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ABSTRACT. 

We consider a non stationary vector autoregressive process which is 

integrated of order 1, and generated by i.i.d Gaussian errors. We then 

derive the maximum likelihood estimator of the space of cointegration 

vectors and the likelihood ratio test of the hypothesis that it has a 

given number of dimensions. Further we test linear hypotheses about the 

cointegration vectors. 

The asymptotic distribution of these test statistics are found and 

one is described by a natural multivariate version of the usual test for 

2 a unit root in an autoregressive process, and the other by a X test. 
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1. INTRODUCTION 

The idea of using cointegration vectors in the study of non statio-

nary time series comes from the work of Granger (1981), Granger & Weiss 

(1983), Granger & Engle (1985), and Engle & Granger (1987). The connec-

tion with error correcting models has been investigated by a number of 

authors, see Davidson (1986), Stock (1985) and Johansen (1985) among 

others. 

Granger & Engle (1987) suggest estimating the cointegration rela-

tions using regression, and these estimators have been investigated by 

Stock (1985), Phillips (1985) and Phillips & Durlauf (1985), Phillips & 

a b 
Park (1986 ), (1986 ) and (1987), Phillips & Ouliaris (1986), Stock & 

Watson (1987), and Sims,Stock & Watson (1986). The purpose of this paper 

is to derive maximum likelihood estimators of the cointegration vectors 

for an autoregressive process with independent Gaussian errors, and to 

derive a likelihood ratio test for the hypothesis that there is a given 

number of these. 

This programme will not only give good estimates and test statistics 

in the Gaussian case, but will also yield estimators and tests, the 

properties of which can be investigated under various assumptions about 

the underlying data generating process. The reason for expecting the 

estimators to behave better than the regression estimates is that they 

take into account the error structure of the under lying process, which 

the regression estimates do not. 
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The processes we shall consider are defined from a sequence {tt} of 

i.i.d. p-dimensional Gaussian random variables with mean zero and vari-

ance matrix A. We shall define the process Xt by 

(1.1) Xt = IT1Xt _ l + ... + ITkXt _k + tt' t = 1,2, ... 

for given values of X-k+1 ,··· ,XO. We shall work in the condi tional 

distribution given the starting values, since we shall allow the process 

Xt to be non stationary. We define the matrix polynomium 

k 
A(z) = I - IT1z- ... -ITkz 

and we shall be concerned with the situation where the determinant /A(z)/ 

has roots at z = 1. The general structure of such processes and the 

relation to error correction models was studied in the above references. 

We shall in this paper mainly consider a very simple case where Xt 

is integrated of order 1, such that AXt is stationary, and where the 

impact matrix 

has rank r < p. If we express this as 

(1.2) IT = a~' 

for suitable pxr matrices a and~, then we shall assume that although AXt 

is stationary and Xt is non stationary as a vector process, still the 

linear combinations given by ~'Xt are stationary. In the terminology of 

Granger this means that the vector process Xt is co integrated with coin­

tegration vectors~. The space spanned by ~ is the space spanned by the 

rows of the matrix IT, which we shall call the cointegration space. 

In this paper we shall derive the likelihood ratio test for the 

hypothesis given by (1.2), and derive the maximum likelihood estimator of 

the cointegration space. Then we shall find the likelihood ratio test of 

! -
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the hyptothesis that the cointegration space is restricted to lie in a 

certain sub space , representing the linear restrictions that one may want 

to impose on the cointegration vectors. 

The results we obtain can briefly be described as follows: the 

estimation of {3 is performed by first regressing AXt and Xt - k on the 

lagged differences. From the residuals of these regressions we calculate 

a 2px2p matrix of product moments. We can now show that the estimate of 

{3 is the empirical canonical variates of Xt - k with respect to AXt correc­

ted for the lagged differences. 

The likelihood ratio test is now a function of certain eigenvalues 

of the product moment matrix corresponding to the smallest squared cano-

nical correlations. The test of the linear restrictions involve yet 

another set of eigenvalues of a reduced product moment matrix. The 

asymptotic distributions of the first test statistic involve an integral 

of a multivariate Brownian motion with respect to itself, and turns out 

to depend on just one parameter, namely the dimension of the process, and 

can hence be tabulated by simulationor approximated by a X2 distribution. 

The second test statistic is asymptotically distributed as X2 with the 

proper degrees of freedom. 
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2. MAXIMUM LIKELIHOOD ESTIMATION OF COINTEGRATION VECTORS AND LIKELIHOOD 

RATIO TESTS OF HYPOTHESES ABOUT COINTEGRATION VECTORS. 

We want to estimate the space spanned by ~ from observations Xt , t = 

-k+1, ... ,T. For any r S p we formulate the model as the hypothesis 

(2.1) H 
o 

rank (IT) S r or IT = a ~' 

where a and ~ are pxr matrices. 

