M.R.Leadbetter Holger Rootzén

## Extremal Theory for

## Stochastic Processes


M.R. Leadbetter" and Holger Rootzén

EXTREMAL THEORY FOR STOCHASTIC PROCESSES

Preprint 1987 No. 5

INSTITUTE OF MATHEMATICAL STATISTICS UNIVERSITY OF COPENHAGEN

August 1987

# EXTREMAL THEORY FOR STOCHASTIC PROCESSES 

by<br>M.R. Leadbetter<br>University of North Carolina<br>Holger Rootzén<br>University of Copenhagen

The purpose of this paper is to provide an overview of the asymptotic distributional theory of extreme values for a wide class of dependent stochastic sequences and continuous parameter processes. The theory contains the standard classical extreme value results for maxima and extreme order statistics as special cases but is richer on account of the diverse behavior possible under dependence in both discrete and continuous time contexts. Emphasis is placed on stationary cases but some departures from stationarity are considered. Significant ideas and methods are described rather than details, and in particular the nature and role of important underlying point processes (such as exceedances and upcrossings) are emphasized. Applications are given to particular classes of processes (e.g. normal, moving average) and connections with related theory (such as convergence of sums) are indicated.

## CONTENTS

1. Introduction: the classical theory of extremes
1.1 Scope and content of the paper
1.2 Classical extreme value theory
1.3 Point processes associated with extremes
2. Extremes of sequences
2.1 The Extremal Types Theorem for stationary sequences
2.2 The Extremal Index
2.3 Relevant point process concepts
2.4 Convergence of point processes associated with extremes
2.5 Normal sequences: the comparison method
2.6 Regenerative and Markov sequences
2.7 Moving averages
2.8 Rates of convergence
2.9 Multivariate extremes
2.10 Convergence of sums to non-normal stable distributions
2.11 Miscellanea
3. Extremes of continuous parameter processes
3.1 The extremal types theorem for stationary processes
3.2 Domains of attraction
3.3 Extremes of stationary normal processes
3.4 Finite upcrossing intensities and point processes of upcrossings
$3.5 x^{2}$-processes
3.6 Diffusion processes
3.7 Miscellanea

Research supported by the Air Force Office of Scientific Research Contract AFOSR 85 C 0144 and by the Danish National Science Research Council.

Key words and phrases: Extreme values, stationary processes, point processes
AMS 1980 subject classification: primary 60G10, secondary 60-02, 60G15, 60G17, 60G55, 60F05.

### 1.1 Scope and content of the paper

The purpose of this paper is to give a "motivated overview" of the principal results in and related to the distributional theory of extremes of stationary sequences and processes. In particular we shall be concerned with distributional properties of the maximum $M_{n}=\max \left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ and other order statistics from stationary sequences $\left\{\xi_{i}\right\}$ as $n \rightarrow \infty$ and with corresponding results for continuous parameter processes. The emphasis throughout will be on the motivation for and significant methods used in obtaining the results. Full proofs will not generally be given - in many cases the details of such proofs may be found in the volume [66], or from the references cited.

The results to be described may, in part, be regarded as extensions of the classical theory of extremes of sequences of independent, identically distributed (i.i.d.) random variables (r.v.'s), cf. [46, 44]. However, they constitute more than just such an extension of the classical theory, since the dependent framework provides a natural setting for the theory and one in which its essential ideas and methods may be clearly exposed. In particular, it will be seen that the central results may of ten be regarded as special cases of the convergence of certain point processes - a view which may of course be taken in the classical case but which is less needed there in view of the detailed i.i.d. assumptions. Our discussion will emphasize the centrality of these underlying point process convergence results.

As indicated in the list of contents, this paper is organized in three main parts. This first introductory part contains central distributional results of the classical i.i.d. theory and, in particular, the "Extremal Types Theorem" which restricts the possible limiting distributions for maxima to essentially three "different types". We shall indicate only the general organization and main features of the most recently available derivations of
these results.
The second part of the paper concerns extremes of sequences - primarily (but not always) assumed stationary and is largely based on point process methods. It will be seen that the classical theory may be regarded as a special case of the more general theory for dependent sequences - some results being identical and others generalizing in interesting and non-trivial ways. For example, under weak dependence restrictions, the general "type" of limiting distribution for the maximum is the same as for an i.i.d. sequence with the same marginal d.f. (though the normalizing constants may change). However, the limiting distributions for other order statistics can be quite different from those under i.i.d. assumptions.

Some particular cases of special interest (e.g. normal sequences, moving averages, Markov sequences) will be discussed in Part 2. Other aspects of the theory (e.g. rates of convergence, multivariate extremes) are also briefly described along with some interesting connections with convergence of sums.

In Part 3 attention is turned to continuous parameter processes. The theory here may be made to rest on the sequence case by the simple device of regarding the maximum of a process $\xi(\mathrm{t})$ up to, say, time $\mathrm{T}=\mathrm{n}$ as the maximum of the values of the sequence $\zeta_{i}=\sup \{\xi(\mathrm{t}): \mathrm{i}-1 \leq \mathrm{t} \leq \mathrm{i}\}$, for $1 \leq i \leq n$. While this is simple and obvious in principle, the details are more complicated and require analogous but somewhat more intricate assumptions regarding the dependence structure of the process. The point process approach is also very valuable here - considering, for example, upcrossings of high levels in lieu of exceedances. Again, a rather full and satisfying theory results and is applied, in particular, to special cases such as normal and $\chi^{2}$ processes. Properties of point processes of local maxima may also be obtained, as will be briefly indicated.

It may be noted that the stationarity assumption, where made, primarily
provides for convenience and clarity, and that some departures from this will either not alter the result, or will alter it in an interesting way which can be determined. This will be evident, e.g. in discussion of normal sequences, where extensions to useful non-stationary cases will be briefly mentioned. Finally this paper is not by any means intended as a complete review of all aspects of extremal theory - a number of important topics are not referred to at all. Rather it is our purpose to provide an overview of much of a developing area which includes but is more widely applicable than the classical theory, and is based on the interplay of interesting mathematical techniques. In particular we emphasize recent results - especially those obtained since the publication of the volume [66].

### 1.2 Classical extreme value theory

The principal concern of classical extreme value theory is with asymptotic distributional properties of the maximum $M_{n}=\max \left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ from an i.i.d. sequence $\left\{\xi_{i}\right\}$ as $n \rightarrow \infty$. While the distribution function (d.f.) of $M_{n}$ may be written down exactly $\left(\mathrm{P}_{\mathrm{M}} \mathrm{M}_{\mathrm{n}} \leq \mathrm{x}\right\}=\mathrm{F}^{\mathrm{n}}(\mathrm{x})$ where F is the d.f. of each $\left.\xi_{\mathrm{i}}\right)$, there is nevertheless virtue in obtaining asymptotic distributions which are less dependent on the precise form of F, i.e. relations of the form

$$
\begin{equation*}
P\left\{a_{n}\left(M_{n}-b_{n}\right) \leq x\right\} \rightarrow G(x) \quad \text { as } n \rightarrow \infty \tag{1.2.1}
\end{equation*}
$$

where $G$ is a non-degenerate d.f. and $a_{n}>0, b_{n}$, are normalizing constants.
The central result of classical extreme value theory, due in varying degrees of generality to Fréchet [42], Fisher and Tippett [41], and Gnedenko [45], restricts the class of possible limiting d.f's G in (1.2.1) to essentially three different types as follows.

Theorem 1.2.1 (Extremal Types Theorem). Let $M_{n}=\max \left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ where $\xi_{i}$ are
i.i.d. If (1.2.1) holds for some constants $a_{n}>0, b_{n}$ and some non-degenerate G, then $G$ must have one of the following forms (in which $x$ may be replaced by ax +b for any $\mathrm{a}>0, \mathrm{~b}$ ):

$$
\begin{aligned}
& \text { Type I: } \quad \mathrm{G}(\mathrm{x})=\exp \left(-\mathrm{e}^{-\mathrm{x}}\right) \\
& \text { Type II: } \quad \mathrm{G}(\mathrm{x})= \begin{cases}0 & -\infty<\mathrm{x}<\infty \\
\exp \left(-\mathrm{x}^{-\alpha}\right), \text { for some } \alpha>0 & \mathrm{x} \leq 0 \\
\text { Type III: } \mathrm{G}(\mathrm{x})=\left\{\begin{array}{ll}
\exp \left(-(-\mathrm{x})^{\alpha}\right), \text { for some } \alpha>0 & \mathrm{x} \leq 0 \\
1, & \mathrm{x}>0 .
\end{array}\right\}\end{cases}
\end{aligned}
$$

Conversely any such d.f. G may appear as a limit in (1.2.1) and in fact does so when $G$ is itself the d.f. of each $\xi_{i}$.

It will be convenient to say that two non-degenerate d.f.'s $G_{1}$ and $G_{2}$ are of the same type if $G_{1}(x)=G_{2}(a x+b)$ for some $a>0, b$, and to refer to the equivalence classes so determined as "types". The use of "type" in the above theorem is a slight abuse of this since Types II and III really represent families of types--one corresponding to each $\alpha>0$. However this abuse is convenient and it is conventional to refer to "the three types" of limit. It should also be noted that the three types may be incorporated into a single family, for example by writing $\mathrm{G}_{\alpha}(\mathrm{x})=\exp \left\{-(1-\alpha \mathrm{x})^{1 / \alpha}\right\},-\infty<\alpha<\infty$, $\alpha \mathrm{x}<1$, $\mathrm{G}_{0}$ being interpreted as $\lim _{\alpha \rightarrow 0} G_{\alpha}(x)=\exp \left(-\mathrm{e}^{-\mathrm{x}}\right)$. (Such a parametrization was introduced by von Mises).

A straightforward proof of Theorem 1.2.1 is given in [66, Theorem 1.4.2] and here we note only the fact that this consists of two parts - a division which is most useful for later forms of the result. The first part is to show that the class of limit laws $G$ in (1.2.1) is precisely the class of max-stable d.f.'s. Specifically a d.f. G is called max-stable if for each
$n=1,2, \ldots$ the d.f. $G^{n}$ is of the same type as $G$, i.e. if there exist constants $a_{n}$ $>0, b_{n}$ such that $G^{n}\left(a_{n} x+b_{n}\right)=G(x)$.

The second part of the proof of Theorem 1.2.1 is to identify the class of max-stable d.f.'s with the Type I, II and III extreme value d.f.'s. This is a purely function-analytic (non-probabilistic) procedure and will apply verbatim in dependent cases. A smooth proof due to de Haan (using inverse functions) may be found in [66].

It is, of course, important to know which (if any) of the three types of limit law applies when $\xi_{\mathrm{n}}$ has a given d.f. F. Necessary and sufficient conditions are known, involving only the behavior of the tail $1-\mathrm{F}(\mathrm{x})$ as x increases, for each possible limit. For example the criterion for a Type II limit is simply that $1-\mathrm{F}(\mathrm{x})$ should be regularly varying with index $-\alpha \quad(\alpha>0)$ as $\mathrm{x} \rightarrow \infty$. The conditions for all three types may be found in [66, Theorem 1.6.2] together with simple proofs of their sufficiency. The necessity is more complicated (though perhaps also less important) but may be achieved by using methods of regular variation (cf. [48] for a recent smooth treatment).

The following almost trivially proved result is also used in "domain of attraction" determinations, and has important (and less trivially proved) extensions to dependent cases.

Lemma 1.2.2. Let $\left\{u_{n}, n \geq 1\right\}$ be constants and $0 \leq \tau \leq \infty$. If $\xi_{1}, \xi_{2}, \ldots$ are i.i.d. with d.f. $F$ then

$$
\begin{equation*}
P\left\{M_{n} \leq u_{n}\right\} \rightarrow e^{-\tau} \tag{1.2.2}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\mathrm{n}\left(1-\mathrm{F}\left(\mathrm{u}_{\mathrm{n}}\right)\right) \rightarrow \tau \tag{1.2.3}
\end{equation*}
$$

It may be noted that (1.2.1) is a special case of (1.2.2) using a linear parametrization, by making identifications $\tau=-\log G(x), u_{n}=a_{n}^{-1} x+b_{n}$. Thus a necessary and sufficient condition for the limit $G$ is

$$
n\left(1-F\left(a_{n}^{-1} x+b_{n}\right)\right) \rightarrow-\log G(x), \quad \text { as } n \rightarrow \infty
$$

for each x , and some $\mathrm{a}_{\mathrm{n}}>0, \mathrm{~b}_{\mathrm{n}}$. This explains the relevance of the tail $1-\mathrm{F}(\mathrm{x})$ for domain of attraction criteria. Use of Lemma 1.2.2 also enables expressions to be obtained for the normalizing constants $a_{n}, b_{n}$ in terms of the $\left(1-n^{-1}\right)$ percentile $\gamma_{n}$ defined to satisfy $F\left(\gamma_{n}-\right) \leq 1-n^{-1} \leq F\left(\gamma_{n}\right)$. For example in the Type II case $a_{n}, b_{n}$ may be taken to be $a_{n}=r_{n}^{-1}, b_{n}=0$. Of course while $r_{n}$ may be determined (and hence $a_{n}, b_{n}$ found) when $F$ is known, the practical problem lies in the estimation of those constants when the form of $F$ is not precisely known.

It is readily checked that a standard normal sequence belongs to the Type I domain with normalizing constants

$$
\begin{align*}
& a_{n}=(2 \log n)^{1 / 2}  \tag{1.2.4}\\
& b_{n}=(2 \log n)^{1 / 2}-\frac{1}{2}(2 \log n)^{-1 / 2}(\log \log n+\log 4 \pi)
\end{align*}
$$

The exponential and log normal distributions also have Type I limits as does the d.f. $F(x)=1-e^{1 / x}(x<0)$ with a finite right endpoint $x_{F}=0$. The Pareto and Cauchy distributions give Type II limits, whereas the uniform distribution belongs to the Type III domain.

Not every d.f. F belongs to a domain of attraction at all. For example this occurs for the Poisson and geometric distributions--for which there is no sequence $\left\{u_{n}\right\}$ such that (1.2.3) holds for $0<\tau<\infty$. This typically happens in cases when the jumps of the d.f. do not decay sufficiently quickly relative to the tail ([66, Theorem 1.7.13)]. However it is also possible for there to be no limit even if there is a sequence $\left\{u_{n}\right\}$ satisfying (1.2.3) for any $\tau-$ such as the d.f. $F(x)=1-e^{-x-\sin x}$, an example due to Von Mises.

We turn now, in this brief tour of classical results, to other extreme order statistics, writing $M_{n}^{(k)}$ for the $\mathrm{k}^{\text {th }}$ largest among the i.i.d. $\xi_{1}, \ldots, \xi_{\mathrm{n}}$ with common d.f. F. Suppose that $M_{n}=M_{n}^{(1)}$ has the limiting distribution $G$ as in (1.2.1). By identifying $u_{n}=a_{n}^{-1} x+b_{n}, \tau=-\log G(x)$ it follows that
(1.2.3) holds. Let $S_{n}$ be the number of exceedances of $u_{n}$ by $\xi_{1}, \ldots \xi_{n}$, i.e. the number of $i, 1 \leq i \leq n$ such that $\xi_{i}>u_{n}$. Then $S_{n}$ is binomial with parameters ( $n, p_{n}=1-F\left(u_{n}\right)$ ), and $n p_{n} \rightarrow \tau$ so that $S_{n}$ has a Poisson limit with mean $\tau$. The obvious equivalence of the events $\left\{\mathrm{M}_{\mathrm{n}}^{(\mathrm{k})} \leq \mathrm{u}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{S}_{\mathrm{n}}<\mathrm{k}\right\}$ leads directly to the relation

$$
\begin{equation*}
P\left\{a_{n}\left(M_{n}^{(k)}-b_{n}\right) \leq x\right\} \rightarrow G(x) \sum_{s=0}^{k-1}(-\log G(x))^{s} / s! \tag{1.2.5}
\end{equation*}
$$

Thus if the maximum $M_{n}$ has a limiting distribution $G$, then the $k^{\text {th }}$ largest $M_{n}^{(k)}$ has a limiting distribution given by (1.2.5) (with the same normalizing constants $a_{n}, b_{n}$ as the maximum itself).

These results foreshadow a more detailed discussion of the exceedances and related point processes, which will be taken up in the next section.

Finally, topics from the classical theory not dealt with in this present part include (a) rate of convergence results (considered in the dependent setting in Section 2.8, (b) asymptotic distributions of minima (obtainable by simple transformations of the results for maxima), and (c) asymptotic theory of variable rank order statistics (cf. [99]).

### 1.3 Point processes associated with extremes

The above asymptotic Poisson property of the number of exceedances of $u_{n}$ satisfying (1.2.3), may be generalized by considering the actual point process $N_{n}$ of exceedances of the level $u_{n}$. Specifically $N_{n}$ consists of the point process on $(0,1]$ formed by normalizing the actual exceedance points by the factor $1 / n$ i.e. if $i$ is the time of an exceedance ( $\xi_{i}>u_{n}$ ) then a point of $N_{n}$ is plotted at $i / n$. If $E \subset(0,1]$ then $N_{n}(E)$ denotes the number of such points in $E$, so that $N_{n}(E)=\#\left\{i / n \in E: \xi_{i}>u_{n}, 1 \leq i \leq n\right\}=\#\left\{i \in n E: \xi_{i}>u_{n}, 1 \leq i \leq n\right\}$. The actual exceedance points and the point process $N_{n}$ are illustrated in Figure 1.3.1 below.


Figure 1.3.1 Point process of exceedances. Upper: actual exceedance points; lower: the point process $N_{n}$.

For $u_{n}$ satisfying (1.2.3) it follows immediately as above that d
$N_{n}(I) \rightarrow N(I)$ where $N$ is a Poisson Process on [0,1] with intensity $\tau$, for each interval I C [0,1]. By independence, corresponding convergence holds for joint distributions of $N_{n}\left(I_{1}\right), \ldots N_{n}\left(I_{k}\right)$ for disjoint intervals $I_{1}, \ldots I_{k}$. This is in fact sufficient for convergence in distribution $N_{n} \xrightarrow{d} N$ (i.e. full weak convergence of $\mathrm{PN}_{\mathrm{n}}^{-1}$ to $\mathrm{PN}^{-1}$ ) of the point processes $\mathrm{N}_{\mathrm{n}}$ to N . This may be regarded as a "fountainhead" result from which the asymptotic distributions for the maximum and all extreme order statistics follow. The result may be extended ([66, Section 5.5]) by considering the vector point process of exceedances of multiple levels, to give joint asymptotic distributions of finite numbers of order statistics. For example if the maximum has the asymptotic distribution $G$ given as in (1.2.1), consideration of two levels leads to the asymptotic joint distribution of the first two order statistics $M_{n}^{(1)}\left(=M_{n}\right), M_{n}^{(2)}$ :
(1.3.1) $\quad P\left\{a_{n}\left(M_{n}^{(1)}-b_{n}\right) \leq x_{1}, a_{n}\left(M_{n}^{(2)}-b_{n}\right) \leq x_{2}\right\} \rightarrow$

$$
\mathrm{G}\left(\mathrm{x}_{2}\right)\left(\log \mathrm{G}\left(\mathrm{x}_{1}\right)-\log \mathrm{G}\left(\mathrm{x}_{2}\right)+1\right) \quad \text { as } \mathrm{n} \rightarrow \infty,\left(\mathrm{x}_{1}>\mathrm{x}_{2}\right)
$$

In general, consideration of $r$ levels enables calculation of the
asymptotic joint distribution of $r$ extreme order statistics. On the other hand these results for $\mathrm{r}=1,2, \ldots$ may be summarized simultaneously in one theorem sometimes referred to as a "complete" convergence result. This can be given quite a general form cf. [66, Theorem 5.7.1] which reduces to the following when the maximum has a limiting distribution $G$ (and writing $x_{0}=\inf \{x: G(x)>0\}$ ). This result was first proved by Pickands ([82]).

Theorem 1.3.1 Suppose (1.2.1) holds, for the i.i.d. sequence $\left\{\xi_{j}\right\}$, and let $N_{n}^{\prime}$ be the point process in the plane with points at $\left(j / n, a_{n}\left(\xi_{j}-b_{n}\right)\right)$. Then $N_{n}^{\prime} \rightarrow N^{\prime}$ on $(0, \infty) \times\left(x_{0}, \infty\right)$ where $N^{\prime}$ is a Poisson process whose intensity measure is the product of Lebesgue measure and that defined by the increasing function log G(y).

In the i.i.d. case the above theorem may be regarded as fundamental in yielding all relevant asymptotic distributional properties. On the other hand, when dependence is introduced the "partial" r-level results require somewhat fewer assumptions than does the "complete" result. For i.i.d. sequences the proofs of both "r-level" and "complete" results rely on similar (though somewhat more complicated) arguments to those already indicated for single level exceedances.

## 2. Extremes of sequences

2.1 The Extremal Types Theorem for stationary sequences.

Obviously some form of dependence restriction is necessary to obtain an extremal types result in dependent cases (since e.g. one might take all $\xi_{i}$ to be equal with arbitrary d.f., so that $M_{n}$ would also have this assigned d.f.). Loynes ([72]) first obtained such a result under strong mixing (viz. $\sup \left\{|\mathrm{P}(\mathrm{A} \cap \mathrm{B})-\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})|: \mathrm{A} \in \sigma\left(\xi_{1}, \ldots, \xi_{\mathrm{n}}\right), \mathrm{B} \in \sigma\left(\xi_{\mathrm{n}+\ell}, \xi_{\mathrm{n}+\ell+1}, \ldots\right), \mathrm{n}=1,2, \ldots\right\} \rightarrow 0$ as $\ell \rightarrow \infty$ where $\sigma()$ denotes the $\sigma$-field generated by the indicated r.v.'s).

Weaker (distributional) conditions will suffice and will be used here. The difference is not too important for our present purposes since the main ideas of proof are essentially the same. The main condition to be used (termed $D\left(u_{n}\right)$ ) is defined with reference to a sequence $\left\{u_{n}\right\}$ of constants in terms of the finite dimensional d.f.'s $F_{i_{1}} \ldots i_{n}\left(x_{1}, \ldots, x_{n}\right)=P\left\{\xi_{i_{1}} \leq x_{1}, \ldots, \xi_{i_{n}} \leq x_{n}\right\}$ of the stationary sequence $\left\{\xi_{n}\right\}$. Writing $F_{i_{1}}, \ldots i_{n}(u)=F_{i_{1}}, \ldots i_{n}(u, u, \ldots u)$, define $\alpha_{n, \ell}=\max \left\{\left|F_{i_{1}}, \ldots i_{p}, j_{1} \ldots j_{p},\left(u_{n}\right)-F_{i_{1}}, \ldots i_{p}\left(u_{n}\right) F_{j_{1}, \ldots j_{p}}\left(u_{n}\right)\right|:\right.$

$$
\left.1 \leq i_{1}<\ldots \leq i_{p}<j_{1} \ldots<j_{p} \leq n, j_{1}-i_{p} \geq \ell\right\}
$$

Then $D\left(u_{n}\right)$ is said to hold if $\alpha_{n, l_{n}} \rightarrow 0$ for some sequence $l_{n}=o(n)$.
It is, incidentally, obviously possible to weaken the condition $D\left(u_{n}\right)$ very slightly to involve "intervals" of consecutive integers (See O'Brien ([79]) for the details of such a procedure and for some advantages in application to periodic Markov chains.)

The following result is basic for the discussion of $M_{n}$ and shows the form in which $D\left(u_{n}\right)$ entails approximate independence.

Lemma 2.1.1. Let $\left\{u_{n}\right\}$ be a sequence of constants and let $D\left(u_{n}\right)$ be satisfied by the stationary sequence $\left\{\xi_{\mathrm{n}}\right\}$. Let $\left\{\mathrm{k}_{\mathrm{n}} \geq 1\right\}$ be constants such that $\mathrm{k}_{\mathrm{n}}=\mathrm{o}(\mathrm{n})$ and (in the notation used above for $\left.D\left(u_{n}\right)\right), k_{n} \ell_{n}=o(n), k_{n} \alpha_{n, \ell_{n}} \rightarrow 0$. Then

$$
\left.P\left\{M_{n} \leq u_{n}\right\}-P^{k} n_{\left\{M_{r_{n}}\right.} \leq u_{n}\right\} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

where $r_{n}=\left[n / k_{n}\right]$.
The proof of this result is perhaps the key method in dependent extremal theory. The type of argument was used first in this context by Loynes ([72]) but was used earlier in dependent central limit theory (cf. [22]). The basic idea is to divide the integers $1,2, \ldots n$ into $k_{n}$ "intervals" of length $r_{n}$ and clip out small (but expanding) intervals of length $l_{n}$ from the right hand end of
each. Then $M_{n}$ is approximated by the largest submaximum over each remaining interval, the submaxima having a degree of independence from $D\left(u_{n}\right)$ which allows the conclusion to be obtained.

The Extremal Types Theorem now follows simply from this result by showing max stability of the limit $G$ ([66, Theorem 3.3.3]).

Theorem 2.1.2. (Extremal Types Theorem for Stationary Sequences) Let $\left\{\xi_{\mathrm{n}}\right\}$ be a stationary sequence such that $M_{n}=\max \left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ has a non-degenerate limiting distribution $G$ as in (1.2.1). Suppose that $D\left(u_{n}\right)$ holds for each $u_{n}$ of the form $u_{n}=x / a_{n}+b_{n}$, for $x$ with $0<G(x)<1$. Then $G$ is one of the three classical extremal types.

