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ABSTRACT 

A wide class of inequalities for the determinant and other real-valued functions of an n x n 

complex Hermitian (or real symmetric) matrix H == (hjk ) may be obtained by generalizing 

Marshall and Olkin's [9] proof of Hadamard's inequality 

(1) 
n 

detH ~ IT hjj 
j=l 

for positive definite (pd) H. We shall see that each subgroup G of the group Un of n X n unitary 

matrices not only determines an analogue of (1) for det H, but also provides inequalities for a 

large family of unitarily invariant functions of H (not necessarily pd). 

* This research was supported in part by National Science Foundation Grant MCS 83-01807 at the 
University of Washington. 



1. INTRODUCTION 

To prove the classical Hadamard inequality (1), Marshall and Olkin observed that 

(2) 
1 2n • - L: D aHD ex. = Dlag (h 11, ... , hnn ) 

2n a.=1 

where D a ranges over all n x n diagonal matrices Diag (± 1, ... ,± 1), then invoked the 

concavity and unitary invariance of log detH for pd H. They also remarked that further 

inequalities may be obtained from (2) by replacing log detH by any concave (or convex) 

unitarily invariant function <P(H) =1 (l(H)).l 

Of particular interest are the convex functions (see [8], p. 478) 

m 

<P(m)(H) - L: A/H) , 1 ~ m :::; n -1 , 
j=l 

defined for all Hermitian H. (Note that <P(n)(H) = tr H is linear.) When applied to (2), the 

convexity of <P(m) yields Schur's inequalities 

m m 
(3) LA/H) :2: L: h (ji) , 1 ~ m ~ n -1 , 

j=l j=l 

where h (11):2: ... :2: h (nn) denote the ordered values of h 11' ... ,hnn' while 

n n 
(3') L: Aj(H) = L: h (ji) 

j=l j=l 

by the linearity of <P(n)' The relations (3), (3') together are equivalent to the vector relation 

1 A function of d;>(H) is unitarily invariant if d;>(UHU·) = d;>(H) for all U E U". Such a function 
depends on H only through its ordered eigenvalues Al(H) ~ ... ~ A,,(H) (necessarily real), i.e., 
d;>(H)=j(l.(H» for some functionj, where l.(H) = (Al(H), ... ,A,,(H». Note thatH is pdiff 
A" (H) :> O. We shall be concerned mainly with functions d;> whose domain is either IH" == the set 
of all n Xn complex Hermitian matrices or IH: == {H E IH" IHpd}. 



- 2-

(4) l.(H) > h(H) == (h 11, ... , hnn ) , 

i.e., l.(H) majorizes h(H).2 The relation (4) in turn implies that 

(5) {
;:::} {Schur-convex } 

f (l.(H)) :::; f (h(H)) if f is Schur-concave ' 

where by definition a real-valued function f is Schur-convex (Schur-concave) on its domain if it 

preserves (reverses) the majorization preordering ([8], Chapter 3). The inequality (1) is the 

n 
special case of (5) for the Schur-concave3 function f (x 1, ... , xn ) = IT Xj defined for Xj ;::: 0, 

1 

From (5), one obtains upper or lower bounds for functions of l.(H) in terms of the diagonal 

elements of H. The main purpose of this paper is to demonstrate that many different bounds are 

available in terms of other simple linear functions of the elements of H. Each bound is 

determined by the projection of H onto a group-invariant subspace 1Ha c lHn (see Section 2). 

Which of these bounds are most informative (i.e., sharpest) will depend upon which group-

invariant symmetry properties are most nearly satisfied by H (see Remark 2 to follow). Several 

examples are presented in Section 3. 

2 If x == (x l' ... ,XII) and y == (y l' ..• 'YII) are real vectors, then x weakly majorizes y (written 

X7w y) if x(l)+ ••• +X(k)~Y(l)+ .•• +Y(k) for l~k~n, where X(l)~ .•• ~X(II) and 

Y (1) ~ ••• ~ Y (11) denote the components of x and y in decreasing order. We say x majorizes y 

(written x> y ) if X >'w Y and Xl + ... + XII = Y 1 + ... + YII. See Marshall and Olkin [8] for a 

comprehensive account of the majorization preordering and its applications. 

