best for which B. - f. is largest. The B. may be thought 
III 

of as attack and the as defense parameters). 

We shall assume that for all i. ~ n .. 2 1 and also that the 
j;ii 1J 

tournament is closed in the sense that for any i;i j there exists 

such that all n. . 2 1 
11-_1 11-

(cf . 

Example 3.4). 

Replacing B = (Bl.···.Bk ; fl.···.fk ) by B' = (B l + c ••• ·.Bk + c; 

fl - c.···.fk - c ) does not change the Poisson parameters above. but by 

requiring. as we do from now on. that fk = O. we obtain a unique para-

metrization. 

Any game played between i and j contributes two factors to the 
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likelihood when writing it in the form (2.3). namely. if the score is x 

by i against j and y by j against i, 

1 (9 i +f .)x [9i +f .] 1 (9.+f i )y [ 
- e J exp - e J - e J exp -
x! y! 

= [1 + ; ~: exp((9i + fj)(z _ X))]-l 
z=o 
z'#x 

co 
y! 

}; -, exp( (9. 
O z. J 

Z= • 
z,#y 

9.+f .] J 1 e 

Thus anyone score in any game generates infinitely many structure 

vectors. that however are simply related. viz. the vectors for the score 

x by i against j are '" 2k-1 (z - x) v € IR for z = 0.1.···. z '# x 

with 

i j 
• •• 1 ••• ) 
~ 

v = (···,1,···; 
'-- .--=' 

9 f 

where if j = k the j component 1 is ignored. and only non-zero 

entries are shown. 

Consider now an extreme observation so that we can find ~ = 
2k-1 

(u1.···.~; ~1.···.~k-1) € IR with <~.v> ~ 0 for all structure 

vectors v determined by the observation. Introducing ~k = O. it is 

clear that this amounts to. for any i '# j with n ij ~ 1. 

(3.8) {=~ 00 u. + ~. 
1 J 

if i always has score 0 against j 
if i at least once has score ~ 1 against j. 
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Rearranging the teams in two different ways so that < ••• < a. 
- - 1 ' 

k 

~ ~j' just as in the previous example we obtain the following 
k 

table for the sign of a. + ~. 
1 J 

A any 

any + 

corresponding to a division of the teams into two groups in two different 

c c ways, A, A and B, B . 

Since "Y '# 0, and by (3.8), a. + ~. ~ 0 whenever n .. ~ 1, it 
1 J IJ 

follows because the tournament is closed that a. + ~. > 0 for at least 
1 J 

one pair (i,j) with n .. ~ 1, in particular AC '# 0, BC '# 0. The only 
IJ 

way to account for the minus signs in the table is that for i € A, 

j € B, n .. = 0 (in particular A or B may be empty). Thus the follow
IJ 

ing observation pattern emerges for scores by any i against any j. 

i\.j B BC 

A not played any 

AC any i never scores 
against j 

Fig. 5 The extreme observations for the multiplicative Poisson model. 
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Conversely, if the observation agrees with Fig. 5, and e.g. k € BC, 

= { 0 a. 
1 

a 

i € A, j € B 

j € BC 

with a > 0, one checks that <~,v> ~ 0 for all structure vectors v. 

Thus, for a closed tournament an observation is extreme iff there 

exists CC {l,···,k}, DC {l,···,k}, both non-empty and such that 

n .. > 1 for at least one i € C, j € D and furthermore it holds that 
-lJ 

(i) always i € C has score 0 against any j € D, (ii) i € CC never 

plays any j € DC. 

Special cases of extreme observations: one team always has score 0 

against any team it plays, or one team always has 0 scored against it. 0 

3.6 A Bradley-Terry model allowing draws. As in Example 3.4 we consider 

a closed tournament with k players, but do not restrict the outcome of 

a game to a win for one of the two players, but allow also for a draw. 

Thus a game between i and j results in a win for i, a draw, a win 

for j with probabilities 

(3.9) e 
El. 

