Aksel Bertelsen

On the Problem of Testing Reality of a Complex Multivariate Normal Distribution, II.

Aksel Bertelsen

ON THE PROBLEM OF TESTING REALITY
OF A COMPLEX MULTIVARIATE NORMAL DISTRIBUTION , II .

Preprint 1987 No. 8

INSTITUTE OF MATHEMATICAL STATISTICS UNIVERSITY OF COPENHAGEN

Summary and introduction.

In Bertelsen (1987) zonal polynomials were used to obtain a series expansion for the density of the non-central distibution of the maximal invariant corresponding to testing that a $2 \mathrm{~m} \times 2 \mathrm{~m}$ covariance matrix with complex structure has real structure. However an explicit expression for the coefficients in the series expansion was only given for m less than five. In this paper we find an explicit expression for these coefficients.
$\begin{array}{lll}\text { AMS } 1980 \text { subject classifications. Primary } & 62 \mathrm{H} 10 \\ & \text { secondary } & 62 \mathrm{H} \mathrm{l}\end{array}$

Key words and phrases. Complex multivariate normal distributions, testing for reality, zonal polynomials, non-central-distributions.

1. We first list the results and notation from Bertelsen (1987) that we need here. Let $A(m, \mathbb{R})$ be the set of $m \times m$ skew-symmetric matrices, and let $P_{n}(k)$ be the set of partitions of k in at most n parts, where n. $[\mathrm{m} / 2]$. To each $\overline{\mathrm{k}} \in \mathrm{P}_{\mathrm{n}}(\mathrm{k})$ we defined a polynomial $\mathrm{C}_{2 \overline{\mathrm{k}}}$ in the different elements of $B \in A(m, \mathbb{R})$. These polynomials were shown to have the following properties (1) - (4).

Let $O(m)$ be the group of orthogonal $m \times m$ matrices, and let α be the Haar-measure with unit mass on $O(m)$.Then

$$
\begin{equation*}
\int_{\mathrm{O}(\mathrm{~m})} \operatorname{tr}\left(\mathrm{B}_{1} \mathrm{HB}_{2} \mathrm{H}^{\prime}\right)^{2 \mathrm{k}+1} \mathrm{~d} \alpha(\mathrm{H})=0 \tag{1}
\end{equation*}
$$

where $B_{1}, B_{2} \in A(m, \mathbb{R})$.

Let $T_{+}(m)$ be the group of upper-triangular $m \times m$ matrices with positive diagonal elements, and assume that T is distributed on $T_{+}(m)$ such that $T^{\prime} T$ has a Wishart (I,m) distribution. It then follows from Bertelsen (1987) that

$$
\begin{equation*}
\mathrm{E}_{\mathrm{T}} \mathrm{C}_{2} \overline{\mathrm{k}}^{\left(\mathrm{TBT}^{\prime}\right)}=\mathrm{d}(\overline{\mathrm{k}}) \cdot \mathrm{C}_{2 \overline{\mathrm{k}}}(\mathrm{~B}) \tag{2}
\end{equation*}
$$

where $\mathrm{d}(\overline{\mathrm{k}})=(\mathrm{m} / 2)_{\overline{\mathrm{k}} 2}$, and $\overline{\mathrm{k}} 2=\left(\mathrm{k}_{1}, \mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}}, \mathrm{k}_{\mathrm{n}}\right)$ when $\overline{\mathrm{k}}=$ $\left(k_{1}, \ldots, k_{n}\right)$.

The symbol (a) \bar{k} is defined as $\prod_{i=1}^{n}(a-(i-1) / 2)_{k_{i}}$ where $(x)_{k_{i}}=x(x+1) \cdots\left(x+k_{i}-1\right)$.

