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Summary. 

For a given block design. an electrical network is constructed in which 

blocks and treatments are represented by points and observations by 

connections. This network has the property that the resistance between 

two points representing two different treatments is equal to the variance 

on the estimate of the corresponding treatment contrast in the usual 

additive "block effect plus treatment effect" model. This provides a 

simple tool for computation of contrast variances in many examples. 

Further applications are made to obtain lower bounds for contrast 

variances. upper bounds for efficiencies and an algorithm for 

the construction of optimal or nearly optimal designs. 
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1. Introduction. 

Consider a bLock design. i.e. a finite set B of bLocks. a finite set T 

of treatments and a B x T -matrix N of nonnegative integers nbt 
indicating how many times treatment t occurs in block b. Draw a 

graph as follows: Each block and each treatment is represented by a point 

(vertex). Each pLot (i.e. each occurrence of a treatment in a block) is 

represented by a connection (edge) between the points corresponding to 

the block and the treatment assigned to the plot. Thus. nbt 

connections are drawn between the points b and t. whereas two block 

points or two treatment points are never directly connected (the graph is 

bipartite). Now. think of the graph as a diagram of an electrical 

network where the edges are connections of unit resistance (1 ohm). The 

properties of this network turn out to be closely related to the 

properties of the design. The most interesting relation is probably the 

following. Consider the standard "block + treatment" model. assuming 

that the observations (yields) on plots are independent. normally 

distributed with common variance 0 2 and means of the form at + ~b . 

For two treatments t' and t" . let R(t' .t") denote the resistance 

through the network between the points corresponding to t' and t". 

Then. 

= 0 2 R( t' . t") 

A A 
where a t ,- at" is the (maximum likelihood or least squares) estimate of 

the simple contrast a t ,- at" . 

We shall make the following applications of this basic observation: 

SpeciaL designs (section 3). For many block designs (including balanced 

incomplete block designs. simple lattices and some other partially 

balanced designs) it is easy to compute the contrast variances 

explicitely. simply by drawing the network in a convenient manner and 

using the laws for parallel and serial combination of resistances. 
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InequaLities (sections 4 and 5). A basic observation for electrical 

networks is that the introduction of a new connection somewhere in the 

network can never increase the resistance between two points. In 

particular, the contraction of two or more points to a single point (by 

"short circuiting") can not increase any resistance through the network. 

This provides us with a simple tool for calculation of lower bounds for 

contrast variances, and thereby (via a convexity argument) upper bounds 

for the harmonic mean efficiency (which can be defined as the inverse 

proportion between the average contrast variance in the given design and 

the same quantity computed for a design with the same treatments repeated 

the same number of times in a single block). 

Construction of optimaL or aLmost optimaL designs (section 6). The 

relation between block designs and electrical networks gives some 

intuitive insight in the properties of good designs (i.e. designs with 

small contrast variances), and suggests various algorithms for the 

construction of such designs. A very simple idea is to start out with a 

network consisting of B + T isolated points, and then introduce the 

connections one by one, in each step adding the connection which is "most 

needed", in some sense. A similar idea is to start "from top" with a 

complete bipartite graph (corresponding to a complete block design) and 

then delete connections according to similar rules. As we shall see, 

there are simple formulas for the change of average contrast variance 

resulting from such changes of the network. However, designs obtained by 

these procedures are usually not of maximal efficiency. An additional 

modification can be performed by switches. By a switch we mean the 

removal of two connections (e.g. from ti to b i and t2 to b2 ) 

simultaneously with the addition of the two "crossing" connections (from 

ti to b2 and from t2 to b i ). As we shall see, it is possible (by 

extension of the calculations for addition and removal of connections) to 

give a relatively simple formula for the change of average contrast 

variance resulting from a switch. This makes it possible to search among 

all switches for the best one, that is the one that gives the maximal 

decrease of average contrast variance. Supplemented with a randomization 
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feature (to escape "local maxima" for the efficiency) this gives a cheap 

and efficient algorithm for construction of block designs, which is 

useful for situations where a "classical" solution (BlBD, PBIBD, etc.) 

does not exist. The algorithm is very similar to that of Jones and 

Eccleston (1980), but the differences seem to be important. 

Section 7 contains a discussion of the relation of the present work to 

the work of other authors, in particular Borre and Meissl (1974, on a 

relation between geodetic networks and potential theory), Jones and 

Eccleston (1980), Paterson (1983) and Paterson and Wild (1986, on 

properties of a related graph derived from a block design and its 

relation to efficiency) and Eccleston and Hedayat (1974, on connectedness 

properties of designs). The probabilistic interpretation in terms of 

random walks on the design graph is briefly outlined. An extended design 

network for the case of random block effects is defined, in which the 

variances of estimated treatment contrasts have the same interpretation 

as resistances through the network. 
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2. The main result. 

Notation. By I, B and T we denote the sets of plots, blocks and 

treatments, respectively. Elements of these sets are denoted i, i', i 1 , 

... E I, b, b', b 1 ' 

convenient, we assume 

I 

T 

B 

= 
= 
= 

E Band t, t', t1 ' ... ET. Whenever 

{ 1, 2, 

{ 1, 2, 

{ 1, 2, 

I } 

T} and 

B } 

Thus, I, Band T denote both the finite sets and their cardinality. 

This is merely for convenience, and is not likely to cause any confusion 

in the present context. 

Formally, a design is given by two mappings <PB : I -+B and 

<PT : I -+ T , assigning factor levels to plots (efr. Tjur 1984) . The 

statistical properties of the design are determined by the integers nbt 

= #{ iEI I <PB(i)=b and <PT(i)=t }, constituting the B x T incidence 

matrix N = (~t). By kb we denote the size of block b and by r t 

the number of replicates of treatment t The incidence matrix 

row sums kb , column sums r t , and the sum of all elements is 

N 

I . 

has 

The design network (not to be confused with Patersons variety concurrence 

graph, which has only the treatments as points) is formally defined as 

follows. The set of points of a graph is taken to be the disjoint union 

of B and T On figures, we use signs for treatments and 0 for 

blocks, to distinguish. A connection from b E B to t E T is 

introduced for each occurence of treatment t in block b 

set of connections can (and will) be identified with I 

Thus, the 

We interprete 

the graph as an electrical network where these connections are unit 

resistances (1 ohm). 

In all that follows, we shall assume that the design is connected, in the 

sense that any two treatment points t' and t" can be joined by a 
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chain such that nb (i=2, ... ,n) 
. It. 1- 1 

and nb (i=I, ... ,n-I) are positive. 
. t. 

This is easily seen to be 
1 1 

equivalent to the condition that the design network is connected in the 

obvious graph theoretic sense (subsuming, of course, that all kb and 

r t are positive). 

Theorem 2. 1. Let y = (Y.liEI) 
1 

be a vector of reaL random variabLes, 

independent and normaLLy distributed with common variance a2 and 

expectations given by 

= ( t = ~T(i) , b = ~B(i) ) . 

Let A 
(at) and (~b) be maximum Like L ihood (or Least squares) estimates 

of (at) and (/\) in this statisticaL modeL. Let R(p',p") denote 

the resistance between points p and p" of the network. Then, 

(i) The variance of an estimated treatment contrast is given by 

= a2 R(t ' ,t"). 

(ii) The variance of a fitted vaLue is given by 

(iiL) Let 

estimated 

= 
2 a R(t,b) . 

A A tIt" 
a tl - at" = Li a i Yi be the expression of the 

(tl,t") -contrast as a Linear combination of the observations. 

tIt" 
Then, the coefficients a. have the foLLowing interpretation as 

1 

potentiaL differences in the network: Suppose that voLtages R(t',t") 

and 0 are kept fixed at the two points t I and t" , whiLe aLL other 

tIt" 
points are Left untouched. Then, a. is the current through 

1 

connection i , signed so that current from bLock to treatment counts 

negative whiLe current from treatment to bLock counts positive. Or 
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(since potentiaL difference = current through the unit resistance), 

t't" 
a. 

1 = 

v denoting the potentiaL at the point p € BUT . 
p 

Remarks. We have used the term "fitted value" for the estimate 

~t + ~b· This is, perhaps, only meaningful for block-treatment 

combinations actually occurring in the design. For combinations which do 

not occur, a term like "predicted mean of hypothetical observation" would 

be more correct. But the result (iii) is valid in both cases. 

Notice that the formula R(t' ,t") = 
2 

2. (v (.)- v (.)) 
1 <PT 1 <PB 1 

(which, 

according to (i) and (iii), merely equates two different expressions for 

the contrast variance) has the physical interpretation that the total 

energy per time unit developed by the network when a potential difference 

of R(t' ,t") between t' and t" is kept fixed equals the sum of 

energies per time unit emerging from the single connections. 

Notice also that (iii) suggests a way of solving the normal equations 

numerically by means of relatively simple physical equipment. It would 

be interesting to know whether such methods have been considered before 

the digital computer age. 

Proof. Consider the (T+B) x (T+B) (or (TUB)x(TUB) ) matrix 

c = = [ 
diag(rt) 

N diag(kb ) 1 
with elements 

cbt = c tb = nbt for b € B, t € T , 

Ctt = r t for t € T 

cbb = kb for b € B 

and c = 0 for all other (p,q) pq 
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This matrix plays a role, both in the analysis of the statistical model 

and in the analysis of the design network. In the statistical context, 

this role is wellknown. Let Xy denote the I x T design matrix for 

the factor T (cfr. Tjur 1984). i.e. 

{ 
1 for <PT ( i) = t 

(Xy)it = 
0 otherwise. 

Similarly, define XB er x B) by 

{ 
1 for <fJB( i) = b 

(~)ib = 
0 otherwise. 