3 A function f (x l' ... ,XII) is Schur-convex (Schur-concave) if it is convex (concave) and a 
permutation-invariant, but not conversely. If f is Schur-convex (Schur-concave), so is 'JI(f) for 
any increasing function w. Thus, IT Xj == exp (L logxj) is Schur-concave. 
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2. THE GROUP-INVARIANT FORMULATION 

Our generalization of Marshall and Olkin' s argument is based upon consideration of the 

matrix 

(6) 1 "" H * H #(G) ~ g g == G' 
geG 

where G denotes a finite subgroup of Un' #(G) is the order of G, and H E IHn. Clearly HG is 

a linear function of H (also see Footnote 4), HG e IHn , tr HG = tr H , and HG is pd whenever H 

is pd. Because HG is a convex combina,tion (in fact, the barycenter) of the G -orbit 

* {gHg I g E G} of H, applying <P(m )(1 ~ m ~ n) to (6) immediately yields the following 

generalization of (4): 

(7) 1.(H) >- 1.(HG) , 

which in turn extends (5): 

(8) { > } {Schur-convex } 
I (1.(H)) ~ 1(1.(HG)) if 1. is Schur-concave ' 

n 
in particular, by setting I (x 1, ... ,xn) = IT Xj we obtain 

. 1 

(9) detH ~detHG (H pd). 

Although (7) and (8) are valid for an arbitrary finite subset G C Un' their main interest 

occurs when G is a subgroup of Un' for in this case HG possesses symmetry properties which 

(i) facilitate its calculation, and (ii) make I (1.(HG)) an interesting bound. If we let 

IHa == {A e En I gAg * = A ~ g E G } 
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denote the (rea}.) linear subspace of all G -invariant Hermitian matrices, then the group property 

of G implies that 

for each g 1 E G, i.e., He is G -invariant, so 

For example, if G = {D ex I 1 :::;; a:::;; 2n} (see (2)) then IHc is the set of all n x n diagonal 

matrices with real elements and He = Diag (h 11' ... ,hn;n), so (2), (4), (5), and (1) are special 

cases of (6), (7), (8), and (9), respectively. By computing He for other subgroups G C Un' 

other interesting bounds for 'A.(H) and f ('A.(H)) can be obtained. 

We remark that when G is a subgroup, equality holds in (7) iff H is G -invariant, i.e., 

H E lHe <==> 'A.(H) = 'A.(He) . 

Trivially, HE lHe :> H =He ==> 'A.(H) = 'A.(He ). To see the converse, assume that 

'A.(H) = 'A.(He ), so that 

by the convexity of tr A 2 for A E lHn . However, tr (gHg *)2 = tr H 2, hence equality holds, so by 

the strict convexity of tr A 2 it follows that the matrices gHg * , g E G, are all identical. Since 

4 In fact, HG is the orthogonal projection of H onto iliG with respect to the inner product 
<H I' H 2> = tr H IH 2 on IHn. To verify this fact, simply note that HG E IHG and 
<H - HG, iliG> = o. When H is pd, such projections occur as maximum likelihood estimators of 
covariance matrices in normal statistical models determined by group invariance (e.g., [2]). 



-5-

the n X n iden~ty matrix In E G, gHg * = H for every g E G, hence H E IHa. 

Before presenting examples in the next section, we point out that (7) and (8) may be 

extended by considering nested subgroups of Un. It is easy to verify that if G' c G then 

(6') 

so that 

(7') 

(8') {~ } {Schur-convex } 
f (l(Ha')) s: f (l(Ha)) if f is Schur-concave ; 

in particular, 

(9') detHa , s: detHa (H pd). 

The inequalities (7) and (8) are the special cases of (7') and (8') obtained by setting 

Remark 1. For positive definite H E IHn , certain reversals of (7) and (8) may be obtained by 

replacing H by H-1 in (6)-(8). Thus we find that 

hence 

fC},.-l(H» {~} f(l.«W1)G» if f {
Schur-convex } 

is Schur-concave . 
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In particular, 

(H pd), 

hence 

(H pd). 

Such reversed inequalities are not of much practical interest, however, since the calculation of 

H-1 and (H-1)G usually is no simpler than that of l(H) or detH. 0 

3. EXAMPLES AND REMARKS 

The general inequalities (7) and (8) are elementary and straightforward-their interest 

depends upon whether, for specific G, the projection (= orbit barycenter) HG and its eigenvalues 

l(HG) are readily obtainable and provide interesting ·bounds for f (l(H)). Because HG is a 

linear function of H and is G -invariant, usually it is easy to determine HG and l(HG). This is 

illustrated by the following six examples. 