Further we have that
(3)

$$
\mathrm{C}_{2 \overline{\mathrm{k}}}\left(\mathrm{HBH}{ }^{\prime}\right)=\mathrm{C}_{2 \overline{\mathrm{k}}^{(B)} \quad \text { for all } \mathrm{H} \in \mathrm{O}(\mathrm{~m}) ~ . ~}^{\text {for }}
$$

Finally it was shown that $C_{2 \bar{k}}$ could be expressed by the Schur-functions, $S_{\bar{k}}$, (the complex zonal polynomials) by

$$
\begin{equation*}
\mathrm{C}_{2 \overline{\mathrm{k}}}(\Lambda)=\mathrm{S}_{\overline{\mathrm{k}}}\left(\lambda_{1}^{2}, \ldots, \lambda_{\mathrm{n}}^{2}\right) \tag{4}
\end{equation*}
$$

where Λ has the form

$$
\Lambda=\operatorname{diag}\left[\left[\begin{array}{cc}
0 & \lambda_{1} \tag{5}\\
-\lambda_{1} & 0
\end{array}\right], \cdots,\left[\begin{array}{cc}
0 & \lambda_{n} \\
-\lambda_{n} & 0
\end{array}\right]\right] \text { if } m=2 n
$$

$$
\Lambda=\operatorname{diag}\left[\left[\begin{array}{cc}
0 & \lambda_{1} \\
-\lambda_{1} & 0
\end{array}\right], \cdots,\left[\begin{array}{cc}
0 & \lambda_{n} \\
-\lambda_{n} & 0
\end{array}\right], 0\right] \text { if } m=2 n+1
$$

The problem now is to find an explicit expression for the coefficients $c(\bar{k})$ given by (1).
$\underline{\underline{2}}$ Consider $\mathrm{a} \quad \mathrm{m} \times \mathrm{m}$ matrix $\mathrm{X}=\left(\mathrm{x}_{\mathrm{i}, \mathrm{j}}\right)$ of independent standard normal variables $x_{i, j}$, and define the generating function g by

$$
\begin{equation*}
\mathrm{g}(\mathrm{z}, \Gamma, \Lambda)=\mathrm{E}_{\mathrm{X}} \exp \left(\mathrm{z} \cdot \operatorname{tr}\left(\Gamma \mathrm{X} \Lambda \mathrm{X}^{\prime}\right)\right) \tag{6}
\end{equation*}
$$

for z sufficiently small, and Γ, Λ has the form (5).

Let

$$
\operatorname{det}_{i j} X=\operatorname{det}\left[\begin{array}{ll}
x_{2 i-1,2 j-1} & x_{2 i-1,2 j} \\
x_{2 i, 2 j-1} & x_{2 i, 2 j}
\end{array}\right]
$$

for $i=1, \ldots, n ; j=1, \ldots, n$.

It is then seen that $\operatorname{tr}\left(\Gamma X \Lambda X^{\prime}\right)=2 \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \gamma_{j} \operatorname{det}_{i j} X$
and using this we get that

$$
\begin{equation*}
g(z, \Gamma, \Lambda)=\prod_{i=1}^{n} \prod_{j=1}^{n}\left(1-4 z^{2} \lambda_{i}^{2} \gamma_{j}^{2}\right)^{-1} \tag{7}
\end{equation*}
$$

From Takemura (1984, page 93) we find that $\mathrm{g}(z, \Gamma, \Lambda)$ is a sum of terms of the form

$$
\begin{equation*}
2^{2 \mathrm{k}_{\mathrm{z}} 2 \mathrm{k}} \sum_{\overline{\mathrm{k}} \in \mathrm{P}_{\mathrm{n}}(\mathrm{k})} \mathrm{S}_{\overline{\mathrm{k}}}\left(\lambda_{1}^{2}, \ldots, \lambda_{\mathrm{n}}^{2}\right) \cdot \mathrm{S}_{\overline{\mathrm{k}}}\left(\gamma_{1}^{2}, \ldots, r_{\mathrm{n}}^{2}\right) \tag{8}
\end{equation*}
$$

We get another expression for g by expanding (6) in a sum of terms of the form

$$
\begin{equation*}
(k!)^{-1} z^{k} E_{X}\left(\operatorname{tr}\left(\left(\Gamma X \Lambda X^{\prime}\right)^{k}\right)\right) \tag{9}
\end{equation*}
$$