The expectation of the random vector y = (Yi) under the additivity 

T 
model can then be written E y = Xya + ~~ (a = (at) E ffi ,~= 

B 
(~b) E ffi ). The normal equations determining the maximum likelihood 

estimates (up to an arbitrary constant to be added to all 

subtracted from all ~b) can then be written 

= 

or 

= 

and 

The partitioned square matrix to the left is easily recognized as our 

C Now, let C be a symmetric (T+B) x (T+B) matrix such that C C C 

= C and C C C = C (a refLexive generaLized inverse for C, cfr 

Rao 1973). One solution to the normal equations is then given by 
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= c 

and the covariance matrix for this set of estimates is 

cov( 
A 

, ~ ) 2 - [ 
x:; 

] [ c- [ 
x:; ]r 2 -

a = a C = a C 
X; X; 

It follows that the variance on an estimated contrast 
A A 
at' - at" 

A 
var( at' = * 2-

( It' - It") (a C ) ( It' - It" ) 

is 

with an obvious notation for vectors in ffiB+T which are 1 at a single 

coordinate and 0 elsewhere. Similarly, the variance of a fitted value 

~t + ~b is given by 

var( ~t + ~b ) = 

Now to the interpretation of C in the network context. Suppose that 

vol tages R(t', t") and 0 are kept fixed at the two points t' and 

t" , while all other points are left untouched. According to Ohm's law, 

the current through the network from t' to t" will then be 1 

ampere. The laws of Kirchhoff, determining the potentials at all other 

points of the network, can be stated as follows. Let v (p E TUB ) 
P 

denote the potential at the point p The current through a connection 

from t to b is then v t - Vb The currents leaving t' via 

connections to other (block-) points of the network must sum to 1, i.e. 

= 1 (2.1) 
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Similarly, the currents entering t" must sum to 1, i.e. 

= -1 (2.2) 

For all other points of the network, the (signed) sum of ingoing currents 

equals 0, i.e. for t ~ to ° t" , 

= 0 (2.3) 

and for b € B 

= 0 (2.4) 

Now, (2.1), (2.2) and (2.3) can be rewritten and summarized on the form 

= { 

and (2.4) can be written similarly as 

= o 

1 for t = to 
-1 for t = t" 
o otherwise 

(2.5) 

(2.6) 

These equations are conveniently put together in the matrix equation 

1 = (2.7) 

where the matrix C defined earlier occurs as the coefficient matrix. 

For C defined as above, 

[ 1 = (2.8) 
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is a solution to the network equations (not necessarily with v t " = 0 

and v t ' = R(t' ,t") , but with v t ' - v t " = R(t' ,t") , and this is 

all that matters). It follows that 

R(t' ,t") = v t ' - v t " = 1 

Comparing this with our expression for the contrast variances in the 

statistical model, we see that (i) has been proved. The proof of (ii) is 

similar. Our convention that potentials of block points occur with a 

minus sign in the equations means that the role of It' - It" is taken 

over by It + Ib ' but exept for this the proof is exactly the same. 

In order to prove (iii), consider the expression 

= = 

for the estimated contrast. By (2.8) above, this equals 

[ 
( v t ) ]*[ X; 

1 y 
(-Vb) X; 

[ ( v t ) rr :;: y.(l Cl + 1 Cl l ] 2: (v C) - v C)) y. , = = 
(-vb) i 1 ~T 1 ~B 1 i ~T 1 ~B 1 1 

which proves (iii).O 

Remark. It should be noticed that the design-network relation relies on 

a somewhat artificial way of writing the network equations. From a 

physical point of view, the shift of sign for block point potentials is 
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an unnecessary complication. The canonical matrix for the network is not 

C , but the matrix which can be obtained from C by changing the signs 

of all diagonal elements. Alternatively, one could obtain the relation 

by shifting signs of block parameters in the statistical model (as 

noticed by H. Br0ns, see section 7). Unfortunately, this means that 

there is no way of extending the design-network isomorphism to additive 

models in designs with three or more factors. It is not even obvious how 

one should define the design network in that case. 
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3. Explicit calculations of contrast variances, based on the design 

network. 

The present section illustrates, by a number of examples, the main result 

of the previous section. The purpose is not primarily to compute 

contrast variances, but rather to gain insight in the way these contrast 

variances are influenced by the structure of the design. The examples 

are important for the understanding of later sections. 

Example 3.1 (circuLar design with bLocks of size 2). Consider the 

balanced incomplete block design (BIBD) with 3 treatments arranged in 

3 blocks of size 2, i.e. 

block 1 

block 2 

block 3 

1 2 

1 3 

2 3 

The design network is given by figure 1 (notice: blocks are drawn as 

1 2 

2 3 

Figure 1 

small circles, treatments as points). The resistance between two 

treatment points, e.g. 1 and 2, is easily computed. We can split this 

into two parallel resistances, each of which is a serial combination of 

unit resistances (2 and 4, respectively). By the rules for parallel and 

serial combination (hereby revived), we have 
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R(1,2) = [ (1+1)-1 + (1+1+1+1)-1 J-1 = = 4/3 . 

(Notice: here and in the following, numbers like 1 and 2 in the 

expression R(I,2) refer to treatments. When both block and treatment 

points are involved, we shall have to use a more careful notation, of 

course). Thus, = 

This is immediately generalized to designs of the form 

block 1 1 2 

block 2 2 3 

block T-l: T-l T 

block T: T 1 

with T treatments arranged in B = T blocks of size 2 in such a way 

that the design network has a circular form, similar to that of figure 1. 

In the same manner as above, we obtain the expression 

R(t,t+d) = 
1 1 -1 

( 2d + 2(T-d) ) 

for the resistance between two treatment points with angular distance 

2rr(dIT) (i.e. separated by d block points). 

In order to illustrate (iii) of theorem 2.1, we return to the case 

T = 3. Figure 2 shows the potentials at different points when a 

2/3 

Figure 2 
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potential difference of 413 is fixed between treatment points 1 and 

2. The numbering of connections indicates the natural ordering 

according to our listing of the design in the beginning of this example. 

By (iii) of theorem 2.1, the estimate of a 1 - a2 is 

= 
4 2 2 

( 3" - 3" )y 1 + ( 0 - 3" )y 2 

4 2 1 2 1 
+ ( 3" - 1 )Y3 + ( 3" - 1 )Y4 + ( 0 - 3")Y5 + ( 3" - 3" )Y6 

+ 

Notice how the intuitive interpretation of this expression as a weighted 

average of two estimates (the "direct" estimate by the two observations 

in block 1 and the "indirect" via the comparisons with treatment 3 in 

blocks 2 and 3) reflects the decomposition of the resistance into two 

parallel resistances. Notice also that a solution to the network 

equations is easy to guess in this case. Obviously, this is not always 

the case, but it is frequently possible when the network has some 

symmetry properties. 

Example 3.2 (a more compLicated BIBD). The design 

1 1 2 4 

2 235 

3 346 

445 7 

556 1 
6 672 

7 713 

with 7 treatments arranged in 7 blocks of size 3 is a BIBD (any two 

treatments meet in exactly one block). Since the design is cyclic (all 

blocks can be generated from the first block by addition modulo 7) we 

could draw the design network in a rotation-invariant form (cfr. the 
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previous example), but the form given by figure 3 is more convenient for 

1 

1 2 

Figure 3 

the purpose of determining R(1,2). When the graph is drawn like this, 

it is easy to see that a constant voltage difference between treatment 

points 1 and 2 will induce the same potential at the points in the 

middle of the figure (correponding to treatments 3, 4, 5, 6 and 7 and 

blocks 1, 3 and 4). A more detailed argument for this can be given as 

follows. Suppose that block points 3 and 4 (and their six connections) 

are removed from the network. Then it is rather obvious that the 

potentials at treatment points 3,4,5,6,7 and block point 1 will be equal, 

namely equal to the average of the potentials kept fixed at the treatment 

points 1 and 2. This follows by symmetry arguments or by writing down a 

solution to the network equations, which is easy in this case. Now, 

reintroduce the connections that were removed. This will merely create 

some new connections between points with the same potential. Thus, none 

of these new connections will carry any current, and the new points will 

immediately take over the potential of the points they are connected to. 

T Hence (with v t denoting the potential at treatment point t , the 

potential at block point b, to avoid index confusion), 

= = 

By similar arguments, 
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= and = 

(indeed, this was so before the removed connections were reintroduced, 

and is still so because the reintroduction leaves all potentials 

unchanged) . 

Now, notice the trivial fact (already referred to once above) that 

resistances of connections between points with the same potential may be 

changed arbitrarily, without change of the potentials. In particular, 

points with the same potential may be "short cicui ted" (i. e. connected by 

a O-resistance or contracted to a single point), or the connection 

between them, if any, may be removed. In the present case, we may 

perform the following operations, without changing the solution to the 

network equations: 

Contract block points 5 and 7 to a single point. 

Contract block points 2 and 6 to a single point. 

Cut the connection between block 1 and treatment 4. 

Contract all points in the middle, except block 1, to a 

single point. 

These operations create a new network (figure 4) which has the same 

resistance between treatment points 1 and 2 as the original network. 

1 2 

Figure 4 



17 

But in this case the resistance is easily computed: 

R(1,2) = 
-1 1 1 1 1 -1 -1 

[(1+1) + (2" + 4" + 4" + 2") ] = 6/7 . 

Example 3.3 (BIBDs in generaL). Consider a design with T treatments 

arranged in B blocks of size k in such a way that the replicate 

counts r t are all equal to the same number r (thus, rT = kB = I ). 

Assume further that the design is binary (i.e. nbt € {O,I} for all b and 

t ) with at least one ~t = ° , and that the numbers 

A(t' , t") = # { b I nbt , = ~t" = 1 } 

are all equal to the same number A (which, by a simple combinatorial 

argument, must then be A = r(k-l)/(T-l)). This is the definition of a 

balanced incomplete block design (BIBD). 

A careful examination of the arguments that were used in the reduction of 

the network of example 3.2 will show that similar arguments are valid for 

an arbitrary BIBD. We shall not give the full details, but merely 

outline the reasoning. 