Note that there are no other constraints on IT1 , ... ,ITk than (2.1). 

Hence a wide class containing stationary as well as non stationary pro-

cesses is considered. 

The parameters a and ~ can not be estimated since they form an 

overparametrisation of the model, but one can estimate the space spanned 

by ~ which is the range space of IT. If we choose a suitable base in this 

space then we can also estimate the individual cointegration vectors. 

We can now formulate the main result about the estimation of sp(~) 

and the test of the hypothesis (2.1). 

THEOREM 1. The maximum likelihood estimator of the space spanned by ~ is 

the space spanned by the r canonical variates corresponding to the r 

largest squared canonical correlations between the residuals of Xt - k and 

AXt corrected for the effect of the lagged differences of the X process. 

The likelihood ratio test statistic for the hypothesis that there 

are at most r cointegration vectors is 

p 1\ 
-2lnQ = - T 2 In(1-A.) 

i=r+1 1 

where A 1, ... ,A are the p-r smallest squared canonical correlations. r+ p 
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Next we shall investigate the test of linear hypotheses on~. In 

the case we have r = 1, i.e. only one cointegration vector, it seems 

natural to test that certain variables do not enter into the cointegrati-

on vector, or that certain linear constraints are satisfied, for instance 

that the variables X1t and X2t only enter through their difference X1t -

X2t . If r L 2 then a hypothesis of interest could be that the variables 

X1t and X2t enter through their difference only in all the cointegration 

vectors, since if two different linear combinations would occur then any 

coefficients to X1t and X2t would be possible. Thus it seems that some 

natural hypotheses on ~ can be formulated as 

(2.2) 

where H(pxs) is a known matrix of full rank s, and ~(sxr) is a matrix of 

unknown parameters. We assume that p L s L r. If s = p then no restric-

tions are placed upon the choice of cointegration vectors, and if s = r 

then the cointegration space is fully specified. 

THEOREM 2. The maximum likelihood estimator of the cointegration space 

under the assumption that it is restricted to sp(H) is given as the space 

spanned by the canonical variates corresponding to the r largest squared 

canonical correlations between the residuals of H'Xt _k and AXt corrected 

for the lagged differences of Xt . 

The likelihood ratio test now becomes 

r A 
T ~ In{(l-A~)/(l-A.)} 

i=l 1 1 
-21nQ = 

* * where Al' ... ,Ar are the r largest squared canonical correlations. 
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Proof. We shall here give the proofs of both theorems. Before studying 

the likelihood function it is convenient to reparametrise the model (1.1) 

such that the parameter of interest IT enters explicitly. We write 

(2.3) 

where 

T. = -I + IT1 + ... + IT. , i = 1, ... ,k. 
1 1 

Note that (2.1) gives a non linear constraint on the coefficients 

IT1 ,··· ,ITk , but that the parameters (T1, ... ,Tk_1,a,f),A) have no con-

straints imposed. In this way the impact matrix IT = -Tk is found as the 

coefficient of the lagged levels in a non linear least squares regression 

ofAXt on lagged differences and lagged levels. Under the constraint 

(2.1) we shall maximise the likelihood function with respect to the 

parameters 

The maximisation over the parameters T1 , ... ,Tk _1 is easy since it just 

leads to an ordinary least squares regression ofAXt + a f)'X t _k on the 

lagged differences. Let us do this by first regressing AXt on the lagged 

differences giving the residuals ROt and then regressing Xt - k on the 

lagged differences giving the residuals Rkt . After having performed 

these regressions the partially maximised likelihood function or likeli-

hood profile becomes proportional to 

T 
L(a,IJ,A) = IAI-T/ 2exp{-1/2 ~ (ROt + alJ'Rkt)'A-1(ROt + alJ'~t)}· 

t=l 

For fixed f) we can maximise over a and A by a usual regression of ROt on 

- IJ'Rkt which gives the well known result 

I 
I -
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A 
(2.4) a(f3) = 
and 

(2.5) 
A 
A(f3) = SOO - SOkf3(f3'Skkf3)-1f3'SkO' 

where we have defined product moment matrices of the residuals as 

-1 T 
S. . = T L: R. t RJ. t' i ,j = 0, k. 

1J t=1 1 
(2.6) 

The likelihood profile now becomes proportional to 

A 
IA(f3) I-T/ 2 

and it remains to solve the minimisation problem 

where the minimisation is over all pxr matrices f3. The well known matrix 

relation, see Rao (1973), 

ISool 1f3'Skkf3 - f3'SkOSOO-1S0kf31 = 

1f3'Skkf31 Isoo -SOkf3 (f3'Skkf3 )-1f3 'SkO I 

shows that we shall minimise 

with respect to the matrix f3. 