1 

El. f .+f. El.' 
e l+e 1 J+e J 

e 
fi+f j 

El. f .+f. El.' 
e l+e 1 J+e J 

El. 
e J 

El. f .+f. El. 
e l+e 1 J+e J 

respectively. It is of course assumed that the results of different games 

are independent. 
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Similar models have been proposed by Davidson [6]. Davidson and 

Beaver [7]. A minimal sufficient statistic is obtained by counting for 

each player the total number of wins and the total number of draws. 

We assume now that fk = O. Since the tournament is closed. the 

parametrization is then unique. 

We write the likelihood in the form (2.3) with each game played 

2k-1 contributing one factor with two structural vectors € ffi . For any 

game played between i and j. (3.9) shows these two vectors to be 

i j i j 
( ... ,- 1 ···0 ..•.... 1 .•• 1 ..• ) , " , " " 

(3.10) 
C···,- 1,···,1,···;···,0,···,0,···) 

.... _------ ~ '--- -." , 
() f 

if i wins and 

( ••• 1 ••• 0 •••.••• - 1 ••• - 1 .••• ) " " , , , , 
(3.11) 

( ••. 0 .•• 1 ....... - 1 ..• - 1.···) " " , , , , 

if i and j draw. As usual. if e.g. j = k. the components on the 

rightmost coordinate marked j are to be deleted. and all entries not 

shown are zero. 

Consider an extreme observation and find 

vectors v determined by the observation. Writing ~k = 0 and referring 
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to (3.10) and (3.11) it is seen that this amounts to the following condi-

tions for any pair (i.j) of players that have played each other at 

least once. and where the five categories refer to the games between i 

and j only: 

(i) if one player. i say. always wins. 

(ii) if all games are drawn. 

(iii) if one player. i say. wins at least once. draws at least once 

and never loses. 

a. ~ a.; 
1 J 

(iv) if both i and j win at least once and never draw. 

a. = a.; 
1 J 

(v) if both i and j win at least once and at least one game is drawn 

a. = a .. 
1 J 
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Working towards a characterization of the extreme observations, it proves 

useful to introduce 01. = ~. - u. and study the signs for o. + ~., 
1 1 1 J 

reordering the players in two different ways according to increasing 

values of o. 
1 

and respectively. It qUickly turns out that the 

rather crude sign analysis that worked successfully in the two previous 

examples, in the present case only yields a class of observations, that 

although it certainly contains all the extreme ones, also comprises a 

host of non-extreme observations. 

By gradually refining the sign analysis, we have been able to arrive 

at the class of extreme observations exhibited in Figure 6, but do not 

believe that it comprises all extremes. Fig. 6 serves to show that 

extreme observations in exponential families may have a very complicated 

structure. 

In Fig. 6 the set of players is partitioned into three subsets in two 

different ways, together yielding a partitioning into nine subsets. 

Any observation fitting with the pattern in Fig. 6 is extreme. The 

figure shows which outcomes are allowed in the games played between any 

two players i,j, categorized according to which of the nine subsets 

they belong to. In each cell of the resulting 9 x 9 table, seven classes 

of outcomes are allowed, corresponding to (i) - (v) above plus the two 

extras obtained by interchanging i and j in (i) and (iii). The 

following notation is used for the seven classes: 
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(i) i always wins: > j always wins: < 

(H) all games drawn: 

(Hi) i never loses: > j never loses: < 
'" '" 

(iv) games never drawn: not '" 

(v) any outcome allowed: any 

The tabel is of course symmetric in i and j, so all information 

is contained on and e.g. below the diagonal. 