For two treatments t' and t", imagine that the design network is 

drawn in a way similar to that of figure 3, with t' to the left and t" 

to the right. In the middle we have all other treatment points together 

with all points corresponding to blocks in which neither t' nor t" 

occur (bottom) and those in which both t' and t" occur (top). 

Between t' and the points in the middle we place the points 

corresponding to blocks in which t' but not t" occur, and similarly 

for t". The crucial symmetry property which enables us to argue exactly 

as in example 3.2 is that any of the treatment points in the middle must 

have the same number of connections to the left and to the right. This 

is so because it meets t' and t" in the same number of blocks. 

Proceeding as in example 3.2, we see that short circuiting of the 

following groups of points will leave R(t', t") unchanged: 
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I. The blocks containing to but not t" . 

Il. The blocks containing t" but not to. 

Ill. The blocks containing both to and t". 

IV. All treatments except to and t" and all blocks 

containing neither to nor t" 

Finally, we cut all connections between groups III and IV, and end up 

with the reduced network given by figure 5. On this figure, the 

connections are bundles of parallel unit resistances and the integers 

III 

to t" 

r-i\ r-i\ 

~.~------~~------~ (k-1) (r-i\) IV (k-1) (r-i\) 
II 

Figure 5 

assigned to connections denote multiplicities or inverse resistances. 

The rules for parallel and serial combination gives a wellknown 

expression for the contrast variance in a BIBD: 

R(t O ,t") = 

= = 
2 
r 

1 - lIT 
1 1/k 
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Example 3.4 (simpLe Lattice). Consider the design 

1 1 2 3 

2 4 5 6 T = 9 B = 6 

3 7 8 9 k = 3 r = 2 

4 1 4 7 

5 2 5 8 

6 3 6 9 

This is a special case (k=3) of the simple lattice of order k, in 

which T = k2 treatments are arranged in B = 2k blocks of size k in 

such a way that the first k blocks constitute a replicate (i.e. each 

treatment appears exactly once) and the arrangement in the last k 

blocks appears as the transpose of the arrangement in the first k 

blocks. For reasons of symmetry, contrast variances in this design can 

only take one of two possible values, one for pairs of treatments which 

occur in the same block (like 1 and 2) and one for pairs that do not 

(like 1 and 5). Figures 6 and 7 show the design network drawn in two 

1 

3 

1 2 

4 4 5 5 

7 8 

Figure 6 
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4 

4 7 3 
1 9 5 

1 

2 

Figure 7 

different ways aimed towards the determination of R(1,2) and R(1,5), 

respectively. Reasoning similar to that of example 3.2 leads to the 

reduced networks of figures 8 and 9, giving the result 

R(1,2) [ -1 1 1 1 1 -1 r1 4/3 , = (1+1) + (1+ 2 + 2 + 2 + 2 +1) = 

R(1,5) = 
1 -+ 
2 

[ 1 1 -1 1 1 1 1 -1 ]-1 
(2+2) +(2+2+2+2) . 

1 + -2 = 5/3 . 

Figure 8 

Figure 9 
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This is easily generalized to the case of a simple lattice of order k, 

where the result is 

= { 
for t' and t" occurring in the 

same block 
otherwise. 

Example 3.5 (compLete bLock design with a missing observation). 

Consider a complete block design with B = r = 4 and T = k = 3 

Figure 10 shows the design network stretched out between treatment points 

1 and 2 Obviously, the contrast variance is given by 

2 
a R(1,2) = = 

2 
a /2 . 

1 2 

3 

Figure 10 

Now, consider what happens if a single connection is removed from the 

network. The removal of one of the connections to treatment point 3 

will leave R(1,2) unchanged. The statistical interpretation of this is 

that a missing observation in a complete block design does not affect 

contrast variances in which the treatment of the experimental unit 

removed is not directly involved. But the removal of, say, the 

connection from treatment 2 to block 4 will give a picture like 

figure 11. The resistance 



22 

Figure 11 

between treatment points 1 and 2 now becomes 

R(1,2) = ~ + [3 + ( ~ + 1 + 1 )-1 ]-1 = 5/8. 

Figure 12 shows the short circuited network for the general case of an 

arbitrary complete block design (k = T , r = B , all nbt = 1) with a 

t' r-l r-l 
71--~----------" t" 

~~-:::-----I~ (k-2)( r-l) 
b k-2 

Figure 12 

missing observation (t" in block b). The result is 

R(t' ,t") = 
1 --+ r-1 

= 

[ 1 1 -1 J-1 
(r-l) + (1 + k-2 + (k-2)(r-l) ) 

= (k-l )( 2r-l) + 1 
r(r-l)(k-l) 

This is for treatments involved, i.e. for either t' or t" the 

treatment of the experimental unit that was lost. All other contrast 

2 variances are unchanged (= 2 a /r). The formula is wellknown (see 

e.g. Cochran and Cox 1957), but the proof would usually involve a lot of 

matrix algebra. 
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4. Lower bounds for contrast variances. 

In this section we shall derive lower bounds for contrast variances by 

short circuiting of the design network. The idea can be illustrated by 

the following argument, which gives a very rough bound. Suppose, for an 

arbitrary block design, that all blocks are contracted (short circuited) 

to a single point. This gives a network of the form indicated by figure 

13. Obviously, the resistance from t' to t" in this 

t" 

Figure 13 

network is l/r t , + l/r t ". Since this network was obtained from the 

original network by the introduction of some new (O-resistance) 

connections, this resistance can never be smaller than the original 

resistance. Hence, we have proved the inequality 

2 a 

stating that a contrast variance can never be smaller than the contrast 

variance for the same two treatments in a (hypothetical) design with the 

same treatments repeated the same number of times in a single block (and 

with the same 2 a ). 

In fact, we can say a little more than this. The situations where the 

above inequality is an equality must obviously be those where a 

difference in potential between t' and t" induces the same potential 

at all block points. With a little bit of intuition, it is not difficult 

to see that this happens if and only if the occurrence counts for t' 
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and t" in blocks are proportional, i. e. ~t' = cnbt" for some 

constant c independent of b. Thus, equality for aLL pairs of 

treatments occurs if and only if the design is orthogonaL in the sense 

that all columns of N are proportional, cfr. Tjur (1984). 

The above result is classical. More refined inequalities come out by 

less drastic short circuiting of the design network. We shall prove two 

such inequalities, one that gives a bound similar to the expression for 

the contrast variance in a BIBD, and a more complicated inequality based 

on a short circuiting procedure similar to that followed in example 3.4. 

Proposition 4.1. Suppose that the design is binary, that aLL bLock sizes 

are equaL ( kb = k ) and that aLL repLicate counts are equaL ( r t = r ). 

Then 

R{t' ,t") r-A{t' ,t") J-1 

kr 

where A{t' ,t") denotes the number of bLocks in which both t' and t" 

occur. 

Proof. Short circuiting exactly as in example 3.3, we obtain a reduced 

network like that of figure 5, the only difference being that A = 
A{t' ,t") now depends on t' and t" (but the removal of all connections 

between groups III and IV is still possible, for reasons of symmetry). 

The first expression for the resistance through the short circuited 

network of example 3.3 is still valid when A is replaced by A{t',t") 

but in this case it should be regarded as a lower bound for R{t' ,t"). 

The algebraic manipulations required to transform this expression to that 

stated by the proposition are straightforward. The last expression for 

R{t' ,t") , given in example 3.3, is not valid here, because it depends on 

the formula for A in a BIBD.D 
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Proposition 4.2. In addition to the assumptions of proposition 4.1, 

assume that the numbers A(t' ,t") are aU 5: 1 Define 

A(t' ,t") = # { t ~ t' ,t" I A(t,t') = A(t,t") = 1 } 

( = the number of other treatments that meet both t' and t"). Then 

R(t' ,t") [ ~ + [ 2r + ~ J -1 ]-1 
2 r(k-1)(r-A-1) + A + A r-A 

where A and A are short for A(t' ,t") and A(t' ,t") . 

Proof. The following sets of points are contracted to single points by 

short circuiting: 

I The blocks containing t' and t". 

III The blocks containing t' but not t". 

Il2 The blocks containing t" but not t' . 

III The blocks containing neither t' nor t". 

The treatments occurring in a block together with 
t' , bu t no t wi th t" . 

The treatments occurring in a block together with 
t" , but not with t' . 

V The treatments occurring in blocks with both t' and t" . 

VI The treatments that never occur in a block with t' or t". 

Figure 14 shows the reduced network (still with the brief notation A = 
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I 

t' (k-2)A t" 

r-A \ r-A 
v 

r(k-1)-(A+A) , A-(k-2)A A-(k-2)A r(k-1)-(A+A) 
III 

(r-1)(r(k-1)-(A+A)) (r-1)(r(k-1)-(A+A)) IV2 

VI 

Figure 14 

A(t' ,tor) and A = A(t',t")). For reasons of symmetry, the vertical 

connections can be removed, and it follows that we have the lower bound 

[ A [2 2 1 -1 2 -1 -lJ-1 ]-1 
2 + r-A + [ ( (2+r - 1) r(k-1)-(A+A)) + (A-(k-2)A) ] 

for R(t' ,t"). The proposition follows, after some straightforward 

algebraic manipulations.D 
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5. Upper bounds for efficiencies. 

The efficiency (or harmonic mean efficiency) E of a block design with 

equal block sizes and equal replicate counts can be defined as the 

harmonic mean of the 

where 

T-l nonzero eigenvalues of the matrix 

= 

1:. ('~ 
r -'1' ' 

is the information matrix for the set of treatment parameters (see e.g. 