A 
We now let D denote the diagonal matrix of ordered eigenvalues A1 > 

A -1 
... > Ap of SkOSOO SOk with respect to Skk' i. e. the solutions to the 

equation 

(2.7) 

and E the matrix of the corresponding eigenvectors, then 

where E is normalised such that 
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Now choose ~ = E ~ where ~ is pxr, then we shall minimise 

This can be accomplished by choosing ~ to be the first r unit vectors or 

A -1 
by choosing ~ to be the first r eigenvectors of SkOSOO SOk with respect 

to Skk' that is the first r columns of E. These are called the canonical 

variates and the eigenvalues are the squared canonical correlations of Rk 

with respect to RO. For the details of these calculations the reader is 

referred to Anderson (1984) chapter 12. Note that all possible choices 

A A 
of the optimal ~ can be found from ~ by ~ = ~p for p an rxr matrix of 

full rank. The estimators derived here are related to the NLS estimators 

A A 
given by Stock (1985). Note that ~'Skk~ = I such that the estimate of 

the other parameters are given by 

(2.8) 
A A A, A_I 
a = -SOk~(~ Skk~) 

which clearly depends on the choice of the optimising ~, 

A AA 
(2.9) II = -SOk~~' 

and 

A AA AA 
(2.10) A = SOO - SOk~~'SkO = SOO -aa' 

and the maximised likelihood as given by 

r A 
(2.11) 

-2/T 
L 

max = Isoo 1 II(1-A.) 
i=l 1 

A 
do not depend on the choice of ~. 

whereas 

i -
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With this notation it is easy to express the estimates of IT and A 

without the constraint (2.1). These follow from (2.4) and (2.5) for ~ = 

I and give 

and 

A 
A = 

A 
IT = 

as well as the expression for the determinant 

(2.12) 
A 

IAI 
p A 

= /sool IT(1-A.). 
i=l 1 

If we now want a test that there are at most r cointegrating vectors 

then the likelihood ratio test statistic is the ratio of (2.11) and 

(2.12) and can be expressed as 

p A 
(2.13) -21nQ = - T ~ In(l-A.) 

i=r+1 1 

A A 
where Ar+l > ... > Ap are the p-r smallest eigenvalues. This completes the 

proof of Theorem 1. 

Notice how this analysis allows one to calculate all p eigenvalues 

and eigenvectors at once, and then make inference about the number of 

important cointegration relations, by testing how many of the A'S that 

are zero. 

Next consider Theorem 2. 
A 

It is apparent from the derivation of ~ 

that if ~ = H~ is fixed, then regression of ROt on - ~'H'Rkt is still a 

simple linear regression and the analysis is as before with Rkt replaced 

by H'Rkt . Thus the matrix ~ can be estimated as the eigenvectors corre­

sponding to the r largest eigenvalues of H'SkO'SO;lS0kH with respect to 

H'SkkH, i.e. the solution to 



10 

(2.14) 

* Let the s eigenvalues be denoted by A .. i=l .... ,s. Then the like-
1 

lihood ratio test of HI in HO can be found from two expressions like 

(2.11) and is given by 

r * A 
-21nQ =T 2 In{(l-A.)/(l-A.)}. 

i=l 1 1 
(2.15) 

which completes the proof of Theorem 2. 

In the next section we shall find the asymptotic distribution of the 

test statistics (2.13) and (2.15) and show that the cointegration space. 

the impact matrix IT and the variance matrix A are estimated consistently. 

3. ASYMPTOTIC PROPERTIES OF THE ESTIMATORS AND THE TEST STATISTICS. 

In order to derive properties of the estimators we need to impose 

more precise conditions on the parameters of the model. such that they 

correspond to the situation we have in mind. namely of a process that is 

integrated of order 1. but still has r cointegration vectors ~. 

First of all we want all roots of IA(z) I = 0 to satisfy Izl > 1 or 

possibly z = 1. This implies that the non stationarity of the process 

can be removed by differencing. Next we shall assume that Xt is integra­

ted of order 1. i.e. that AXt is stationary and that the hypothesis (2.1) 

is satisfied by some non singular a and~. Correspondingly we can ex-

press AXt in terms of the c's by its moving average representation 

()() 
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for some exponentially decreasing coefficients C.. Under suitable condi­
J 

tions on these coefficients it is known that this equation determines an 

error correction model of the form (2.3), where fkXt _k = -llXt - k repre-

sents the error correction term containing the stationary components of 
()() 

Moreover the null space for C = L C. given by {flf'C 
j=O J 

= O} is exactly the range space of f k , i.e. the space spanned by the 

columns in ~ and vice versa. We thus have the following representations 

IT = a~' and C = ~~a' 

where ~ is (p-r)x(p-r),~ and a are px(p-r) and all three are non singu-

lar, and ~'~ = a'a = O. We shall later choose a and ~ in a convenient 

way, see Johansen (1985) or the references to Granger (1981) and Granger 

& Engle (1985), and Engle & Granger (1987) for the details of these 

results. 