### 2.2 The Extremal Index

While the introduction of dependence into a sequence can significantly affect various extremal properties, it does not, within broad limits, affect the distributional type for the maximum. The purpose of this section is to make that rough statement precise and to explore the explicit changes brought by a dependence structure. This depends essentially on a single parameter sometimes called the "extremal index" of the (stationary) sequence $\left\{\xi_{\mathrm{n}}\right\}$.

Following Loynes ([72]) it will be convenient, for a given stationary sequence $\left\{\xi_{\mathrm{n}}\right\}$, to define the associated independent sequence $\left\{\hat{\xi}_{\mathrm{n}}\right\}$ to be i.i.d. with the same d.f. $F$ as $\xi_{n}$ and to write $\hat{M}_{n}=\max \left(\hat{\xi}_{1}, \hat{\xi}_{2}, \ldots \hat{\xi}_{n}\right)$, with $M_{n}=\max \left(\xi_{1}, \xi_{2}, \ldots \xi_{n}\right)$ as before. As noted originally for strongly mixing sequences in [72], if $u_{n}=u_{n}(\tau)$ satisfies (1.2.3) for each $\tau$, then any limit (function) for $P\left(M_{n} \leq u_{n}(\tau)\right.$ ) must be of the form $e^{-\theta \tau}$ with fixed $\theta \in[0,1]$ rather than just the function $\mathrm{e}^{-\tau}$ given by (1.2.2) in the i.i.d. case.

If $P\left\{M_{n} \leq u_{n}(\tau)\right\} \rightarrow \mathrm{e}^{-\theta \tau}$ for each $\tau>0$, with $u_{n}(\tau)$ satisfying (1.2.3), we say that the stationary sequence $\left\{\xi_{n}\right\}$ has extremal index $\theta(\geq 0)$. This definition does not involve any dependence restriction on the sequence $\left\{\xi_{\mathrm{n}}\right\}$.

If, however, $\left\{\xi_{n}\right\}$ is a stationary sequence with $D\left\{u_{n}(\tau)\right\}$ holding for each $\tau>0$ ( $u_{n}(\tau)$ satisfying (1.2.3)) it may be shown by Lemma 2.1 .1 that there exist constants $\theta, \theta^{\prime}, 0 \leq \theta \leq \theta^{\prime} \leq 1$ such that $\lim \sup _{n \rightarrow \infty} P\left\{M_{n} \leq u_{n}(\tau)\right\}=e^{-\theta \tau}$, $\lim \inf _{n \rightarrow \infty} P\left\{M_{n} \leq u_{n}(\tau)\right\}=e^{-\theta^{\prime} \tau}$ for each $\tau$, so that if $P\left\{M_{n} \leq u_{n}(\tau)\right\}$ converges for some $\tau>0$ then $\theta^{\prime}=\theta$ and $P\left\{M_{n} \leq u_{n}(\tau)\right\} \rightarrow e^{-\theta \tau}$ for all $\tau>0$ and $\left\{\xi_{n}\right\}$ has extremal index $\theta, 0 \leq \theta \leq 1$. (See [64] for details).

If $P\left\{M_{n} \leq u_{n}(\tau)\right\} \rightarrow e^{-\theta \tau}$ it is clear that $\theta \geq 0$. One might suspect that also $\theta \leq 1$ on the grounds that one feels intuitively that the maximum $\hat{M}_{n}$ of i.i.d. r.v.'s should be stochastically at least as large as $M_{n}$ which would imply $\mathrm{e}^{-\tau}=\lim P\left\{\hat{M}_{n} \leq u_{n}(\tau)\right\} \leq \operatorname{limP}\left\{M_{n} \leq u_{n}(\tau)\right\}=e^{-\theta \tau}$. In fact it follows simply that $\theta \leq 1$ since

$$
\begin{aligned}
\mathrm{P}\left\{\mathrm{M}_{\mathrm{n}} \leq \mathrm{u}_{\mathrm{n}}(\tau)\right\} & =\underset{1}{\mathrm{n}} \underset{\mathrm{U}}{\mathrm{U}}\left(\xi_{\mathrm{i}}>\mathrm{u}_{\mathrm{n}}(\tau)\right\} \geq 1-\mathrm{nP}\left\{\xi_{1}>\mathrm{u}_{\mathrm{n}}(\tau)\right\} \\
& =1-\mathrm{n}\left[1-\mathrm{F}\left(\mathrm{u}_{\mathrm{n}}(\tau)\right)\right] \\
& \rightarrow 1-\tau \quad \text { as } \mathrm{n} \rightarrow \infty .
\end{aligned}
$$

Since the lef thand side tends to $e^{-\theta \tau}$ it follows that $e^{-\theta \tau} \geq 1-\tau$, which is only possible for all $\tau>0$ if $\theta \leq 1$.

Clearly any i.i.d. sequence for which $u_{n}(\tau)$ may be chosen satisfying (1.2.3), has extremal index $\theta=1$. A stationary sequence $\left\{\xi_{n}\right\}$ satisfying $D\left(u_{n}(\tau)\right)$ for each $\tau>0$ also has extremal index $\theta=1$ if

For proof see [66, Theorem 3.4.1] where (2.2.1) is referred to as D' $\left(u_{n}\right)$ ).
Many stationary sequences satisfy (2.2.1), including normal sequences with covariance sequence $\left\{r_{n}\right\}$ satisfying the "Berman Condition" $r_{n} \log n \rightarrow 0$. Sufficient conditions for values of $\theta<1$ are given in [64], and an example with $\theta=1 / 2$ appears later in this section. Examples can be found where the extremal index is zero, or does not even exist. This obviously has some theoretical interest but appears to occur in somewhat pathological cases and will not be
pursued in the present discussion.
It may be shown by obvious arguments ([64]) that if a stationary sequence $\left\{\xi_{\mathrm{n}}\right\}$ has extremal index $\theta>0,\left\{\mathrm{v}_{\mathrm{n}}\right\}$ is any sequence of constants, and $\rho$ any constant with $0 \leq \rho \leq 1$, then $\mathrm{P}\left\{\hat{\mathrm{M}}_{\mathrm{n}} \leq \mathrm{v}_{\mathrm{n}}\right\} \rightarrow \rho$ if and only if $\mathrm{P}\left\{\mathrm{M}_{\mathrm{n}} \leq \mathrm{v}_{\mathrm{n}}\right\} \rightarrow \rho^{\theta}$. (This result makes no assumption about dependence). By taking $\mathrm{v}_{\mathrm{n}}=\mathrm{x} / \mathrm{a}_{\mathrm{n}}+\mathrm{b}_{\mathrm{n}}$ one then obtains the following important result.

Theorem 2.2.1 Let the stationary sequence $\left\{\xi_{\mathrm{n}}\right\}$ have extremal index $\theta>0$. If $P\left\{a_{n}\left(\hat{M}_{n}-b_{n}\right) \leq x\right\} \rightarrow G(x)$ then $P\left\{a_{n}\left(M_{n}-b_{n}\right) \leq x\right\} \rightarrow G^{\theta}(x)$ and conversely. That is $\hat{M}_{n}$ has an asymptotic distribution if and only if $M_{n}$ does, with the power relation between the limits and the same normalizing constants.

By way of comment, note that $G^{\theta}$ is of the same type as $G$ if one of them is of extreme value type (e.g. $\left[\exp \left(-\mathrm{e}^{-\mathrm{x}}\right)\right]^{\theta}=\exp \left[-\mathrm{e}^{-(\mathrm{x}-\log \theta)}\right]$, and similarly for type II and III). If $\theta=1$ the limits for $M_{n}$ and $\hat{M}_{n}$ are precisely the same. Indeed for $0<\theta<1$ the limits may also be taken to be the same by a simple change of normalizing constants.

The practical implication of this result is that of ten dependence in data does not invalidate application of classical extreme value theory. Indeed one may not have to worry about the precise value of the extremal index since this only alters parameters of the distribution which usually must be estimated in any case. Further, if $\theta>0$, the fact that the distributional type under dependence is the same as under independence means that the classical domain of attraction criteria may be applied to the marginal d.f. of the terms to determine which type applies.

The following simple example provides a case where $\theta<1$, and will also be useful later when the effects of the value of $\theta$ on the clustering of exceedances will be discussed.

Example 2.2.2 Let $\eta_{1}, \eta_{2} \ldots$ be i.i.d. with d.f. $H$ and write $\xi_{j}=\max \left(\eta_{j}, \eta_{j+1}\right)$. Then $\left\{\xi_{n}\right\}$ is stationary with d.f. $F=H^{2}$ and an easy calculation shows that if $u_{n}(\tau)$ satisfies (1.2.3) then $n\left[1-H\left(u_{n}(\tau)\right)\right] \rightarrow \tau / 2$ and

$$
\mathrm{P}\left\{\mathrm{M}_{\mathrm{n}} \leq \mathrm{u}_{\mathrm{n}}(\tau)\right\}=\mathrm{P}\left\{\max \left(\eta_{1}, \ldots \eta_{\mathrm{n}}\right) \leq \mathrm{u}_{\mathrm{n}}(\tau)\right\} \mathrm{P}\left\{\eta_{\mathrm{n}+1} \leq \mathrm{u}_{\mathrm{n}}(\tau)\right\} \rightarrow \mathrm{e}^{-\tau / 2}
$$

so that $\left\{\xi_{n}\right\}$ has extremal index $\theta=1 / 2$.

Criteria for determining the extremal index are discussed in [64].
Finally, we note that an interesting and informative approach to the relating of dependent and i.i.d. cases has been given recently by 0 'Brien [79] (cf. also [92]). This is based on the general result

$$
P\left\{M_{n}<u_{n}\right\}-F\left(u_{n}\right)^{n P\left\{\max \left(\xi_{2}, \xi_{3}, \ldots \xi_{p_{n}}\right) \leq u_{n} \mid \xi_{1}>u_{n}\right\}}
$$

which is shown in [79] to hold under weak dependence conditions, for a wide variety of sequences $\left\{u_{n}\right\}$ and integers $p_{n} \rightarrow \infty$ with $p_{n}=0(n)$.

### 2.3 Relevant point process concepts.

In dealing with dependent cases it will be necessary to be somewhat more formal than previously in the use of point process methods. Here we establish the notation and framework (substantially following Kallenberg ([63])), and review a few key concepts which will be needed.

In general a point process is of ten defined on a locally compact second countable (hence complete separable metric) space $S$, though here $S$ will invariably be a subset of the line or plane. Write $\varphi$ for the class of Borel sets on $S$ and $\mathscr{B}=\mathscr{F}(S)$ for the bounded (i.e. relatively compact) sets in $\varphi$. A point process $\xi$ on $S$ is a random element in $M=M(S)$, the space of locally finite (i.e. finite on $\mathscr{B}(S)$ ) integer-valued measures on $\mathscr{\varphi}$ where $M$ has the vague topology and Borel $\sigma$-field $\mu=\mu(S)$.

Write $\mathscr{F}=\mathscr{F}(S)$ for the class of non-negative $\mathscr{\varphi}$-measurable functions, $\mu \mathrm{f}=\int \mathrm{f} \mathrm{d} \mu$ for $\mu \in \mathrm{M}, \mathrm{f} \in \mathrm{F}(\mathrm{S})$. The distribution $\mathrm{P}^{-1}$ of a point process $\xi$ is uniquely determined by the distributions of $\left(\xi\left(I_{1}\right), \ldots \xi\left(I_{k}\right)\right), k=1,2 \ldots, I_{j} \in \mathscr{T}$ if $\mathscr{T}$ is any semiring whose generated ring is $\mathscr{B}$. The distribution of $\xi$ is also uniquely determined by the Laplace Transform $L_{\xi}(f)=E e^{-\xi f}, f \in F$.

A (general) Poisson Process with intensity measure $\lambda$ has the Laplace Transform $L_{\xi}(f)=\exp \left\{-\lambda\left(1-e^{-f}\right)\right\}$ whereas a Compound Poisson Process has Laplace Transform

$$
\begin{equation*}
L_{\xi}(f)=\exp \left\{-\lambda\left(1-L_{\beta}{ }^{\circ} \mathrm{f}\right)\right\} \tag{2.3.1}
\end{equation*}
$$

where $\beta$ is a positive integer-valued random variable with Laplace Transform $L_{\beta}(\mathrm{t})=\mathrm{Ee}^{-\beta \mathrm{t}}$. (No confusion should arise with this dual use of L ). This consists of multiple events of (independent) sizes $\beta$ located at the points of a Poisson Process having intensity measure $\lambda$.

Convergence in distribution of a sequence $\left\{\xi_{n}\right\}$ of point processes to a point process $\xi$ is, of course, simply weak convergence of $\mathrm{P} \xi_{n}^{-1}$ to $\mathrm{P} \xi^{-1}$. It may be shown (cf. [63]) that $\xi_{n} \xrightarrow{d} \xi$ if and only if $L_{\xi_{n}}(f) \rightarrow L_{\xi}(f)$ for every $f \in \mathscr{F}$, the subclass of $\mathscr{F}$ consisting of the nonnegative continuous functions with compact support. Point process convergence is also equivalent to convergence of finite dimensional distributions. Even more simply $\xi_{\mathrm{n}} \xrightarrow{\mathrm{d}} \xi$ if and only if $\left(\xi_{n}\left(I_{1}\right), \ldots \xi_{n}\left(I_{k}\right)\right) \xrightarrow{d}\left(\xi\left(I_{1}\right), \ldots \xi\left(I_{k}\right)\right), \quad k=1,2 \ldots, I_{j} \in \mathscr{T}$ where $\mathscr{C C O}$ is a semiring such that $\xi(\partial B)=0$ a.s. for each $B \in \mathscr{T}$, and such that for any $B \in \mathscr{B}, \epsilon>0$, $B$ may be covered by finitely many sets of $\mathscr{T}$ with diameter less than $\epsilon$ (cf. [63, Theorem 4.2]). The results of Section 1.3 use the facts that semiclosed intervals and rectangles form such classes.

### 2.4 Convergence of point processes associated with extremes

We return now to the stationary sequence $\left\{\xi_{n}\right\}$ and consider point process
convergence results along the same lines as for the i.i.d. case in Section 1.3. The notation of that and other previous sections will be used. In particular $N_{n}$ will denote the point process of exceedances on $(0,1]$ as defined in Section 1.3, $\operatorname{viz} N_{n}(E)=\#\left\{i / n \in E: \xi_{i}>u_{n}, 1 \leq i \leq n\right\}$, for a given sequence of constants $u_{n}$. When $\left\{\xi_{\mathrm{n}}\right\}$ has extremal index $\theta=1$, the Poisson convergence result of Section 1.3 for exceedances may be proved provided $D\left(u_{n}\right)$ holds. This leads again to the classical form (1.2.5) for the asymptotic distributions of extreme order statistics. Similarly r-level convergence results hold under an r-level version $D_{r}\left(u_{n}\right)$ of $D\left(u_{n}\right)$ (cf. [66, p. 107]) leading to the classical forms for the asymptotic joint distributions of extreme order statistics when $\theta=1$ (cf. (1.3.1)). The "complete convergence" result Theorem 1.3.1 also holds giving again a Poisson limit in the plane when $\theta=1$ provided the multilevel conditions $D_{r}\left(u_{n}\right)$ all hold. These results are described in [66]; here we indicate the new features which arise when $0<\theta<1$.

As noted in Section 2.2, cases when $\theta<1$ occur when there is "high local dependence" in the sequence so that one exceedance is likely to be followed by others (see Example 2.2.2 as an illustration of this). The result is a clustering of exceedances, leading to a compounding of events in the limiting point process.

To include cases where such clustering occurs (i.e. $0<\theta<1$ ) we require a modest strengthening of the $D\left(u_{n}\right)$ condition (cf.[60]). Let $\mathscr{B}_{i}^{j}\left(u_{n}\right)$ be the $\sigma$-field generated by the events $\left\{\xi_{s} \leq u_{n}\right\}$, $i \leq s \leq j$. For $1 \leq \ell \leq n-1$ write (2.4.1) $\quad \beta_{n, \ell}=\max \left\{|P(A \cap B)-P(A) P(B)|: A \in \mathscr{\mathscr { A }}_{1}^{k}\left(u_{n}\right), B \in \mathscr{R}_{k+\ell}^{n}\left(u_{n}\right), 1 \leq k \leq n-\ell\right\}$. Then the condition $\Delta\left(u_{n}\right)$ is said to hold if $\beta_{n, \ell_{n}} \rightarrow 0$ for some sequence $\ell_{n}$ with $\ell_{\mathrm{n}}=\mathrm{o}(\mathrm{n}) . \quad\left\{\beta_{\mathrm{n}, \ell}\right\}$ will be called the mixing coefficients for $\Delta$. The condition $\Delta$ is of course stronger than $D$ but still significantly weaker than strong mixing. The condition $\Delta$ will be applied through the following lemma which is a
special case of [98, Equation $I^{\prime}$ ).

Lemma 2.4.1. For each $n$ and $1 \leq \iota \leq n-1$ write $\gamma_{n, \ell}=|\sup E \eta \zeta-E \eta E \zeta|$ where the supremum is taken over all $\eta, \zeta$ measurable with respect to $\mathscr{F}_{1}^{j}\left(u_{n}\right), \mathscr{F}_{j+\ell}^{n}\left(u_{n}\right)$ respectively, $0 \leq \eta, \zeta \leq 1,1 \leq \mathrm{j} \leq \mathrm{n}-\ell$. Then $\beta_{\mathrm{n}, \ell} \leq \gamma_{\mathrm{n}, \ell} \leq 4 \beta_{\mathrm{n}, \ell}$ where $\beta_{\mathrm{n}, \ell}$ is the mixing coefficient for $\Delta$, given by (2.4.1). In particular $\left\{\xi_{n}\right\}$ satisfies $\Delta\left(u_{n}\right)$ if and only if $r_{n, \ell_{n}} \rightarrow 0$ for some $\ell_{n}=o(n)$.

It will be convenient to have the following simple notion of clusters. Divide the $\left\{\xi_{i}\right\}$ into successive groups $\left(\xi_{1}, \ldots, \xi_{r_{n}}\right),\left(\xi_{r_{n}}+\ldots, \xi_{2 r_{n}}\right), \ldots$ of $r_{n}$ consecutive terms where $r_{n}(=0(n))$ is appropriately chosen. Then all exceedances of $u_{n}$ within a group are regarded as forming a cluster. Note that since $r_{n}=O(n)$ the positions of the members of a single cluster will coalesce after the time normalization, giving nearly multiple points in the point process $N_{n}$ on ( 0,1 ]. The following lemma (proved similarly to Lemma 2.1.1 but using Lemma 2.4 .1 - cf. [60]) shows that the clusters are asymptotically independent.

Lemma 2.4.2. Let $\tau>0$ be constant and let $\Delta\left(u_{n}\right)$ hold with $u_{n}=u_{n}(\tau)$ satisfying (2.2.1). Suppose $\left\{\mathrm{k}_{\mathrm{n}}\right\},\left\{\ell_{\mathrm{n}}\right\}$ are sequences of integers such that $\mathrm{k}_{\mathrm{n}} \ell_{\mathrm{n}} / \mathrm{n} \rightarrow 0$ and $k_{n} \beta_{n, \ell} \rightarrow 0$, where $\beta_{n, \ell}$ is the mixing coefficient of $\Delta\left(u_{n}\right)$. Then, for each non-negative continuous $f$ on $(0,1]$,

$$
\begin{equation*}
\left.\left.E \underset{j=1}{n} f(j / n) x_{n, j}\right)-\prod_{i=1}^{k_{n}} E \underset{j=(i-1) r_{n}+1}{i r_{n}} f(j / n) x_{n, j}\right) \rightarrow 0 \tag{2.4.2}
\end{equation*}
$$

where $\chi_{n, j}$ is the indicator $1_{\left.\left\{\xi_{j}\right\rangle u_{n}\right\}}$ and $r_{n}=\left[n / k_{n}\right]$.
The number of exceedances in the $i^{\text {th }}$ cluster is

$$
\mathrm{ir}_{\mathrm{n}}
$$

$\left.N_{n}\left((i-1) r_{n} / n, i r_{n} / n\right]\right)=\sum_{j=(i-1) r_{n}+1} X_{n, j}$ and the cluster size distribution is therefore conveniently defined to be given by

$$
\begin{equation*}
\pi_{n}(i)=P\left\{\sum_{j=1}^{r_{n}} x_{n, j}=i \mid \sum_{j=1}^{r_{n}} x_{n, j}>0\right\}, \quad i=1,2, \ldots \tag{2.4.3}
\end{equation*}
$$

The following result of [60] giving sufficient conditions for $N_{n}$ to have a Compound Poisson limit is proved by using Lemma 2.4.2 (cf. [60]).

Theorem 2.4.3. Let the stationary sequence $\left\{\xi_{n}\right\}$ have extremal index $\theta>0$, and suppose that the conditions of Lemma 2.4.2 hold. If $\pi_{n}$ (i) (defined by (2.4.3)) has a limit $\pi(i)$ for each $i=1,2, \ldots$, then $\pi$ is a probability distribution on $1,2, \ldots$ and the exceedance point process $N_{n}$ converges in distribution to a Compound Poisson Process $N$ with Laplace transform

$$
\begin{equation*}
L_{N}(f)=\exp \left\{-\theta \tau \int_{0}^{1}\left(1-\sum_{i=1}^{\infty} e^{-f(t) i} \pi(i)\right) d t\right\} \tag{2.4.4}
\end{equation*}
$$

The Laplace Transform (2.4.4) is of the form (2.3.1) with the integer valued r.v. $\beta$ satisfying $P\{\beta=i\}=\pi(i)$ and intensity measure simply $\theta$ tm where $m$ is Lebesgue measure. That is $N$ consists of multiple events of size whose distribution is $\pi(i)$, located at the points of a Poisson Process having intensity $\theta \tau$.

The following result, showing that the Compound Poisson Process is the only possible limit for $N_{n}$ under the conditions $\Delta$ is proved along similar lines to Theorem 2.4.3. (Full details may be found in [60]).

Theorem 2.4.4. Suppose the condition $\Delta\left(u_{n}\right)$ holds for $u_{n}=u_{n}(\tau)$ satisfying (1.2.3) for a $\tau>0$, for the stationary sequence $\left\{\xi_{j}\right\}$. If $N_{n}$ converges in distribution to some point process $N$, then the limit must be a Compound Poisson Process with Laplace Transform (2.4.4) where $\pi$ is some probability measure on $\{1,2, \ldots\}$ and $\theta=-\tau^{-1} \log \lim _{n \rightarrow \infty} P\left\{M_{n} \leq u_{n}(\tau)\right\} \in[0,1]$. If $\theta \neq 0$ then $\pi(i)=\lim \pi_{n}\{i\}$ where $\pi_{n}$ is defined by (2.4.3) for $r_{n}=\left[n / k_{n}\right], k_{n}(\rightarrow \infty)$ being any sequence chosen as in Lemma 2.4.2.

Example 2.2.2. (continued). It is evident that the exceedances of $u_{n}$ by the process $\xi_{j}=\max \left(\eta_{j}, \eta_{j+1}\right)$ in Example 2.2 .2 occur in (at least) pairs, since if $\xi_{j-1} \leq u_{n}$ but $\xi_{j}>u_{n}$ then $\eta_{j+1}>u_{n}$ and hence $\xi_{j+1}>u_{n}$. It is readily seen by direct evaluation that $\pi_{n}(2) \rightarrow 1$ and hence $\pi(i)=1$ or 0 according as $i=2$ or $i \neq 2$. Thus the limiting point process $N$ consists entirely of double events and (2.4.4) gives $L_{N}(f)=\exp \left\{-(\tau / 2) \int_{0}^{1}\left(1-e^{-2 f(t)}\right) d t\right\}$.

The most important application of the Compound Poisson limit is to give the asymptotic distribution of the $\mathrm{k}^{\text {th }}$ largest value $\mathrm{M}_{\mathrm{n}}^{(\mathrm{k})}$ of $\xi_{1}, \ldots \xi_{\mathrm{n}}$, when $\theta<1$, using the equivalence $\left\{\mathrm{M}_{\mathrm{n}}^{(\mathrm{k})} \leq \mathrm{u}_{\mathrm{n}}(\tau)\right\}=\left\{\mathrm{N}_{\mathrm{n}}((0,1]<\mathrm{k}\}\right.$

Theorem 2.4.5. Suppose that for each $\tau>0, \Delta\left(u_{n}\right)$ holds with $u_{n}=u_{n}(\tau)$ satisfying (1.2.3) and that $N_{n}\left(=N_{n}^{(\tau)}\right)$ converges in distribution to some non-trivial point process $\mathrm{N}\left(=\mathrm{N}^{(\tau)}\right.$ ) (which will occur e.g. if the conditions of Theorem 2.4.3 hold). Assume that the maximum $M_{n}$ has the non-degenerate asymptotic distribution $G$ as given in (1.2.1). Then for each $k=1,2, \ldots$
 (zero if $G(x)=0$ ), where $\pi^{* j}$ is the $j$-fold convolution of the probability $\pi=\lim \pi_{n}, \pi_{n}$ being given as in Theorem 2.4.4.

Note that the form (2.4.5) differs from the (classical) case $\theta=1$ (i.e. (1.2.5)), by inclusion of the convolution terms. These arise since e.g. the second largest may be the second largest in the cluster where the maximum occurs or the largest in some other cluster. This contrasts with the case $k=1$ for the maximum itself involving only the relatively minor change (Theorem 2.2.1) of replacing the classical limit by its $\theta^{\text {th }}$ power.