Paterson 1983). However, we shall refer to the following (equivalent) 

definition, which can be regarded as an intuitive justification of the 

efficiency as a measure of design quality. Define 

= 2 2: R(t' ,tit) 
T(T-l) t'< tit 

( = the average resistance between pairs of treatment points in the 

design network). Then, 

Notice that - 2 Ra 

E = 
2/r 

R 

is the average contrast variance for the given design, 

while (2/r) a2 is the same quantity for a complete block design with 

each treatment repeated r times. Thus, it follows from the discussion 

in the beginning of section 4 that E ~ 1 (and, in fact, that E = 1 if 

and only if the design is orthogonal). According to example 3.3, the 

efficiency of a BIBD is 

E = 
1 - 1/k 
1 - l/T = T(k-l) 

(T-l)k 
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Our definition of the efficiency E implies that any lower bound for the 

contrast variance 2-a R gives an upper bound for the average contrast 

variance, and vice versa. In section 4, lower bounds for contrast 

variances were given as resistances through short circuited networks in 

which the inverse resistances ( = multiplicities) of connections are 

linear expressions in combinatorial quantities like A( t' ,t") and 

A(t' ,t"). It is easy to derive expressions for sums or averages of such 

combinatorial quantities over all pairs of distinct treatments. Thus, in 

order to "average" the lower bounds for contrast variances to obtain 

lower bounds for average contrast variances (or upper bounds for 

efficiencies), we need the convexity property stated by the following 

lemma. 

Lemma 5.1. Consider a connected graph with P as its set of points and 

I as its set of connections. We think of the graph as an eLectricaL 

network with variabLe resistances. By z. we denote the inverse 
1 

resistance of connection i For two seLected, distinct points p and 

pIt Let R(z) = R( (z.)) denote the resistance through the network 
1 

from p to pIt Then, the function R on [0,+ ro)I is convex. 

Remark. Notice that one or more zeroes among the 

value + ro of R(z) due to disconnectedness. 

zi may give the 

However, it will follow 

from the proof that R is also convex in the (obvious) extended sense. 

We shall use the term conductance for inverse resistance. 

Proof. We give a heuristic proof, based on the kind of physical 

reasoning applied in section 4. In the two applications, which we shall 

make of the lemma, more direct proofs of the convexity can easily be 

given. 

We begin by noticing that it suffices to show that 11R(z) is a concave 

function of z Indeed, if for all A E (0,1) and for any z', z" E 

[ 0,+ ro)I we can show that 
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R( AZ' + (l-A)z" )-1 A R( Z )-1 + (1-A) R( z" )-1 

then it follows easily (by monotonicity and convexity of the function 

R ~ 1IR ) that R is convex. Now, consider two copies of the network, 

equipped with conductances z' = ( Z : ) and z" 
1 

Multiply all conductances of the first network by 

= (z~) , respectively. 
1 

A and multiply all 

conductances of the second by (l-A) . After this, we obviously have 

conductances AR(z,)-l and (l-A)R(z,,)-l, respectively, between the 

points p' and plO in the two networks. Now, consider the following 

two ways of short circuiting the two networks to a single network: 

(1) 

(2) 

p 

p 

(cfr. figure 15) The points called p' in the two networks 

are short circuited; similarly for plO . 

(cfr. figure 16) ALL pairs of corresponding points of the 

two networks are short circuited. 

(1-A)Z'.' 
1 

AZ: 
1 

Figure 15 

(1-A)Z'.' 
1 

Figure 16 

plO 

plO 

By the rule for parallel combination of resistances, the conductance from 



30 

p' to p" in the network given by (1) is 

A R(z,)-l + (1-A) R(z,,)-l 

By the same rule, applied to each double connection of the network given 

by (2), the conductance from p' to p" in that network is 

R( AZ' + (l-A)z" )-1 

However, since (2) is obtained from (1) by further short circuiting, the 

conductance through (2) must be greater than or equal to the conductance 

through (1). The lemma follows immediatelY.D 

Example. Consider the inequality 

R(t' ,t") 1 1 +
r t , r t " 

derived in the beginning of section 4 from the network of figure 13. In 

this simple case, we conclude from lemma 5.1 that l/r t , + l/r t " is a 

convex function of r = (r t ). By Jensen's inequality, 

R = 2 2: R(t' ,t") 
T(T-1) t'( t" 

2 2: 
T(T-1) t'( t" 

( 1 
r t , 

1 + - ) 
r t " 

2/r 

where r is the average (in principle over all pairs of distinct 

treatments, but equivalently over all treatments) of the replicate counts 

Since this is 

r = = I/T 

we have proved that R 2 2T/I , i.e. the average contrast variance is 

at least 2 (2T/I)a . This is not particularly exciting, but the example 

illustrates very well what is going on in the following under more 
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complicated circumstances. 

Proposition 5.2. Under the assumptions of proposition 4.1, 

E 
1 - 1/k 
1 1/T 

Remark. Under the usual definition of E given at the beginning of this 

section, this is merely the inequality stating that the harmonic mean of 

the T-1 . I f;1 ('~ elgenva ues 0 -'1' is less than or equal to the arithmetic 

mean of these. Hence, the result is wellknown, but we include it because 

our proof does not refer to the spectral decomposition of ~. 

Proof. The inequality of proposition 4.1 was derived from a short 

circuited design network (figure 5) in which the conductances are affine 

functions of A = A(t' ,t"). It follows, by lemma 5.1, that the 

inequality still holds when R(t' ,tIt) on the left hand side is replaced 

by R and A(t' ,tIt) on the right hand side is replaced by ):: = the 

average of A(t' ,tIt) over all pairs of distinct treatments. Now, since 

the design is assumed to be binary, we have 

= 2 L: A(t',t") 
T(T-1) t'( tIt = 2 L: 

T(T-1) t'( 

2 ~[ L: 
2 = T(T-1) ~t ,nbt" -L: ~ 

t' , tIt , b t,b t 

1 
[ ~ ( L:t 

)2 - L: nbt = T(T-1) 
nbt 

b, t 

= 1 ( B k2 I) 
T(T-1) - = Bk(k-1) 

T(T-1) 

Hence, 

] 

] 

The substitution of this expression in the "averaged" inequality 

2 ( 1 _ 
r 

r -):: -1 
kr ) 
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followed by a little algebra, gives the desired result.D 

Proposition 5.3. Under the assumptions of proposition 4.2, 

E k-1 
T-1 + [ r T-1 J-1 

(k-1)(r-1) + T-k 

Proof. By arguments similar to those applied in the proof of proposition 

5.2, a lower bound for R can be obtained from proposition 4.2 by 

replacement of A(t' ,t") and A(t' ,t") by the averages of these 

quantities over pairs of distinct treatments. An expression for ~ was 

obtained in the proof of the previous proposition. In order to compute 

I , notice that our assumptions imply that A(t' ,t,,)2 = A(t' ,t") . 

Thus, 

:z; A(t' ,t") = :z; :z; A(t,t') A(t,t") 
t'( t" t'( t" t: t;tt' , t" 

= l:z; :z; A(t,t') A(t,t") 
2 t';tt" t:t;tt' ,t" 

1 :z; A(t,t') :z; A(t,t") = 2" :Z;t 
t':t ';tt t":t";tt,t' 

1 :z; A(t,t') [(k-l)r - A(t,t') ] = 2" :Z;t 
t': t ';tt 

1 
[ (k-l)r :z; A(t,t') - :z; A(t,t,)2 ] = 2" :Z;t 

t': t ';tt t': t ';tt 

1 
[ 2 IT [(k-1)r - 1](k-1)r = 2" :Z;t «k-l)r) - (k-1)r ] = 2 

Thus, I equals this expression divided by T(T-1)/2, which is 

= 
r(k-1)(r(k-1) - 1) 

T-l = (r(k-l) - 1) ~ 
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The inequality following from proposition 4.2 by "averaging" is 

A [ 
- [ 2r 
-+ + 
2 r(k-l)(r-~-I) + A + ~ 

or 

E 2 [?;: + [ ____ 2_r_____ + 

r 2 r(k-l)(r-~-I) + A + ~ 

Noting that the relation A = (r(k-l)-I)~ gives a considerable 

simplification of the complicated denominator involved here, this 

inequality is easily rewritten to that stated by the proposition.D 

Example 5.1. Paterson and Wild (1986) study an a-lattice with 40 

treatments arranged in 32 blocks of size 5. The efficiency of this 

design is 0.79048. They derive upper bounds for the efficiency under 

various conditions. The sharpest among those proved under the general 

assumptions of proposition 5.3 is E ~ 0.79740. Proposition 5.3 gives 

E ~ 0.79335, which is less than half as far from the true efficiency as 

the bound reported by Paterson and Wild. 

Example 5.2. Jarrett (1977) gives an upper bound for the efficiency 

which, in the case B = 15, T = 20, k = 4 and r = 3, is E ~ 0.7549 

(without additional assumptions, like resolvability etc.). Our bound in 

this case is E ~ 0.7505. Jarrett gives an example (an a-lattice) with 

E = 0.7447. 

It is tempting to conjecture, on the background of these examples, that 

our result is better than those obtained by Jarrett (1977) and Paterson 

and Wild (1986) by methods based on the spectral decomposition of er . 
However, the bounds given in these papers are very complicated 

expressions, and we have not been able to make a direct comparison. It 

should be noticed that our bound applies only to the case where all 
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,,(t' ,t") are either 0 or 1. There seems to be no immediate 

generalization to regular graph designs in general (i.e. designs in which 

any value of ,,(t' ,t") is either "0 or "0+1 , for some "0). 
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6. Optimization of designs. 

The design-network isomorphism suggests various algorithms for 

construction of optimal or nearly optimal designs. We shall describe one 

such algorithm which, on the basis of several test runs, is found to be 

relatively successful. A more detailed description of some of these test 

runs is found later in this section. A listing of the program (written 

in UNIVAC 081100 Pascal) is available from the author. The possibility 

of a Turbo Pascal version for personal computers is considered, but some 

problems with RAM capacity can be expected. 