Let us now formulate 

THEOREM 3 Under the hypothesis that there are r cointegrating vectors 

the estimate of the cointegration space as well as IT and A are consi-

stent, and the likelihood ratio test statistic of this hypothesis is 

asymptotically distributed as 

1 1 1 
tr{JBdB'[JBB'du]-lSdBB '} 
000 

where B is a p-r dimensional Brownian motion with covariance matrix I. 

In order to understand the structure of this limit distribution one 

should notice that if B is a Brownian motion wi th I as the covariance 
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t 
matrix, then the stochastic integral fBdB' is a matrix valued martingale, 

o 
with quadratic variation process 

t 

t 
fVar(BdB') = 
o 

t 
J BB'du ® I 
o 

where the integral fBB'du is an ordinary integral of the continuous 
o 

matrix valued process BB'. With this notation the limit distribution in 

Theorem 3 can be considered as a multivariate version of the square of a 

martingale fBdB' divided by its variance process fEB'du. Notice that for 

r = p-1 i.e. for testing p-1 cointegration relations one obtains the 

limit distribution with a 1 dimensional Brownian motion, i.e. 

1 1 1 
(fBdB)2/fE2du = ((B(1)2 - 1)/2)2/fB2du 
o 0 0 

which is the square of the usual "unit root" distribution see Dickey & 

Fuller (1976). 

Table 1 

A surprisingly accurate description of the results in Table 1 is 

2 
obtained by approximating the distributions by cx (f) for suitable values 

of c and f. By equating the mean of the distributions based on 10000 

2 2 
observations to those of a cx with f = 2m degrees of freedom we obtain 

values of c, and it turns out that we can use the empirical relation 

c = .85 - .58/f. 

Notice that the hypothesis of r cointegrating relations reduces the 

2 
number of parameters in the IT matrix from p to rp + r(p-r), thus one 

could expect (p - r)2 degrees of freedom if the usual asymptotics would 

hold. In the case of non stationary processes it is known that this does 

not hold but a very good approximation is given by the above choice of 
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2 
2(p - r) degrees of freedom. 

THEOREM 4 The likelihood ratio test of the hypothesis 

of restricting the r dimensional cointegration space to an s dimensional 

subspace of RP is asymptotically distributed as X2 with rep - s) degrees 

of freedom. 

We shall now give the proof of these Theorems, through a series of 

intermediate results. We shall first give some expressions for variances 

and their limits, then show how the algorithm for deriving the maximum 

likelihood estimator can be followed by a probabilistic analysis ending 

up with the asymptotic properties of the estimator and the test statis-

tics. 

t 

We can represent Xt as Xt ='~1AXj' where Xo is a constant which we 
J= 

shall take to be zero to simplify the notation. We shall describe the 

stationary process AXt by its covariance function 

and we define the matrices 

and 

i,j = 0, ... ,k-1 

ro 

~i = ~ ~(j) i = 0, ... ,k-1 
j=k-i 

ro 

= - ~ Ijl~(j)· 
j=-ro 
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Finally define 

00 

'" = 2: "'(j). 
j=-OO 

Note the following relations 

which show that 

and 

whereas the relation 

00 , 
"'(i) = 2: C. ACJ.+ 1., . 0 J J= 

00 00 

'" = 2: C.A 2: C: = CAC', 
. 0 J . 0 J J= J= 

t-k 
2:(t -k -Ijl)~(j), 

j=-t+k 

t-i 
COV(Xt_k,AXt _i ) = 2: ~(j) 

j=k-i 

00 

Var(Xy/T1/2) ~ 2: ~(i) = ~, 
i=-oo 

Cov(~_k,A~_i) 

00 

~ 2: ~(j) 
j=k-i 

-u. - . Ki 

T-k T-k 
Var(~'~_k) = (T-k) 2: ~'~(j)~ - 2: Ijl ~'~(j)~. 

j=-T+k j=-T+k 

shows that 

since ~'C = 0 implies that ~'''' = 0, such that the first term vanishes in 

the limit. Note that the non stationary part of Xt makes the variance 

matrix tend to infinity, except for the directions given by the vectors 

in~, since ~'Xt is stationary. 
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The calculations involved in the maximum likelihood estimation all 

center around the product moment matrices 

M .. 
IJ 

= 0, ... ,k-l, 

~i 0, ... ,k-l, 

and 

We shall first give the asymptotic behaviour of these matrices, then 

find the asymptotic properties of S .. and finally apply these results to 
IJ 

the estimators and the test statistic. The methods are inspired by 

Phillips (1985) even though I shall stick to the Gaussian case, which 

make the results somewhat simpler. 