Finally in this section we note that the "complete" convergence result,

Theorem 1.3.1, still holds giving a Poisson limit under appropriate conditions, when $\left\{\xi_{\mathrm{n}}\right\}$ has extremal index 1 . However, as for the exceedance point process, the limit may undergo "compounding" when $\theta<1$.

The possible limiting forms for $N_{n}^{\prime}$ (defined as in Theorem 1.3.1) were discussed first by Mori ([76]) under strong mixing conditions. More recently a transparent derivation has been given by Hsing ([57]) under weaker conditions, of $\Delta\left(u_{n}\right)$ type but involving multiple levels $u_{n}\left(\tau_{i}\right)$. A derivation similar to that for the exceedance process shows that any limit in distribution of $N_{n}^{\prime}, N^{\prime}$ say, must have independent increments, be infinitely divisible and have certain stationarity properties. These properties restrict the Laplace transform of $\mathrm{N}^{\prime}$ to a form which can be readily determined (though requiring further notation). It is also possible to give an illuminating "cluster representation" which exhibits $\mathrm{N}^{\prime}$ as a Poisson Process in the plane together with a countable family of points with integer valued masses on vertical lines above and emanating from each Poisson point (cf. [58]).

As noted in Sec. 1.3, results of this type summarize the relevant information concerning asymptotic joint distributions of extreme order statistics, in contrast to the individual marginal distributions obtained in Theorem 2.4.5.

### 2.5 Normal sequences: the comparison method.

For stationary normal sequences with covariances $\left\{r_{n}\right\}$, the condition $D\left(u_{n}\right)$ holds - as also does the sufficient condition (2.2.1) for the extremal index to be 1 provided the "Berman Condition" holds, viz.

$$
\begin{equation*}
r_{n} \log n \rightarrow 0 \quad \text { as } n \rightarrow \infty . \tag{2.5.1}
\end{equation*}
$$

These results are simply proved by means of a widely used comparison method which, in particular, bounds the difference between two (standardized) normal d.f.'s by a convenient function of their covariances. This result - here
given in a general form ([66, p. 81) - was essentially developed by Berman [10], and Slepian [95].

Theorem 2.5.1 (Normal Comparison Lemma). Suppose that $\xi_{1}, \ldots, \xi_{\mathrm{n}}$ are standard normal random variables with covariance matrix $\Lambda^{1}=\left(\Lambda_{i j}^{1}\right)$ and $\eta_{1}, \ldots, \eta_{\mathrm{n}}$ similarly with covariance matrix $\left(\Lambda^{0}=\Lambda_{i j}^{0}\right)$, and let $\rho_{i j}=\max \left(\left|\Lambda_{i j}^{1}\right|,\left|\Lambda_{i j}^{0}\right|\right)$. Then, for any real numbers $u_{1}, u_{2}, \ldots, u_{n}$,

$$
\begin{align*}
& P\left\{\xi_{j} \leq u_{j}, \quad j=1,2, \ldots, n\right\}-P\left\{\eta_{j} \leq u_{j}, \quad j=1,2, \ldots, n\right\} \leq  \tag{2.5.2}\\
& (2 \pi)^{-1} \underset{1 \leq i<j \leq n}{\sum}\left(\Lambda_{i j}^{1}-\Lambda_{i j}^{0}\right)^{+}\left(1-\rho_{i j}^{2}\right)^{-1 / 2} \exp \left[-\left(u_{i}^{2}+u_{j}^{2}\right) /\left(2\left(1+\rho_{i j}\right)\right)\right]
\end{align*}
$$

where $\mathrm{x}^{+}=\max (\mathrm{x}, 0)$. Further, replacing $\left(\Lambda_{\mathrm{ij}}^{1}-\Lambda_{\mathrm{ij}}^{0}\right)^{+}$by the absolute value on the right hand side of (2.5.2) yields an upper bound for the absolute value of the difference on the left hand side.

By taking $\xi_{1}, \xi_{2} \ldots$ to be a stationary sequence of standardized normal r.v.'s with covariance sequence $\left\{r_{n}\right\}$ and $\eta_{1}, \eta_{2} \ldots$ to be i.i.d. standard normal r.v.'s it follows simply from the theorem that if $\sup \left|r_{n}\right|<1$ then for any real sequence $\left\{u_{n}\right\}$,

$$
\begin{equation*}
\left|F_{i_{1}} \ldots i_{s}\left(u_{n}\right)-\Phi^{s}\left(u_{n}\right)\right| \leq K n \sum_{j=1}^{n}\left|r_{j}\right| \exp u_{n}^{2} /\left(1+\left|r_{j}\right|\right) \tag{2.5.3}
\end{equation*}
$$

where $\mathrm{F}_{\mathbf{i}_{1} \ldots \mathrm{i}_{\mathbf{s}}}$ is the joint (normal) distribution of $\xi_{\mathrm{i}_{1}}, \ldots, \xi_{\mathbf{i}_{\mathbf{s}}}$ and $\Phi$ is the standard normal d.f., $i_{1} \ldots \mathrm{i}_{\mathrm{s}}$ being any choice of distinct integers from 1, $2 \ldots n$.

Now if $n\left(1-\Phi\left(u_{n}\right)\right)$ is bounded and (2.5.1) holds it can be shown (by some routine calculation) that the right hand side of (2.5.3) tends to zero as $n \rightarrow \infty$, showing that $P\left\{\xi_{i_{1}} \leq u_{n}, \ldots \xi_{i_{s}} \leq u_{n}\right\}$ is approximately the same as it would be if the r.v.'s were i.i.d. instead of being correlated.

One can clearly (by identifying $i_{1}, \ldots i_{s}$ with $1, \ldots$ ) then show directly
that $P\left\{M_{n} \leq u_{n}\right\}$ is approximately the same as for the i.i.d. standard normal sequence, leading to the following result of Berman ([10]). This result may also be proved from Theorem 2.2 .1 by verifying the condition $D\left(u_{n}\right)$, and (2.2.1).

Theorem 2.5.2. Let $\left\{\xi_{n}\right\}$ be a (standardized) stationary normal sequence with covariances $\left\{r_{n}\right\}$ such that $r_{n} \log n \rightarrow 0$ as $n \rightarrow \infty$. Then

$$
P\left\{a_{n}\left(M_{n}-b_{n}\right) \leq x\right\} \rightarrow \exp \left(-e^{-x}\right)
$$

where $a_{n}, b_{n}$ are given by (1.2.4).

Thus if $r_{n} \log n \rightarrow 0$, the maximum $M_{n}$ from the stationary normal sequence has precisely the same asymptotic distribution as an i.i.d. normal sequence. The same is true of the distributions of all extreme order statistics. Although a slight weakening of (2.5.1) is possible this condition is close to being necessary for Theorem 2.5.2. Indeed if $r_{n} \log n \rightarrow r>0$ and $u_{n}=x / a_{n}+b_{n}$ (with $a_{n}, b_{n}$ given by (1.2.4)) then the time normalized point processes of exceedances converge in distribution to a certain doubly stochastic Poisson Process. This leads to the asymptotic distribution of the maximum given by the convolution of a normal and Type 1 extreme value distribution. (See [66 Sec. 6.5] for details). Further, Mittal and Ylvisaker ([75]) have shown that if $\mathrm{r}_{\mathrm{n}} \downarrow 0$ but $\mathrm{r}_{\mathrm{n}} \log \mathrm{n} \rightarrow \infty$ then $\mathrm{M}_{\mathrm{n}}$ has an asymptotic normal distribution. Thus in these "highly dependent" cases where $D\left(u_{n}\right)$ fails the classical theory no longer applies.

As noted previously stationarity has been assumed in many of the results to avoid the complications of notation and calculation which a nonstationary framework entails. For normal sequences, however, the sufficient correlation conditions still remain quite simple in nonstationary cases. For example the following result holds.

Theorem 2.5.3 Suppose that $\left\{\xi_{n}\right\}$ is a standardized normal sequence with correlations $r_{i j}$ satisfying $\left|r_{i j}\right| \leq \rho{ }_{i-j} \mid$ for $i \neq j$ where $\rho_{n}<1$ for all $n$ and $\rho_{n} \log n \rightarrow 0$ as $n \rightarrow \infty$. Let $u_{n i}(1 \leq i \leq n, n=1,2, \ldots)$ be constants such that $\lambda_{n}=$ $\min u_{n i}>c(\log n)^{1 / 2}$ for some $c>0$. If for some $\tau \geq 0, \sum_{1}^{n}\left(1-\Phi\left(u_{n i}\right)\right) \rightarrow \tau$, then $\mathrm{P}\left\{\bigcap_{\mathrm{i}=1}^{\mathrm{n}}\left(\xi_{\mathrm{i}} \leq \mathrm{u}_{\mathrm{ni}}\right)\right\} \rightarrow \mathrm{e}^{-\boldsymbol{\tau}}$ as $\mathrm{n} \rightarrow \infty$.

Theorem 2.5.3 has a very useful corollary in the case where a sequence $\left\{\eta_{\mathrm{n}}\right\}$ is obtained from a stationary normal sequence $\left\{\xi_{\mathrm{n}}\right\}$ by adding a varying mean - such as a seasonal component or trend. Calculations then show that the double exponential limit for the maximum still holds, but the normalizing constant $b_{n}$ can require an appropriate modification. Specifically suppose that $\eta_{i}=\xi_{i}+m_{i}$ where $\left\{\xi_{i}\right\}$ is a standard (zero mean unit variance) normal sequence (not necessarily covariance stationary) and $m_{i}$ are added deterministic components with the property that

$$
\begin{equation*}
\beta_{n}=\max _{1 \leq i \leq n}\left|m_{i}\right|=o(\log n)^{1 / 2} \quad \text { as } n \rightarrow \infty \tag{2.5.4}
\end{equation*}
$$

Under this condition it may be shown that a sequence of constants $\left\{\mathrm{m}_{\mathrm{n}}{ }^{*}\right\}$ may be found such that

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \exp \left(a_{n}^{*}\left(m_{i}-m_{n}^{*}\right)-\frac{1}{2}\left(m_{i}-m_{n}^{*}\right)^{2}\right) \rightarrow 1 \quad \text { as } n \rightarrow \infty \tag{2.5.5}
\end{equation*}
$$

in which $a_{n}^{*}=a_{n}-\log \log n /\left(2 a_{n}\right)$, with $a_{n}$ as in (1.2.4). With this notation, the following result holds.

Theorem 2.5.4. Let $\eta_{i}=\xi_{i}+m_{i}$ as above where $\left\{\xi_{n}\right\}$ is a standard normal sequence with correlations $r_{i j}$ satisfying $\left|r_{i j}\right|<\left.\rho\right|_{j-i} \mid$ for $i \neq j$ with $\rho_{n}<1$ and $\rho_{\mathrm{n}} \log \mathrm{n} \rightarrow 0$. Suppose that (2.5.4) holds and $\mathrm{m}_{\mathrm{n}}^{*}$ satisfies (2.5.5). Then $\mathrm{M}_{\mathrm{n}}=$ $\max \left(\eta_{1}, \eta_{2}, \ldots \eta_{\mathrm{n}}\right)$ satisfies

$$
P\left\{a_{n}\left(M_{n}-b_{n}-m_{n}^{*}\right) \leq x\right\} \rightarrow \exp \left(-e^{-x}\right)
$$

with $\mathrm{a}_{\mathrm{n}}$ and $\mathrm{b}_{\mathrm{n}}$ given by (1.2.4).

Thus the non-stationarity in the correlation structure has no effect on the limit law, and that introduced by the added deterministic component is adjusted for by the change of $b_{n}$ to ( $b_{n}+m_{n}^{*}$ ). For details see [66, Chapter 6].

Normal processes provide a widely used source of models for describing physical phenomena, and it is gratifying that extremal theory applies so simply to them. Another convenient source of models is of course Markov chains, whose extremal behavior we discuss next.

### 2.6 Regenerative and Markov sequences

Most limit results for Markov chains are intimately tied to the theory of regenerative processes. For extreme values, this has been used in [2], [10], some further references on extremes of Markov chains being [12], [79], [92]. The "classical" case, exemplified by the GI/G/1 queue, is when a recurrent atom exists. However, recently regeneration techniques have been extended, in [6], [7], [78], to show that any Harris recurrent chain $\left\{\eta_{n}\right\}$ on a general state space is regenerative or 1 -dependent regenerative (concepts to be defined below), and to give effective criteria for regeneration. Further, clearly a function $\xi_{\mathrm{n}}=\mathrm{f}\left(\zeta_{\mathrm{n}}\right)$ of a (1-dependent) regenerative sequence is (1-dependent) regenerative. An example where this added generality is useful is given by ARMA ( $p, q$ ) processes. They are naturally considered as functions of a Markov chain in $\mathbb{R}^{d}$, for $\mathrm{d}=\max (\mathrm{p}, 1)+\mathrm{q}$ and can be shown to be 1 -dependent regenerative under weak conditions but usually not to be regenerative (cf. [92]).

Regenerative and 1-dependent regenerative sequences are strongly mixing, and hence the theory from Sections 2.1-2.4 applies, in particular the Extremal Types Theorem and the Compound Poisson limit for exceedances hold. However, this can also be obtained directly, and the direct approach gives some added
insight, also into the results for general stationary sequences. In the present section this will be briefly outlined, along with some results directly tailored to Markov chains.

A sequence $\left\{\xi_{t}: t=1,2, \ldots\right\}$ is regenerative if there exists
integer-valued random variables $0<S_{0}<S_{1}<\ldots$ which divide the sequence into "cycles"

$$
\mathrm{c}_{0}=\left\{\xi_{\mathrm{n}}: 0 \leq \mathrm{n}<\mathrm{S}_{0}\right\}, \mathrm{c}_{1}=\left\{\xi_{\mathrm{n}}: \mathrm{S}_{0} \leq \mathrm{n}<\mathrm{S}_{1}\right\}, \quad \mathrm{c}_{2}=\left\{\xi_{\mathrm{n}}: \mathrm{S}_{1} \leq \mathrm{n}<\mathrm{s}_{2}\right\}, \ldots
$$

which are independent and such that in addition $c_{1}, c_{2}, \ldots$ follow the same probability law. Then $\left\{S_{k}\right\}$ is a renewal process, i.e. $T_{0}=S_{0}, T_{1}=S_{1}-S_{0}$, $\mathrm{T}_{2}=\mathrm{S}_{2}-\mathrm{S}_{1}, \ldots$ are independent and $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots$ have the same distribution. We shall here assume that $m=E T_{1}<\infty$ and that the distribution of $T_{1}$ is aperiodic, i.e. that the only integer for which $P\left(T_{1} \in\{d, 2 d, \ldots\}\right)=1$ is $d=1$. The sequence $\left\{\xi_{n}\right\}$ is 1-dependent regenerative if there exists a renewal process $\left\{S_{k}\right\}$ as above, which makes $c_{0}, c_{1}, \ldots$ - dependent (i.e. cycles separated by at least one cycle are independent) and $c_{1}, c_{2}, \ldots$ stationary.

Suppose now that $\left\{\xi_{\mathrm{n}}: \mathrm{n}=0,1, \ldots\right\}$ is a stationary regenerative sequence, let $\zeta_{0}=\max \left\{\xi_{\mathrm{i}}: 0 \leq \mathrm{i}<\mathrm{S}_{0}\right\}, \zeta_{1}=\max \left\{\xi_{\mathrm{i}}: \mathrm{S}_{0} \leq \mathrm{i}<\mathrm{S}_{1}\right\}, \zeta_{2}=\max \left\{\xi_{1}\right.$ : $\left.S_{1} \leq i<S_{2}\right\}, \ldots$ be the cycle maxima and define $v_{t}=\inf \left\{k \geq 1: S_{k}>t\right\}$. By the law of large numbers $v_{t} / t \rightarrow 1 / \mathrm{m}$ a.s. and $M_{n}=\max \left\{\xi_{1}, \ldots, \xi_{n}\right\}$ is easily approximated by $\max \left\{\zeta_{1}, \ldots, \zeta v_{\mathrm{n}}\right\}$, which then in turn can be approximated by $\max \left\{\zeta_{1}, \ldots, \zeta_{[\mathrm{n} / \mathrm{m}]}\right\}$. Since $\zeta_{1}, \zeta_{2}, \ldots$ are i.i.d., this can be shown to lead to

$$
\begin{equation*}
\sup _{x}\left|P\left(M_{n} \leq x\right)-G^{n}(x)\right| \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{2.6.1}
\end{equation*}
$$

with $G(x)=P\left(\zeta_{1} \leq x\right)^{1 / m}$, see e.g. [9], [92]. Since G is a d.f. it follows at once that the Extremal Types Theorem holds for $\left\{\xi_{n}\right\}$, and criteria for domains of attraction are obtained by applying the criteria for i.i.d. variables to $G(x)$.

In particular it follows from (2.6.1) and Lemma 1.2.2 that

$$
\begin{equation*}
P\left(M_{n} \leq u_{n}\right) \rightarrow e^{-\eta}, \quad \text { as } n \rightarrow \infty \tag{2.6.2}
\end{equation*}
$$

if and only if $n\left(1-G\left(u_{n}\right)\right) \rightarrow \eta$. As in Section 2.2 let $\hat{\xi}_{1}, \hat{\xi}_{2}, \ldots$ be the associated independent sequence which has the same marginal d.f. $F$ as $\xi_{1}, \xi_{2}, \ldots$ and write $\hat{M}_{n}=\max \left\{\hat{\xi}_{1}, \ldots, \hat{\xi}_{n}\right\}$. If in addition $n\left(1-F\left(u_{n}\right)\right)=n P\left(\xi_{1}>u_{n}\right) \rightarrow \tau>0$ then $P\left(\hat{M}_{n} \leq u_{n}\right) \rightarrow e^{-\tau}$ and $\left\{\xi_{n}\right\}$ hence has extremal index $\theta=\eta / \tau$. Since $1-G\left(u_{n}\right)$ $\sim P\left(\zeta_{1}>u_{n}\right) / m$, this can be formulated as follows. If there exists a sequence $\left\{u_{n}\right\}$ such that $n\left(1-F\left(u_{n}\right)\right) \rightarrow \tau>0$ and

$$
\begin{equation*}
\frac{P\left(\zeta_{1}>u_{n}\right) / m}{P\left(\xi_{1}>u_{n}\right)} \rightarrow \theta>0 \tag{2.6.3}
\end{equation*}
$$

then $\left\{\zeta_{t}\right\}$ has extremal index $\theta$. In the same way it can be seen that conversely if $\left\{\zeta_{t}\right\}$ has extremal index $\theta>0$ then for any $\tau>0$ there exists a sequence $\left\{u_{n}\right\}$ which satisfies $n\left(1-F\left(u_{n}\right)\right) \rightarrow \tau$ and (2.6.3). However, it should be noted that there are examples of regenerative sequences $\left\{\xi_{t}\right\}$ which satisfy (2.6.2), even for $u_{n}=u_{n}(x)=x / a_{n}+b_{n}$, for all $x$, but for which $\left(P\left(\zeta_{1}>u_{n}\right) / m\right) / P\left(\xi_{1}>u_{n}\right)$ does not converge, and hence the extremal index does not exist, even if this is not expected to occur in cases of practical interest.

A counterpart to the Compound Poisson limit Theorem 2.4.3 for the exceedance point process $N_{n}$ given by $N_{n}(E)=\#\left\{\frac{i}{n} \in E: \xi_{i}>u_{n}\right\}$, is also easy to obtain for stationary regenerative sequences. Let $N_{n}^{\prime}$ be the point process on $(0,1]$ which has points of multiplicity $\gamma_{i}=\#\left\{t: \xi_{t}>u_{n}, S_{i-1} \leq t<S_{i}\right\}$ at $i / n$ for each i for which $\gamma_{i}>0$, i.e. $N_{n}^{\prime}$ is defined by $N_{n}^{\prime}(E)=\sum_{i / n \in E} \gamma_{i}$. Then $\left\{\gamma_{i}\right\}_{i=1}^{\infty}$ is an i.i.d. sequence, and if (2.6.2) holds so that $n P\left(r_{1}>0\right)=n P\left(\zeta_{1}>u_{n}\right) \rightarrow$ $\eta \mathrm{m}$ and if

$$
\begin{equation*}
\pi_{\mathrm{n}}(\mathrm{i})=\mathrm{P}\left(r_{1}=\mathrm{i} \mid r_{1}>0\right) \rightarrow \pi(\mathrm{i}), \quad \text { as } \mathrm{n} \rightarrow \infty, \tag{2.6.4}
\end{equation*}
$$

for all $i$, for some $\{\pi(i) ; i=1,2, \ldots\}$ then $i t$ follows at once that $N_{n}^{\prime}$ converges in distribution to a Compound Poisson process $N^{\prime}$ with Laplace transform $L_{N}(f)=$ $\exp \left\{-\eta m \int_{0}^{1}\left(1-\Sigma_{i=1}^{\infty} e^{-f(t) i} \pi(i)\right) d t\right\}$. By definition, a non-zero $r_{i}$ corresponds to a cluster of $\gamma_{i}$ exceedances of $u_{n}$ by $\xi_{t}$ for $S_{i-1} \leq t<S_{i}$, and since $S_{i} / i \rightarrow m$ as $i \rightarrow \infty$ there is hence a cluster of $\gamma_{i}$ points located approximately at $m i / n$ in $N_{n}$.

Hence for an interval $E, N_{n}(E)$ is approximated by $N_{n}^{\prime}\left(m^{-1} \cdot E\right)$, (for $m^{-1} \cdot E=\{x: m x \in$ $E\}$ ) and asymptotically $N_{n}(E)$ should have the same distribution as $N^{\prime}\left(m^{-1} E\right)$. This argument can easily be extended and made stringent, to give the following result of [92] (cf. also [93]).

Theorem 2.6.1 Let $\left\{\xi_{\mathrm{n}}: \mathrm{n}=0,1, \ldots\right\}$ be a stationary aperiodic regenerative sequence with $m<\infty$ and let $\left\{u_{n}\right\}$ be constants such that $\mathrm{nP}\left(r_{1}>0\right) / \mathrm{m}=\mathrm{nP}\left(\zeta_{1}>\mathrm{u}_{\mathrm{n}}\right) / \mathrm{m} \rightarrow \eta$, and (2.6.4) holds. Then $\mathrm{N}_{\mathrm{n}}$ converges in distribution to a Compound Poisson Process $N$ with Laplace transform (2.4.4), i.e.

$$
L_{N}(f)=\exp \left\{-\eta \int_{0}^{1}\left(1-\sum_{i=1}^{\infty} e^{-f(t) i} \pi(i)\right) d t\right\}
$$

These results may also be extended to 1 -dependent regenerative
sequences, however with some extra complexity. Here we mention that the criterion (2.6.3) for the extremal index to be $\theta$ then is replaced (cf. [92]) by

$$
\begin{equation*}
\frac{P\left(\zeta_{1} \leq u_{n}, \zeta_{2}>u_{n}\right) / m}{P\left(\zeta_{1}>u_{n}\right)} \rightarrow \theta \tag{2.6.5}
\end{equation*}
$$

In [92], (2.6.5) is further used to find conditions for $\theta=1$ for a function $\xi_{t}=f\left(\eta_{t}\right)$ of a Markov chain on a general state space. This result is expressed directly in terms of the transition probabilities $\mathrm{P}_{\mathrm{n}}(\mathrm{x})=\mathrm{P}\left(\mathrm{f}\left(\eta_{1}\right)>\mathrm{u}_{\mathrm{n}} \mid \eta_{\mathrm{O}}=\mathrm{x}\right)=\mathrm{P}\left(\xi_{1}>\mathrm{u}_{\mathrm{n}} \mid \eta_{\mathrm{O}}=\mathrm{x}\right)$ as follows.

Theorem 2.6.2 Let $\left\{\eta_{n}\right\}$ be a stationary regenerative Markov chain with the cycle length $T_{1}$ aperiodic and satisfying $E T_{1}^{\alpha}<\infty$, for some $\alpha>1$. If $u_{n}=u_{n}(\tau)$ satisfies (1.2.3) for some $\tau>0$ and

$$
\mathrm{E}\left(\mathrm{P}_{\mathrm{n}}\left(\eta_{0}\right)^{\mathrm{s}}\right) \mathrm{n}^{1+\mathrm{s} / \alpha} \rightarrow 0 \quad \text { as } \mathrm{n} \rightarrow \infty
$$

for some $s>1$ with $1 / \alpha+1 / s<1$ then $\left\{\xi_{n}\right\}$ has extremal index $\theta=1$.