For given design constants I, B, T, r and k (with I = Bk = 

Tr) our problem is to find a design of these dimensions with efficiency 

as close as possible to 1; or, equivalently, to construct a network 

with R as small as possible. We proceed as follows. 

Phase 1. Our starting point is a totally disconnected graph consisting 

of B + T points. We introduce the I connections one by one, 

according to the following principles. As long as the network is 

disconnected, each new connection should join two connected components of 

the graph, thus decreasing the number of such components by one. 

Connections between points with few connections to other points are 

preferred. For example, as long as isolated points of both block and 

treatment type exist, any new connection should connect such two. Each 

new connection should, of course, be allowed in the sense that the two 

points have "vacant entries". Among the connections satisfying these 

conditions, the one to be added may be chosen at random. 

Connectedness is obtained in step no. B + T - 1 , where the number of 

connected components is decreased from 2 to 1 From then on, it 

makes sense to talk about R (since all R( t' ,t") are welldefined now), 

and we can choose the "best" connection to be added as the one among 

those allowed that decreases R as much as possible. A simple and 

computationally cheap formula for the decrease of R when a given 
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connection is added is given in proposition 6.3. 

Phase 2. The design coming out of phase I is usually a good one, but it 

is rarely optimal. In order to improve the design, we proceed as 

follows. By a switch we mean an operation of the form 

n 
bIt l 

.- n 
bIt l 

I 

n b2 t 2 
.- n -

b2 t 2 
I 

n b I t 2 
.- n 

b l t2 
+ I 

n b2 t I 
.- n b2 t I 

+ I 

which removes two connections and adds two other connections in such a 

way that the design constants (block sizes and replicate counts) are 

unchanged. Among all possible switches we select, in each step, one 

according to the following criteria. Switches that would make the design 

disconnected are not taken into account. Also, switches that would make 

the design "less orthogonal" than it was before are ignored; by this we 

mean that only switches satisfying 

) and ) 

are taken into account (remark: under the assumption that all block sizes 

are equal to k, this condition can be written on a simpler form; 

however, our algorithm is applicable to the more general situation where 

block sizes and/or replicate counts are different, therefore this general 

form). Among the switches allowed, we choose the one that gives the 

maximal decrease of R. The algorithm is stopped when no switch 

decreases R. 

It is easy to show that any design can be transformed by a sequence of 

switches to any other design with the same design constants. We may 

regard the mininum number of switches required for the transformation of 

one design into another as a kind of distance between the two designs. 
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Under this distance measure, the design found by phase 2 is "locally 

optimal", in the sense that any of its "neighbours" (i.e. any design that 

can be reached in a single switch) has a lower efficiency. This does not 

guarantee that the design is (globally) optimal. The choice of a 

reasonable starting point (the result of phase 1) may be crucial for 

this. For small design constants, the algorithm consisting of phase 1 

and phase 2 turns out to work well. For large designs, phase 2 is more 

frequently "trapped" by locally optimal designs. This problem can, to 

some extend, be solved by the addition of a third phase: 

Phase 3. A procedure for randomized search, which may be· regarded as a 

primitive version of simulated annealing (see e.g. Geman and Geman 1984) 

is as follows. Proceed as in phase 2, with the result of phase 2 as the 

starting point, but add during the search for the optimal switch a small 

random pertubation to each change of R computed. Thus, as the next 

switch to be performed, we select the one (among those allowed) with the 

smallest value of, say, 

where R(b1 ,t1 ,b2 ,t2 ) is the value of R after the switch determined by 

(b1 ,t1 ,b2 ,t2), zb t b t is a pseudo-random number on [0,1 ] ' and 
1 122 

A is a suitable scaling factor. For small values of A this gives a 

procedure which tends to decrease R "on average" , while still (if A 

is not too small) able to escape local minima for R. Phase 3 is 

terminated when no significant improvement has been observed for some 

time. Then, A is set to zero again, and phase 2 is repeated. Of 

course, A may also be changed during the algorithm. In our test runs, 

we have used an interactive program which allows the user to choose A 

(and the number of steps to follow with switches chosen by that A) on 

the basis of the list of previous efficiencies. A successful strategy 

seems to be to "shake" the system occasionally by relatively long 

sequences of switches chosen with a large value (say, 0.01 or 0.001) of 
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A , alternating with (shorter) local optimization sequences with A = 0 . 

Another strategy, more in the spirit of simulated annealing, would be to 

decrease A slowly. 

The purpose of the algorithm described here is to provide a unified 

method for construction of good (optimal or almost optimal) designs for 

experimental situations where no classical solution (BIBD, PBIBD etc.) is 

available. The algorithm has been presented here only for the case where 

block sizes and replicate counts are equal, but it can easily be adapted 

(our present version is in fact adapted) to the case of different block 

sizes and/or different replicate counts. It is also easy to modify the 

algorithm to search for minimum values of other linear combinations of 

the contrast variances than R, e.g. the average of contrast variances 

between test treatments and a single baseline treatment. However, since 

little can be said about optimality in complicated situations, the only 

way of testing the algorithm is to apply it to situations where the 

optimal design is known, by proof or by qualified conjecture. The 

following reports on test runs show some strong and weak points. 

Example 6.1 (a sample of BIBDs). For given T and k < T , let B be 

the smallest integer such that both r = kBIT and A = k(k-1)B/(T(T-1» 

are integer. The algorithm was applied to the 51 sets of design 

constants (B,T,k,r) of this form satisfying 3 ~ T ~ 12 and B ~ 56 

In all cases, a BIBD is known to exist, and it is known (Kiefer 1958) 

that BIBDs are optimal when they exist (in fact, this follows also from 

proposition 5.2). A BIBD was found as the result of phase 2 in 40 out of 

the 51 cases. The number of switches required by step 2 was less than 12 

in these cases. In 10 of the 11 remaining cases, a BIBD was found in 

phase 3 in less than 40 switches. Only in one case, (B,T,k,r) = 
(33,12,8,22) the search was given up after 60 randomized switches; 

surprisingly, perhaps, the complementary BIBD to this was found in phase 

2 after 8 switches. 

This test run was later extended to cover the 57 cases with 13 ~ T ~ 22 

(still assuming B ~ 56). Randomized search was not tried in these 



39 

cases, and the finding of a BIBD by phase 2 was a rare event, which 

occurred only in the 10 cases with T = B = k+1 = r+1. It is 

remarkable, however, that the efficiencies of the locally optimal designs 

found by phase 2 came very close to those of the corresponding BIBDs. 

Only in three cases did that difference exceed 0.01, and it never 

exceeded 0.02. The maximal number of switches required by phase 2 to 

obtain local optimality was 28. 

Example 6.2 (a sampLe mainLy consisting of reguLar graph designs). John 

and Mitchell (1977) list 145 triples (T,k,r) for which the optimal 

design has been found by systematic search among all possible designs. 

In all but 9 cases, a design with the same efficiency as the optimal 

design (reported with 3 significant digits by John and Mitchell) was 

found by phase 2. In the remaining 9 cases, designs with at least that 

efficieny minus 0.001 was found. The number of switches performed was 

less than 8 in all cases. 

Example 6.3 (simpLe Lattices for k = 3, 4, 5 and 6). The algorithm 

2 was applied to design constants of the form B = 2k , T = k , r = 2 , 

for k = 3, 4, 5 and 6. A simple lattice (cfr. example 3.4) was found by 

phase 2 after I, 3, 2 and 5 switches, respectively. 

Example 6.4 (two a-Lattices). The algorithm was applied to the two 

situations of example 5.1 and 5.2, where very efficient (optimal?) 

a-lattices are known to exist. For example 5.1 (B=32, T=40, k=5, r=4) a 

design of efficiency 0.79020 -i.e. only 0.00028 less than the efficiency 

of the a-Iattice- was found in phase 2 after 16 switches. For example 

5.2 (B=15, T=20, k=4, r=3), a locally optimal design with efficiency 

0.7441 was found after 5 switches. This is 0.0006 less than the 

efficiency of the a-lattice. 

The conclusion of these and several other less systematic test runs is 

that the algorithm consisting of phase 1 and 2 is excellent for finding 

designs which are almost as efficient as those believed to be optimal. 

Quite frequently, the (conjectured or proved) optimal design is actually 
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found. The addition of phase 3 improves considerably the ability to 

find these designs, but for large design constants the increasing number 

of switches required (and the increasing size of the search taking place 

in each step) makes the algorithm expensive. 

Our experiences confirm the conjecture put forward by John and Mitchell 

(and several other authors) that the optimal design is a regular graph 

design whenever such a design exists. Indeed, the switches chosen in 

phase 2 tend to shrink the distribution of the values of A(t' ,t") 

whenever possible. Only 10 of the 145 designs found in the test run 

described by example 6.2 were not regular graph designs (and some of 

these were of dimensions for which a regular graph design does not 

exist). Also conjectures about the optimality of a-lattices were 

confirmed. We tried to take the two a-lattices referred to in example 

6.4 as starting points for phase 2 and 3. Both were found to be locally 

optimal, and even careful "shaking" by phase 3 tended to create designs, 

which were transformed back to the initial a-lattice when phase 2 was 

repeated. 

Computations. The performance of our algorithm relies heavily on the 

following propositions which result in simple and computationally cheap 

expressions (proposition 6.3) for the change of R resulting from the 

addition of a connection or a switch. 