In order to formulate the results we need a Brownian motion W in p 

dimensions with covariance function tA. 

LEMMA 1. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

As T -+ (X) we have 

-1/~L w 
T -X[Tt] -+ CW{t) 

M •• 
IJ 

-+ /-L. ., i, j = 0, ... , k-1 
IJ 
1 

-+ cS WdW'C'+ ~. i= 0, ... ,k-1 ° . In 

f3'~f3 -+ f3'~f3 

-1 1 
T ~k -+ cS W{u)W' {u)du C' . 

° 
Note that for any f € RP, f'Mkkf is of the order of T unless f is in the 

space spanned by f3, in which case it is convergent. Note also that the 

stochastic integrals enter as limits of the non stationary part of the 
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process Xt , and that they disappear when multiplied by ~, since ~'C = O. 

Proof. We shall use the fact that 

[Tt] w 
T -1/2 2: c. -+ W ( t) as T -+ 00 • 

. 0 J J= 

From the representation 

t t 00 

Xt = 2: AX. = 2: 2: C.c .. = 
j=O J j=O i=O 1 J-1 

00 t 00 -1 00 

( 2: C.)( 2: c ) + 2: C. 2: c - 2: C. 
i=O 1 s=O s i=O 1 s=-i s i=O 1 

We find with t replaced by [Tt] and by dividing 

t 
2: c. 
s=t-i+~ 
by T1/2 that the first 

term on the right hand side converges to CW and that the last two terms 

tend to zero. This proves (3.1). 

The result (3.2) follows by noting that since {Ct} are i.i.d.,then 

{AXt } is ergodic and hence 

-1 T , 
M. . = T 2: AXt . AXt . -+ E (AXt . AXt ' .) = J.l. ., i, j = 0, ... , k-1 . 

1J t=l -1 -J -1 -J 1J 

To prove (3.3) we need the following representation 

-1 T -1 T t-k 

~i =T 2: Xt-kAXt ':' i = T 2: 2: AX .AXt ' . 
t=l . 1 J -1 t=l J= 

T t-k 00 00 
-1 

= T 2: 2: 2: 2: C c. C '. C' . 
t=l j=1 v=o J.l=0 

v J-V t-1-J.l J.l 

Now consider the term for each value of v and J.l without the coefficients 

C and C We then get 
v J.l 

T t-i-J.l-1 
T- l 2: 2: C C '. 

t=l s t-1-J.l 
s=-v 

which converges to 

if t-k-v ~ t-i-J.l (or k+v 

+ T 
T -1 -1 2: C . c'. +T 

t=l t-1-J.l t-1-J.l 

1 
J WdW' + A + O. 
o 

~ i+J.l) 

T i+J.l-1 
2: 2: Ct_sC t-i-J.l 

t=l s=k+v 
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If t-k-v < t-i-M then the first term is the same and the remaining terms 

now become 

which converges to 0 as T ~ ro. Collecting the terms we get that 

The 

ro 1 ro 

Mki ~ L C S WdW' L C' 
v=O v 0 M=O M 

1 

ro ro 

+ L LeA C'. 
v=O M=v+k!:\ M 

<Xl 

first term is just CS WdW'C' and the last term is L W(M+k-i) 
0 M=O 

The relation (3.4) follows since (3'Xt is stationary. 

= ~i· 

Finally we shall show (3.5). From the weak convergence of 

-lPL 
T -X[Tt] to CW it follows by the continuous mapping theorem that 

1 -1/2 
~ T X[Tt] 

T 
T-1/ 2X' dt = T-1 L (X /T1/ 2 ) (X' /T1/2) T-1M 

[Tt] t-k t-k = k,k 

1 
converges to CS W(u)W'(u)duC'. 

o 

t=l 

This completes the proof of Lemma 1. We shall now apply the results 

to find the asymptotic properties of S .. , i,j = O,k, see (2.6). These 
IJ 

can be expressed in terms of the M.: s as follows: 
IJ 

where 

M** = { M .. ,i, j = 1, ... ,k-1} 
IJ 

Mk* = { Mki ' i = 1, ... ,k-1} 

and 

MO* = { MOi ,i = 1, ... ,k-1}, 
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A similar notation is introduced for the M .. 's. It is convenient to have 
IJ 

the notation 

We now get 

LEMMA 2. The following relations hold 

(3.6) 200 = fk2kO + A 

(3.7) 20kf k ' = f k2kkf k ' 

and hence since fk = -a~' 

(3.8) 200 = a(~'2kk~)a' + A. 