We also refer to [92, Theorem 4.1] and [79, Theorem 2.1] for additional results on the extremal index and Compound Poisson Convergence, for general
distributionally mixing sequences, in a form which is particularly convenient for applications to Markov chains. Finally the restriction that the Markov chain (or regenerative sequence) is started with the stationary initial distribution is not essential. All the results hold for arbitrary initial distributions, provided only that

$$
\mathrm{P}\left(\zeta_{0}>\max \left\{\zeta_{1}, \ldots, \zeta_{\mathrm{k}}\right\}\right) \rightarrow 0 \quad \text { as } \mathrm{k} \rightarrow \infty
$$

### 2.7 Moving averages

Here, a stationary sequence $\left\{\xi_{t}\right\}$ is a moving average if it can be written in the form

$$
\begin{equation*}
\xi_{\mathrm{t}}=\sum_{\mathrm{i}=-\infty}^{\infty} \mathrm{c}_{\mathrm{i}} \zeta_{\mathrm{t}-\mathrm{i}}, \quad \mathrm{t}=0, \pm 1, \ldots \tag{2.7.1}
\end{equation*}
$$

where $\left\{\zeta_{t}\right\}$ is an i.i.d. sequence (the "noise sequence") and $\left\{c_{i}\right\}$ is a sequence of constants (the "weights") and where the sums are assumed to converge with probability one. If a stationary normal sequence has a spectral density - this holds e.g. if $\Sigma r_{t}^{2}<\infty$, it can be represented in a non-unique way, as a moving average with normally distributed $\zeta^{\prime}$ s. Further, (2.7.1) includes the ARMA-processes (which satisfy a finite linear difference equation in the $\zeta^{\prime}$ 's and hence also are multi-dimensional Markov chains), which are extensively used in time series analysis. Thus, in particular, some of the themes from Sections 2.5 and 2.6 will be taken up again here, but from a slightly different point of view.

The extremal behavior of $\left\{\xi_{\mathrm{t}}\right\}$ depends on both the weights and the two tails of the marginal d.f. of the noise variables in an intricate and interesting way. To reduce the amount of detail, we shall only describe the asymptotic distribution of the maxima, for the case of non-negative $c_{i}$ 's. The general case involves some extra complexity, since then an extreme negative noise variable which is multiplied by a negative $c_{i}$ may contribute to a large
$\xi_{\mathrm{t}}$-value. In addition to this, the references cited below prove point process convergence and give rather detailed information on the sample path behavior near extremes, including the clustering which occurs when the extremal index is less than one. Here we will only exhibit the limiting form of the sample paths near extreme values without going into technicalities, referring to [87], [90], [36] for further details.

In cases when (1.2.1) holds, i.e. when

$$
P\left\{a_{n}\left(M_{n}-b_{n}\right) \leq x\right\} \xrightarrow{d} G(x), \quad \text { as } n \rightarrow \infty,
$$

the asymptotic behavior of the maximum is specified by the constants $a_{n}>0, b_{n}$ and the d.f. G. However, this involves an arbitrary choice, since if $a_{n}, b_{n}$ are replaced by $a_{n}^{\prime}, b_{n}^{\prime}$, where $a_{n} / a_{n}^{\prime} \rightarrow a>0$ and $a_{n}\left(b_{n}^{\prime}-b_{n}\right) \rightarrow b$, then (2.7.2) still holds, but with $G(x)$ replaced by $G(a x+b)$. In the sequel we will keep the $G$ 's fixed, as the standard d.f.'s displayed in Theorem 1.2.1 and hence describe extremal behavior by $a_{n}, b_{n}$ and the type of $G$.

Extremal behavior of the moving average $\left\{\xi_{t}\right\}$ can be put into perspective by comparing with extremes of the noise sequence and of the associated i.i.d. sequence $\left\{\hat{\xi}_{\mathrm{t}}\right\}$ with the same marginal d.f. $\left\{\xi_{\mathrm{t}}\right\}$. Specifically, for $\tilde{\mathrm{M}}_{\mathrm{n}}=$ $\max \left\{\zeta_{1}, \ldots, \zeta_{n}\right\}$ and $\hat{M}_{n}=\left\{\hat{\xi}_{1}, \ldots, \hat{\xi}_{n}\right\}$ there are norming constants $\tilde{a}_{n}, \hat{a}_{n}>0$ and $\tilde{b}_{n}$, $\hat{\mathrm{b}}_{\mathrm{n}}$ such that for the cases we consider here,

$$
\begin{equation*}
P\left\{\tilde{a}_{n}\left(\tilde{M}_{n}-\tilde{b}_{n}\right) \leq x\right\} \rightarrow G(x) \tag{2.7.3}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left\{\hat{a}_{n}\left(\hat{M}_{n}-\hat{b}_{n}\right) \leq x\right\} \rightarrow G(x) \tag{2.7.4}
\end{equation*}
$$

with the same G as in (2.7.2), and we shall indicate the relations between the different norming constants.

The articles by Rootzèn ([87]) and Davis and Resnick ([36]) are concerned with noise variables which are in the domain of attraction of the type II extreme value distribution, or equivalently when the noise variables have a
regularly varying tail,

$$
\begin{equation*}
P\left(\zeta_{0}>x\right)=x^{-\alpha} L(x) \tag{2.7.5}
\end{equation*}
$$

with $\alpha>0$, and $L$ slowly varying at infinity. Hence, using the prescription for norming constants given after Lemma 1.2.2, if $\gamma_{n}$ satisfies $P\left(\zeta_{0}\left\langle\gamma_{n}\right) \leq 1-1 / n \leq P\left(\zeta_{0} \leq \gamma_{n}\right)\right.$, so that $\gamma_{n}$ is roughly of the order $n^{1 / \alpha}$, then (2.7.3) holds, with

$$
\left\{\begin{array}{l}
\tilde{a}_{n}=\gamma_{n}^{-1}, \tilde{b}_{n}=0 \\
G(x)=\exp \left(-x x^{-\alpha}\right), \quad x>0
\end{array}\right.
$$

Let $c_{+}=\max \left\{\mathrm{c}_{\mathbf{i}} ; \mathbf{i}=0, \pm 1, \ldots\right\}$. Then also (2.7.2) is satisfied, with

$$
\left\{\begin{array}{l}
a_{n}=c_{+}^{-1 \sim} a_{n}, b_{n}=0  \tag{2.7.6}\\
G(x)=\exp \left(-x^{-\alpha}\right)
\end{array}\right.
$$

This is elegantly proved in [36], by first noting that complete Poisson convergence of extremes of the $\zeta$-sequence is immediate (cf. Section 1.3) and then obtaining the corresponding result for the $\xi$ 's by a "continuous mapping" and approximation argument. [36] uses some summability assumptions on the $c_{i}$ 's, and for convenience that $c_{i}=0$ for $i=-1,-2, \ldots$. However, it seems clear that the results hold without any restrictions beyond the assumption that the sums in (2.7.1) converge, cf. [87].

An intuitive explanation of (2.7.6) is that when the tails of the noise variables decrease slowly, as in (2.7.5), then the extreme noise values are very much larger than the typical ones, and that hence the maximal $\xi_{t}$-value asymptotically is achieved when the largest $\zeta_{t}$-value is multiplied by the largest weight, $c_{+}$. This of course agrees with (2.7.6), since the norming constants there are the same as those which apply to $\max \left\{\mathrm{c}_{+} \zeta_{1}, \ldots, c_{+} \zeta_{n}\right\}$. These heuristic arguments also easily lead to the following form of the normalized sample path $\xi_{t+\tau} / \xi_{\tau}$ near an extreme value at, say, the time point $\tau$; asymptotically this ratio has the same distribution as the function $\mathrm{y}_{\mathrm{t}}$ given by

$$
\begin{equation*}
y_{t}=U c_{-t}, \tag{2.7.7}
\end{equation*}
$$

where $U$ is a certain random variable with values in the set $\left\{\ldots l / c_{-1}, 1 / c_{0}, 1 / c_{1}, \ldots\right\}$. Thus, except for a random height, sample paths near extremes are asymptotically deterministic.

The special case of (2.7.5) when the noise variables are stable (or "sum-stable", as opposed to max-stable) was studied first, in [87]. It has the appealing feature that then also the moving average, and indeed all linear functions of the noise variables are jointly stable. For such variables, it is easily seen that (2.7.4) holds, with

$$
\left\{\begin{array}{l}
\hat{a}_{n}=\left(\Sigma c_{i}^{\alpha}\right)^{1 / \alpha}{\underset{a}{n}}^{\sim}, \hat{b}_{n}=0 \\
G(x)=\exp \left\{-x^{-\alpha}\right\}
\end{array}\right.
$$

and hence also that the extremal index is $c_{+}^{\alpha} / \Sigma c_{i}^{\alpha}$, for the case of non-negative c's discussed here. Although not considered in [36], this can be shown to hold also for the general case (2.7.5), provided the sums involved are convergent.

The other class of moving averages which has been studied, in [90], is specified by

$$
\begin{equation*}
\mathrm{P}\left(\zeta_{0}>\mathrm{x}\right) \sim \mathrm{Kx}^{\alpha} \mathrm{e}^{-\mathrm{x}^{\mathrm{p}}} \quad \text { as } \mathrm{x} \rightarrow \infty \tag{2.7.8}
\end{equation*}
$$

where $\mathrm{K}, \mathrm{p}>0$ and $\alpha$ are constants. Again it follows, using Lemma l.2.2, that
(2.7.3) holds, with

$$
\left\{\begin{aligned}
\tilde{a}_{n} & =p(\log n)^{1-1 / p} \\
\tilde{b}_{n} & =(\log n)^{1 / p}+p^{-1}((\alpha / p) \log \log n+\log K)(\log n)^{1 / p-1} \\
G(x) & =\exp \left\{-e^{-x}\right\}
\end{aligned}\right.
$$

Thus the center of the distribution of $\tilde{M}_{n}$ tends to infinity roughly as $(\log n)^{1 / p}$, and the "scale parameter" $a_{n}^{-1}$ is of the order $(\log n)^{1 / p-1}$, which shows that for $p>1$ the distribution of $\tilde{M}_{n}$ becomes more and more concentrated as $n \rightarrow \infty$, and that it becomes increasingly spread out for $0<p<1$, while the order of the scale does not change for $p=1$. As we shall see, the same holds for $\hat{M}_{n}$ and
$M_{n}$.
The case when (2.7.8) holds with $\mathrm{p}=1$ leads to intermediate behavior, and we will only discuss the remaining cases. For $0<p<1$ again a large $\xi$-value is caused by just one large noise variable, in a similar way to the behavior when (2.7.5) holds. However, the non-zero $\tilde{b}_{n}$-terms cause some extra complications. Thus, (2.7.2) holds with

$$
\left\{\begin{aligned}
a_{n} & =c_{+}^{-1 \sim} a_{n}, b_{n}=c_{+} \tilde{b}_{n} \\
G(x) & =\exp \left\{-e^{-x}\right\} .
\end{aligned}\right.
$$

in analogy with (2.7.6), but, writing $k$ for the number of $i$ 's with $c_{i}=c_{+}$, the appropriate version of (2.7.4) involves

$$
\left\{\begin{aligned}
\hat{a}_{n} & =c_{+}^{-1} \tilde{a}_{n}, \hat{b}_{n}=c_{+}\left(\tilde{b}_{n}+(\log k) / \tilde{a}_{n}\right) \\
G(x) & =\exp \left\{-e^{-x^{x}}\right\}
\end{aligned}\right.
$$

Also the asymptotic form of the sample path $\xi_{t+\tau} / \xi_{\tau}$ near an extreme value at $\tau$ is similar. For $k=1$ it is given by the deterministic function

$$
y_{t}=c_{-t} / c_{+},
$$

while in the general case it is a random translate of this.
The case when (2.7.8) holds with p>1 is more intricate, since then an extreme $\xi$-value is caused by many moderately large noise variables in conjunction, and since extremal behavior is determined by the constant $\|\mathrm{c}\| \|_{\mathrm{q}}=$ $\left(\Sigma\left|c_{i}\right|^{q}\right)^{1 / q}$ and the function

$$
\begin{equation*}
y_{t}=\sum_{i} c_{i-t} c_{i}^{q / p} /\|c\|_{q}^{q} \tag{2.7.9}
\end{equation*}
$$

with $\mathrm{q}=(1-1 / \mathrm{p})^{-1}$. In fact, the normalized sample path $\xi_{\mathrm{t}+\tau} / \xi_{\tau}$ near an extreme at $\tau$ asymptotically has the deterministic form (2.7.9), and (2.7.2) and (2.7.4) hold, with

$$
\left\{\begin{array}{l}
a_{n}=\hat{a}_{n}=\|c\|_{q}^{-1} \tilde{a}_{n}, b_{n}=\hat{b}_{n}  \tag{2.7.10}\\
G(x)=\exp \left\{-e^{-x_{x}}\right\}
\end{array}\right.
$$

Here $b_{n}=\hat{b}_{\mathrm{n}}$ is not determined by (2.7.8) alone, except for finite moving
averages, it is also influenced by the center of the distribution of the $\zeta$ 's. However, it is roughly of the order $\|c\|_{q} \tilde{b}_{n}$, but still $a_{n}\left|\left(b_{n}-\|c\| \|_{q} \tilde{b}_{n}\right)\right|$ may in general tend to infinity. It of course follows at once from (2.7.10) that the extremal index is one for $p>1$.

For $\mathrm{p}=\mathrm{q}=2$, which includes the normal case, (2.7.9) is the correlation function and $\|\mathbf{c}\|_{q}$ is proportional to the standard deviation, in agreement with Section 2.5. However, it is interesting to note that for $\mathrm{p} \neq 2$ covariances seem to have little bearing on extremes.

The results for the case (2.7.8) use the assumption that $\left|c_{i}\right|=0\left(|i|^{-\eta}\right)$, for some $\eta>\max (1,2 / q)$, and for $p>1$ in addition a number of smoothness restrictions on the distribution of the noise variables. These are mainly used in the derivations of the behavior of the tail of $\xi_{0}=\Sigma c_{i} \zeta_{-i}$, which for $p>1$ is the main difficulty, cf. [91]. It is fairly easy to see that $D\left(u_{n}\right)$ holds for all the moving averages considered here, and the results above for $p>1$ are obtained along the lines set out in Section 2.2, by verifying (2.2.1). For $0 \leq$ $\mathrm{p} \leq 1$, i.e. in the cases when $\theta$ may be less than one, the proofs use ad hoc methods, closely related to the heuristic arguments given above.

Finally it should be mentioned that Finster ([40]) obtains some related results using autoregressive representations of the processes, and that Chernick ([25]) provides an example with qualitatively different behavior.

### 2.8 Rates of convergence

Rates of convergence for the distribution of the maximum have mainly been studied for i.i.d. variables. In the present section we briefly review this work, discussing in turn pointwise rates, uniform convergence of d.f.'s, so called "penultimate" approximations, uniform convergence over the class of all sets, and "large deviation" type results. Although generalizations seem straightforward, the only dependent sequences which have been considered are the
normal ones. The quite precise results available for this case are discussed at the end of the section. A useful general observation, which applies to i.i.d. and dependent cases with extremal index $\theta=1$, is that once rates of convergence of the maximum have been found, then it is typically quite easy to find similar rates for $\mathrm{k}^{\text {th }}$ order statistics.

For i.i.d. random variables and a given $u_{n}$, the error $P\left(M_{n} \leq u_{n}\right)-e^{-\tau}$ in the approximation (1.2.2) is easy to compute directly, since then $P\left(M_{n} \leq u_{n}\right)=$ $F^{n}\left(u_{n}\right)$, where $F$ is the common d.f. of the variables. Further if $F$ is continuous one can always make the difference zero for any $n, \tau>0$ (by taking $u_{n}=F^{-1}\left(e^{-\tau / n}\right)$ ). However, of ten $u_{n}$ is determined from other considerations, e.g. in (1.2.1) it is chosen as $u_{n}=u_{n}(x)=x / a_{n}+b_{n}$ and correspondingly $\tau=\tau(x)=-\log G(x)$. Then the behavior of the approximation error

$$
\Delta_{n}(x)=P\left(M_{n} \leq u_{n}(x)\right)-e^{-\tau(x)},
$$

perhaps over a range of $x$-values, and in particular of

$$
d_{n}\left(a_{n}, b_{n}\right)=\sup _{x}\left|\Delta_{n}(x)\right|=\sup _{x}\left|P\left(a_{n}\left(M_{n}-b_{n}\right) \leq x\right)-G(x)\right|
$$

is less immediate. If (1.2.1) is used as an approximation or, more importantly, if it motivates statistical procedures, when $a_{n}, b_{n}$ have to be estimated, interest centers on which rate of decrease is attainable when the "best" $a_{n}, b_{n}$ are used, i.e. on

$$
d_{n}=\inf _{a>0, b} d_{n}(a, b)=\inf _{a>0, b} \sup _{x}\left|P\left\{a\left(M_{n}-b\right) \leq x\right\}-G(x)\right| .
$$

It is easy to give examples of distributions $F$ for which $d_{n}$ tends to zero arbitrarily slowly, and to any exponential rate there is an F which achieves this rate. However faster than exponential decrease of $d_{n}$ implies that $F$ is max-stable, and then $d_{n}=0$ for all $n$, ([8], [89]). Also different standard distributions give quite different rates, e.g. for the normal distribution $d_{n}$ is of the order $1 / \log n$ while for the uniform and exponential distributions the order is $1 / n$.

Let $\tau_{n}=\tau_{n}(x)=n\left(1-F\left(u_{n}(x)\right)\right)$. In the sequel we will usually, for brevity, delete the explicit dependence on $x$. An obvious approach to analysing $\Delta_{n}\left(=\Delta_{n}(x)\right)$ in the i.i.d. case is to introduce

$$
\Delta_{\mathrm{n}}^{\prime}=\left(1-\tau_{\mathrm{n}} / \mathrm{n}\right)^{\mathrm{n}}-\mathrm{e}^{-\tau_{n}}, \quad \Delta_{\mathrm{n}}^{\prime \prime}=\mathrm{e}^{-\tau_{n}}-\mathrm{e}^{-\tau}
$$

so that

$$
\begin{equation*}
\left|\Delta_{n}\right|=\left|F\left(u_{n}\right)^{n}-e^{-\tau}\right|=\left|\left(1-\tau_{n} / n\right)^{n}-e^{-\tau}\right| \leq\left|\Delta_{n}^{\prime}\right|+\left|\Delta_{n}^{\prime \cdot}\right| \tag{2.8.1}
\end{equation*}
$$

Here $0 \leq \tau_{\mathrm{n}} \leq \mathrm{n}$, and for such values the satisfying uniform bound

$$
\begin{equation*}
\left|\Delta_{n}^{\prime}\right| \leq n^{-1}\left(a+n^{-1}\right) e^{-2} \tag{2.8.2}
\end{equation*}
$$

is derived by Hall \& Wellner ([55]). Further, for fixed $\tau$, by Taylor's formula

$$
\begin{equation*}
\left|\Delta_{\mathrm{n}}^{\prime \cdot}\right| \sim \mathrm{e}^{-\tau}\left|\tau_{\mathrm{n}}-\tau\right| \tag{2.8.3}
\end{equation*}
$$

as $\tau_{\mathrm{n}} \rightarrow \boldsymbol{\tau}$. However, (2.8.3) is only uniform for $\tau_{\mathrm{n}}{ }^{-\tau}=\tau_{\mathrm{n}}(\mathrm{x})-\tau(\mathrm{x})$ in intervals which are bounded from below, and to bound $d_{n}$ a further argument has to be added. Of ten this runs as follows; (2.8.2) and (2.8.3) give sharp estimates of $\sup _{x>a}\left|\Delta_{n}(x)\right|$, for any $a>x_{0}$, where $x_{0}$ is the left-hand endpoint of the d.f. $G$, and then also for $\sup _{\mathrm{x}>\mathrm{x}_{\mathrm{n}}}\left|\Delta_{\mathrm{n}}(\mathrm{x})\right|$ if $\mathrm{x}_{\mathrm{n}}$ is taken to converge to $\mathrm{x}_{0}$ suitably slowly. Combining this with

$$
\begin{equation*}
\sup _{\mathrm{x} \leq \mathrm{x}_{\mathrm{n}}}\left|\Delta_{\mathrm{n}}(\mathrm{x})\right| \leq \max \left\{\mathrm{F}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{n}} / \mathrm{a}_{\mathrm{n}}+\mathrm{b}_{\mathrm{n}}\right), \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}\right)\right\} \tag{2.8.4}
\end{equation*}
$$

leads to a bound for $d_{n}\left(a_{n}, b_{n}\right)$, and then by varying $a_{n}, b_{n}$, to bounds for $d_{n}$. This approach is used, with some variations, by Hall \& Wellner ([55]), Davis ([33]), Cohen ([26] [27]), and Leadbetter et al. [66]). Here the bounds corresponding to (2.8.2) and (2.8.3) are asymptotically sharp, but there is a possibility that $\Delta_{n}^{\prime}$ and $\Delta_{n}^{\prime \prime}$ can at least partially cancel. However, this happens only if $\tau_{n}=\tau-\tau^{2} /(2 n)+o(1 / n)$, and hence in fairly special cases, as is readily seen (cf. Davis ([33])).

A number of papers, some of the later references being Cohen ([26][27]),
Smith ([96]), and Resnick ([85]), have introduced conditions which permit more
explicit bounds than (2.8.1) - (2.8.4) to be calculated. Their approach is to take some set of conditions for attraction to an extreme value distribution, typically involving convergence of some quantity related to the tail of F , and show that if this holds at a specific rate then $d_{n}\left(a_{n}, b_{n}\right)$ converges at a corresponding rate. In this a set of simple sufficient conditions due to von Mises ([74]) (cf. [66], p. 16) have been particularly useful. There are many possible versions of such conditions, and hence many partially overlapping results have been obtained. As a typical example we cite the following result of Resnick ([85]).

Suppose F is differentiable and that there exists a continuous function g which tends monotonically to zero and which satisfies

$$
\begin{equation*}
\left|\frac{x F^{\prime}(x)}{F(x)(-\log F(x))}-\alpha\right| \leq g(x), \quad x>0 \tag{2.8.5}
\end{equation*}
$$

for some $\alpha>0$. Then, if $a_{n}$ is chosen to satisfy $-\log F\left(a_{n}^{-1}\right)=n^{-1}$,

$$
\sup _{\mathrm{x}>1}\left|\mathrm{~F}^{\mathrm{n}}\left(\mathrm{x} / \mathrm{a}_{\mathrm{n}}\right)-\exp \left\{-\mathrm{x}^{-\alpha}\right\}\right| \leq .2701 \mathrm{~g}\left(\mathrm{a}_{\mathrm{n}}^{-1}\right) /\left(\alpha-\mathrm{g}\left(\mathrm{a}_{\mathrm{n}}^{-1}\right)\right)
$$

for $n$ such that $g\left(a_{n}^{-1}\right)<\alpha$. Here (2.8.5) is a slight variation of von Mises, condition for attraction to the type II extreme value distribution, and the proof is somewhat different from the method outlined above, the main ingredient being an estimate of $-\log (-\log F(x))$. Resnick also obtains a somewhat more complicated bound for the supremum $d_{n}\left(a_{n}, 0\right)$ over all $x$.

For i.i.d. variables bounds on the rate of convergence of the maximum automatically lead to bounds for the rate of convergence also of $\mathrm{k}^{\text {th }}$ largest values. This follows as in (1.2.5), by using any of the known bounds for the difference between the binomial and Poisson distributions, since $S_{n}$ is binomial with parameters $n, \tau_{n} / n$ (see e.g. [66], Section 2.4).

The normal case, briefly mentioned above, of course has attracted special attention. Straightforward calculations show that for $a_{n}, b_{n}$ given by (1.2.4)

$$
\Delta_{n}(x) \sim\left[\exp \left(-e^{-x}\right) e^{-x}(\log \log n)^{2}\right] /(16 \log n) \text { as } n \rightarrow \infty
$$

and in Hall ([53]) is shown that for i.i.d. normal variables there are constants $0<c_{1}<c_{2}<3$ such that $c_{1} / \log n \leq d_{n} \leq c_{2} / \log n$, for $n \geq 3$, i.e. the best rate of convergence is of the disconcertingly slow order $1 / \log \mathrm{n}$. However, this is partially offset by the fact that $d_{n}$ is, nevertheless, fairly small for small $n$, e.g. for $n \leq 10,000$ it compares well with the error in the normal approximation to the binomial distribution.

In their pioneering paper [41], Fisher \& Tippet had already noticed the slow convergence rate for the normal case, and suggested improved "penultimate" approximations. The idea is that since the type I extreme value d.f. can be approximated arbitrarily well by type II (or type III) d.f.'s, if a d.f. can be approximated by a type I d.f., the same error can (in the limit) be achieved by a type II (or III) d.f., and there is always a possibility they can do better. This has been further developed by Cohen ([26] [27]), who in particular shows that a penultimate approximation of the maximum of normal random variables by a type II extreme value d.f. improves the rate of convergence to $1 /(\log n)^{2}$. The disadvantage with this approach is that the exponent $\alpha$ in the approximating d.f. then has to be chosen differently for different values of $n$. A related approach is to consider a function $\left|M_{n}\right|^{a}$ instead of $M_{n}$ itself. This is pursued in Hall ([54]) and Haldane \& Jayakar ([52]), and gives the rate of convergence $1 /(\log$ $n)^{2}$ for $a=2$, while other values of a lead to the same order $1 / \log n$ as for $M_{n}$ itself. Numerical computations show that these approximations also do better for small and moderate values of $n$, as could be expected.