Proposition 6.1. For a given design (or design network), consider the 

operation which adds a connection of unit resistance between bLock point 

and treatment point to The change of the resistance between t' 

and t" resuLting from this operation is given by 

= R(t' , t") R (t',t") 
new 

(with notation as in section 2). 
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Proof. Consider what happens to the fundamental matrix C when a 

connection from bO to to is added. Obviously, 

C new = C + 

Hence, the network equations determining the potentials of the new 

network when current 1 from t' to t" is induced can be written 

(cfr. the proof of theorem 2.1) 

(C + 

or 

c [ = - (v - v ) (1 + It ) 
to bO bO 0 

= 

+ 

Assuming that cc = (which is merely to assume 

that the solution to the new network equations satisfies the same 

uniqueness constraint as assumed for the old one by our choice of C 

e.g. 2: v t + 2: vb = 0 or v t" = 0 ), multiplication by C from the 

left of this equation gives 

= + C (6.1) 

Further multiplication by * (lb + It) from the left yields the equation 
o 0 

= 

which can be solved for v - vb ' giving 
to 0 
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= 

Substitution of this in (6.1), followed by mUltiplication from the left 

with (It' - It") • gives 

v t' - v t" = 

= + R(t' ,t") 

which concludes the proof.D 

Remark. A similar formula for removaL of an existing connection between 

bO and to is 

= R(t', t") R (t' ,t") 
new + 

Notice that the denominator here must be positive if the operation is 

allowed. Of course, R(bO,tO) is always ~ 1 when a connection between 

bO and to is present. If R(bO' to) is equal to 1, this connection 

represents the only path from bO to to in the network, and only in 

that case does the removal create a disconnected design. 

Proposition 6.2. Consider the switch operation on the design network 

which removes the two connections bItI and b2 t 2 and adds the two 

"crossing" connections b I t 2 and b2 t I The effect of this on the 

resistance between two arbitrary treatment points t' and t" is given 

by 
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R (t' ,t") 
new 

= R(t' ,t") + 

(o~C-Ot)(A*C-Ob)2 + (O~C-Ob)(A*C-Ot)2 + 2(1-o~C-ot)(A*C-ot)(A*C-ob) 

(1 - o~C-Ot)2 - (o~C-Ot)(o~C-ob) 

where 

°t = I - It 
t1 2 

ob = lb lb and 
1 2 

A = It' - It" 

Proof. The proof is similar to that of the previous proposition, except 

that the updating of C required by a switch amounts to the addition of 

a matrix of rank 2; therefore, the equation for v - vb ,which was 
to 0 

solved in the proof of proposition 6.1, is replaced by two equations in 

the two variables v t - v t and vb - vb 
1 2 1 2 

We start by noticing that 

the change of C due to the switch operation can be written 

C = new 

= C -

Thus, the network equations for current 1 from t' to t" (after the 

switch) can be written 

= 

or 

C [ = + A 

Imposing the same uniqueness constraint on the potentials v t and Vb 

as before the switch (i.e. assuming that 
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combination of the columns of C ) multiplication from the left yields 

= + C 11 (6.2) 

Further multiplication from the left by 

equations 

0* and 
t 

s:* h u b gives t e two 

= * -+ 0 C 11 
t 

= 

which can be regarded as two linear equations in the two variables 

and The determinant 

is positive in the situations where the switch will not create a 

disconnected design. This follows from a seperate argument, given at the 

end of the proof. It remains to solve the equations for (vt - v t ) and 
1 2 

(vb - vb ), insert the result in (6.2) and multiply by 11* from the 
1 2 

left to obtain an explicit formula for R (t' ,t") 
new 

lengthy but straightforward calculations are omitted. 

= Vt,-Vt " . These 

In order to see that the determinant must be positive, suppose that a 

current in the network (as it was before the switch) of 1 ampere from tl 

to b1 is induced by a potential difference of R(t1 ,b1) between the 

points tl and b l . Schematically, this situation will be as 

illustrated by figure 17. The resistance R(t1 ,bl ) can be decomposed 
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Figure 17 

as a parallel combination of two, the unit resistance to be removed by 

the switch and the rest of the network represented by the box. The 

current through the single connection is R(t1 ,b1) , and the current 

through the remaining part of the network must then be 1 - R(t1 ,b1) 

It follows that the current through any single connection in the 

remaining part of the network must be less than or equal to 

1 - R(t1 ,b1). In particular, the current from b2 to t2 through the 

other connection to be removed by the switch is less than or equal to 

1 - R(b1 ,t1). This current is equal to the difference between the 

potentials at b2 and t 2 , which (cfr. the proof of theorem 2.1) is 

= 

Thus, 

* -- (1 + Ib ) C 
t2 2 

or, introducing the expression for R(t l ,b1) in terms of C, 

which can also be written 

(It + Ib ) 
1 1 

1 

The same argument with (t l ,b1) and (t2 ,b2 ) interchanged gives 

(6.3) 
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I (6.4) 

(the change of sign is due to the change of sign for 0t and ob)' 

Adding (6.3) and (6.4), we obtain 

2 

which can also be written 

+ 

Dividing by 2 and squaring both sides, and finally applying to the left 

h d . d h' 1 . (a+b)2 2 ab ( 1 . d f 11 an SI e t e Inequa Ity 2 va 1 or a a , b , with 

equality if and only if a = b ) we obtain 

(6.5) 

which is exactly the condition for the determinant occurring earlier in 

the proof to be nonnegative. 

Now, consider the situation where (6.3) is an equality. This means that 

all current not passing through the connection from tl to b l passes 

through the other connection to be removed. This corresponds to the 

situation outlined by figure 18. The removal of the two connections 

Fi.gure 18 

in this case would obviously create a disconnected network, and this 

disconnectedness would not disappear when the two new connections from 

tl to b2 and from t2 to b 1 were introduced. Conversely, if the 
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switch creates a disconnected design, the situation must be like this. 

It follows that if a switch is allowed, then (6.3), and thereby (6.5), 

will be sharp. On the other hand, if the switch creates a disconnected 

design, both (6.3) and (6.4) are equalities, and - since = 

= = in this case - so is (6.5).0 

Remark. The fact that a switch creates a disconnected design if and only 

if (6.5) is satisfied can be applied in the algorithm to avoid a tedious 

combinatorial check for connectedness. It suffices to check, for each 

switch considered, that (6.5) (which involves quantities that have to be 

computed anyway) is sharp. 

In principle, formulas for the change of average contrast variance due to 

a new connection or a switch can be obtained by averaging over all pairs 

of distinct treatments in the formulas of proposition 6.1 and 6.2. 

However, it is computationally cheaper to build this averaging into an 

initial computation of a matrix to be formed before the search among all 

possible extensions by a single connection or all possible switches. The 

computational formulas for this are given by the following proposition. 

Proposition 6.3. Define 

M 

where 

= c [T=1 ITxT - (T-i)T JTxT 

°BxT 

is the T x T identit ll matrix and j 
!c1 TxT is the T x T 

matrix with all entries equal to 1 . Then, the change of average 

contrast variance created by the addition of a (unit resistance) 

connection from to to bO is given by 

R = R -
new 
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The change of average contrast variance created by a switch (involving 

b1 ' t1 ' b2 and t2 as in proposition 6.2) is given by 

R new = R+ 
*- * - *- * (OtC 0t)(ObMob) + (obC 0b)(OtMOt) + 2(1 - 0bC 0t)(OtMob) 

(1 - o=c-ot )2 - (o~C-Ot)(o=C-ob) 

Remark. Once M has been computed, the change of average contrast 

variance due to a switch (or the addition of a connection) is essentially 

expressed in "matrix operation free" terms. Obviously, expressions like 

~* C- ~ * u b Ut or 0t M Ob are not matrix products from a computational point 

of view because they involve only the addition or subtraction of four 

elements of a square matrix. 

Proof. We shall only prove the formula for addition of a connection. 

The switch formula is proved in essentially the same manner. 

The formula for change of a single resistance R(t1 ,t2 ) when a 

connection from bO to to is added is given by proposition 6.1. The 

important term, involving t1 and t 2 , is the nominator 

= 

The averaging of this over all pairs (t' ,t") of distinct treatments 

amounts to the averaging of the matrix in brackets, which is easily seen 

to result in our matrix M. The desired result follows immediatelY.D 
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7. Notes and remarks. 

This section outlines relations to results and ideas put forward by other 

authors. and indicates some directions for further research. 

Borre and MeissL (1974). This paper seems to be the first presentation 

of a relation between potential theory and covariance structures. As 

noticed by H. Br0lls (lecture around 1974. unpublished). the theory 

presented by Borre and Meissl contains the main result of the present 

paper (theorem 2.1) as a special case. However. their exposition is 

based on the probabilistic interpretation of potential theory (the 

"electrical network" interpretation is found in an appendix). and the 

statistical problem investigated is the following. Suppose that 

measurements of height differences between certain points in a landscape 

are given. Denote the meaurements Yi . i € I . and let pi and pi be 

the two correponding points. so that Yi is a measurement of 

a , - a " . where 
Pi Pi 

a 
p 

denotes the true level (over the sea surface. say) 

of point p The classical statistical model for "smoothing" of such 

data states that the Yi are normally distributed. independent with 

E y. a , - a" and (for simplicity) known variances var(y.) = 
1 Pi Pi 1 

2 A 
a. The maximum likelihood or weighted least squares estimates a of 

1 p 
the true levels (given up to a common additive constant) are obtained by 

minimization of 

2 2 
2:. (y. - (a , - a,,)) /a. 

1 1 Pi Pi 1 

Now. the "electrical version" of the connection to potential theory can 

be explained as follows. Draw. for each measurement Yi . a line on 

map between the points pi and p': Think of the resulting graph 
1 

(which is assumed to be connected) as an electrical network in which 

connection corresponding to the i'th measurement has a resistance of 

the 

the 

2 
a. 

1 

ohm. Then. 

p to 

A A var(a , - a ,,) equals the resistance through the network 
p p 

from p". The probabilistic interpretation in terms of random 
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walks on the graph will be given later in this section. 

The observation made by Brcns was the following. Suppose that the graph 

is bipartite and that all a~ are equal. Denoting the two sets of 
1 

points by B and T, and denoting the levels of the two different kinds 

of points by at (t € T) and f3b (b € B) , we have the model 

N( - f3 . 
at. b. 