Proof. From the defining equation for the process Xt we find the 

equations 

(3.9) 

i = 0,1, ... ,k-l 

(3.10) 

Now let T ~ 00, then we get the equations 

(3.11) 

(3.12) 

(3.13) 

If we solve the equations (3.12) for the matrices f* and insert into 

(3.11) and (3.13) we get (3.6) and (3.7). 
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We shall now find the asymptotic properties of S ... 
IJ 

LEMMA 3 For T ~ 00 it holds, that if 0 is chosen such that o'a = 0, then 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

SOO ~ 2:00 
1 

O'S ~ o'JdWW'C' 
Ok 0 

{3'SkO ~ {3'~0 

-1 1 
T Skk ~ CJW(u)W'(u)duC' 

o 
{3'Skk{3 ~ {3'~{3. 

Proof. All relations follow from Lemma 1 except the second. If we solve 

for f* in the equations (3.9) and insert the solution into (3.10) and 

use the definition of S .. in terms of the M's, then we get 
IJ 

_IT , 
SOk = T 2: ttXt_k + fkSkk -

t=l 
(3.19) 

The last term goes to zero as T ~ 00, since tt and AXt _i are stationary 

and uncorrelated. The second term vanishes when multiplied by 0', since 

o'fk = -o'a{3' = 0, and the first term converges to the integral as sta­

ted. 

We shall now turn to the proof of Theorem 3. 

We let P (A) denote the projection of RP onto the column space 
a 

spanned a with respect to the matrix A-I, i.e. 

P (A) = a(a'A-1a)-la 'A-1 
a 

We then choose 0 (px(p-r)) of full rank to satify 

00' = A-1(I - P (A)). 
a 

Note that o'a = 0, and that o'Ao = I of dimension (p-r)x(p-r). Note also 

I 
L_ 
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that Pa(A) = Pa(200 ) since 200 is given by (3.8). This relation is well 

known from the theory of random coefficient regression, see Rao (1965) or 

Johansen (1984). Similarly we choose 7 (px(p-r)) of full rank to satisfy 

such that 7'~ = O. Note that the matrices (7,~) and (o,a) have full rank 

p. 

We want to express the estimation problem in the coordinates given 

by the p vectors in ~ and 7. This can be done as follows: 

The maximum likelihood estimation involves finding A as solution to 

the equation 

W Skk 7]- [~' SkOSO~ 1S0k~ 
7'8kk7 7'SkOS001S0k~ 

= o. 

We shall first discuss the eigenvalues. The eigenvalues are bounded 

between 0 and 1, and for T ~ 00 we can find which limit points are pos-

sible. Let S 
-1 

= SeA) = ASkk -SkOSOO SOk' where A has been chosen as an 

eigenvalue, so that Isl = 0, then 

(3.20) o = I(~:)s(~ 7) I = 17's71 I~'s~ - ~'S7(7'S7)-17's~1 
7 

= 1~'s~1 17's7 - 7'S~(~'S~)-1~'s71. 

As T ~ 00 the term 7'Skk7 ~ 00, see (3.17). Now take a subsequence T such 

that A = A(T') ~ v > 0, then 17'871 ~ 00 and we get from the first decom-

position in (3.20) that for T' sufficiently large the second factor must 

be zero, i. e. 
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(3.21) 

Using the results (3.14),(3.16) and (3.18) from Lemma 3, we find that in 

the limit v must satisfy the equation 

(3.22) 

If on the other hand A(T') ~ 0, then it is seen that T'A(T') tends to 

some constant v say. The second decomposition in (3.20) shows by using 

(3.14),(3.16) and (3.18) that since the first factor converges to 

1~'~o]o~l]Ok~I, then for T' sufficiently large we have that the second 

factor is zero: 

(3.23) 

Using the results from Lemma 3 again we find that in the limit v must 

satisfy the equation 

(3.24) 

where 

1 
Iv~'Cf W(u)W'(u)du~C' - ~'N~I = 0 

o 

We can now apply Lemma 3 and find that 

-1 -1 , -1 -1, -1 
SOO - SOO SOk~(~ SkOSOOSOk~) ~ SkOSOO 

converges to the same expression with S replaced by]. Now apply (3.6) 

and (3.7) to show that the limit equals 

-1 -1 , 
]00 (I - Pa(]OO)) = A (1 - Pa(A)) = 00 . 