A further statistically relevant question is to find rates of uniform convergence, i.e. to bound

$$
d_{n}^{\prime}=\inf _{a>0, b} \sup _{B \in \mathscr{B}}\left|P\left(a\left(M_{n}-b\right) \in B\right)-G(B)\right|
$$

where $\mathscr{B}$ denotes the Borel sets in $R$, and $G(B)$ is the probability that a random
variable with d.f. G belongs to B. The obvious approach is to bound the difference between the density (which is assumed to exist) of $a\left(M_{n}-b\right)$ and $G^{\prime}$. Let $\mathrm{G}^{\prime}(\mathrm{x})=\mathrm{G}(\mathrm{x}) \gamma(\mathrm{x})$, so that $\gamma(\mathrm{x})=\mathrm{e}^{-\mathrm{x}}, \alpha \mathrm{x}^{-\alpha-1}$, and $\alpha(-\mathrm{x})^{\alpha-1}$ for the type I, II and III extreme value distributions, respectively. Since (for i.i.d. variables),

$$
\frac{d}{d x} P\left\{a_{n}\left(M_{n}-b_{n}\right) \leq x\right\}=\frac{d}{d x} F^{n}\left(x / a_{n}+b_{n}\right)=F\left(x / a_{n}+b_{n}\right)^{n-1} n a_{n}^{-1} F^{\prime}\left(x / a_{n}+b_{n}\right)
$$

where the first factor tends to $G$ at a rate given by the references cited above, the main problem is to bound the difference $n a^{-1} F^{\prime}(x / a+b)-r(x)$. The recent thesis by Falk ([39]) contains a survey of results in this direction, some further recent work being that of de Haan \& Resnick ([51]) and Weissman ([100]).

Another problem which has attracted some attention, partly because of reliability applications, is the uniformity of the convergence of $P\left\{a_{n}\left(M_{n}-b_{n}\right)>x\right\} /(1-G(x))$ for large $x$; see Anderson ([2]) and de Haan \& Hordijk ([49]).

For a stationary dependent sequence with extremal index $\theta=1$, a further source of error is the approximation by the associated independent sequence, i.e. the difference

$$
\Delta_{n}^{\prime \prime \prime}(\mathrm{x})=\mathrm{P}\left\{\mathrm{a}_{\mathrm{n}}\left(\mathrm{M}_{\mathrm{n}}-\mathrm{b}_{\mathrm{n}}\right) \leq \mathrm{x}\right\}-\mathrm{F}^{\mathrm{n}}\left(\mathrm{x} / \mathrm{a}_{\mathrm{n}}+\mathrm{b}_{\mathrm{n}}\right)
$$

where $F$ is the marginal d.f. of the sequence. Cohen ([26]) shows, under weak covariance conditions, that for a stationary normal sequence $\Delta_{n}^{\prime \prime \prime}$ is $o(1 / \log n)$, and hence that the rate of convergence in (1.2.1) is determined by the difference $F^{n}\left(x / a_{n}+b_{n}\right)-G(x)$, and hence is the same as in the i.i.d. case. Let $\rho$ be the maximal correlation in the stationary normal sequence. Rootzen ([88]) gives a first order approximation and bounds for $\Delta_{n}^{\prime \prime \prime}$ which are roughly of the order $1 / \mathrm{n}^{(1-\rho) /(1+\rho)}$ for $\rho \geq 0$.

By using an embedding technique, these rates are extended also to $M_{n}^{(k)}$ and to point processes of exceedances. This embedding can be used more generally, and hence also in dependent cases rates for the maximum of ten easily
lead to similar rates for k -th largest values.

### 2.9 Multivariate extremes

We shall discuss here only one multivariate problem, the Extremal Types Theorem for i.i.d. random vectors, and its extension to dependent sequences. As shown by de Haan \& Resnick ([50]) and Pickands ([83]) the problem of characterizing the possible limit laws of the vector of coordinatewise maxima splits into two independent problems, to find the marginal d.f.'s which may occur - by the one-dimensional result this is just the class of extreme value d.f.'s - and to characterize the limiting dependence between components. Following Deheuvels ([37]) and Hsing ([59]) we will use the concept of dependence functions to discuss this.

Let $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{\mathrm{d}}\right)$ be a d-dimensional random vector with d.f. $\mathbf{G}$ and marginal d.f.'s $G_{j}, 1 \leq j \leq d$. The dependence function $D$ of $\xi(o r$ of $G$ ) is defined by

$$
\mathrm{D}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}}\right)=\mathrm{P}\left\{\mathrm{G}_{1}\left(\xi_{1}\right) \leq \mathrm{x}_{1}, \ldots, \mathrm{G}_{\mathrm{d}}\left(\xi_{\mathrm{d}}\right) \leq \mathrm{x}_{\mathrm{d}}\right\}
$$

$D$ is the d.f. of a distribution on $[0,1]^{d}$, and it has uniform marginal distributions if the $G_{j}$ 's are continuous. The marginal distributions together with the dependence function determine G, since
(2.9.1) $G\left(x_{1}, \ldots, x_{d}\right)=D\left(G_{1}\left(x_{1}\right), \ldots, G_{d}\left(x_{d}\right)\right), \quad x_{1}, \ldots, x_{d} \in R$.

This is a consequence of the relation

$$
\begin{aligned}
\left\{G_{j}\left(\xi_{j}\right) \leq G_{j}\left(x_{j}\right) ;\right. & 1 \leq j \leq d\} \backslash \underset{j=1}{d}\left\{G_{j}\left(\xi_{j}\right) \leq G_{j}\left(x_{j}\right), \xi_{j}>x_{j}\right\} \\
& \subset\left\{\xi_{j} \leq x_{j} ; 1 \leq j \leq d\right\} \subset\left\{G_{j}\left(\xi_{j}\right) \leq G_{j}\left(x_{j}\right), 1 \leq j \leq d\right\}
\end{aligned}
$$

since it is readily seen that $P\left\{G_{j}\left(\xi_{j}\right) \leq G_{j}\left(x_{j}\right), \xi_{j}>x_{j}\right\}=0$ for for each $j$.
A further useful property is that convergence of d-dimensional
distributions is equivalent to convergence of the dependence function and the marginal distributions, provided the limit has continuous marginal d.f.'s. This
can be proved rather easily, using (2.9.1). Similarly to the one-dimensional case, a d-dimensional d.f. $G$ is said to be max-stable if there exist constants $a_{n, i}>0, b_{n, i}, i=1, \ldots, d$, such that
(2.9.2) $G^{n}\left(a_{n, 1} x_{1}+b_{n, 1}, \ldots, a_{n, d^{x}}{ }^{x_{d}}+b_{n, d}\right)=G\left(x_{1}, \ldots, x_{d}\right) \quad x_{1}, \ldots, x_{d} \in R$ for each $n=1,2, \ldots$. Further, a dependence function $D$ is max-stable if

$$
\begin{equation*}
\mathrm{D}^{\mathrm{n}}\left(\mathrm{x}_{1}^{1 / \mathrm{n}}, \ldots, \mathrm{x}_{\mathrm{d}}^{1 / \mathrm{n}}\right)=\mathrm{G}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}}\right), \quad \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}} \in R \tag{2.9.3}
\end{equation*}
$$

for $n=1,2, \ldots$.
Theorem 2.9.1 A d-dimensional ( $\mathrm{d} \geq 2$ ) d.f. with nondegenerate marginal distributions is max-stable if and only if its marginal d.f.'s and its dependence function are nondegenerate max-stable.

Proof. If $G_{1}, \ldots, G_{d}$ are max-stable, or if $G$ is max-stable, then there are constants $a_{n, i}>0, b_{n, i}$ with $G_{i} n_{n, i}\left(a_{n, i}\right)=G_{i}(x)$, for $i=1, \ldots, d$. Hence, in either case,
(2.9.4) $G^{n}\left(a_{n, l} x_{1}+b_{n, l}, \ldots, a_{n, d^{x}} d^{+b_{n, d}}\right)$

$$
\begin{aligned}
& =D^{n}\left(G_{1}\left(a_{n, 1} x_{1}+b_{n, l}\right), \ldots, G_{d}\left(a_{n, d} x_{d}+b_{n, d}\right)\right) \\
& =D^{n}\left(G_{1}\left(x_{1}\right)^{1 / n}, \ldots, G_{d}\left(x_{d}\right)^{1 / n}\right)
\end{aligned}
$$

Thus (2.9.2) follows at once if $D$ is max-stable, by (2.9.1). The converse, i.e. that $G^{n}\left(y_{1}^{1 / n}, \ldots, y_{d}^{1 / n}\right)=D\left(y_{1}, \ldots, y_{d}\right)$, for $y_{i} \in(0,1)$, $i=1, \ldots, d$ if $G$ is max-stable also follows from (2.9.4), by taking $\mathrm{x}_{\mathrm{i}}=\mathrm{G}_{\mathrm{i}}^{-1}\left(\mathrm{y}_{\mathrm{i}}\right)$ there (note that each $G_{i}$ is nondegenerate max-stable and hence continuous and strictly increasing on its support).

Let $\left\{\xi_{\mathrm{n}}\right\}=\left\{\left(\xi_{\mathrm{n}, 1}, \ldots, \xi_{\mathrm{n}, \mathrm{d}}\right)\right\}_{\mathrm{n}=1}^{\infty}$ be a sequence of i.i.d. random vectors, write $M_{n, i}=\max \left\{\xi_{1, i}, \ldots, \xi_{n, i}\right\}$ and suppose there are constants $a_{n, i}>0, b_{n, i}$ such that

$$
\begin{equation*}
P\left\{a_{n, i}\left(M_{n, i}-b_{n, i}\right) \leq x_{i}, \quad 1 \leq i \leq d\right\} \xrightarrow{d} G\left(x_{1}, \ldots, x_{d}\right), \tag{2.9.5}
\end{equation*}
$$

where we may assume without loss of generality that the marginal distributions of $\mathbf{G}$ are nondegenerate. It then follows exactly as in the one-dimensional case
that the possible limits $\mathbf{G}$ in (2.9.5) are precisely the max-stable d.f.'s. Thus, by Theorem 2.9.1 each marginal d.f. is max-stable and hence one of the three extreme value types, and the dependence function is max-stable. Further the distribution of $a_{n, i}\left(M_{n, i}-b{ }_{n, i}\right)$ tends to $G_{i}$, for $i=1, \ldots, d$ and the dependence function of $\left\{M_{n, i}: i=1, \ldots, d\right\}$ converges to the dependence function of G. To complete the characterization of the limits, it only remains to describe the max-stable dependence functions. Again, this is a purely analytical problem, to solve the functional equation (2.9.3), and we thus only cite the result, which is obtained in somewhat varying forms in [50], [83], [37], and [59].

Theorem 2.9.2 A function $\mathbf{D}$ on $[0,1]^{\mathrm{d}}$ is a max-stable dependence function if and only if it has the representation

$$
D\left(y_{1}, \ldots, y_{d}\right)=\exp \left\{\int_{S} \min _{1 \leq i \leq d}\left\{x_{i} \log y_{i}\right\} d \mu\right\}
$$

where $S$ is the simplex $\left\{\left(x_{1}, \ldots, x_{d}\right): x_{i} \geq 0, i=1, \ldots, d, \Sigma_{i}^{d} x_{i}=1\right\}$, for some finite measure $\mu$ on $S$ which satisfies $\int_{S} \mathrm{X}_{\mathrm{i}} \mathrm{d} \mu=1$, for $\mathrm{i}=1, \ldots, \mathrm{~d}$.

Hsing, ([59]) also makes the observation that while the characterization of the limiting marginal d.f.'s is crucially tied to linear normalizations, this is not so for the dependence function. Specifically, if $\left\{u_{n, i}(x)\right\}$ are levels which are continuous and strictly increasing in $x$, and if

$$
P\left\{M_{n, i} \leq u_{n, i}\left(x_{i}\right), i=1, \ldots, d\right\} \xrightarrow{d} G\left(x_{1}, \ldots, x_{d}\right)
$$

where $\mathbf{G}$ has continuous marginal distributions, then the dependence function of $\mathbf{G}$ is max-stable. The basic reason for this is the obvious fact that if $\mathrm{T}_{1}, \ldots, \mathrm{~T}_{\mathrm{d}}$ are continuous and strictly increasing, then $\left(\xi_{1}, \ldots, \xi_{d}\right)$ and $\left(T_{1}\left(\xi_{1}\right), \ldots, T_{d}\left(\xi_{d}\right)\right)$ have the same dependence function.

Hsing also extends these results to stationary dependent sequences $\left\{\xi_{\mathrm{n}}\right\}$, along rather similar lines as for the one-dimensional case, as treated in

Sections 2.1 and 2.2. Specifically, for given constants $\left\{u_{n, j}: j=1, \ldots, d, n \geq\right.$ 1\} the condition $D\left(u_{n, 1}, \ldots, u_{n, d}\right)$ is defined to hold if there is a sequence $\ell_{\mathrm{n}}=o(\mathrm{n})$ such that $\alpha_{\mathrm{n}, \ell_{\mathrm{n}}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$ for $\alpha_{n, \ell}=\max \left\{\mid P\left(\xi_{i, j} \leq u_{n, j}: j=1, \ldots, d, i \in A \cup B\right)\right.$

$$
\left.-P\left(\xi_{i, j} u_{n, j}: j=1, \ldots, d, i \in A\right) P\left(\xi_{i, j} \leq u_{n, j}: j=1, \ldots, d, i \in B\right) \mid\right\}
$$

where the maximum is taken over all sets $A, B$ such that $A \subset\{1, \ldots, k\}$,
$B C(k+\ell, \ldots, n\}$, for some $k$. If $D\left(u_{n, l}, \ldots, u_{n, d}\right)$ holds the only possible limits in (2.9.5) again are the max-stable d.f.'s. Further, if in addition
 then $P\left(M_{n, i}<u_{n, i}, i=1, \ldots, d\right) \rightarrow \rho>0$ if and only if $P^{n}\left(\xi_{1, i} \leq u_{n, i}: i=1, \ldots, d\right)$ $\rightarrow \rho$, i.e. the asymptotic distribution of maxima is the same as if the vectors were independent. ((2.9.6) of course reduces to (2.2.1) for $\mathrm{d}=1$ ).

A further question considered by Hsing is independence of the marginals in the limiting distribution. In particular, he shows that if
(2.9.7) $\quad \lim \sup _{\mathrm{i}_{1}, \mathrm{i}_{2}=1} \sum_{\mathrm{j}=1} \mathrm{P}\left\{\xi_{1, \mathrm{i}_{1}}>\mathrm{u}_{\mathrm{n}, \mathrm{i}_{1}}, \xi_{\mathrm{j}, \mathrm{i}_{2}}>\mathrm{u}_{\mathrm{n}, \mathrm{i}_{2}}\right\} \rightarrow 0$, $\mathrm{i}_{1} \neq \mathrm{i}_{2}$
as $k \rightarrow \infty$, and if $D\left(u_{n, l}, \ldots, u_{n, d}\right)$ is satisfied then (2.9.5) holds if and only if $P\left\{a_{n i}\left(M_{n, i} b_{n, i}\right) \leq x\right\} \rightarrow G_{i}(x)$, as $n \rightarrow \infty$, for $i=1, \ldots, d$, and $G$ then is of the form $\mathbf{G}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{d}}\right)=\mathrm{G}_{1}\left(\mathrm{x}_{1}\right) \mathrm{G}_{2}\left(\mathrm{x}_{2}\right) \ldots \mathrm{G}_{\mathrm{d}}\left(\mathrm{x}_{\mathrm{d}}\right)$.

Now, let $\left\{\xi_{\mathrm{n}}\right\}$ be normally distributed with $\mathrm{E} \xi_{1, \mathrm{i}}=0, \mathrm{~V}\left(\xi_{1, \mathrm{i}}\right)=1$ and let $\mathrm{r}_{\mathrm{ij}}(\mathrm{n})$ be the covariance between $\xi_{1, \mathrm{i}}$ and $\xi_{1+\mathrm{n}, \mathrm{j}}$. If $\mathrm{r}_{\mathrm{ij}}(\mathrm{k})<1$, for $1 \leq \mathrm{i} \neq \mathrm{j}$ $\leq d$ for all $k$ and $r_{i j}(n) \log n \rightarrow 0$, as $n \rightarrow \infty$, for $i, j=1, \ldots, d$, and $u_{n, i}=x_{i} / a_{n}+b_{n}$, with $a_{n}, b_{n}$ as in (1.2.4) then $D\left(u_{n, l}, \ldots, u_{n, d}\right)$, (2.9.6), and (2.9.7) are satisfied, so that the asymptotic distributions of maxima are the same as for a sequence of independent normal vectors with independent components (see [59], [1]).
2.10 Convergence of sums to non-normal stable distributions.

The central limit problem of convergence of sums to non-normal stable distributions hinges on the convergence of extreme order statistics, and perhaps the most natural approach to it, and its extensions to dependent settings, is via extreme value theory. In Theorem 2.10 .1 below, which, is new this is made precise. The theorem, which builds on ideas of Durrett and Resnick ([38]) and Resnick ([86]), contains a functional central limit theorem, and the corresponding extreme value result is the "complete" convergence of upper and of lower extremes, which is discussed in Sections 1.3 and 2.4. A similar one-dimensional approach via the joint distribution of extreme order statistics is used in [67] and [35] and will be briefly discussed at the end of this section.

The results depend essentially on the Ito-Levy representation of the stable process, and we shall now list the relevant properties, referring to Ito ([61], Section 1.12) for proofs and further information. Let $\{\eta(t): 0 \leq t \leq 1\}$ be a non-normal stable stationary independent increments process (briefly, $\{\eta(\mathrm{t})\}$ will be referred to as a stable process). $\{\eta(t)\}$ can - and will throughout - be assumed to have sample paths in $D[0,1]$ the space of real functions on $[0,1]$ which are right continuous and have left limits at each point. Let $\mathrm{S}=[0,1] \times \bar{R}$, with $\bar{R}=[-\infty, \infty] \backslash\{0\}$, and define the Ito process $N$ of jumps of $\{\eta(t)\}$ by

$$
\begin{equation*}
\mathrm{N}(\mathrm{~A})=\#\{\mathrm{t}:(\mathrm{t}, \eta(\mathrm{t})-\eta(\mathrm{t}-)) \in \mathrm{A}\} \tag{2.10.1}
\end{equation*}
$$

for Borel sets $A \subset S$, where $\eta(t)-\eta(t-)$ is the jump of $\eta(\cdot)$ at time $t$. Then $N(A)$ is (measurable and) finite a.s. for each rectangle $A$ such that $A \subset[0,1] \times$ $[-\infty,-\epsilon] \cup[\epsilon, \infty]$ for some $\epsilon>0$. Hence $N$ is a point process, and in fact it is a Poisson process with intensity measure $v$ which is the product of Lebesgue measure and the measure $v^{\prime}$ on $\bar{R}$ with density $\gamma_{+} y^{-\alpha-1}$ for $y>0$ and $\gamma_{-}|y|^{-\alpha-1}$ for
$y<0$, for some constants $\gamma_{+}, \gamma_{-} \geq 0$ which are not both zero (i.e. in shorthand notation, $\left.\mathrm{d} v=\mathrm{dtxd} v^{\prime}=\mathrm{dt} \mathrm{x}\left(\gamma_{ \pm}|\mathrm{y}|^{-\alpha-1} \mathrm{dy}\right)\right)$.
 let $\mathrm{m}(\epsilon)=\int_{\epsilon<|\mathrm{y}|} \mathrm{yd} v^{\prime}(\mathrm{y})$ for $1<\alpha<2$, and define

$$
\begin{equation*}
\eta_{(\mathrm{t})}^{(\epsilon)}=\underset{\substack{0 \leq \mathrm{s} \leq \mathrm{t} \\ \epsilon<|\mathrm{y}|}}{\int} \mathrm{ydN}-\mathrm{tm}(\epsilon) \tag{2.10.2}
\end{equation*}
$$

Here the integral is just a finite sum: if $N$ has the points $\left\{\left(\mathrm{t}_{\mathrm{j}}, \mathrm{y}_{\mathrm{j}}\right)\right.$ : $\left.\mathrm{j}>1\right\}$ then $\left|\mathrm{y}_{\mathrm{j}}\right|>\epsilon$ and $0 \leq \mathrm{t}_{\mathrm{j}} \leq 1$ only for finitely many j 's, and

With this notation

$$
\begin{equation*}
P\left(\sup _{0 \leq t \leq 1}\left|\eta(\mathrm{t})-\eta^{(\epsilon)}(\mathrm{t})\right|>\delta\right) \rightarrow 0, \text { as } \epsilon \rightarrow 0 \tag{2.10.3}
\end{equation*}
$$

for any $\delta>0$.
Let $\left\{\xi_{n}\right\}_{n=1}^{\infty}$ be arbitrary random variables, let $\left\{a_{n}>0, b_{n}\right\}_{n=1}^{\infty}$ be norming constants, define stochastic processes: $\left\{\eta_{n}(t): 0<t<1\right\}_{n=1}^{\infty}$ in $D[0,1]$ by (2.10.4)

$$
\eta_{n}(t)=\sum_{j=1}^{[n t]} a_{n}\left(\xi_{j}-b_{n}\right)
$$

and in analogy with (2.10.1) let $N_{n}$ be the point process of jumps of $\eta_{n}$, defined as

$$
\begin{equation*}
N_{n}(A)=\#\left\{t:\left(t, \eta_{n}(t)-\eta_{n}(t-)\right) \in A\right\}=\#\left\{j:\left(j / n, a_{n}\left(\xi_{j}-b_{n}\right)\right) \in A\right\} \tag{2.10.5}
\end{equation*}
$$

for Borel sets $A \subset S=[0,1] \times \bar{R}$. The following theorem specifies the connection between convergence in distribution of $\eta_{n}$ to $\eta$ and of $N_{n}$ to $N$. In this convergence is in $\mathrm{D}[0,1]$ given the Skorokhod topology, see e.g. [23, Section 16].

Theorem 2.10.1. Let $\left\{\eta_{n}(t): 0 \leq t \leq 1\right\}$ and $N_{n}$ be given by (2.10.4) and (2.10.5) and
let $\{\eta(\mathrm{t}): 0 \leq \mathrm{t} \leq 1\}$ be a nondegenerate non-normal stable process with Ito process $N$ defined by (2.10.1). Then $\eta_{\mathrm{n}} \xrightarrow{\mathrm{d}} \eta$ as $\mathrm{n} \rightarrow \infty$, in $\mathrm{D}[0,1]$, if and only if the following two conditions hold,

$$
\begin{equation*}
N_{n} \xrightarrow{d} N \quad \text { as } n \rightarrow \infty \text {, on } S \text {, } \tag{2.10.6}
\end{equation*}
$$ and, writing $I_{n, j}=1$ if $\left|a_{n}\left(\xi_{j}-b_{n}\right)\right|>\epsilon$ and $I_{n, j}=0$ otherwise

(2.10.7) $\underset{n \rightarrow \infty}{\limsup } P\left\{\sup _{0 \leq t \leq 1}\left|\underset{j=1}{[n t]} a_{n}\left(\xi_{j}-b_{n}\right)\left(1-I_{n, j}\right)+\operatorname{tm}(\epsilon)\right|>\delta\right\} \rightarrow 0$, as $\epsilon \rightarrow 0$, for each $\delta>0$.

Proof. Let $N^{(\epsilon)}$ and $N_{n}^{(\epsilon)}$ be the restrictions of $N$ and $N_{n}$ to $[0,1] \times([-\infty,-\epsilon] U$ $[\epsilon, \infty]$, for $\epsilon>0$. Let $\eta^{(\epsilon)}$ be given by (2.10.2) and set

$$
\eta_{n}^{(\epsilon)}=\int_{\substack{0 \leq s \leq t \\ \epsilon<|y|}} y d N_{n}-\operatorname{tm}(\epsilon)=\sum_{j=1}^{[n t]} a_{n}\left(\xi_{j}-b_{n}\right) I_{n, j}-\operatorname{tm}(\epsilon)
$$

First, suppose that $\eta_{\mathrm{n}} \xrightarrow{\mathrm{d}} \eta$. The function which maps $\eta$ into $\mathrm{N}^{(\epsilon)}$ and $\eta_{\mathrm{n}}$ into $N_{n}^{(\epsilon)}$ is a.s. continuous with respect to the distribution of $\eta$ (see [86]) and hence $N_{n}(\epsilon) \xrightarrow{d} N_{N}(\epsilon)$ for each $\epsilon>0$. This implies that $N_{n} \xrightarrow{d} N$, i.e. (2.10.6) holds. Similarly, $\left|\eta_{\mathrm{n}}(\cdot)-\eta_{\mathrm{n}}^{(\epsilon)}(\cdot)\right| \xrightarrow{\mathrm{d}}\left|\eta(\cdot)-\eta^{(\epsilon)}(\cdot)\right|$ in $D[0,1]$, and hence

$$
\mathrm{P}\left\{\sup _{0 \leq \mathrm{t} \leq 1}\left|\eta_{\mathrm{n}}(\mathrm{t})-\eta_{\mathrm{n}}^{(\epsilon)}(\mathrm{t})\right|>\delta\right\} \rightarrow \mathrm{P}\left\{\sup _{0 \leq \mathrm{t} \leq 1}\left|\eta(\mathrm{t})-\eta^{(\epsilon)}(\mathrm{t})\right|>\delta\right\} \quad \text { as } \mathrm{n} \rightarrow \infty \text {, }
$$

since $P\left(\sup _{0 \leq t \leq 1}\left|\eta(t)-\eta^{(\epsilon)}(t)\right|=\delta\right)=0$, for $\delta>0$. Now,

$$
\begin{equation*}
\eta_{n}(t)-\eta_{n}^{(\epsilon)}(t)=\sum_{j=1}^{[n t]} a_{n}\left(\xi_{j}-b_{n}\right)\left(1-I_{n, j}\right)+\operatorname{tm}(\epsilon) \tag{2.10.8}
\end{equation*}
$$

and (2.10.7) thus follows immediately from (2.10.3).
Conversely, suppose (2.10.6) and (2.10.7) hold. The map which takes $N_{n}$ into $\eta_{n}^{(\epsilon)}$ is a.s. N-continuous, and hence $\eta_{n}^{(\epsilon)} \xrightarrow{d} \eta^{(\epsilon)}$, as $n \rightarrow \infty$, in $D[0,1]$, and together with (2.10.7), (2.10.8) this implies that $\eta_{\mathrm{n}} \xrightarrow{\mathrm{d}} \eta$, by [23], Theorem 4.2.