1 1 

which is merely the two-way additive model with a slightly unusual 

("subtractive") parametrization. The above mentioned electrical network 

2 is recognized as our design network (with resistances a instead of 

1 ), and (i) and (ii) of theorem 2.1 come out as special cases of the 

above mentioned result. In fact, (iii) can also be deduced from results 

in Borre and Meissl (1974). 

Dynkin (1980). In this paper, a relation between Markov processes and 

Gauss fields is presented. Roughly, the idea is that the Greens function 

(or potential operator) of a time homogeneous symmetric Markov process is 

a positive definite matrix which can be taken as the covariance matrix 

for a set of normal random variables. Interesting relations between 

properties of the Markov process and properties of the Gauss field are 

derived. The most striking result is probably the fact that conditional 

independence of two sets of variables in the Gauss field, given a third, 

occurs if and only if passage between the two sets of states in the 

Markov proces can only take place via the third. Relations to Markov 

random fields and statistical mechanics are discussed. More recently, 

YLvisaker (1986) followed up some of these ideas and noticed their 

relation to design and prediction problems of a more general nature. 

The following probabilistic considerations indicate the connections 

between Dynkin's approach, the random walk approach followed by Borre and 

Meissl and the electrical network approach followed in the present paper. 
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Consider a graph with P (= BUT, if desired) as its set of points 

and let n, " 
p p 

denote the number of connections (or an arbitrary weight 

assigned to the connection) between points p and p" Consider a 

continuous time Markov process on P, jumping between points of the 

graph with intensities equal to the multiplicities n , ". Thus, the p p 
intensity matrix A ( = the generator of the transition semigroup) for 

this process has off-diagonal elements np'p'" and the diagonal 

elements are determined by the convention that row sums (and thereby 

column sums, in the symmetric case) should be zero. The semigroup of 

transition matrices is 

()() 

= exp( tA) 

If the graph is connected, this Markov process is ergodic, and the unique 

stationary distribution is easily seen to be the uniform distribution on 

P. The potentiaL operator G is formally defined by 

G = 
()() 

f pt dt . 
o 

This integral is divergent, but G is welldefined as a linear operator 

on the subspace 

u = { u E ffiP I ~ u = 0 } 
p 

Indeed, the spectral decomposition of the symmetric matrix pt can be 

shown to be of the form 

= + 
Ipl 
2: 

j=2 
1\: P. 

J J 

with PI = the matrix with all entries 1/lpl (the orthogonal 

projection onto and It follows that the integral 
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()() 

f pt u dt 
o 
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= 
()() Ipl 
f ( 2: 
o j=2 

A: P.u ) dt 
J J 

is welldefined for u € U The potential operator G is a (restriction 

of a) generalized inverse of -A in the sense that 

AGu = GAu = -u for u € U . 

This follows by integration from 0 to ()() of the identity 

= = 

Since the matrices pt are positive definite = pt/2 pt/2 = 
Pt/2 (pt/2)* ), I b I f so is any positive inear corn ination or integra 0 

these matrices. In particular, G is positive definite in the sense 

that it can be taken as the "covariance" for a Gaussian distribution on 

ffiP ; the fact that G is only defined on U means that this 

distribution is only given up to an additive (random or deterministic) 

constant to be added to all coordinates. Or, equivalently, only 

variances on (and covariances between) random variables of the form 

2: a z 2: a = 0 , are determined by G. This is Dynkins p p p 
construction of a Gauss field on P for the special case of a finite set 

P and a non-defective semigroup (pt) . 

In order to relate this construction to the electrical network, consider 

a stochastic system where particles are generated according to a Poisson 

process of intensity 1 at the point p and absorbed (killed) at the 

point p". The particles are assumed to behave independently according 

to the transition semigroup (pt) (except for the absorbtion at p" ). 

After a long time, the system will be in equilibrium, and we can define 

v = (v ) p = ( E n (t) ) 
p 

= the vector of expected numbers of particles in the different states at 
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time t. Straightforward arguments, concerning the expected numbers of 

transitions in a small time interval, show that these expected counts 

satisfy the matrix equation 

-A v = 1 ,- 1" p p 

which is recognized as the matrix equation summarizing the laws of 

Kirchhoff (cfr. section 2) for current 1 from p to p" , under the 

usual interpretation of the graph as an electrical network. This 

confirms an obvious (and wellknown) interpretation of electricity as a 

large number of charged particles moving around in a random fashion. At 

the same time, it follows from what was said about the potential operator 

above that a solution to the network equations is given by 

v = G ( 1 , - 1 " ) 
p p = 1 , 

p - 1 " ) dt p 

and the resistance of the network from p to p" is 

R(p' ,p") = = * (1 , - 1 ,,) v 
p p 

* = (1, - 1 ,,) G (1 , - 1 ,,) p p p p 

In the special case of a bipartite graph 

p and p" both in B or both in T) 

( P = BUT , n , " = 0 for pp 
this means that the covariance 

of the set of estimates in the additive model (section 2) coincides with 

the covariance of Dynkin's Gauss field (apart from our change of signs 

for block parameters). A similar interpretation can be given to the 

covariance of the set of estimates in the more general levelling type 

problem considered by Borre and Meissl, when the integer multiplicities 

n , " are replaced by arbitrary intensities (or precisions) 
p p 

2 
1/a. 

1 

The resistance R(p' ,p") can be given a more concrete interpretation in 

the Markov process framework. Assuming that particles are absorbed at 

is the "h 0 d th R(p , ,p") p ,we ave v" = ,an us 
p 

= V I • Now, v I 

P P 
expected number of particles at state p' when the system is in 
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equilibrium. Since particles are created at p at a rate of 1 per time 

unit, and since a particle present at p leaves p after an 

exponentially distributed waiting time of expected duration 1/( -a , ,) 
p p 

(where a pp is the p'th diagonal element of A , or minus the number of 

connections to p), we have 

R(p',p") = V , 
p 

= expected number of particles present at p 

= 
expected number of visits at p of a single particle 

-a , I 

P P 

The last expression gives the interpretation emphasized by Borre and 

Meissl. The chain of states visited by a particle starting at p can 

be described as a random walk on the graph which, in each step, jumps to 

a random state among those connected to the present state, until the 

absorbing state p" is reached for the first time. Thus, R(p' ,p") 

equals the expected number of visits (including the initial "visit") at 

p of a random walk starting in p' before it hits p" , divided by the 

number of connections to p Notice that this gives a very simple 

probabilistic interpretation of contrast variances in terms of random 

walks on the design network. We shall make an application of this in the 

discussion of the variety-concurrence graph below. For a more careful 

exposition of the relation between Markov chains and electrical networks, 

see Kemeny, Snell and Knapp (1976). 

Paterson (1983) and Paterson and WiLd (1986). For a binary design with 

blocks of equal size k, define the variety concurrence graph as 

follows. As the set of points in this graph we take the set T of 

treatments, and a connection between t' and t" is introduced for each 

block in which both t' and t" occur. Thus, there are A(t' ,t") 

connections between t' and t" , in the notation of proposition 4.1. 

Now, a very brief outline of the main result on which Patersons 

1983-paper is based can be given as follows. Consider the information 

matrix 

= = 1 * reI - - N N) kr 
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for treatment effects, cfr. the beginning of section 5. Formally, an 

inverse to this is given by the Taylor expansion 

Unfortunately, er is not regular and the series is not convergent, but 

it can be seen that the infinite sum is welldefined as an operator on the 

subspace U of vectors with coordinate sum 0 in the same sence as the 

potential operator G defined earlier in this section, and that this 

operator is (a restriction of) a generalized inverse to er in the same 

sense as G was an inverse to A. It follows that contrast variances 

can be computed as convergent sums 

= 

and the average contrast variance can, accordingly, be computed as a 

convergent sum in which the important (design-dependent) quantities will 

be traces of powers of N*N Now, the trace of (N*N)n can be 

expressed as a linear combination of the numbers of cycles of lengths 2, 

3, ... , n in the variety concurrence graph, and so the average contrast 

variance (and thereby the harmonic mean efficiency) can be expressed in 

terms of these combinatorial quantities. Paterson did this and concluded 

that high efficiency of a design can be expected when the 

variety-concurrence graph has few cycles of low order. The paper 

conjectures that optimal designs are characterized by the property that 

the number of two-cycles is minimal, the number of three-cycles given the 

number of two-cycles is minimal etc. Paterson and Wild (1986) followed 

this up by giving exact upper bounds for the efficiency in terms of the 

number of triangles under various conditions. 

The variety-concurrence graph does not, as opposed to our design network, 

contain the full information about the structure of the design. For 

example, a BIBD with A = 1 and a design consisting of a single complete 

block will have the same variety-concurrence graph. However, it follows 
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from Patersons results that this graph does (together with the block 

size) give information about contrast variances etc. It is tempting to 

ask, in the present context. whether it makes sense to think of the 

variety-concurrence graph as an electrical network. This turns out to be 

the case. and there are two very simple ways of seeing it. 