Example 1 (Block-diagonal matrices). Choose positive integers q, n l' ... , nq such that 

L nj = n and let G 1 be the subgroup of Un consisting of all block-diagonal matrices of the form 

diagonal matrices A = Diag (A 1, ... ,Aq) with each A j an nj x nj Hermitian matrix, and that 
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where H jj : n j X n j is the j th diagonal block of H. Thus (7) implies that 

(10) l(H) >- l(HG ) == (l(H 11)' ... , l(Hqq)) , 

where l(A) denotes the vector of eigenvalues of A in arbitrary ord~r.5 (See [8], p. 225, for an 

alternate proof.) Applying (9) yields Fischer's inequality 

q 
detH =s;; IT detHjj 

j=l 

If we take q = 2, n 1 = n -1, n 2 = 1, then (10) implies (compare to (3)) 

m m 
LA/H) ;;:: L Aj(H 11) , 1=S;;m=S;;n-1, 
j=l j=l 

(11) m m 

L An-j+l(H) =s;; L An-j+l(H 11) , 1=S;;m=S;;m-1, 
j=l j=l 

(H pd). 

where H 11 is an (n-1)x(n-1) principal submatrix of H. (See Remark 3 for further discussion 

of (11)). 0 

Example 2 (Completely symmetric matrices). Take G 2 to be the subgroup of Un consisting of 

all n xn pennutation matrices (# (G 2) == n !). The reader may verify that lHG z consists of all 

n xn matrices A == (ajk) such that ajj = a (real), 1 =S;;j =S;;n, and ajk =b(real), 1 =s;;j #k =s;;n,6 so 

HG z must be of the fonn 

5 Under the majorization preorciering, l.(A) and 1(A) are equivalent, i.e., 1. > 1 and 1 >- l.. 

6 Recall that if A is Hermitian, each ajj is real and ajk = iikj for j"#k. For A E IDG" additionally 
ajj =aa andajk =akj for j "#k: this follows from the requirement that A =PjI,AP;, wherePjk 
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a b b 

b a 

(12) HGz = 

a b 

b . b a 

To calculate a and b in terms of the elements of H , first note from (12) that 

tr HG z = na 

* e HGze = na +n(n -l)b , 

where e = (1, ... ,1)*. From (6) and the facts that g * g =In (g E Un) and e * g = e * (g E G 2), 

however, 

so that 

n 
tr HG z = tr H = L hjj 

j=l 

n 

= L hjj + LL hjk , 
j=l j:f:.k 

b = Re [ 2 LL hjk ] == h+ , 
n(n-1) jd 

is the permutation matrix that transposes the jib and k lb coordinates. Thus all diagonal elements 
of A are equal (and real), while all off-diagonal elements are real. To show that all off-diagonal 
elements of A must be equal, replace Pjk by other appropriate permutation matrices. 
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respectively.the averages of the diagonal and off-diagonal elements of H . 

Since the eigenvalues of the matrix (12) are a - b (with multiplicity n -1) and a + (n -1) b, 

(7) yields 

By applying (8) for suitable choices of f we obtain the following inequalities (some of which 

may be new): 

(14) 

(15) 

(16) 

(17) 

m 
L Aj(H) ~ m(ho-h+)+n(h+ VO) 
j=l 

m 

L An-j+l(H) ::;; m(ho-h+)+n(h+/\O) 
j=l 

m 
IT An-j+l (H)::;; (ho-h+)m + n (h+ /\ O)(h o-h+)m-l 
j=l 

where l::;;m ::;;n -1 and nh = h o+(n-l)h+ (h is the average of all the elements of H). 

(H pd) 

(H pd), 

If H = R == (rjk) is a correlation matrix (i.e., rjj = 1, l::;;j::;; n), then these inequalities 

assume simpler forms: 

(18) 

(19) 

detR ::;; [1 + (n -1)r +J (1-r +t-1 

m 
L Aj (R) ~ m (1- r +) + n (r + V 0) 
j=l 

(R pd) 



(20) 

(21) 

- 10-

m 

L An_j+l(R) ::; m (l-r +) + n (r + i\ 0) 
j=l 

m 
IT An-j+l (R) ::; (1- r +)m + n (r + i\ 0)(1- r +)m-l 
j=l 

(R pd), 

where r + denotes the average of the off-diagonal elements of R. (Inequality (18) is attributed to 

L. J. pIes er in [1] (p. 328).) D 

Remark 2. If G and G' are not comparable (i.e., G ct.G', G' ct.G), then in general IHG and 

IHG , are not comparable and the lower bounds l(HG ) and l(HG ,) are not comparable with 

respect to the partial ordering of majorization. For example, if we set q = n, n 1 = ... = nn = 1 

in Example 1, then l(HG !) == (h (11)' ... ,h (nn)) and 1(HG2) are not comparable in general. If 

restrictions are imposed on H, however, then comparability may result. Thus, if H is restricted 

to be a correlation matrix R, then 1(RG2) >- l(RG ) == (1, ... ,1) and the inequalities (18) and 