The main condition, $N_{n} \rightarrow N$, of "complete" convergence of extremes,
requires much weaker asymptotic mixing conditions than those needed for convergence of sums to the normal distribution, cf. the end of Section 2.4. However, the local dependence restrictions, such as (2.2.1) may instead be rather restrictive, and are not even in general satisfied for 1-dependent processes, cf. Example 2.2.1.

The conditions of course become particularly simple when $\xi_{1}, \xi_{2}, \ldots$ are i.i.d. Then $N_{n} \rightarrow N$ is equivalent to $n P\left(a_{n}\left(\xi_{1}-b_{n}\right) \in A\right) \rightarrow v^{\prime}(A)$, for each Borel set $\mathrm{A} \subset[-\infty,-\epsilon] \cup[\epsilon, \infty]$ for some $\epsilon>0$, which in turn is the same as

$$
\begin{gather*}
n P\left\{a_{n}\left(\xi_{1}-b_{n}\right)>x\right\} \rightarrow r_{+} \int_{x^{\prime}}^{\infty} y^{-\alpha-1} d y, \quad \text { for } x>0  \tag{2.10.9}\\
n P\left\{a_{n}\left(\xi_{1}-b_{n}\right) \leq x\right\} \rightarrow r_{-} \int_{-\infty}^{x}|y|^{-\alpha-1} \text { dy, for } x<0
\end{gather*}
$$

as $n \rightarrow \infty$. Another way of expressing (2.10.9) is to say that the marginal d.f. F of the $\xi$ 's should belong to the domain of attraction of the type II distribution for both maxima (if $\gamma_{+}>0$ ) and minima (if $\gamma_{-}>0$ ), with the same norming constants $\left\{\mathrm{a}_{\mathrm{n}}>0, \mathrm{~b}_{\mathrm{n}}\right\}$. Furthermore, Resnick ([86]) shows that (2.10.9) actually implies also (2.10.7) for i.i.d. sequences. Thus in this case $\eta_{\mathrm{n}} \xrightarrow{\mathrm{d}} \eta$ in $\mathrm{D}[0,1]$ is equivalent to (2.10.9). It may also be noted that $\mathrm{b}_{\mathrm{n}}$ can be taken to be zero here.

If one is not interested in full convergence in $\mathrm{D}[0,1]$, but only in "marginal" convergence of $\eta_{n}(1)=\sum_{j=1}^{n} a_{n}\left(\xi_{j}-b_{n}\right)$ to a non-normal stable distribution, sufficient conditions are easily found by "projecting onto the $y$-axis". Let $\mathrm{N}^{\prime}$ be the point process of jump heights of $\eta$, given by

$$
\mathrm{N}^{\prime}(\mathrm{A})=\#\{\mathrm{t} \in[0,1]: \eta(\mathrm{t})-\eta(\mathrm{t}-) \in \mathrm{A}]=\mathrm{N}([0,1] \times \mathrm{A})
$$

for Borel sets $A \subset \bar{R}$, so that $N^{\prime}$ is a Poisson process with intensity $v^{\prime}$ and similarly let

$$
N_{n}^{\prime}(A)=\#\left\{j \in[1, n]: a_{n}\left(\xi_{j}-b_{n}\right) \in A\right\}=N_{n}([0,1] \times A)
$$

By the same considerations as in the last part of the proof of Theorem 2.10.1,

$$
\begin{equation*}
\mathrm{N}_{\mathrm{n}}^{\prime} \xrightarrow{\mathrm{d}} \mathrm{~N}^{\prime}, \quad \text { as } \mathrm{n} \rightarrow \infty, \text { in } \bar{R} \tag{2.10.10}
\end{equation*}
$$

and if, as before with $I_{n, j}=1$ if $\left|a_{n}\left(\xi_{j}-b_{n}\right)\right|>\epsilon$ and $I_{n, j}=0$ otherwise, $\limsup P\left(\left|\sum_{j=1}^{n} a_{n}\left(\xi_{j}-b_{n}\right)\left(1-I_{n, j}\right)+m(\epsilon)\right|>\delta\right) \rightarrow 0$, as $\epsilon \rightarrow 0$
for each $\delta>0$, then $\eta_{\mathrm{n}}(1) \xrightarrow{\mathrm{d}} \eta(1)$ in $R$. Moreover, it can be seen that (2.10.10) holds if and only if the joint distribution of the $k$ largest and $k$ smallest order statistics of $\xi_{1}, \ldots, \xi_{n}$ tends to the distribution of the $k$ largest and $k$ smallest jumps of $\{\eta(\mathrm{t}): 0 \leq \mathrm{t} \leq 1\}$ for each k , again emphasizing the connection with extreme value theory. This approach to convergence of $\Sigma a_{n}\left(\xi_{j}-b_{n}\right)$ to non-normal stable distributions is, with some variations, pursued in detail for i.i.d. $\xi$ 's by LePage, Woodroofe, \& Zinn ([67]) and for stationary sequences satisfying distributional mixing conditions by Davis ([35]).

Finally, the results of this section easily carry over to non-stationary situations with [nt] replaced by an arbitrary time-scale, to convergence of row-sums in a doubly indexed array $\left\{\xi_{n, j}\right\}$ to a Lévy (independent increments) process without continuous component, to multi-dimensional $\xi$ 's, and also to convergence of so-called self-normalized sums.

### 2.11 Miscellanea

(a) Minima and maxima. Since the minimum $m_{n}=\min \left\{\xi_{1}, \ldots, \xi_{n}\right\}$ can be obtained as $m_{n}=-\max \left(-\xi_{1}, \ldots,-\xi_{n}\right\}$, results for maxima carry directly over to minima. In particular it follows from the Extremal Types Theorem that, under distributional mixing assumptions, limiting d.f.'s of linearly normalized minima must be of the form $1-G(-x)$ where $G$ is an extreme value d.f. Further, it is trivial to see that for i.i.d. variables minima and maxima are asymptotically independent (cf. [66], p. 28).

In a series of papers ([30], [31], [34]), R. Davis studies the joint distribution of $m_{n}$ and $M_{n}$ for stationary sequences $\left\{\xi_{n}\right\}$ under a number of
different dependence restrictions. Here we only note that some of his results alternatively may be obtained as corollaries of the multivariate theory discussed in Section 2.9 by making the identification $\xi_{i, 1}=\xi_{i}, \xi_{i, 2}=-\xi_{i}$, so that $M_{n, 1}=M_{n}, M_{n, 2}=-m_{n}$. For example, writing $u_{n, 1}=u_{n}, u_{n, 2}=-v_{n}$, for $v_{n} \leq u_{n}$, the mixing condition $D\left(u_{n, 1}, u_{n, 2}\right)$ then translates to $\alpha_{n, \ell_{n}} \rightarrow 0$ for some sequence $\ell_{\mathrm{n}}=\mathrm{o}(\mathrm{n})$, with

$$
\begin{aligned}
a_{n, \ell}= & \max \left\{\mid P\left(\xi_{1} \leq u_{n}, \xi_{i} \geq v_{n}: i \in A U B\right)-\right. \\
& \left.P\left(\xi_{i} \leq u_{n}, \xi_{i} \geq v_{n}: i \in A\right) P\left(\xi_{i} \leq u_{n}, \xi_{i} \geq v_{n}: i \in B\right) \mid\right\}
\end{aligned}
$$

where the maximum is taken over all sets $A \subset\{1, \ldots, k\}, B \subset\{k+\ell, \ldots, n\}$, for $k=1, \ldots, n-\ell$. Thus if this holds for $u_{n}=x / a_{n}+b_{n}$ and $v_{n}=y / c_{n}+d_{n}$, for all $x$ and $y$ it follows that any limiting d.f. of $\left(a_{n}\left(M_{n}-b_{n}\right), c_{n}\left(m_{n}-d_{n}\right)\right)$ must be of the form $\mathbf{G}(x, \infty)-\mathbf{G}(x,-y)$ where $\mathbf{G}$ is a bivariate extreme value d.f. Furthermore the criterion (2.9.7) for independence of componentwise maxima, i.e. here for asymptotic independence of $M_{n}$ and $m_{n}$ translates to [ $\mathrm{n} / \mathrm{k}$ ]
$\underset{\mathrm{n} \rightarrow \infty}{\lim \sup } \underset{\mathrm{j}=2}{\mathrm{E}}\left\{\mathrm{P}\left(\xi_{1}\right\rangle \mathrm{u}_{\mathrm{n}}, \xi_{\mathrm{j}}\left\langle\mathrm{v}_{\mathrm{n}}\right)+\mathrm{P}\left(\xi_{1}\left\langle\mathrm{v}_{\mathrm{n}}, \xi_{\mathrm{j}}\right\rangle \mathrm{u}_{\mathrm{n}}\right)\right\} \rightarrow 0$, as $\mathrm{k} \rightarrow \infty$.
(b) Poisson Limit Theorems. Although somewhat less generally formulated, the Poisson and Compound Poisson limits discussed in Section 2.4 amount to convergence of point processes $N_{n}$ defined from a triangular array $\left\{\epsilon_{n, i}\right.$ : $i=1, \ldots, n, n \geq 1\}$ of zero-one variables, with stationary rows $\epsilon_{n, 1}, \ldots, \epsilon_{n, n}$, by

$$
N_{\mathrm{n}}(\mathrm{E})=\sum_{\mathrm{i}: \mathrm{i} / \mathrm{n} \in \mathrm{E}}^{\sum} \epsilon_{\mathrm{n}, \mathrm{i}},
$$

for Borel subsets E of ( 0,1 . Thus, the proof of the Poisson limit for $\theta=1$ (see [66], Section 2.5) is easily seen to show that if $D\left(u_{n}\right)$ and (2.2.1) hold with $\xi_{i}$ $\leq u_{n}$ and $\xi_{i}>u_{n}$ replaced by $\epsilon_{n, i}=0$ and $\epsilon_{n, i}=1$, respectively, then $N_{n}$ converges to a Poisson process with intensity $\tau$ if and only if $n P\left(\epsilon_{n, i}=1\right) \rightarrow \tau$.

Conversely, the literature contains many sufficient conditions for convergence, which may be applied to extremes by setting $\epsilon_{n, i}$ equal to zero or one according to whether $\xi_{i} \leq u_{n}$ or $\xi_{i}>u_{n}$. Two further sets of such
conditions seem particularly useful here. For the first, let $\mathscr{B}_{n, i}$ be the $\sigma$-algebra generated by $\epsilon_{\mathrm{n}, 1}, \ldots, \epsilon_{\mathrm{n}, \mathrm{i}}$. Then the relation

$$
\begin{equation*}
\sum_{\mathrm{i}=0}^{[\mathrm{nt}]} \mathrm{E}\left\{\epsilon_{\mathrm{n}, \mathrm{i}+1} \mid \mathscr{B}_{\mathrm{n}, \mathrm{i}}\right\} \rightarrow \mathrm{t} \tau \quad \text { as } \mathrm{n} \rightarrow \infty, \tag{2.11.1}
\end{equation*}
$$

in probability for each $t \in(0,1]$ is sufficient for convergence of $N_{n}$ to a Poisson process with intensity $\tau$ ([43], [38]). For the second one, which is due to Berman ([12], [17]), we assume that each row has been extended to a doubly infinite sequence $\ldots, \epsilon_{n,-1}, \epsilon_{n, 0}, \epsilon_{n, 1}, \ldots$ and write $\overline{\mathscr{F}}_{n, i}$ for the $\sigma$-algebra generated by $\ldots, \epsilon_{\mathrm{n}, \mathrm{i}-1}, \epsilon_{\mathrm{n}, \mathrm{i}}$. Berman's result is that if $n P\left(\epsilon_{n, 1}=1\right) \rightarrow \tau$ and if there exists a sequence $\gamma_{n}$ of integers with $\gamma_{n}=o(n)$, such that

$$
\begin{array}{ll} 
& \sum_{\mathrm{n}}^{\mathrm{n}} \mathrm{r} \\
& \mathrm{P}\left(\epsilon_{\mathrm{n}, 1}=1, \epsilon_{\mathrm{n}, \mathrm{i}}=1\right) \rightarrow 0, \\
\mathrm{nP}\left(\epsilon_{\mathrm{n}, 1}=1 \mid \mathscr{B}_{\mathrm{n},-\gamma_{\mathrm{n}}}\right) \rightarrow \tau, \quad \text { as } \mathrm{n} \rightarrow \infty, \\
\mathrm{n} \rightarrow \infty
\end{array}
$$

in probability, then $N_{n}$ again converges to a Poisson process with intensity $\tau$.
Neither one of these three sets of conditions imply any of the others, in particular they are not necessary, and each of them might be the most convenient one in some situation. However, e.g. for normal sequences with $r_{n}$ $\log n \rightarrow 0$ they all seem to lead to about the same amount of work. One useful feature of (2.11.1) is that it also directly gives rate of convergence results, cf. [88].

## 3. Extremes of continuous parameter processes

3.1 The Extremal Types Theorem for stationary processes.

Let $\{\xi(\mathrm{t}): \mathrm{t} \geq 0\}$ be a strictly stationary process having a.s. continuous sample functions and continuous one-dimensional distributions. Then, assuming that the underlying probability space is complete, $M(I)=\sup \{\xi(t): t \in$ I\} is a r.v. for any finite interval $I$ and, in particular, so is $M(T)=$
$M([0, T])$. The extremal types theorem may be proved even in this continuous context, showing that, under general dependence restrictions, the only nondegenerate limits $G$ in

$$
\begin{equation*}
\mathrm{P}\left\{\mathrm{a}_{\mathrm{T}}\left(\mathrm{M}(\mathrm{~T})-\mathrm{b}_{\mathrm{T}}\right) \leq \mathrm{x}\right\} \rightarrow \mathrm{G}(\mathrm{x}) \quad \text { as } \mathrm{T} \rightarrow \infty, \tag{3.1.1}
\end{equation*}
$$

are the three classical types.
Though the general result requires considerable details of proof, the method involves the very simple observation that for (any convenient) h>0

$$
\begin{equation*}
M(n h)=\max \left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right) \tag{3.1.2}
\end{equation*}
$$

where $\zeta_{i}=\max \{\xi(\mathrm{t}):(\mathrm{i}-1) \mathrm{h} \leq \mathrm{t} \leq \mathrm{ih}\}$. Thus if (3.1.1) holds and the (stationary) sequence $\zeta_{1}, \zeta_{2}, \ldots$ satisfies $D\left(u_{n}\right)$ for each $u_{n}=x / a_{n h}+b_{n h}$, then it follows from the discrete parameter Extremal Types result (Theorem 2.1.2) that G must be one of the extreme value types. Hence the Extremal Types Theorem certainly holds for strongly mixing stationary processes since then the sequence $\left\{\zeta_{\mathrm{n}}\right\}$ is also strongly mixing and thus trivially satisfies $\mathrm{D}\left(\mathrm{u}_{\mathrm{n}}\right)$. However a more general form of the theorem results from showing that the $D\left(u_{n}\right)$ condition holds for the $\zeta$ 's when the $\xi$ 's satisfy certain conditions - in particular a continuous version $C\left(u_{T}\right)$ of $D\left(u_{n}\right)$. In fact the condition $C\left(u_{T}\right)$ may be defined in terms of the process properties only at "time sampled" points $\mathrm{jq}_{\mathrm{T}}$ for a suitable sampling interval $\mathrm{q}_{\mathrm{T}} \rightarrow 0$.

> In the following definition $\mathrm{F}_{\mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{n}}}$ (u) will be written for $\mathrm{F}_{\mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{n}}}(\mathrm{u}, \ldots \mathrm{u})$, where $\mathrm{F}_{\mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{n}}}\left(\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}}\right)=\mathrm{P}\left\{\xi\left(\mathrm{t}_{1}\right) \leq \mathrm{x}_{1}, \ldots \xi\left(\mathrm{t}_{\mathrm{n}}\right) \leq \mathrm{x}_{\mathrm{n}}\right\}$.

The Condition $\mathrm{C}\left(\mathrm{u}_{\mathrm{T}}\right)$ will be said to hold for the process $\xi(\mathrm{t})$ and the family of constants $\left\{\mathrm{u}_{\mathrm{T}}: \mathrm{T}>0\right\}$, with respect to the constants $\mathrm{q}_{\mathrm{T}} \rightarrow 0$ if for any points $s_{1}<s_{2} \ldots<s_{p}<t_{1} \ldots<t_{p}$ belonging to $\left\{\mathrm{kq}_{\mathrm{T}}: 0<\mathrm{kq}_{\mathrm{T}} \leq \mathrm{T}\right\}$ and satisfying $t_{1}-s_{p} \geq \gamma$, we have

$$
\left|F_{s_{1} \ldots s_{p}} t_{1} \ldots t_{p}\left(u_{T}\right)-F_{s_{1}} \ldots s_{p}\left(u_{T}\right) F_{t_{1} \ldots t_{p}^{\prime}}\left(u_{T}\right)\right| \leq \alpha_{T, \gamma}
$$

where $\alpha_{T, \gamma_{T}} \rightarrow 0$ for some family $\gamma_{T}=o(T)$ as $T \rightarrow \infty$.

The $\zeta_{i}$ are of course maxima of $\xi(t)$ in fixed intervals of length $h$ (e.g. $\zeta_{1}=\mathrm{M}(\mathrm{h})$ ) and the sampling interval q must be taken small enough so that these are well approximated by the maxima at the sample points jq. This is conveniently done by assuming that for each a $>0$ there is a family $\{q\}=$ $\left\{\mathrm{q}_{\mathrm{a}}(\mathrm{u})\right\}$ tending to zero as $\mathrm{u} \rightarrow \infty$ such that (3.1.3) $\underset{u \rightarrow \infty}{\lim \sup _{u}} \frac{P\{M(h)>u, \xi(j q) \leq u, 0 \leq j q \leq h\}}{\psi(u)} \rightarrow 0, \quad$ as a $\rightarrow 0$.

Here $\psi(\mathrm{u})$ is a function which will later be taken to represent the tail of the distribution of $\mathrm{M}(\mathrm{h})$ but which for the present need only dominate $\mathrm{P}(\xi(0)>\mathrm{u}$ \} i.e.

$$
\begin{equation*}
P\{\xi(0)>u\}=o(\psi(u)) . \tag{3.1.4}
\end{equation*}
$$

The following result ([66, Theorem 13.1.5]) then holds.

Theorem 3.1.1. (Extremal Types Theorem for stationary processes) With the above notation suppose that (3.1.1) holds for the stationary process $\{\xi(\mathrm{t})\}$, and some constants $\mathrm{a}_{\mathrm{T}}, \mathrm{b}_{\mathrm{T}}$ and a non-degenerate G . Suppose also that $\psi(\mathrm{u})$ is a function such that (3.1.4) holds and $T \psi\left(u_{T}\right)$ is bounded for $u_{T}=x / a_{T}+b_{T}$, for each $x$. If $C\left(u_{T}\right)$ holds for the families of constants $\left\{q_{a}(u)\right\}$ satisfying (3.1.3) then $G$ must be one of the three classical extreme value types.

### 3.2 Domains of attraction

In the classical theory of extremes of i.i.d. sequences the type of limiting distribution for the maximum was determined by the asymptotic form of the tail of the distribution of $\xi_{1}$. This remained true for dependent stationary cases with non-zero extremal index since the limiting type was that of the associated independent sequence. For continuous parameter processes however it is clearly the tail of the distribution of $\zeta_{1}$ (in view of (3.1.2)) rather than that of $\xi_{t}$ which determines the limiting type. More specifically if $\hat{\zeta}_{1}, \hat{\zeta}_{2} \ldots$ are i.i.d. random variables with the same distribution as $\zeta_{1}=M(h)$ then $\left\{\hat{\zeta}_{n}\right\}$ is
called the independent sequence associated with $\left\{\xi_{t}\right\}$. If the $\zeta_{n}$-sequence has extremal index $\theta>0$ then any asymptotic distribution for $M(T)$ is of the same type as that for $\hat{M}_{n}=\max \left\{\hat{\zeta}_{1}, \ldots, \hat{\zeta}_{n}\right\}$. Again the case $\theta=1$ is of special interest and sufficient conditions may be given. In particular the following condition (analogous to (2.2.1) for sequences) is useful:

The Condition $C^{\prime}\left(u_{T}\right)$ will be said to hold for the process $\{\xi(\mathrm{t})\}$ and the family of constants $\left\{u_{T}: T>0\right\}$ with respect to the constants $\left\{q=q\left(u_{T}\right) \rightarrow 0\right\}$ if

$$
\underset{\mathrm{T} \rightarrow \infty}{\lim \sup }(\mathrm{~T} / \mathrm{q}) \sum_{\mathrm{h}\langle\mathrm{jq}\langle\epsilon \mathrm{~T}} \mathrm{P}\left\{\xi(0)>\mathrm{u}_{\mathrm{T}}, \quad \xi(\mathrm{jq})>\mathrm{u}_{\mathrm{T}}\right\} \rightarrow 0 \quad \text { as } \epsilon \rightarrow 0
$$

We assume also as needed that for some function $\psi$

$$
\begin{equation*}
\mathrm{P}\{\mathrm{M}(\mathrm{~h})>\mathrm{u}\}^{\sim} \mathrm{h} \psi(\mathrm{u}) \quad \text { as } \mathrm{u} \rightarrow \infty \quad \text { for } 0\langle\mathrm{~h}\langle\delta, \text { some } \delta>0 \tag{3.2.1}
\end{equation*}
$$

The following result may also be shown(see [66, Section 13.2]).

Theorem 3.2.1. Suppose that (3.2.1) holds for some function $\psi$ and let $\left\{u_{T}\right\}$ be a family of constants such that for each $a>0, C\left(u_{T}\right), C^{\prime}\left(u_{T}\right)$ hold with respect to the family $\left\{q_{a}(u)\right\}$ of constants satisfying (3.1.3) with $h$ in $C^{\prime}\left(u_{T}\right)$ not exceeding $\delta / 2$, where $\delta$ is from (3.2.1). Then as $\mathrm{T} \rightarrow \infty$

$$
\begin{equation*}
\mathrm{T} \psi\left(\mathrm{u}_{\mathrm{T}}\right) \rightarrow \tau>0 \tag{3.2.2}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\mathrm{P}\left\{\mathrm{M}(\mathrm{~T}) \leq \mathrm{u}_{\mathrm{T}}\right\} \rightarrow \mathrm{e}^{-\boldsymbol{\tau}} \tag{3.2.3}
\end{equation*}
$$

Hence the function $\psi$ may be conveniently used in the domain of attraction criteria, and also plays the role of $1-F$ in the continuous parameter analog of Lemma 1.2.2. In particular if $M(T)$ has a limiting distribution as in (3.1.1) the constants $\mathrm{a}_{\mathrm{T}}, \mathrm{b}_{\mathrm{T}}$ must satisfy $\mathrm{T} \psi\left(\mathrm{u}_{\mathrm{T}}\right) \rightarrow \tau$ with $\mathrm{u}_{\mathrm{T}}=\mathrm{x} / \mathrm{a}_{\mathrm{T}}+\mathrm{b}_{\mathrm{T}}, \quad(\tau=\tau(\mathrm{x}))=$ $-\log G(x))$ from which $\mathrm{a}_{\mathrm{T}}, \mathrm{b}$, may sometimes be conveniently obtained. In some cases the important function $\psi$ is readily obtained (as in Section 3.4), but in others (cf. Section 3.3), its calculation can be quite intricate.

### 3.3 Extremes of stationary normal processes

Let $\xi(\mathrm{t})$ be a stationary normal process (assumed standardized to have zero mean, unit variances) and covariance function $r(t)$ satisfying

$$
\begin{equation*}
r(t)=1-c|t|^{\alpha}+o\left(|t|^{\alpha}\right) \text { as } t \rightarrow 0 \tag{3.3.1}
\end{equation*}
$$

for some $C>0,0<\alpha \leq 2$. This includes all the mean-square differentiable cases ( $\alpha=2$ ) and a wide variety of cases with less regular sample functions ( $0<\alpha<2$ ), such as the Ornstein-Uhlenbeck process ( $\alpha=1$ ). It may be shown that for such a process a function $\psi(\mathrm{u})$ satisfying (3.2.1) is given by

$$
\begin{equation*}
\psi(\mathrm{u})=\mathrm{C}^{1 / \alpha} \mathrm{H}_{\alpha} \mathrm{u}^{(2-\alpha) / \alpha}(2 \pi)^{-1 / 2} \exp \left(-\mathrm{u}^{2} / 2\right) \tag{3.3.2}
\end{equation*}
$$

but the proof involves quite intricate computations when $\alpha<2$. The $H_{\alpha}$ are constants whose numerical values are known only in the cases $\alpha=1,2\left(\mathrm{H}_{1}=1\right.$, $\mathrm{H}_{2}=\pi^{-1 / 2}$ ). The "regular" case $\alpha=2$ is simpler and $\psi(\mathrm{u})$ may then be alternatively obtained as in the next section.