The first argument is probabilistic. Consider a random walk on the 

design network. as discussed earlier in this section. The bipartiteness 

of this graph implies that the state of such a random walk will alternate 

between treatment and block type. Thus. if we start at (discrete) time 

o in a treatment point and consider the states at even times only, we 

have a Markov chain with state space T It is easy to see that this 

chain behaves like a random walk on the variety concurrence graph. except 

that it remains in its present state with a certain positive probability 

in each step. The probabili ty of "no shift" is obviously l/k. because 

return to the same treatment once more from the intermediate block state 

is always l/k Notice that equal block sizes and the fact that the 

design is binary are essential here. Now. for a proper random walk on 

the variety-concurrence graph (i.e. one that makes a proper shift each 

time). we know (by arguments similar to those applied earlier in this 

section to the design network) that the expected number of visits in t' 

for a random walk starting at t' and being killed at its first visit to 

t" is 

where R (t' .t") vc 
graph from t' to 

(k-l) r R ( t ' . t" ) 
t vc 

denotes the resistance through the variety-concurrence 

t" . when the graph is regarded as an electrical 

network with connections of unit resistance (the number of connections to 

t' in this graph is (k-l)r t ). We know. on the other hand. that the 

expected number of visits to t' of our "delayed" random walk on the 

variety-concurrence graph is equal to r t R(t' .t") . because this is the 

expected number of visits to t' for the random walk on the design 

network from which the chain was constructed. But the "delayed" chain 

can be modelled as a proper random walk with a geometrically distributed 

wai ting. time following each shift. Thus. the expected time spent in t' 
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by the "delayed" chain equals the expected time spent there by a proper 

random walk, multiplied by the factor 

1 1 2 
( 1 + i{ + (i{) +... ) = 

k 
k-1 

which is the expected duration of each visit to t' . It follows that 

r t R(t' ,t") = 
or 

R(t', t") = k R (t' t") vc ' 

An alternative proof of this simple relation can be based on the socalled 

star-deLta transform for electrical networks, see e.g. Bollobas (1979). 

According to this rule, a point in an electrical network and its 

connections to other points (a "star") can be replaced by a set of 

connections between the points connected to it (a "delta"), without 

affecting the resistances between other points of the network. The 

formula for the resistances of the new connections implies that a "star" 

with k "rays" of unit resistance should be replaced by a "delta" 

consisting of (~) edges of resistance k. If we apply this 

transformation to all block points of the design network, we obviously 

end up with the variety-concurrence graph, except that all resistances 

will be k instead of 1. The above relation between R and R 
vc 

follows immediately. 

Thus, for binary designs with equal block sizes, we have an 

interpretation of resistances through the variety-concurrence graph which 

is similar to our interpretation of resistances through the design 

network. The only difference is that the resistances should be 

k 02 02 multiplied by instead of to give the contrast variances. 

Unfortunately, this seems not to simplify the situation in concrete 

applications like those made in section 3. The variety concurrence graph 

has fewer points than the design network, but the number of connections 

is much larger. There seems not to be any relation between our upper 
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bounds for efficiences based on short circuiting and those given by 

Paterson and Wild in terms of the number of triangles. 

EccLeston and Hedayat (1974) discuss concepts of connectedness which are 

clearly equivalent to, or at least closely related to, graph theoretical 

connectedness properties of the design network. Up to small 

modifications, their concepts can be characterized as follows. 

Connectedness in the usual sense is called LocaL connectedness, and the 

following two stronger conditions are considered: 

Pseudo-gLobaL connectedness : After the removal of any treatment 

point and its connections to block points, the graph is still 

connected. 

GLobaL connectedness : After the removal of any two treatment 

points and their connections to block points, the graph is still 

connected. 

This description seeems not to be quite correct, because Eccleston and 

Hedayat work with a version of the basic "path definition" of 

connectedness according to which a chain t 1b1t 2b2 ... must not contain a 

treatment which has itself as its neighbours neighbour, i.e .... tbt ... 

is not allowed. This makes no difference as to the definition of local 

connectedness, but for the two more complicated concepts it means that 

our description is not quite precise. However, apart from such 

divergencies the above characterization is roughly correct, and probably 

a sufficient description as far as the main results of their paper are 

concerned. These results state that designs which are optimal in a 

certain sense must, under suitable conditions on the dimensions, posess 

one or both of the two last connectedness properties. The concept of 

optimality referred to is roughly equivalent to S-optimality (Shah 1960), 

which amounts to the minimization of the square sum of the eigenvalues of 

the information matrix for treatment effects. The proofs are based on 

the idea that if such connectedness properties are not present, then it 

is possible to find a switch which improves the design. There is no 

immediate way of generalizing these results to the concept of optimality 
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based on the harmonic mean efficiency (A-optimality), but since the 

criterion on which S-optimality is based can be regarded as (a 

transformation of) a second order approximation to the efficiency, their 

results strongly suggest that such connectedness properties are 

important. A study of these ideas in connection with graph theoretical 

concepts of connectedness might very well turn out to be fruitful. 

lanes (1976) and lanes and EccLeston (1980). Our algorithm for 

optimization of designs (section 6) can be regarded as a further 

improvement of an algorithm originally due to Jones (1976) and improved 

by Jones and Eccleston (1980). The main differences lie in the strategy 

for choice of switches and the computational tools on which these choices 

are based. The algorithm of Jones used an approximation to the inverse 

of the information matrix er after a switch. The improved algorithm of 

Jones and Eccleston can be descibed as follows. In a first stage, an 

initial (almost arbitrary) design of the desired dimensions is modified 

by a sequence of exchange procedures. An exchange procedure is, in our 

terminology, the removal of a single connection followed by the addition 

of a new connection from the same block point to an other treatment 

point. Notice that block sizes are unchanged, while replicate counts are 

changed. In each step, the choice of the next exchange procedure to be 

performed is based on computational formulas similar to our formula for 

change of R when a new connection is added (proposition 6.3) or 

deleted. The strategy is roughly based on the principle that R should 

be decreased as much as possible by each exchange, but since the 

computational tools give only the result of a single (delete or add) 

operation, a more complicated strategy must be used. When this strategy 

fails to give further improvement of the design, a second phase 

consisting of a sequence of interchange procedures (i.e. switches) is 

initiated. In this phase, switches are performed according to a rather 

complicated strategy. The need for a complicated strategy is obvious, 

since the computational tools are still the same, so the final result of 

a switch is not visible before the switch has almost been performed. A 

direct comparison with our algorithm is difficult on the basis of the 

paper by Jones and Eccleston, but we have worked with similar ideas, and 
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it is our experience that the final result of a switch is very difficult 

to predict from such "single step forecasts". 

At the end of their paper, Jones and Eccleston have an interesting remark 

concerning designs with k = 2 and B = T. It appears that the 

circular designs (cfr. our example 3.1) are not always optimal here when 

the replicate counts are allowed to vary freely. For B = T = 10, 11 and 

12 designs of higher efficiency than the circular design (and with 

unequal replicates, of course) were found. Incidentally, this is a 

situation where the network approach gives a complete solution to the 

optimization problem, and since this is a very illustrative example the 

arguments will be briefly outlined here. 

For B = T and k = 2 the design network must necessarily be of the form 

illustrated by figure 19 for the case B = T = 10, i.e. a circular 

subgraph equipped 

Figure 19 

wi th a number of "rays" (figure 19 is actually the vari ty concurrence 

graph, but the design network comes out of it if we imagine a block point 

at the midpoint of each connection). This is so for combinatorial 

reasons. A connected graph with B + T points and B + T - 1 

connections is a tree, i.e. a graph without cycles, and if a single 

connection is added to this, a graph with exactly one cycle comes out of 

it. Now, it is easy to see that the operation which collects all the 

rays in the same treatment point (without changing their lengths) will 
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improve the design. For example. the design of figure 20 is better than 

Figure 20 

that of figure 19 because resistances between treatment points on the 

rays are either decreased or unchanged by this operation. while the 

average of the remaining contrast variances is obviously unchanged. 

Similarly. it is easy to see that the operation which breaks a long ray 

into pieces and fixes these pieces as shorter rays at the same point of 

the cycle. will improve the design. Thus. the design of figure 21 is 

better than 

Figure 21 

that of figure 20. These arguments show that an optimal design in this 

case is always of the form indicated by figure 21. i.e. a circular design 

involving some of the treatments. extended by a number of blocks in which 

the remaining treatments occur together with a selected treatment from 

the circular design. By the rules for parallel and serial combination 

and some straightforward summations. it is not difficult to compute the 
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average contrast variance of a design like this. It turns out to be 

1 1 
(c-1)(c+1)(3 B - 6 c) + 2(B-c)(B-1) 

= 
B(B-1)/2 

where c is the number of treatments in the circular design. A 

straightforward analysis of the behaviour of this third order polynomial 

in c for fixed B gives the following surprisingly complicated 

solution to our optimization problem: 

For B ~ 8 the circular design (c = B) is optimal. 

For 9 ~ B ~ 12 the design with c = 4 is optimal. The replicate 

counts of this design are B-2, 2, 2, 2, 1, 1, ... , 1. 

For 12 ~ B the design with c = 3 is optimal. The replicates are 

B-1, 2, 2, 1, 1, ... , 1, and the design can be regarded as a design 

with B-1 blocks in which a selected "baseline treatment" is 

compared with the remaining B-1 treatments, extended by a single 

block with two arbitrary (non-baseline) treatments. 

The overlap for B = 12 means that the two designs with c = 3 and 4 

have the same efficiency. The complexity of the solution confirms the 

impression that optimization of designs is a difficult matter. 

Recovery of interbLock information. One final result deserves to be 

mentioned here because it indicates that the design-network relation goes 

deeper than we have been able to decover. It turns out that the recovery 

of interblock information by a model with random block effects has a 

natural counterpart in the network context. More specifically, we are 

thinking of a design with equal blocksizes and an additive model of the 

usual form, in which the block parameters ~t are assumed to be 

independent normally distributed random variables with the same mean and 

the same variance 2 
w Consider the design network as defined in 

section 2, but (for simplicity) with connections of resistance 2 a 
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instead of 1. so that contrast variances in the model with fixed block 

effects are simply equal to the corresponding resistances. Extend this 

network by the addition of a single point with a connection of resistance 

2 w to each block point. The resistances between treatment points in 

this extended network turn out to be equal to the corresponding variances 

on (generalized least squares or maximum likelihood) estimates of 

treatment contrasts in this variance component model. The proof of this 

is straightforward. but too lengthy to be given here. Notice how the two 

. . 2" 2 extreme sItuatIons w "a large (almost no gain over the fixed effects 

model) and w2/a2 small (almost equivalence with the model without block 

effects. corresponding to a network created from the present one by 

contraction of all block points to a single point) are nicely reflected 

by the properties of this network. 
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