(19) are sharper than (1) and (3). On the other hand, if the restriction h+ = 0 is imposed on H, 

then l(HG !) ;. 1(HG2) = (ho, ... ,ho) and (1) and (3) are sharper than (18) and (19). This 

suggests that one should take into account any symmetry properties or other restrictions 

approximately satisfied by a particular H in order to determine those subgroups G that will 

provide sharp bounds. 0 

Remark 3. The primary appeal of this group-invariant approach is that it is suggestive, 

providing (possibly different) bounds for <'!f(H) == f (A(H)) for every subgroup G C Un (but see 
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Remark 5). ~ce these bounds are determined, however, alternate derivations and/or sharper 

bounds may become apparent. For example, from the extremal representations 

(22) !Al(H) = sup u * Hu 
lIull=1 

An(H) = inf u * Hu 
lIull=1 

for a Hermitian matrix H one obtains 

(23) 

(24) U~k) 

by taking u = e and u = (ej -ek)lfi, respectively, where ej is the unit vector 

(0, ... ,0, I, ... ,0) with the 1 in the jth position. Averaging (24) over all j ~k yields 

(25) 

combining (23) and (25) gives (15) and (16) for the case m = 1. 

(26) 

Sharper bounds are also immediate. From (24), for example, 

A1(H) ~ ~ax ['h(hjj+hkk)-Re(hjk)] 
l'~k 

~ min ['h(h .. +hkk ) -Re(h'k)] 
j*k II J 

~ An(H) , 

which is sharper than (25), but which requires more information about H. When H =R (a 

correlation matrix), (26) becomes 

(27) 

Combining (26) or (27) with (23) provides bounds sharper than (15), (16) or (19), (20) for the 
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case m = 1. 

As another example, the interlacing inequalities ([8], p.227). 

clearly are stronger than (11). These inequalities are obtained from the Courant-Fischer min-

max representation of A/H), which shows that A/H) is neither convex nor concave in H if 

2~j~n-1. 0 

Example 3 (Hermitian circulants). Take G 3 to be the subgroup of all cyclic permutation 

matrices (#(G 3)=n),i.e.,G ={I,P, ... ,pn-1}whereI=In and 

(28) p = 

010 .. 00 
001 .00 

000 .01 
100 .. 00 

To determine ilia 3 it is convenient to use the fact that ilia3 = IH{p}, which holds since G 3 is 

generated by {P}. It is readily verified that ilia 3 consists of all n x n matrices A == (ajk), 0 ~j, 

k ~n-1, such that 

0~a;~n-1, O~j ~n-l, 

where {j + a;} = U + a;)(mod n), b 0 is real, and b <X = bn-<x for 1 ~ a; ~ n-1. (Note that this last 

condition implies that bnt2 is real if n is even.) Thus, Ha 3 takes the form 
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H . - h I + h P + h P 2 + ... + h P n-2 + h P n-l G) - 0 1 2 2 1 

- -
hO hI h2 . h2 hI 
- -
hI hO hI h2 
- -
h2 hI hO 

= 

hO hI h2 
-

h2 hI hO hI 
- -

hI h2 . h2 hI ho 

where, from (6), 

(30) O~a~n-l. 

-
(Note that ho is real, while ha = hn-a for 1 ~ a ~ n -1.) The unordered eigenvalues of HG) are 

given by 

n-l 
'f..j (HG) = Lt hacJa 

0.=0 

[~] [ jan . jan] 
h o+2 Lt (Reha)cos-- - (Imha)sm-- , 

0.=1 n n 
n odd 

= 

~-1 [ j an j an 1 . 
h o+2 Lt (Reha.)cos---(Imha)sin-- + (-l)Jhn12 , 

0.=1 n n 
n even, 

1 ~ j ~ n , where co = e 21tiln ([ 10], pp. 65-66). Thus, (7)-(9) yield 
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l.(H) >- l.(HG ) 

(31) " [,,-1 1 detH ~ IT L h aroia 
j=1 a=O 

(H pd) 

and other inequalities. (The ordered eigenvalues Aj (HG3) depend on the relative values of ho, 

Re h a' and Im h a' so cannot be expressed concisely.) 0 

Example 4 (Symmetric circulants). For n~3 let G 4= {I ,P, ... ,p,,-1, Q, QP, ... , QP,,-1}7 

(#(G 4) = 2n), where P is given by (28) and 

Q = 

001 
1 0 

o 1 

100 

Since G3 C G 4 :> IHa 4 = (IHa3)G 4, the space IHG 4 consists of all matrices of the form (29) 

with each h a real. By (6'), therefore, 

7 For O::;a::;n-l, pa and QPa are, respectively, the rotations and reflections that leave a regular 
n -gon invariant in n -space, i.e., G 4 == the dihedral group. 
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ha h1 h2 hA 2 h1 
h1 ha h1 h2 
h2 h1 ha 