Finally from Lemma 3 we also find the limit of o'SOk and hence that the 

limit v must satisfy the equation 

111 
Iv~'Cf W(u)W'(u)duC'~ - ~'CfWdW'oo'fdWW'C'~1 = O. 

o 0 0 
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The representation 

C = -r<po' 

for some non singular matrix <p now implies since l-r'-rl ~ 0 and 1<p1 ~ 0 

that 

111 
Ivo']W(u)W(u)'duo - o']WdW'oo'JdWW'ol = 0 
000 

Now B = o'W is a Brownian motion with variance o'Ao = I, which shows that 

(3.25) 
111 

IvJB(u)B(u)'du - JBdB'JdBB' I = 0 
000 

We have now seen that the possible limit points of A(T') are the 

eigenvalues of (3.22) or 0, and that if 0 then the limits T'A(T') must 

satisfy the equation (3.25). 

" " Now let T' be chosen such that A1(T'), ... ,Ap(T') all converge and if 

to zero then also T'A(T') converges. The limiting values have to be 

eigenvalues in the above matrices (3.22) and (3.25), and there are a 

total of r+(p-r) = p such eigenvalues. This shows that the limit points 

are uniquely defined, and hence that A.(T) is convergent and if to zero 
1 

then so is TA.(T), and that the r largest eigenvalues converge to those 
1 

determined by (3.22). 

The test statistic 

p " p 
-21nQ = -T 2 In(l-A.) ~ 2 TA.(T) 

i=r+l 1 i=r+l 1 

will converge to the sum of the eigenvalues given by (3.25), which gives 

the second statement of Theorem 2. Next consider the eigenvectors. 
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A A A 
An eigenvector v = (x' .y') satisfies the equations 

A A A. A . -1 A -1 A 
A~'Skk~x + A~ Skk~y = ~ SkOSOO SOk~x + ~'SkOSOO SOk~y 

A A A A A A 
A~'Skk~x + A~'Skk~y = ~'SkOSO~lS0k~x + ~·SkOSO~lS0k~y· 

A 
Let now A equal one of the r largest eigenvalues. We see that since 

-1 
A~'Skk~ ~ 00 we have that y must go to zero like T . 
A A 

Thus the component 

of the eigenvector which does not belong to the cointegration space must 

go to zero like T-1 . In this sense the cointegration space is estimated 

consistently. 

A 
In the limit x must satisfy the equation 

i.e. be an eigenvector of the equation (3.22). Let now x = (xl.··· .xr ) 

A A A 
denote all the eigenvectors in (3.22). then we have seen that ~ = ~x + ~y 

~ ~x. With this result it follows from (2.4) that 

A 
a ~ -2,Ok~X 

whereas (2.8) gives 

A 
IT ~ -2,Ok~xx'~' = -2,Ok~(~·~k~)-l~. = a~' = IT. 

We also find 

This completes the proof of Theorem 3. and we shall therefore turn to the 

proof of Theorem 4. 

The proof of consistency of the eigenvalues and the eigenspace as 

well as IT and A is the same as before. Recall that for Theorem 4 we 
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assume that P = H~. * We let A denote any of the r largest eigenvalues 

A A 
given by (2.13) and A and e denotes the corresponding eigenvalue and 

eigenvector from (2.7). 

A A -1 
From (3.21) we find with SeA) = ASkk - SkOSOO SOk that 

(3.26) 
A A A A 

Ip'S(A)P - P'S(A)~(~'S(A)~)-l~'S(A)pl = 0 

where ~ is chosen as above. 

* Similarly A has to satisfy the equation 

where ~(sx(s-r)) is so chosen that (~,~)(sxs) is of full rank, i.e. such 

that H(~,~) spans the space sp(H). Note that H~ = p, which simplifies 

the expression (3.27). Note also that we can in fact choose ~ such that 

H~ € sp(H)nsp(~), i.e. of the form H~ = ~~. This representation will be 

useful later. We can now write the equations as follows 

(3.28) 

and 

(3.29) 

The first term in the two expressions is 0(1) and the second expression 

is in both cases 0(T-1), since T-l~'Skk~ is convergent. Thus it is to be 
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-1 
expected that the difference in the eigenvalues is of the order T . 

* Thus we put A = A + p/T, and we now want to expand (3.28) around the 

* point A. For this we need the following lemma 

LEMMA 4 Let A be a pxp symmetric matrix with eigenvalues Al > ... > Ap_l 

> A = O. and corresponding eigenvectors e. i = 1, ... ,p. Let B denote a p 1 

(pxp) matrix, then 

p-l 
(3.30) lA + tBI =t IT A. e'Be + o(t). 

i=1 1 P P 

Proof. This follows by diagonalising the matrix A, and expanding the 

determinant, starting with the terms in the diagonal, since all other 

terms will be of lower order. 

We now write (3.28) as 

A A 
T-l~'{PSkk + TS(A*)PH~(S(A*)-I)-TS(A)P~(S(A)-I)}~1 = o. 