It can be shown cf. [66, Theorem 2.5.1] using the Normal Comparison Lemma that the (standard) stationary normal process $\xi(\mathrm{t})$ satisfying (3.3.1) satisfies the required dependence conditions for the general theory provided that

$$
\begin{equation*}
r(t) \log t \rightarrow 0 \quad \text { as } t \rightarrow \infty \text {. } \tag{3.3.3}
\end{equation*}
$$

The function $\psi(\mathrm{u})$ given by (3.3.2) satisfies the domain of attraction criteria for the Type 1 extreme value distribution. Indeed some calculation shows that $\mathrm{T} \psi\left(\mathrm{u}_{\mathrm{T}}\right) \rightarrow \tau$ with $\tau=\mathrm{e}^{-\mathrm{x}}, \mathrm{u}_{\mathrm{T}}=\mathrm{x} / \mathrm{a}_{\mathrm{T}}+\mathrm{b}_{\mathrm{T}}$, for

$$
\begin{equation*}
\mathrm{b}_{\mathrm{T}}=\mathrm{a}_{\mathrm{T}}+\left\{((2-\alpha) / 2 \alpha) \log \log \mathrm{T}+\log \left(\mathrm{C}^{1 / \mathrm{a}} \mathrm{H}_{\alpha}(2 \pi)^{-1 / 2} 2^{(2-\alpha) / 2 \alpha}\right)\right\} / \mathrm{a}_{\mathrm{T}} . \tag{3.3.4}
\end{equation*}
$$

Hence (using the last remark of the previous section) (3.1.1) holds with $\mathrm{a}_{\mathrm{T}}+\mathrm{b}_{\mathrm{T}}$ given by (3.3.4) and $G(x)=\exp \left(-e^{-x}\right)$.

This result was obtained by Cramér ([28]) for the case $\alpha=2$ and a somewhat more restrictive condition on the rate of decay of $r(t)$ as $t \rightarrow \infty$. The result in its present generality was obtained by Pickands [80], [81] (though the
proof was not quite complete and was subsequently corrected by Qualls and Watanabe ([84]). In particular considerable generality is afforded by the family of covariances satisfying (3.3.1), and the requirement $r(t) \log t \rightarrow 0$ imposes only a very mild assumption on the rate of convergence of $r(t)$ to zero as $t \rightarrow \infty$.
3.4 Finite upcrossing intensities, and point processes of upcrossings.

In the continuous parameter case exceedances of a level typically occur on intervals and do not form a point process. However a natural analog is provided by the upcrossings (i.e. points where excursions above a level begin) which can form a useful point process for discussing extremal properties. Further in many cases the intensity of this point process provides the function $\psi(\mathrm{u})$ needed for the determination of extremal type. Before proceeding it is of interest to note that an alternative to discussing upcrossings is to consider the amount of time which the process spends above a level. This approach, used by Berman, is briefly indicated in Section 3.7.

Let then (as before) $\{\xi(\mathrm{t}): \mathrm{t} \geq 0\}$ be stationary with a.s. continuous sample functions, and continuous one-dimensional d.f. If $u$ is a constant, $\xi(t)$ is said to have an upcrossing of $u$ at $t_{0}>0$ if for some $\epsilon>0 \xi(\mathrm{t}) \leq \mathrm{u}$ in $\left(\mathrm{t}_{0}-\epsilon\right.$, $\mathrm{t}_{\mathrm{O}}$ ) and $\xi(\mathrm{t}) \geq \mathrm{u}$ in $\left(\mathrm{t}_{\mathrm{O}}, \mathrm{t}_{\mathrm{O}}+\epsilon\right)$.

Under the given assumptions the number $N_{u}(I)$ of upcrossings of $u$ by $\xi(t)$ in an interval I is a (possibly infinite valued) r.v.. If $\mu(\mathrm{u})=E N_{u}((0,1))<\infty$ then $N_{u}(I)<\infty$ a.s. for bounded $I$, and the upcrossings form a stationary point process $N_{u}$ with intensity parameter $\mu=\mu(\mathrm{u})$.

For stationary normal processes satisfying (3.3.1) $\mu$ is finite when $\alpha=2$ and is then given by Rice's Formula, $\mu(\mathrm{u})=(\mathrm{C} / 2)^{1 / 2} \pi^{-1} \exp \left(-\mathrm{u}^{2} / 2\right)$ and for general processes $\mu$ may be calculated under weak conditions as

$$
\begin{equation*}
\mu(\mathrm{u})=\int_{0}^{\infty} \mathrm{zp}(\mathrm{u}, \mathrm{z}) \mathrm{dz} \tag{3.4.1}
\end{equation*}
$$

where $\mathrm{p}(\mathrm{u}, \mathrm{z})$ is the joint density of $\xi(\mathrm{t})$ and its (q.m.) derivative $\xi^{\prime}(\mathrm{t})$. In fact these relations can be shown simply since $\mu(u)=\underset{q \downarrow 0}{\lim _{q}} J_{q}(u)$ where

$$
\begin{equation*}
\mathrm{J}_{\mathrm{q}}(\mathrm{u})=\mathrm{q}^{-1} \mathrm{P}\{\xi(0) \leq \mathrm{u}<\xi(\mathrm{q})\}, \quad(\mathrm{q}>0), \tag{3.4.2}
\end{equation*}
$$

and hence depends only on the bivariate distribution of $\xi(0)$ and $\xi(\mathrm{q})$. Under general conditions it is also the case, when $u \rightarrow \infty$ as $q \rightarrow 0$ in a suitably coordinated way that $\mathrm{J}_{\mathrm{q}}(\mathrm{u}) \sim \mu(\mathrm{u})$. We shall use a variant of this property, assuming that for each $a>0$ there are constants $q_{a}(u) \rightarrow 0$ as $u \rightarrow \infty$ with

$$
\begin{equation*}
\lim _{u \rightarrow \infty} \inf \frac{\mathrm{~J}_{\mathrm{q}_{\mathrm{a}}}(\mathrm{u})}{\mu(\mathrm{u})} \rightarrow 1 \quad \text { as } a \rightarrow \infty \tag{3.4.3}
\end{equation*}
$$

and that

$$
\begin{equation*}
\mathrm{P}(\mathrm{M}(\mathrm{q})>\mathrm{u})=\mathrm{o}(\mu(\mathrm{u})) . \tag{3.4.4}
\end{equation*}
$$

It may then be readily shown that (3.1.3) holds if $\psi(u)=\mu(u)$. Also (3.2.1) is of ten satisfied in regular cases. Under such conditions it thus follows that $\psi(u)$ may be replaced by $\mu(u)$ in previous results. (For details see [66, Section 13.5]).

Thus the intensity $\mu(\mathrm{u})$ can provide a convenient means for determining the type of limiting distribution for $M(T)$. However the point process of upcrossings has further interesting properties analogous to those for exceedances in discrete parameter cases. Specifically let $u=u_{T}$ and $T$ tend to infinity in such a way that $\mathrm{T} \mu\left(\mathrm{u}_{\mathrm{T}}\right) \rightarrow \tau>0$. Define a normalized point process $\mathrm{N}_{\mathrm{T}}^{*}$ of upcrossings having points at $\mathrm{t} / \mathrm{T}$ when $\xi$ has an upcrossing of $u$ at $t$ i.e. $N_{T}^{*}(I)=\#$ upcrossings of $u_{T}$ by $\xi(t)$ for $\left.t / T \in I\right\}$. Then the following result holds.

Theorem 3.4.1 Suppose that the conditions of Theorem 3.2.1 hold, with $\psi(\mathrm{u})=\mu(\mathrm{u})$, and with (3.1.3) replaced by (3.4.3) and (3.4.4). Then $\mathrm{N}_{\mathrm{T}}^{*}$ converges in distribution to a Poisson Process with intensity $\tau$ as $T \rightarrow \infty$. This in particular holds for the stationary normal processes satisfying (3.3.1) with $\alpha=2$
and (3.3.3).

Similar results may be obtained under appropriate conditions for the point process of local maxima of height at least $u$, as $u \rightarrow \infty$, leading in particular to the asymptotic distribution of $M^{(k)}(T)$, the $k^{\text {th }}$ largest local maximum in $[0, T]$. Indeed "complete Poisson convergence" results analogous to those indicated for sequences in Sections 1.3 and 2.4, may be obtained for the point process in the plane consisting of the locations and heights of the local maxima. (cf. [66, Sections 9.5 and 13.6] for details).

Finally, it is also possible to obtain Poisson limits in cases with irregular sample paths when $\mu(u)=\infty$ (e.g. normal with $0<\alpha<2$ ) by the simple device of using the " $\epsilon$-upcrossings" of Pickands [81] in lieu of ordinary upcrossings. Specifically, for given $\epsilon>0, \xi(t)$ has an $\epsilon$-upcrossing of the level u at $t_{0}$ if $\xi(\mathrm{t}) \leq \mathrm{u}$ for $\mathrm{t} \in\left(\mathrm{t}_{0}-\epsilon, \mathrm{t}_{0}\right)$, and $\xi(\mathrm{t})>\mathrm{u}$ for some $\mathrm{t} \in\left(\mathrm{t}_{0}, \mathrm{t}_{0}+\eta\right)$, for each $\eta>0$, so that clearly the number of $\epsilon$-upcrossings in a finite interval is finite (indeed bounded by $(m(I) / \epsilon)+1$ where $m(I)$ is the length of $I$. This device was used in [80] to give one of the first proofs of Theorem 3.3.1. (See also Section 3.7 below for a different approach.).
$3.5 x^{2}$-processes
The proofs for normal processes in Section 3.3, and also for the sequence case (Section 2.5) use the Normal Comparison Lemma (Theorem 2.5.1) in an essential way. It will also be the basis for the present section on functions $\{x(t)\}$ of stationary d-dimensional (d $\geq 2$ ) normal processes $\left.\xi(\mathrm{t})=\xi_{1}(\mathrm{t}), \ldots, \xi_{\mathrm{d}}(\mathrm{t})\right)$ defined as

$$
\begin{equation*}
x(t)=\sum_{i=1}^{d} \xi_{i}^{2}(t) \tag{3.5.1}
\end{equation*}
$$

We shall assume that the components are standardized to have mean zero and the same variance one - here this is a real restriction and not just a question of normalization - and also that the components are independent. Then $x(t)$ has a $x^{2}$-distribution and the process $\{x(\mathrm{t}) ; \mathrm{t} \geq 0\}$ is called a $\chi^{2}$-process (with d degrees of freedom). Extremal properties of $x^{2}$-processes, and of some related functions of $\xi(\mathrm{t})$, have been studied in detail by Sharpe ([94]), Aronowich and Adler ([4], [5]), and Lindgren ([68], [69], [70]). Here we will follow the "geometrical" approach of [69], and use the fact that $\chi(t)$ is the radial part of $\boldsymbol{\xi}(\mathrm{t})$ to find the asymptotic double exponential distribution of maxima of $x(t)$, referring the reader to [5] for results on minima. However, we will indicate how the results can be obtained quite smoothly from the general theory of Section 3.4, rather than by using Lindgren's direct calculations.

Now, suppose further that the component processes $\left\{\xi_{i}(t)\right\}, i=1, \ldots, d$ are continuously differentiable a.s., and have the same covariance function $r(t)$. We shall presently show that $\mu(\mathrm{u})$, the mean number of u -upcrossings by $\chi(\mathrm{t}), 0 \leq$ $\mathrm{t} \leq 1$, it is easily found from (3.4.1), and then apply Theorem 3.4.1. For $\mathrm{i}=1, \ldots, \mathrm{~d}, \xi_{\mathrm{i}}(0)$ and $\xi_{\mathrm{i}}^{\prime}(0)$ are jointly normal, and hence independent, since $\operatorname{Cov}\left(\xi_{\mathrm{i}}^{\prime}(0), \xi_{\mathrm{i}}(0)\right)=\lim _{\mathrm{h} \rightarrow 0} E\left\{\mathrm{~h}^{-1}\left(\xi_{\mathrm{i}}(\mathrm{h})-\xi_{\mathrm{i}}(0)\right) \xi_{\mathrm{i}}(0)\right\}=\mathrm{r}^{\prime}(0)=0$, where the last equality holds because $r(t)$ is symmetric around zero. Similarly, if $\lambda=-r$ " $(0)$ is the second spectral moment, $\xi_{i}^{\prime}(t)$ has variance $\lambda$. Thus the conditional distribution of $x^{\prime}(0)=\sum_{i=1}^{d} 2 \xi_{i}(0) \xi_{i}^{\prime}(0)$ given $x(0)=\sum_{i=1}^{d} \xi_{i}^{2}(0)=u>0$ is normal with mean zero and variance $\sum_{i=1}^{d} 4 \lambda \xi_{i}^{2}(0)=4 \lambda u$. Let $p(z \mid u)$ be the density of this conditional distribution and let $p(u)$ be the density of $\chi(0)$, i.e.

$$
\begin{equation*}
\mathrm{p}(\mathrm{u})=2^{-\mathrm{d} / 2} \Gamma(\mathrm{~d} / 2)^{-1} \mathrm{u}^{\mathrm{d} / 2-1} \mathrm{e}^{-\mathrm{u} / 2} . \tag{3.5.2}
\end{equation*}
$$

Then, using (3.4.1), it follows that

$$
\begin{equation*}
\mu(\mathrm{u})=\mathrm{p}(\mathrm{u}) \int_{0}^{\infty} \mathrm{zp}(\mathrm{z} \mid \mathrm{u}) \mathrm{dz} \tag{3.5.3}
\end{equation*}
$$

$$
=2^{-(\mathrm{d}-1) / 2} \Gamma(\mathrm{~d} / 2)^{-1}(\lambda / \pi)^{1 / 2} \mathrm{u}^{(\mathrm{d}-1) / 2} \mathrm{e}^{-\mathrm{u} / 2},
$$

for $u>0$. For $u$ fixed, $J_{q}(u)=P(x(0) \leq u<\chi(q)) / q \rightarrow \mu(u)$ as $q \rightarrow 0$, and similarly (3.4.3) holds for $u^{1 / 2} q=u^{1 / 2} q_{a}(u) \rightarrow a>0$ (cf. [69, Lemma 2.5]).

Theorem 3.5.1 Let $\xi(\mathrm{t})=\left(\xi_{1}(\mathrm{t}), \ldots, \xi_{\mathrm{d}}(\mathrm{t})\right)$ be a continuously differentiable d-dimensional standardized normal process with independent components and the same covariance function $r(t)$, as above. Suppose further that $r(t) \log t \rightarrow 0$ as $\mathrm{t} \rightarrow \infty$ and that

$$
\begin{equation*}
\mathrm{T} \mu\left(\mathrm{u}_{\mathrm{T}}\right) \rightarrow \tau \text { as } \mathrm{T} \rightarrow \infty, \tag{3.5.4}
\end{equation*}
$$

and let $N_{T}^{*}$ be the point process of upcrossings of $u_{T}$ by $\{\chi(\mathrm{tT}\}: \mathrm{t} \in[0,1]\}$. Then $N_{T}^{*}$ converges in distribution to a Poisson process with intensity $\tau$, and in particular,

$$
\begin{equation*}
\left.\underset{0 \leq t \leq T}{P\{\max } x(t) \leq u_{T}\right\} \rightarrow \mathrm{e}^{-\tau} \text {, as } \mathrm{T} \rightarrow \infty . \tag{3.5.5}
\end{equation*}
$$

Proof. We shall briefly indicate how the conditions of Theorem 3.4.1 can be checked. We assume that $\mathrm{d}=2$, the extension to $\mathrm{d}>2$ being straightforward. The main idea in [69] is to introduce the normal random field $\left\{x_{\theta}(t): 0 \leq \theta<2 \pi, t \geq 0\right\}$, where

$$
x_{\theta}(t)=\xi_{1}(t) \cos \theta+\xi_{2}(t) \sin \theta
$$

is the component of $\xi(\mathrm{t})$ in the direction $(\cos \theta, \sin \theta)$, and to note that then

$$
\begin{equation*}
x(t)=\sup _{0 \leq \theta<2 \pi} x_{\theta}(t)^{2} \tag{3.5.6}
\end{equation*}
$$

Thus sup $\operatorname{logt\leq h} x(t)=\max 0 \leq t \leq h, 0 \leq \theta<2 \pi X_{\theta}(t)^{2}$, and it follows at once from the extremal theory for normal random fields that (3.2.1) holds, for $\psi(\mathrm{u})=\mu(\mathrm{u})$ and any $\mathrm{h}>0$, see [69, Lemma 2.2]. As noted above, for fixed a>0 (3.4.3) holds for $\mathrm{q}=\mathrm{a} / \mathrm{u}^{1 / 2}$, and (3.4.4) is an easy consequence of (3.2.1). Thus it only remains to establish $C\left(u_{T}\right)$ and $C^{\prime}\left(u_{T}\right)$, for an arbitrary $h$, say $h=1$, and with $q=q_{a}(u)$, for each a $>0$. For this we introduce a further sampling, in the $\theta$-direction,
given by a parameter $r=b / u^{1 / 2}$ with $b>0$. Let $\tilde{\chi}_{r}(t)=\max \left\{\chi_{i r}(t)\right.$; $\mathrm{i}=0, \ldots,[2 \pi / \mathrm{r}]\}$. Then, by (3.5.6) and an easy geometrical argument,

$$
\begin{equation*}
x(t) \cos ^{2} r \leq \tilde{x}_{r}(t)^{2} \leq x(t), \tag{3.5.7}
\end{equation*}
$$

for $0<r<\pi / 2$. To show that $C^{\prime}\left(u_{T}\right)$ holds let $u_{T}^{\prime}=\left(u_{T}\right)^{1 / 2} \cos r$, so that by (3.5.7) and stationarity,

$$
\begin{align*}
& \quad \frac{T}{q} \underset{1 \leq j q \leq \epsilon T}{\sum} P\left(x(0)>u_{T}, x(j q)>u_{T}\right)  \tag{3.5.8}\\
& \leq \frac{T}{q} \sum_{1 \leq j q \leq \epsilon T} P\left(\tilde{x}_{\mathrm{r}}(0)>\mathrm{u}_{\mathrm{T}}^{\prime}, \tilde{x}_{\mathrm{r}}(j q)>\mathrm{u}_{\mathrm{T}}^{\prime}\right) \\
& \left.\leq \frac{\mathrm{T}}{\mathrm{q}} \sum_{1 \leq j \mathrm{jq} \leq \epsilon \mathrm{T}} \right\rvert\, \mathrm{P}\left(\tilde{x}_{\mathrm{r}}(0)>\mathrm{u}_{\mathrm{T}}^{\prime}, \tilde{x}_{\mathrm{r}}(j \mathrm{jq})>\mathrm{u}_{\mathrm{T}}^{\prime}\right) \\
& -\mathrm{P}\left(\tilde{x}_{\mathrm{r}}(0)>\mathrm{u}_{\mathrm{T}}^{\prime}\right) \mathrm{P}\left(\tilde{x}_{\mathrm{r}}(j q)>\mathrm{u}_{\mathrm{T}}^{\prime}\right) \mid+\epsilon(\mathrm{T} / \mathrm{q})^{2} \mathrm{P}\left(\tilde{x}_{\mathrm{r}}(0)>\mathrm{u}_{\mathrm{T}}^{\prime}\right)^{2} .
\end{align*}
$$

It is readily seen that $\mathrm{T} \mu\left(\left(\mathrm{u}_{\mathrm{T}}^{\prime}\right)^{2}\right) \rightarrow \tau^{\prime}=\tau \exp \left\{\mathrm{b}^{2} / 2\right\}$ and that $x_{\theta}(\mathrm{t})$ has mean zero and variance one, and that $\left|\operatorname{cov}\left(x_{\theta}(0), x_{\theta}{ }^{\prime}(t)\right)\right| \leq|r(t)|$, for any $\theta, \theta^{\prime}$. The Normal Comparison Lemma can then be applied in a straightforward way to show that the sum on the righthand side of (3.5.8) tends to zero. Further, it follows from (3.5.7) and (3.5.2) - (3.5.4) that

$$
\epsilon(\mathrm{T} / \mathrm{q})^{2} \mathrm{P}\left(\tilde{x}_{\mathrm{r}}(0)>\mathrm{u}_{\mathrm{T}}^{\prime}\right)^{2} \leq \epsilon(\mathrm{T} / \mathrm{q})^{2}\left(\mathrm{P}\left(\chi(0)>\left(\mathrm{u}_{\mathrm{T}}^{\prime}\right)^{2}\right)\right)^{2} \rightarrow \epsilon\left(\tau \mathrm{e}^{\mathrm{b}^{2} / 2}\right)^{2} 2 \pi /\left(\lambda \mathrm{a}^{2}\right)
$$

and thus $C^{\prime}\left(u_{T}\right)$ is satisfied.
Next, with the notation of $C\left(u_{T}\right)$,
(3.5.9) $\left|F_{s_{1}, \ldots, s_{p}}, t_{1}, \ldots, t_{p^{\prime}}\left(u_{T}\right)-F_{s_{1}, \ldots, s_{p}}\left(u_{T}\right) F_{t_{1}}, \ldots, t_{p}\left(u_{T}\right)\right|$ $\leq \mid \mathrm{P}\left(\tilde{x}_{\mathrm{r}}(\mathrm{t}) \leq \mathrm{u}_{\mathrm{T}}^{1 / 2}: \mathrm{t} \in\left\{\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{p}}, \mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{p}},\right\}\right)$ $-P\left(\tilde{x}_{r}(t) \leq u_{T}^{1 / 2}: t \in\left(s_{1}, \ldots, s_{p}\right\}\right) P\left(\tilde{x}_{r}(t) \leq \sqrt{u_{T}}: t \in\left\{t_{1}, \ldots, t_{p},\right\}\right) \mid$ $+\sum_{1 \leq j q \leq T} P\left(u_{T} \leq x(j q) \leq u_{T} / \cos ^{2} r\right)$.
Here the Normal Comparison Lemma may be applied, similarly as for $\mathrm{C}^{\prime}\left(\mathrm{u}_{\mathrm{T}}\right)$, to show that the first expression on the right tends to zero as $T \rightarrow \infty$, if $t_{1}-s_{p} \geq$ $\gamma_{T}$, for suitable $\gamma_{T}=o(T)$. Further, the last sum in (3.5.9) is bounded by

$$
\frac{\mathrm{T}}{\mathrm{q}} \mathrm{P}\left(\mathrm{u}_{\mathrm{T}} \leq x(0) \leq \mathrm{u}_{\mathrm{T}} / \cos ^{2} \mathrm{r}\right)=\frac{\mathrm{T}}{\mathrm{q}}\left\{\mathrm{e}^{-2^{-1} \mathrm{u}_{\mathrm{T}}}-\mathrm{e}^{-2^{-1} \mathrm{u}_{\mathrm{T}} / \cos ^{2} \mathrm{r}}\right\}
$$

$$
\rightarrow(2 \pi / \lambda)^{1 / 2} \tau\left(1-\mathrm{e}^{-\mathrm{b}^{2} / 2}\right) / \mathrm{a} \quad \text { as } \mathrm{T} \rightarrow \infty
$$

by straightforward computations. Since this limit tends to zero as $b \rightarrow 0$, for $a$ fixed, this may be seen to prove $C\left(u_{T}\right)$.

It is easy to "solve" (3.5.3), to show that (3.5.4) implies that

$$
\mathrm{P}\left\{\mathrm{a}_{\mathrm{T}}{\left.\left.\underset{0 \leq \mathrm{t} \leq \mathrm{T}}{(\max } x(\mathrm{t})-\mathrm{b}_{\mathrm{T}}\right) \leq \mathrm{x}\right\} \rightarrow \exp \left(-\mathrm{e}^{-\mathrm{x}}\right) \text { as } \mathrm{T} \rightarrow \infty}^{0}\right.
$$

for

$$
\mathrm{a}_{\mathrm{T}}=1 / 2, \mathrm{~b}_{\mathrm{T}}=2 \log \mathrm{~T}+(\mathrm{d}-1) \log \log \mathrm{T}-\log \left(\Gamma(\mathrm{d} / 2)^{2} \pi / \lambda\right)
$$

It might also be noted that this proof of $C\left(u_{T}\right)$ and $C^{\prime}\left(u_{T}\right)$ applies, with obvious changes also when the components of $\xi(\mathrm{t})$ are dependent and have different covariance functions.

### 3.6 Diffusion processes

Diffusion processes have many useful special properties, and correspondingly several different approaches to their extremal behaviour are possible. E.g. Darling and Siegert ([29]), Newell [77], and Mandl [73] apply transform techniques and the Kolmogorov differential equations (cf. also the survey [24]), Berman [11] exploits the regenerative nature of stationary diffusions, similarly to Section 2.6, and Davis [32] and Berman [14] use a representation of the diffusion in terms of an Ornstein-Uhlenbeck process. Here we shall discuss some aspects of Davis' methods, and in particular state his main result (relation (3.6.6) below).

A diffusion process $\{\xi(\mathrm{t}) ; \mathrm{t} \geq 0\}$ can be specified as the solution of a stochastic differential equation

$$
\begin{equation*}
\mathrm{d} \xi(\mathrm{t})=\mu(\xi(\mathrm{t})) \mathrm{d} \mathrm{t}+\sigma(\xi(\mathrm{t})) \mathrm{dB}(\mathrm{t}) \tag{3.6.1}
\end{equation*}
$$

where $\{B(t): t \geq 0\}$ is a standard Brownian motion. We refer to [62] for the precise definition, and for the properties of $\{\xi(\mathrm{t})\}$ used below. For simplicity
we will consider a somewhat more restrictive situation than in [62], and in particular we assume that $\{\xi(\mathrm{t})\}$ is defined on some open, possibly infinite, interval $\mathrm{I}=\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)$ and that $\mu$ and $\sigma$ are continuous, with $\sigma>0$ on I .