Hc 4 = 
ha h1 h2 

h2 h1 ha h1 
h1 h2 h2 h1 ha 

where 

(Note that HC 4 = HC 3 if H is real symmetric, but not in general.) The unordered eigenvalues of 

HC 4 are given by 

n-1 
'f...j (Hc) = L ha oJa 

0.=0 

[ E.] 
2 jan 

h a+2 L (RehJ cos --, 
0.=1 n 

n odd 

= 
E.-1 
2 j an . 

h o+2 L (RehJ cos --+ (_1)1 hnl2 , 
0.=1 n 

n even, 

1 ,; j ,; n . (Note that i..j = i.." --J, 1,; j ,; n -1, so that [n ; 1 ] of these eigenvalues occur with 

multiplicity two.) Thus we obtain 
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l.(H) )r l.(H G) 

(32) (H pd) 

plus other inequalities from (8). D 

Remark 4. To illustrate (7') and (8'), {In} == Go c G 3 C G 4 C G 2 C Un implies that 

'J..(H) " 'J..(H a,) > 'J..(Ha;J > 'J..(Ha ,) >- 'J..(H a,) >- 'J..(H u.l " 'J.. [( ! tr H ) In] 

detH ::;; detHG ::;; detHG ::;; detHG ::;; ( .1.. tr H r 
3 4 2 n 

(H pd) 

and so on. Thus the inequalities in (14)-(17), (32), and (31) are increasingly sharp. (The group 

Un is not finite, but see (60).) D 

Before presenting our two final examples, we recall several facts about the eigenvalues of a 

structured Hermitian matrix. First, if A and B are p x p Hermitian matrices, then A + B ,A - B , 

and 

(33) 

are also Hermitian and their eigenvalues (necessarily real) are related by 
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(34) 1: [~ ~) = (A.(A + B ), A(A -B)) ,8 

which implies that 

(35) det [~ ~ ) = det (A + B ) det (A - B) . 

Next, if A is Hermitian (A * = A) and B is anti-Hermitian (B * = -B), then A + iB , A - iB , and 

(36) [A -B J BA: 2p x2p 

are Hermitian and their eigenvalues (necessarily real) satisfy 

(37) [A -BJ i B A = (A(A + iB ), A(A - iB» ,9 

so that 

8 This follows from the relation 

[A B 1 [A +B 0 1 B A = U 0 A -B u*, 

where 

is a unitary matrix. 

9 This follows from the fact that 

[A -B 1 fA + iB 0 1 * 
B A = U lOA -iB U , 

where 

is unitary. 
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(38) det [~ -:. ] = det (A + iB ) det (A - iB) . 

If A and B are restricted to be real matrices in (36)-(38) so that A is symmetric (A' =A) and B 

is anti-symmetric (B' = -B ), then A + iB and A - iB (= (A + iB )') have the same eigenvalues, so 

(37) and (38) become 

(39) 

[A-B] 1 B A = (A(A + iB ), A(A + iB )) 

[A-B] det BA = [det(A +iB)]2. 

Finally, if E : p xp is an arbitrary complex matrix, then 

(40) 

is also Hermitian, and 

(41) -[0 E] 10 A E* 0 = (a(E) , -a(E)) , 

where a(E) = ((Jl (E), ... ,(Jp (E)) and (Jl (E);;::: ... ;;::: (Jp (E) ;;::: 0 are the ordered singular 

values of E , i.e., 

10 From the singular value decomposition E = rD a'P· «(8], p.498), where rand 'P are p xp 
unitary matrices andD (J = Diag (O'I(E) • ...• O'p(E», one has 

[ 0 E .]_ [r 0] [0 D a] [r· 0 ] E 0 - 0 '¥ Da 0 0 '¥" . 

Since 

[ 
0 Da] 

i D a 0 = (cr(E) , -cr(E» , 

(41) follows. 
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(42) 

For later use, we record here the simple equivalence 

(43) (x,-x) }... (y,-y) <==:;> Ixl >-w Iyl, 

where x = (x 1, ... ,Xn ), I x I = (Ix 11, ... , IXn I), and }>w denotes weak: majorization (cf. 

Footnote 2). 

Example 5 (2 x 2 block symmetry). Set n = 2p and partition the complex 2p x 2p Hermitian 

matrixH as 

(44) 

(Note that Hr1 =H 11' H;2 =H 22' Hr2 =H 21') Let G s be the subgroup of U2p consisting of 

the two matrices 

[Ip 0] [0 Ip ] 
01 ' 10 . p p 

It is readily seen that lliG 5 consists of all complex matrices of the form (33) with A and B 

Hermitian, and that 

(45) 

with Ho and HI Hermitian. From (7), (8), (34), and (35) we obtain the comparisons 



A [H 11 H 12] 
H21 H22 

det [
H 11 H 12] 
H21 H22 

(46) [
H 11 H 12] 

Al H21 H22 

- 20-

~ max (Al(H o+H 1) , Al(H o-H 1» 

~ min(Ap(Ho+Hl) , Ap(Ho-Hl» 

[
Hll H12] 

~ A.zp H 21 H 22 ' 

(H pd) 

etc. 