-1 Now expand using Lemma 4 with t = T . Since the other eigenvalues of 

* the equation (3.29) are different from A we find that the first term in 

the expansion (3.30) can not be zero, hence the second must be zero, 

which gives the equation for p: 
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The coefficient of p will converge to 1, because of the normali-

sation of the eigenvectors. Thus we have the following equation for the 

determination of the limiting distribution of p 

A A * A A A A 
(3.31) T(A - A ) = p ~ Te'~'{S(A)P~(S(A)-l) - S(A*)PH~(S(A*)-l)}~e 

Note that since sp(H~) € sp(~), the expression in { } is approximately a 

projection onto a complement of sp(H~) in sp(~) which has dimension p -

s. Hence in the limit p ~ 0, corresponding to the idea that by choosing 

the eigenvectors in RP one can achieve larger eigenvalues than if we 

restrict the eigenvectors to sp(H). 

We shall use the above representation (3.31) of p to find its limi-

ting distribution. Let us first consider the expression 

(3.32) 

It follows from (3.17) that the middle factor in (3.32) can be evaluated 

as 

From (3.19) we find that 
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Then we get the first factor in (3.32) 

A A AA A 1 
(3.33) e'~'S(A)~ = Ae'~'Skk~ e'~'skOSo;l{ -a~'Skk~ + fdWW'C'~ + op(l)} 

o 
A 1 

= {Ae' + e'~'SkOSO;la}~'Skk~ - e'~'SkOSO;l fdWW'C'~ + 0p(l). 
o 

In the limit the first term has coefficient 

" 'R'~ ~-1 
I~e + e ~ -kO~OO a. 

We shall use the fact that e is an eigenvector together with (3.7) 

to show that this is zero. 

We have in fact 

which shows that the coefficient to ~'Skk~ tends to zero. Thus we find 

by collecting the results (3.32) and (3.33) and inserting them into 

(3.31) that 

is asymptotically distributed as 

1 1 1 
(3.34) A-1e'~'~02:0;lfdWW'C'~(~'Cf WW'duC,~)-1~'CfWdW'2:0;12:0k~e 

000 

and a similar expression is valid for the other component of p in (3.31) 

only ~ is replaced by ~~, where ~(p-r,s-r) is chosen of full rank such 
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that 'YT] € sp(H). 

Now define 

and 

then A and Bare multivariate Brownian motions. We then calculate 

From the relations (3.7) and (3.8) , i.e. 

and 

one finds that u'o = 0 implies that the covariance is zero and hence that 

A and B are independent. Using the same relation and the eigenvalue 

properties one can show that Y(B.) = 1, i = 1, ... ,r. 
1 

The expression for the likelihood ratio test is 

r A r A * A 
-2lnQ = T ~ In{(l - A~)/(l - A.)} ~ ~ T(A. - A.)/(l - A.) 

i=l 1 1 i=l 1 1 1 

and from (3.31) we then find 

r 1 1 111 1 
-2lnQ ~ ~ fA'dB.{fAA'du}-lfAdB . - fA'dB.T]{T]'fAA'duT]}-lT]'fAdB .. 

i=l 0 1 0 0 1 0 1 0 0 1 

We shall first find the distribution of this approximating statistic for 

given value of A. Now notice that the terms in the sum are independent 

and that for fixed A, Y. = 
1 

1 

1 
fAdB. is p - r dimensional Gaussian with mean 
o 1 

o and variance Y = fAA'du. Hence 
o 

y'y-1y = y'(y-1 _ T](T]'YT])-lT]')Y + Y'T](T]'YT])-lT]'Y 
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is a decomposition of the X2 distribution with p - r degrees of freedom 

on the left into two independent X2 distributions with degrees of freedom 

p - s and s - r respectively. Thus the distribution of the approximation 

to the likelihood ratio test statistic is. for fixed A. given by X2 with 

rep - s) degrees of freedom. Since this distribution does not involve A 

it follows that the limiting distribution of the likelihood ratio test 

statistic is the same. This completes the proof of Theorem 4. 
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Table 1 

The quantiles in the distribution of the test statistic 

111 
tr{JdBB'(JB(u)B(u)'du)-IJBdB ,} 
000 

where B is an m-dimensional Brownian motion with covariance matrix I. 

The Table is constructed from 10.000 simulations using the random number 

generator in Poly Pascal 8087. The uncertainty is about 0.1. 

m 2.5% 5% 10% 50% 90% 95% 97.5% 

1 0.0 0.0 0.0 0.6 2.9 4.2 5.3 

2 1.6 1.9 2.5 5.4 10.3 12.0 13.9 

3 7.0 7.8 8.8 14.0 21.2 23.8 26.1 

4 16.0 17.4 19.2 26.3 35.6 38.6 41.2 

5 28.3 30.4 32.8 42.1 53.6 57.2 60.3 
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