Now $E_{X}=E_{T} E_{H}$, where H has the uniform distribution on $O(m)$, and T is distributed on $T_{+}(m)$ such that T ' T has the Wishart (I, m) distribution.Using (1) we get that
while

$$
\begin{gathered}
\mathrm{E}_{\mathrm{H}}\left(\operatorname{tr}\left(\mathrm{~B}_{1} \mathrm{HB}_{2} \mathrm{H}^{\prime}\right)^{2 \mathrm{k}}\right)=\sum_{\overline{\mathrm{k}} \in \mathrm{P}_{\mathrm{n}}(\mathrm{k})} \mathrm{c}(\overline{\mathrm{k}}) \cdot \mathrm{C}_{2 \overline{\mathrm{k}}}\left(\mathrm{~B}_{1}\right) \mathrm{C}_{2 \overline{\mathrm{k}}}\left(\mathrm{~B}_{2}\right) \\
\mathrm{E}_{\mathrm{H}}\left(\operatorname{tr}\left(\mathrm{~B}_{1} \mathrm{HB}_{2} \mathrm{H}^{\prime}\right)^{2 \mathrm{k}+1}\right)=0
\end{gathered}
$$

Then from (2) and (4) we get that $\mathrm{g}(\mathrm{z}, \Gamma, \Lambda)$ is a sum of terms of the form

$$
\begin{equation*}
(2 \mathrm{k})!^{-1} 2^{2 \mathrm{k}} z^{2 \mathrm{k}} \sum_{\overline{\mathrm{k}} \in \mathrm{P}_{\mathrm{n}}(\mathrm{k})} \mathrm{c}(\overline{\mathrm{k}})(\mathrm{m} / 2)_{\overline{\mathrm{k}} 2} \cdot \mathrm{~S}_{\overline{\mathrm{k}}}\left(\lambda_{1}^{2}, \ldots, \lambda_{\mathrm{n}}^{2}\right) \cdot \mathrm{S}_{\overline{\mathrm{k}}}\left(\gamma_{1}^{2}, \ldots, r_{\mathrm{n}}^{2}\right) \tag{10}
\end{equation*}
$$

Comparing (8) with (10) we finally find that

$$
\begin{equation*}
\mathrm{c}(\overline{\mathrm{k}})=(2 \mathrm{k})!\cdot(\mathrm{m} / 2)_{\mathrm{k} 2}^{-1} \tag{11}
\end{equation*}
$$

REFERENCES

1. Bertelsen, A. (1987) "On the problem of testing reality of a complex multivariate normal distribution." Preprint nr.3,1987, University of Copenhagen.
2. Takemura, A. (1984) "Zonal Polynomials",Lecture notes - Monograph Series.

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE OF MATHEMATICAL STATISTICS，UNIVERSITETSPARKEN 5， 2100 COPENHAGEN $\emptyset, ~ D E N M A R K, ~$ TELEPHONE＋ 451353133.

No． 1 Jespersen，N．C．B．：On the Structure of Simple Transformation Models．
No． 2 Dalgaard，Peter and Johansen，S申ren：The Asymptotic Properties of the Cornish－Bowden－Eisenthal Median Estimator．

No． 3 Jespersen，N．C．B．：Dichotomizing a Continuous Covariate in the Cox Regression Mode1．

No． 4 Asmussen，S申ren：On Ruin Problems and Queues of Markov－Modulated M／G／1 Type．

No． 5 Asmussen，S申ren：The Heavy Traffic Limit of a Class of Markovian Queueing Models．

No． 6 Jacobsen，Martin：Right Censoring and the Kaplan－Meier and Nelson－Aalen Estimators．

GOPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, 2100 COPENHAGEN \varnothing, DENMARK, TELEPHONE + 45 1 353133.

No. 1 Jensen, S申ren Tolver and Johansen, Sфren: Estimation of Proportional Covariances.

No. 2 Rootzén, Holger: Extremes, Loads, and Strengths.
No. 3 Bertelsen, Aksel: On the Problem of Testing Reality of a Complex Multivariate Normal Distribution.

No. 4 Gill, Richard D. and Johansen, S申ren: Product-Integrals and Counting Processes.

No. 5 Leadbetter, M.R. and Rootzén, Holger: Extremal Theory for Stochastic Processes.

No. 6 Tjur, Tue: Block Designs and Electrical Networks.
No. 7 Johansen, Sфren: Statistical Analysis of Cointegration Vectors.
No. 8 Bertelsen, Aksel: On the Problem of Testing Reality of a Complex Multivariate Normal Distribution, II.