(Note that H pd ===:> HG s pd :> Ho ± H 1 pd by (34), or by direct calculation.) 0 

Example 6 (Complex structure). It is interesting to compare the results _in Example 5 to those 

obtained by considering the subgroup G 6 consisting of the four matrices 

[Ip 0] [0 -Ip ] [-Ip 0] [0 Ip] 
o I ' I 0 ' 0 -I ' -/ 0 . p p p p 

Since gHg * = (-g )H (-g) * , only the first two matrices need be considered in detennining lHG 6 

and H G 6. Thus, it is readily seen that 1Ha 6 consists of all complex matrices of the fonn (36) with 

* * A =A andB =-B, and that 

* ~* ~ 
a matrix of complex structure (see [2], p. 133). Note that Ho = Ho and HI = -H 1.) From (7)-

(9), (37), and (38) we therefore obtain 
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A [H11H 12J 
H21 H22 > eA.CH o+iH 1), l.CH o-ill 1)) 

det [H11 H12 J 
H 21 H22 

::; det CH 0 + iH l)det CH 0 - ill 1) ) CH pd) 

(48) [H11 H12 J 
Al H21 H 22 

~ max (AICH 0+ ill 1), Al(H 0- iH 1») 

2:: min CAp CH 0+ iH 1), Ap CH 0- ill 1)) 

2:: [H11 H 12J 
A2p H 21 H 22 ' etc. 

(Note that H pd > Ho ± iH 1 pd.) If H is restricted to be real symmetric, then these 

inequalities take the fonn (see (39) 

l. [H 11 H 12J 
H21 H22 

(49) det [
H 11 H 12J 

H21 H22 
(H pd) 

[
H 11 H 12J 

Al H21 H22 [
H 11 H 12J 
H21 H22 . D 

Remark 2 (continued). From (10) (with q =2, n 1 = n2 = p), (46), and (48) we see that 

The three intennediate bounds are non-comparable, reflecting the fact that the three groups G 1 

Cwith q = 2, n 1 = n 2 = P ), G 5, and G 6 are not comparable with respect to inclusion. D 
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By applring the majorization relations in (46) and (48) to the matrix in (40) we can obtain 

the following comparisons, due to Fan and Hoffman [4], among the singular .. values of an 

arbitrary complex matrix E and its Hermitian and anti-Hermitian parts, V2 (E + E *) and 

, 

aCe) >w a( 1/2(E +E*») 

(51) 
aCe) >w o-(%(E-E*»). 

To see this, simply write 

H == [EO* EO] = [1 0 * % (Eo+ E *)] + [1 ~ % (E - E *) ] 
Y2 (E + E ) Y2 ( E - E) 0 

then apply (7) and (41) to obtain 

(52) 
(o-(E), -o-(E» >- (o-(%(E +E*», -a(1J2(E +E*») 

(o-(E), -aCe»~ >- (o-(%(E -E*», -a(V2(E -E*»). 

By (43), (52) and (51) are equivalent. 11 

11 Marshall and Olldn derive (51) from the apparently stronger relations O'i(1/2 (E ±E·» ~ cr;(E) 
([8], p. 240, eqn. (5». These relations are false, however. Fan and Hoffman ([4], p. 115) give the 
counterexample 

E ~ [: n 
Marshall and Olldn's alternate derivation of (51) ([8], p. 244) is essentially equivalent to that 
presented here. 



- 23-

A modification of Marshall and Olkin's identity (2) (see (54) below) yields the following 

comparison between the diagonal elements ejj of E and its singular values, essentially due to 

von Neumann (cf. [8], pp. 228-9): 

(53) cr(E) >-w I e I == (I e 111, ... , I epp I ) 

(compare to (4». To see this, let G c U2p denote the subgroup consisting of all matrices of the 

form 

where D a is defined as in (2) with n replaced by p. Then 

(54) [ 0 E] [0 De] 
E* ° G = De ° ' 

where e = (e 11, ... , epp ), e = (ell' ... , ~p). Hence by (41), 

(cr(E) , - cr(E » .> (I el, - I e I ) , 

which is equivalent to (53). 