L 
i\.j s 

not '" < < > not '" 

> not '" < > > 

> > any > > 

< < < not '" < 

not '" < < > any 

> any < > > 
'" '" 

< < < < < 

< < < any < 
'" 

any ,$ < ,?, '" 
'" 

< > 

any > 

> > 
'" 

< > 

,$ > 

'" > 

< any 

< > 
'" '" 

'" > 
'" 

M 
-S---T-""'l 

> any 

> > 
'" 

> > 
'" 

any < 
'" 

> '" 
'" 

> '" 
'" 

,$ < 
'" 

'" '" 

'" '" 

Fig. 6 A class of extreme observations for the Bradley-Terry model with 

draws. 

We claim that if the observation fits with Fig. 6, then <~,v> ~ 0 

for all the structure vectors, provided ~ = (al'···'~'~l'···'~k-l) ~ 0 

is chosen in the following fashion: the ~j (including ~k = 0) are 
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the a. are constant on each of the 
1 

nine subsets of players and determined from 

(3.12) 

as follows: 

~=~S = ~ = 2f3S ' 

~R=~ = f3R + f3S' 

(3.13) ~=~T = f3S + f3T' 

~ = 2f3T, 

~ = 2f3R· 

For the proof one must verify 45 groups of inequalities! 

As mentioned above Fig. 6 does not seem to contain all extreme obser-

vations. It may be shown however that by replacing the ")" for 

i € K n S, j € L n S by "not ~" and the "<" for i € L n R, j € L n S 

by "not ~", and symmetrizing, one obtains a table that comprise all 

extreme observations. Unfortunately, not all observations in this 

slightly more general table are extreme. 

Simpler examples of extreme observations may be obtained from by 

Fig. 6 allowing one or more of the nine subsets to be empty, the only 

requirement being that ~ given by (3.12) and (3.13) is ~ O. Special 

cases: one player wins all games (or draws all games, or loses all 
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games). Also, the corner configuration with only K n R and M n T 

non-empty yields extreme observations. o 

Appendix 

Proof of the Theorem 

With f given by (2.3) and the assumption below (2.3) in force, 

L = log f is twice differentiable with the gradient and the Hessian 

found easily using (2.4), (2.5). 

For f3 € !RP, 

D2L(S)f3,f3> ~ 0 

a simple application of Jensen's inequality shows that 

< - with equality iff for all i, j € A., <v .. , f3> = O. 
1 IJ 

Thus L is concave and if span{v .. } = !RP, - D2L(S) is positive definite 
IJ 

for all S. If on the other hand span{v .. } # !RP, choosing 
IJ 

f3 ~ span{v .. } above shows that - D2L(S), although positive semi
IJ 

definite, is nowhere positive definite. Thus (a i) - (a iii) are equi-

valent. 

The equivalence between (b i) - (b ii) is standard. We show that f 

has a unique maximum iff (b ii) holds. 

A 

Suppose L(S) = sup L and that S is unique. Then necessarily 
A A 

span{v .. } =!RP since otherwise 
IJ 

L(S) = L(S + f3) for any f3 ~ span{v .. }. 
IJ 

Thus, by part (a), L is strictly concave and by standard convexity 

theory, for all directions So €!RP where /lso/l = t, 

(At) - IX) 
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or, equivalently 

(A2) lim f(BSO) = O. 
~ 

Obviously, for each i 

lim 2: 
~ jEA. 

1 

<BSo ' v .. > 
1J = 00 a .. e 

1J 

iff <SO'v .. > > 0 for some j E A., with the limit a finite constant 
1J 1 

otherwise. Thus (A2) holds iff for every direction SO' <SO,vij> > 0 for 

some i,j. Taking an arbitrary a E ffiP with a # 0 and using this on 

So = ± a/Hall. it is seen that (b ii) holds. 

Conversely, it (b ii) and, afortiori, (b i) hold, (A2) and hence (AI) 

is true for all directions SO. By (b i), span{v .. } = ffiP so L is 
1J 

strictly concave and therefore has at most one maximum. By (AI), if C is 

close enough to - 00, the set M = {S : L(S) ~ C} is non-empty and 

compact, and since L is continuous, it has a maximum on M. 0 
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