Let $\{s(x) ; x \in I\}$ be a solution of the ordinary differential equation

$$
\begin{equation*}
\sigma^{2}(x) s^{\prime \prime}(x)+2 \mu(x) s^{\prime}(x)=0 \tag{3.6.2}
\end{equation*}
$$

i.e. let it have the form $s(x)=c_{1}+c_{2} \int_{x_{0}}^{x} \exp \left\{-\int_{x_{0}}^{y}\left(2 \mu(z) / \sigma^{2}(z)\right) d z\right\} d y$, with $c_{2}>0, c_{1}$ real constants, for some point $x_{0} \in I$. Then $s$ is strictly increasing and by Ito's formula $\eta_{t}=s\left(\xi_{t}\right)$ satisfies $d \eta_{t}=f\left(\eta_{t}\right) d B_{t}$, for $f(x)=$ $\mathrm{s}^{\prime}\left(\mathrm{s}^{-1}(\mathrm{x})\right) \sigma\left(\mathrm{s}^{-1}(\mathrm{x})\right)$, i.e. s is a scale function and $\left\{\eta_{\mathrm{t}}: \mathrm{t} \geq 0\right\}$ is the diffusion on natural scale. The speed measure $m$, corresponding to this scale function then has density $l / f(x)$, i.e. $m(d x)=(l / f(x)) d x$. We further assume that the speed measure is finite, $|m|=\int_{I} m(d x)=\int_{I}(1 / f(x)) d x<\infty$, and that $s(x) \rightarrow \infty$ as $x \rightarrow r_{2}, s(x) \rightarrow-\infty$ as $x \rightarrow r_{1}$. It then follows that the boundaries $r_{1}, r_{2}$ are inaccesible, that the diffusion is recurrent, and that there exists a stationary distribution so that $\{\xi(\mathrm{t})\}$ becomes a stationary process if $\xi(0)$ is given this distribution.

The Ornstein-Uhlenbeck process, which will be denoted by $\{\tilde{\xi}(\mathrm{t})\}$ here, is the stationary diffusion process (3.6.1) specified by $I=R, \mu(x)=x / 2, \quad \sigma(x)=$ $1, x \in I$. For the present purposes, a convenient choice of scale function for $\{\tilde{\xi}(\mathrm{t})\}$ is $\tilde{\mathrm{s}}(\mathrm{x})=(2 \pi)^{1 / 2} \int_{0}^{\mathrm{x}} \mathrm{e}^{\mathrm{y}^{2} / 2} \mathrm{dy}$, and the corresponding speed measure is $\tilde{m}(d x)=(2 \pi)^{-1 / 2} e^{-x^{2} / 2} d x$. Further, it can be seen that $\{\tilde{\xi}(t)\}$ is a standardized stationary normal process with covariance function $r(t)=e^{-|t|}$ and that $\tilde{s}(x) \sim(2 \pi)^{1 / 2} x^{-1} e^{x^{2} / 2}=(x \phi(x))^{-1}$, as $x \rightarrow \infty$. Hence, Theorem 3.3.1 may be applied with $\mathrm{C}=\alpha=1$ and its conclusion can, e.g. by a simple "subsequence argument" be written as

$$
\begin{equation*}
\sup _{\tilde{\sim} \bar{u}_{0}}\left|P(\tilde{M}(T) \leq u)-e^{-T / \tilde{s}(u)}\right| \rightarrow 0 \quad \text { as } T \rightarrow 0 \tag{3.6.3}
\end{equation*}
$$

for any $\tilde{u}_{o}>0$, and with $\tilde{M}(t)=\sup \{\tilde{\xi}(t): 0 \leq t \leq T\}$.
The main additional fact needed is that the Ornstein-Uhlenbeck process on natural scale can, by a change of time, be made to have the same distribution as $\{\eta(\mathrm{t})\}$. More precisely, ([32, Theorems 2.1 and 2.2]), there exists a strictly increasing random function $\{\tau(\mathrm{t}): \mathrm{t} \geq 0\}$ such that the processes $\{\mathrm{s}(\xi(\mathrm{t})): \mathrm{t} \geq 0\}$ and $\{\tilde{\mathrm{s}}(\tilde{\xi}(\tau(\mathrm{t}))): \mathrm{t} \geq 0\}$ have the same distribution, and which satisfies

$$
\begin{equation*}
\mathrm{T}^{-1} \tau(\mathrm{~T}) \rightarrow 1 /|\mathrm{m}| \quad \text { as } \mathrm{T} \rightarrow \infty, \tag{3.6.4}
\end{equation*}
$$

almost surely.
As in Section 2.6 it follows easily from (3.6.3), (3.6.4) that

$$
\begin{equation*}
\sup _{\tilde{\sim})_{0}}\left|P(\tilde{M}(\tau(T)) \leq u)-e^{-T /(\tilde{s}(u)|m|)}\right| \rightarrow 0, \quad \text { as } T \rightarrow \infty . \tag{3.6.5}
\end{equation*}
$$

Since for $M(T)=\sup \{\xi(t): 0 \leq t \leq T\}$,

$$
\begin{aligned}
\mathrm{P}(\mathrm{M}(\mathrm{~T}) \leq \mathrm{u}) & =\mathrm{P}(\sup \{\mathrm{~s}(\xi(\mathrm{t})): 0 \leq \mathrm{t} \leq \mathrm{T}\} \leq \mathrm{s}(\mathrm{u})) \\
& =\mathrm{P}(\sup \{\tilde{\mathrm{~s}}(\tilde{\xi}(\tau(\mathrm{t}))): 0 \leq \mathrm{t} \leq \mathrm{T}\} \leq \mathrm{s}(\mathrm{u})) \\
& =\mathrm{P}\left\{\tilde{\mathrm{M}}(\tau(\mathrm{~T})) \leq \tilde{\mathrm{s}}^{-1}(\mathrm{~s}(\mathrm{u}))\right\},
\end{aligned}
$$

(3.6.5) is readily seen to imply the main result of [34], that (3.6.6) $\quad \sup _{u<u_{0}}\left|P(M(T) \leq u)-e^{-T /(s(u)|m|)}\right| \rightarrow 0$ as $T \rightarrow \infty$,
for any $u_{0} \in I$ with $s\left(u_{0}\right)>0$. This is a quite explicit description of $M(T)$, "as the maximum of $T$ i.i.d. random variables with d.f. $G(u)=\exp \{-1 /(\mathrm{s}(\mathrm{u})|\mathrm{m}|)\}^{\prime \prime}$, and in particular domains of attraction for $M(T)$ are found by applying the classical criteria to $\exp \{-1 /(\mathrm{s}(\mathrm{u})|\mathrm{m}|)\}$. Finally, as for Markov chains, the hypothesis of stationarity is not essential, (3.6.6) holds for any initial distribution, as can be seen e.g. by a simple "coupling argument".
3.7 Miscellanea
(a) Moving averages of stable processes. These are continuous time processes of
the form $\xi(\mathrm{t})=\int \mathrm{c}(\mathrm{t}-\mathrm{x}) \mathrm{d} \zeta(\mathrm{x})$, with $\{\zeta(\mathrm{x})\}$ a non-normal stable independent increments process. Their extremal behaviour, which is similar to that of the corresponding discrete parameter moving average (cf. Section 2.7), is studied in detail in [87].
(b) Sample path properties. As mentioned in Section 2.7, the asymptotic distribution of sample paths near extremes is studied in [87], [90] and [36]. A different approach to this problem, via so-called Slepian model processes, has been pursued by G. Lindgren in a series of papers, cf. the survey [71] and the references therein.
(c) Extremal properties and sojourn times. In an important series of papers, Berman studies "the sojourn of $\xi(t)$ above $u$ ", defined as $L_{T}(u)=\int_{0}^{T} 1\{\xi(t)>u\} d t$, where $1\{\cdot\}$ is the indicator function. For a wide variety of cases, including many normal processes, $\chi^{2}$-processes, Markov processes, and random Fourier sums, he finds the asymptotic form of the distribution of $L_{T}(u)$ as $u \rightarrow \infty$ for fixed $T$, and as $u, T \rightarrow \infty$ in a coordinated way. Further, he uses the equivalence of the events $\{\mathrm{M}(\mathrm{T})>\mathrm{u}\}$ and $\left\{\mathrm{L}_{\mathrm{T}}(\mathrm{u})>0\right\}$ to study the maximum of $\{\xi(\mathrm{t})\}$. The earlier work on these topics is reviewed in the present journal ([12]) by Berman himself. For later work see $[13,15,16,18,19,20,21]$.
(d) Exceedance random measure. The sojourn time of $\xi(\mathrm{t})$ above u can of course be defined for processes whose sample functions are continuous but not sufficiently regular to define upcrossings (though " $\epsilon$-upcrossings" may be defined and useful). However a unifying viewpoint may be obtained by considering the "exceedance random measure" $\zeta_{T}(B)=\iint_{t \in T . B} 1\{\xi(t)>u\} d t$ for Borel subsets of $[0,1]$ which extends the notion of $\mathrm{L}_{\mathrm{T}}(\mathrm{u})$ in an obvious way. Similar
limiting theorems hold for $\zeta_{T}(B)$ as for the exceedance point process $N_{n}$ of Section 2.4. In particular compound Poisson limits typically occur (with multiplicities which are not necessarily now integer valued). In cases where upcrossings are defined, this limit has the pleasant interpretation that the positions of the events represent upcrossing points, and the associated multiplicities represent the immediately following exceedance time above the level u. For details see [65].

Acknowledgement: It is a pleasure to thank Patrik Albin, Simeon Berman, Richard Davis, and Sidney Resnick for comments on a number of sections.

## REFERENCES

Because of space limitations we have not attempted to give a complete set of references. For further references we refer to the bibliographies compiled by Harter [56] and Tiago de Oliveira and coworkers [97] (cf. also [44] and [66]).
[1] Amram, F. (1985). Multivariate extreme value distributions for stationary Gaussian sequences. J. Multivariate Anal. 16, 237-240.
[2] Anderson, C.W. (1970). Extreme value theory for a class of discrete distributions with applications to some stochastic processes. J. Appl. Probab. 7, 99-113.
[3] Anderson, C.W. (1978). Super-slowly varying functions in extreme value theory. J.Roy. Statist. Soc. B 40, 197-202.
[4] Aronowich, M. and Adler, R.J. (1985). Behaviour of $x^{2}$ processes at extrema. Adv. Appl. Probab. 17, 280-297.
[5] Aronowich, M. and Adler, R.J. (1985). Extrema and level crossings of $x^{2}$ processes. Report, Faculty of Industrial Engineering, Technion.
[6] Asmussen, S. (1987). Applied Probability and queues. New York: Wiley.
[7] Athreya, K.B. and Ney, P. (1978). A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc. 245, 493-501.
[8] Balkema, A.A., de Haan, L., and Resnick, S.I. (1984). Uniform rates of convergence to extreme value distributions. Statistical extremes and applications. Ed. by Tiago de Oliveira. Dordrecht: Reidel.
[9] Berman, S.M. (1962). Limiting distribution of the maximum term in sequences of dependent random variables. Ann. Math. Statist. 33, 894-908.
[10] Berman, S.M. (1964). Limit theorems for the maximum term in stationary sequences. Ann. Math. Statist. 35, 502-516.
[11] Berman, S.M. (1964). Limiting distribution of the maximum of a diffusion process. Ann. Math. Statist. 35, 319-329.
[12] Berman, S.M. (1982). Sojourns and extremes of stationary processes. Ann. Probab. 10, 1-46.
[13] Berman, S.M. (1982). Sojourns and extremes of a diffusion process on a fixed interval. Adv. Appl. Probab. 14, 811-832.
[14] Berman, S.M. (1983). High level sojourns of a diffusion process on a long interval. Z. Wahrsch. verw. Gebiete 62, 185-199.
[15] Berman, S.M. (1983). Sojourns of stationary processes in rare sets. Ann. Probab. 11, 847-866.
[16] Berman, S.M. (1983). Sojourns and extremes of random Fourier sums and series with random coefficients. Stochastic Process. Appl. 15, 213-238.
[17] Berman, S.M. (1984). Limiting distribution of sums of nonnegative stationary random variables. Ann. Inst. Statist. Math. 36, 301-321.
[18] Berman, S.M. (1987). Extreme sojourns for random walks and birth-and-death processes. To appear in Stoch. Models.
[19] Berman, S.M. (1987). The supremum of a process with stationary independent and symmetric increments. To appear in Stoch. Proc. Appl.
[20] Berman, S.M. (1987). Poisson and extreme value limit theorems for Markov random fields. To appear in Adv. Appl. Prob.
[21] Berman, S.M. (1987). Extreme sojourns of diffusion processes. To appear in Ann. Probab.
[22] Bernstein, S. (1927). Sur l'extension du theoreme du calcul des probabilites aux sommes de quantites dependantes. Math. Ann. 97, 1-59.
[23] Billingsley, P. (1968). Convergence of probability measures. New York: Wiley.
[24] Blake, I.F. and Lindsey, W.C. (1973). Level-crossing problems for random processes. IEEE Trans. Inf. Theory 19, 295-315.
[25] Chernick, M.R. (1981). A limit theorem for the maximum of autoregressive processes with uniform marginal distributions. Ann. Probab. 9, 145-149.
[26] Cohen, J.P. (1982a). The penultimate form of approximation to normal extremes. Adv. Appl. Probab. 14, 324-339.
[27] Cohen, J.P. (1982b). Convergence rates for the ultimate and penultimate approximations in extreme value theory. Adv. Appl. Probab. 14, 324-339.
[28] Cramér, H. (1965). A limit theorem for the maximum values of certain stochastic processes. Theory Probab. Appl. 10, 126-128.
[29] Darling, D.A. and Siegert, A.J. F. (1953). The first passage problem for a continuous Markov Process. Ann. Math. Statist. 24, 624-639.
[30] Davis, R. (1979). Maxima and minima of stationary sequences. Ann. Probab. 7, 453-460.
[31] Davis, R. (1982). Limit laws for the maximum and minimum of stationary sequences. Z. Wahrsch. verw. Gebiete 61, 31-42.
[32] Davis, R. (1982). Maximum and minimum of one-dimensional diffusions. Stochastic Process. Appl. 13, 1-9.
[33] Davis, R. (1982). The rate of convergence in distribution of the maxima. Statistica Neerlandica 36, 31-35.
[34] Davis, R. (1983). Limit laws for upper and lower extremes from stationary mixing sequences. J. Multivariate Anal. 13, 273-286.
[35] Davis, R. (1983). Stable limits for partial sums of dependent random variables. Ann. Probab. 11, 262-269.
[36] Davis, R. and Resnick, S.I. (1985). Limit theory for moving averages of random variables with regularly varying tail probabilities. Ann. Probab. 13, 179-195.
[37] Deheuvels, P. (1983). Point processes and multivariate extreme values. J. Multivariate Anal. 13, 257-272.
[38] Durrett, R. and Resnick, S.I. (1978). Functional limit theorems for dependent variables. Ann. Probab. 6, 829-846.
[39] Falk, M. (1984). Uniform rates of convergence of extreme order statistics. Thesis, Department of Mathematics, University of Siegen.
[40] Finster, M. (1982). The maximum term and first passage time for autoregressions. Ann. Probab. 10, 737-744.
[41] Fisher, R.A. \& Tippett, L.H.C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Phil. Soc. 24, 180-190.
[42] Fréchet, M. (1927). Sur la loi de probabilite de l'ecart maximum. Ann. Soc. Math. Polon. 6, 93-116.
[43] Freedman, D. (1974). The Poisson approximation for dependent events. Ann. Probab. 2, 256-269.
[44] Galambos, J., (1978). The asymptotic theory of extreme order statistics. New York: Wiley.
[45] Gnedenko, B.V. (1943). Sur la distribution limite du terme maximum d'une serie aleatoire. Ann. Math. 44, 423-453.
[46] Gumbel, E.J. (1958). Statistics of Extremes. New York: Columbia Univ. Press.
[47] Haan, L. de (1976). Sample extremes: an elementary introduction. Statist. Neerlandica 30, 161-172.
[48] Haan, L. de (1984). Slow variation and characterization of domains of attraction. Statistical extremes and applications. Ed. J. Tiago de Oliveira. Dordrecht: Reidel, 31-48.
[49] Haan, L. de and Hordijk, A. (1972). The rate of growth of sample maxima. Ann. Math. Statist. 43, 1185-1196.
[50] Haan, L. de and Resnick, S.I. (1977). Limit theory for multivariate sample extremes. Z. Wahrsch. verw. Gebiete 40, 317-337.
[51] Haan, L. de and Resnick, S.I. (1982). Local limit theorems for sample extremes. Ann. Probab. 10, 396-413.
[52] Haldane, J.B.S., and Jayakar, S.D. (1963). The distribution of extremal and nearly extremal values in samples from a normal population. Biometrika 50, 89-94.
[53] Hall, P. (1979). On the rate of convergence of normal extremes. J. Appl. Probab. 16, 433-439.
[54] Hall, P. (1980). Estimating probabilities for normal extremes. Adv. Appl. Probab. 12, 491-500.
[55] Hall, W.J. and Wellner, J.A. (1979). The rate of convergence in law of the maximum of an exponential sample. Statistica Neerlandica 33,151-154.
[56] Harter, H.L. (1978). A bibliography of extreme-value theory. Int. Statist. Rev. 46, 279-306.
[57] Hsing, T. (1984). Point processes associated with extreme value theory. Dissertation, University of North Carolina, Center for Stochastic Processes Tech. Report, \#83.
[58] Hsing, T. (1987). On the characterization of certain point processes. To appear in Stochastic Process. Appl.
[59] Hsing, T. (1987). Extreme value theory for multivariate stationary sequences. To appear in J. Multivariate Anal.
[60] Hsing, T., Husler, J., and Leadbetter, M.R. (1987). On the exceedance
point process for a stationary sequence. To appear in Probability Theory and Related Fields.
[61] Ito, K. (1969). Stochastic processes. Lecture notes series \#16, Department of Mathematics, Aarhus University.
[62] Ito, K. and McKean, H.P. (1965). Diffusion processes and their sample paths. Berlin: Springer.
[63] Kallenberg, O. (1976). Random measures. New York: Academic Press.
[64] Leadbetter, M.R. (1983). Extremes and local dependence in stationary sequences. Z. Wahrsch. verw. Geb. 65, 291-306.
[65] Leadbetter, M.R. (1987). The exceedance random measure for a stationary process. University of North Carolina, Center for Stochastic Processes Technical Report in preparation.
[66] Leadbetter, M.R., Lindgren, G., and Rootzèn, H. (1983). Extremes and related properties of random sequences and processes. Springer Series in Statistics. New York: Springer.
[67] LePage, R., Woodroofe, M., and Zinn, J. (1981). Convergence to stable distributions via order statistics. Ann. Probab. 9, 624-632.
[68] Lindgren, G. (1980). Extreme values and crossings for the $\chi^{2}$-process and other functions of multidimensional Gaussian processes, with reliability applications. Adv. Appl. Probab. 12, 746-774.
[69] Lindgren, G. (1980). Point processes of exits by bivariate Gaussian processes and extremal theory for the $x^{2}$-process and its concomitants. J. Multivariate Anal. 10, 181-206.
[70] Lindgren, G. (1984). Extremal ranks and transformation of variables for extremes of functions of multivariate Gaussian processes. Stochastic Process. Appl. 17, 285-312.
[71] Lindgren, G. (1984). Use and structure of Slepian model processes for prediction and detection in crossing and extreme value theory. In: Statistical extremes and applications. Ed. Tiago de Oliveira, Dodrecht: Reidel.
[72] Loynes, R.M. (1965). Extreme values in uniformly mixing stationary stochastic processes. Ann. Math. Statist. 36, 993-999.
[73] Mandl, P. (1968). Analytic treatment of one-dimensional Markov processes. New York: Springer.
[74] Mises, R. von (1936). La distribution de la plus grande de $n$ valeurs. Reprinted in: Selected papers II. Amer. Math. Soc., Providence, R.I. 1954, 271-294.
[75] Mittal, Y. and Ylvisaker, D. (1975). Limit distributions for the maxima of stationary Gaussian processes Stochastic Process. Appl. 3, 1-18.
[76] Mori, T. (1977). Limit distributions of two-dimensional point processes generated by strong mixing sequences Yokohama Math. J. 25, 155-168.
[77] Newell, G.F. (1962). Asymptotic extreme value distributions for one-dimensional diffusion processes. J. Math. Mech. 11, 481-496.
[78] Nummelin, E. (1978). A splitting technique for Harris recurrent Markov chains. Z. Wahrsch. verw. Gebiete 43, 309-318.
[79] O’Brien, G. (1987). Extreme values for stationary and Markov sequences. Ann. Probab. 15, 281-291.
[80] Pickands, J. III (1969). Asymptotic properties of the maximum in a stationary Gaussian process. Trans. Amer. Math. Soc. 145, 75-86.
[81] Pickands, J. III (1969). Upcrossing probabilities for stationary Gaussian processes. Trans. Amer. Math. Soc. 145, 51-73.
[82] Pickands, J. III (1971). The two-dimensional Poisson Process and extremal processes. J. Appl. Probab. 8, 745-756.
[83] Pickands, J. III (1980). Multivariate negative exponential and extreme value distributions. Manuscript, Wharton School of Business, University of Pennsylvania.
[84] Qualls, C. and Watanabe, H. (1972). Asymptotic properties of Gaussian processes. Ann. Math. Stat. 43, 580-596.
[85] Resnick, S.I. (1985). Uniform rates of convergence to extreme value distributions. Report, Department of Statistics, Colorado State University.
[86] Resnick, S.I. (1986). Point processes, regular variation and weak convergence. Adv. Appl. Probab., 18, 66-138.
[87] Rootzen, H. (1978). Extremes of moving averages of stable processes. Ann. Probab. 6, 847-869.
[88] Rootzèn, H. (1983). The rate of convergence of extremes of stationary normal sequences. Adv. Appl. Probab. 15, 54-80.
[89] Rootzén, H. (1984). Attainable rates of convergence for maxima. Statist. and Probab. Letters 2, 219-221
[90] Rootzén, H. (1986). Extreme value theory for moving average processes. Ann. Probab. 14, 612-652.
[91] Rootzen, H. (1987). A ratio limit theorem for weighted sums. Ann. Probab. 15, 728-747.
[92] Rootzén, H. (1987). Maxima and exceedances of stationary Markov chains. To appear in Adv. Appl. Probab.
[93] Serfozo, R. (1980). High-level exceedances of regenerative and semi-stationary processes. J. Appl. Probab. 17, 423-431.
[94] Sharpe, K. (1978). Some properties of the crossings process generated by a stationary $\chi^{2}$-process. Adv. Appl. Probab. 10, 373-391.
[95] Slepian, C. (1962) The one-sided barrier problem for Gaussian noise. Bell Syst. Tech. J. 41, 463-501.
[96] Smith, R. (1982). Uniform rates of convergence in extreme value theory. Adv. Appl. Probab. 14, 543-565.
[97] Tiago de Oliveira, J.: Bibliography of extreme value theory, to appear.
[98] Volkonski A. A. and Rozanov Yu. V. (1959). Some limit theorems for random functions I. Theor. Probab. Appl. 4, 178-197.
[99] Watts, V., Rootzèn, H. and Leadbetter, M.R. (1982). Convergence in distribution of intermediate order statistics from stationary sequences. Ann. Probab. 10, 653-662.
[100] Weissman, I. (1984). On the asymptotic joint distribution of an unbounded number of sample extremes. Report, Faculty of Industrial Engineering, Technion.

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE OF MATHEMATICAL STATISTICS，UNIVERSITETSPARKEN 5， 2100 COPENHAGEN $\emptyset, ~ D E N M A R K . ~$

No． 1 Jespersen，N．C．B．：On the Structure of Simple Transformation Models．
No． 2 Dalgaard，Peter and Johansen，S申ren：The Asymptotic Properties of the Cornish－Bowden－Eisenthal Median Estimator．

No． 3 Jespersen，N．C．B．：Dichotomizing a Continuous Covariate in the Cox Regression Model．

No． 4 Asmussen，S申ren：On Ruin Problems and Queues of Markov－Modulated M／G／1 Type．

No． 5 Asmussen，S申ren：The Heavy Traffic Limit of a Class of Markovian Queueing Models．

No． 6 Jacobsen，Martin：Right Censoring and the Kaplan－Meier and Nelson－Aalen Estimators．

GOPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, 2100 COPENHAGEN $\varnothing$, DENMARK.

No. 1 Jensen, S申ren Tolver and Johansen, Sфren: Estimation of Proportional Covariances.

No. 2 Rootzén, Holger: Extremes, Loads, and Strengths.

No. 3 Bertelsen, Aksel: On the Problem of Testing Reality of a Complex Multivariate Normal Distribution.

No. 4 Gill, Richard D. and Johansen, S申ren: Product-Integrals and Counting Processes.

No. 5 Leadbetter, M.R. and Rootzén, Holger: Extremal Theory for Stochastic Processes.