As a final application, bounds for the eigenvalues of a complex Hermitian p x p matrix 

C == Re C + i rm C can be obtained in terms of its real part Re C. From (39) and (46), 

[
ReC -rmC] 

(l(C) , l(C» = i ImC ReC >- (l(ReC) , l(ReC», 

hence 



(55) 

l.(C) )0 l.(Re C) 

detC ~ det(ReC) 
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Al(C) ~ Al (ReC) ~ Ap (Re C) ~ Ap(C) , 

(Cpd) 

etc. 

In turn, these yield alternate bounds (compare (51) and (53)) for the (squared) singular values of 

an arbitrary complex p x p matrix E: 

(56) 

{ 
l.(IR IR' + IT IT') 

cJl(E) > l.(IR'IR + IT'll) 

1 det E 12 ~ min { det (IR IR' + IT IT'), det (IR'IR + IT'IT)}, . 

af(E) ~ max{Al(IRIR'+ITIT'), Al(IR'IR+IT'll)} 

~ min {Ap (IRIR' + IT'll), Ap (IR'IR + IT'll)} 

~ a;(E) , etc., 

where IR = ReE, IT = ImE. (Apply (55) with C = EE * and C = E * E.) 

The reader is invited to develop further examples by computing IHa and Ha for other 

subgroups G ~ Un. If G 6 in Example 6 is replaced by a subgroup G' isomorphic to the 

quaternion group (#(G') = 8), for example, then Ha has the quaternion structure displayed in 

Andersson ([2], p. 133). 

Once IHa and the projection H ~ Ha are known, additional patterned examples and 

eigenvalue bounds for H E IHn may be generated via the relations 

(57) 

(58) * * Hau = U (UHU )aU 

(59) 

where U is a fixed unitary matrix in Un and Gu is the conjugate subgroup in Un given by 
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* * Gu == U GU = {U gU I g E G} C Un . 

Lastly, (7)-(9) remain valid for any closed (therefore compact) subgroup G of Un' provided 

that H G is defined by 

(60) HG = f gHg * dVG(g) , 
G 

where vG is the (unique) Haar (== G-invariant) probability measure on G. If G is finite, (60) 

reduces to (6). 

Remark 5. It should be noted that distinct subgroups G, G' do not necessarily give rise to 

distinct classes lHa, lHa'. For example, let G = G 2 = the group of all n x n permutation 

matrices (see Example 2) and G' = the group of all even n x n permutation matrices. Then 

G == Sn (the symmetric group) and G' == An (the alternating group) so G' is a subgroup of G of 

index 2, but lHa = lHa' and HG = HG, provided n ~ 4. 0 

4. EXTENSIONS 

" The bounds l.(H) ).. l.(HG) and detH ::; detHG (H pd) involve HG whose elements are 

linear in the elements of H (cf (6)-(9». Many strengthenings of Hadamard's inequality are 

available in terms of matrices whose elements are nonlinear functions of those of H, e.g. [6]. 

As one example, consider the kth multiplicative compound matrix Hek ) ([8], p. 502). This is the 

matrix of dimension (Z) x (Z) whose elements consist of all k x k minors of H (1::; k ::; n , 
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H(I) == H, H(~) = detH). By applying (1) to H(k) one obtains 

(61) IT (H pd) 

where H (i 1, ... ,ik ) denotes the principal minor formed from the rows and columns of H with 

indices i l' ... ,ik . Since 

(61) yields the bound 

(n-I) 
detH(k) = (detH) k-I , 

CH pd). 

By applying this inequality with H replaced by all k x k principal submatrices of H and n, k 

replaced by k, k-1 we obtain 

C < (C )(n-k+I)/(k-l) 
k - k-l , 

so we obtain a sequence of successively sharper bounds for detH known as Szasz's inequalities: 

n 

detH = Bn ~ Bn-I ~ .,. ~ B 2 ~ B 1 - IT hjj 
j=I 

(H pd). 

It should be remarked that we have spoken somewhat loosely by referring to G as a "finite 

subgroup" of the unitary group Un' Actually, G should be thought of as a matrix representation 

of a finite group; different representations of the same group may have different representation 

spaces and will in general provide different bounds for the eigenvalues and determinants of 

matrices in those spaces. Thus, Example 2 of Section 3 deals with the usual representation of 



- 27-

the symmetric group Sn in tenns of n x n matrices. There are many other representations of Sn' 

(cf. [5]), however - for example, representations in tenns of <Z) x (Z) matrices -...an.d these 

representations will yield new bounds for the eigenvalues and determinants of Hermitian 

matrices of these dimensions. 

By sacrificing symmetry, (6)-(9) may be generalized as follows. For H E fin and P a 

probability measure on Un' consider 

(62) f gHg*dP(g) == Hp. 
U" 

Clearly , Hp E fin and Hp is pd whenever H is pd. The argument that led to (7) now shows that 

(63) ')..(H) ). ')..(Hp) ;12 

in particular, 

detH ~ detHp (H pd). 

If P =VG (see (60)) where G is a finite or compact subgroup of Un' then Hp =HG and (63) 

reduces to (7). Here Hp E 1Ha, a strong symmetry property. If support (P)r;;;,G but P ,*vG, 

then Hp still lies in the convex hull of the G -orbit {gHg * I g E G} but is not necessarily its 

barycenter, hence Hp need not belong to ilia. In this case l.(Hp) may not be easy to determine 

and/or may not provide interesting bounds for ')..(H). 

12 In fact, the converse is also true: for HI' H 2 E lH", l.(H 1) > l.(H z} if and only if there exists 

a probability measure P on U" such thatH 2 = (H I)P - cf. Ando [3], Theorem 7.1, or Karlin and 
Rinott [7], Theorem 8.1. 
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Similarly, the relations (6')-(9') may be generalized. Suppose that P' is also a probability 

measure on Un and let P * P' denote the convolution of P and P'. (That is, P * P' is the 
. -' ' ... ' . 

probability distribution of the random element gg' E Un' where g - P , g' - P', with g and g' 

independent) It is readily verified that 

(64) (HP')p = Hp * p' , 

hence (63) yields 

(65) A(Hp ') >- A(Hp * p') ; 

in particular, 

det Hp' :S: det Hp * p' (H pd). 

If P =vc and support (P') c G with G as above, then P * P' = P and Hp = Hc, so (64) and 

(65) become 

(66) 

(67) 

If G' cG are two finite or compact subgroups of Un and P =vc' P' = vc', then also Hp' = Hc' 

and (66) and (67) reduce to (6') and (7'), respectively. 

Finally, we discuss the possibility of extending (6) (or (60» and (7)-(9) to matrix groups G 

that are not necessarily contained in Un. If G is a closed subgroup of GL(n) (the group of all 

nonsingular n x n complex matrices), it is well-known that a Haar C= G -invariant) probability 

measure Vc exists on G if and only if G is compact. A related fact is that IHd :;z!: 0 if and only 
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if G is compact: if G is compact, then I g g * d VG (g ) E llid, while if HOE llid, then 

G =B~lGoB, where B E GL (n) satisfies H 01 =B * B and Go aBGB-1 is a closed subgroup 

of Un' hence Go and therefore G are compact. For these reasons, in order that HG may be 

defined as in (60), it must be assumed that G is finite or compact. 

In this case, for any H E llin it is immediate that 

H E TU_ = B-1u .. L B-1* . G ~~ ~~o ' 

in fact, 

H - B-1(BHB *) B-1* G - Go' 

Since Go C Un' it follows from (7) or (63) duit 

(68) 

but this does not provide a majorization bound for l.(H) if B e Un (i.e., if In e llid). However, 

we are able to deduce from (68) that 

* * * detBHB S; det (BHB )Go = detBHGB 

for H pd, whence 

(69) I 

det H S; detHG = 
* det(BHB )G o 

/detB /2 

(H pd). 

Thus, every subgroup Go C Un and B E GL (n) determines a Hadamard-type upper bound for 

detH. 
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We conclude by presenting several examples of (69) with Go = {D a.ll ~a.~2n} (see (2» 

and various choices of B == (bij)i,j = 1, ... ,n0 If bij = 1 for i ~j and bij=O ... othe.rw.ise, (69) 

becomes 

(70) n [le le ] 
detH ~ [£ iE j~ hij 

(H pd). 

If bii = 1 for 1 ~i ~n, bi+1,i = ei for 1 ~i ~n-l, and bij = 0 otherwise, where each ei = ± 1, 

(69) becomes 

n-1 
detH ~ h n IT [hii +hi+1,i+1 + 2eiRe (hi ,i+1)] 

i=l 

By taking the minimum over all choices of el, ... , en -1 we obtain 

(71) n-1 
detH ~ h n IT [hii +hi+1,i+1-2IRe(hi,i+1)1] 

i=l 

(H pd). 

(H pd). 

__ This bound for detH will be sharper than the classical Hadamard bound IT ha if (but not only 

if) 1 Re (hi i+1) 1 ~ 1f2 hii for 1 ~ i ~ n -1. A further strengthening of (71) may be obtained by , . 

minimizing the right-hand side over all permutations 7t == (7t(1), ... , 7t(n» of (1, ... , n): 

(72) - n-1 
det H ~ min h 1t(l)1t(l) IT [h 1t(i)1t(i) + h 1t(i+1)1t(i+1) - 21 Re (h 1t(i)1t(i+1) I] 

1t i=l 

(H pd). 
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