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The purpose of this paper is to provide an overview of the asymptotic 
distributional theory of extreme values for a wide class of dependent stochastic 
sequences and continuous parameter processes. The theory contains the standard 
classical extreme value results for maxima and extreme order statistics as special 
cases but is richer on account of the diverse behavior possible under dependence in 
both discrete and continuous time contexts. Emphasis is placed on stationary cases 
but some departures from stationarity are considered. Significant ideas and methods 
are described rather than details, and in particular the nature and role of 
important underlying point processes (such as exceedances and upcrossings) are 
emphasized. Applications are given to particular classes of processes (e.g. normal, 
moving average) and connections with related theory (such as convergence of sums) 
are indicated. 
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1.1 Scope and content of the paper 

The purpose of this paper is to give a "motivated overview" of the 

principal results in and related to the distributional theory of extremes of 

stationary sequences and processes. In particular we shall be concerned with 

distributional properties of the maximum Mn=max(~l' ~2'·· .'~n) and other order 

statistics from stationary sequences {~.} as n ~ 00 and with corresponding 
1 

results for continuous parameter processes. The emphasis throughout will be on 

the motivation for and significant methods used in obtaining the results. Full 

proofs will not generally be given - in many cases the details of such proofs 

may be found in the volume [66], or from the references cited. 

The results to be described may, in part, be regarded as extensions of 

the classical theory of extremes of sequences of independent, identically 

distributed (i.i.d.) random variables (r.v. 's), cf. [46, 44]. However, they 

constitute more than just such an extension of the classical theory, since the 

dependent framework provides a natural setting for the theory and one in which 

its essential ideas and methods may be clearly exposed. In particular, it will 

be seen that the central results may often be regarded as special cases of the 

convergence of certain point processes - a view which may of course be taken in 

the classical case but which is less needed there in view of the detailed i.i.d. 

assumptions. Our discussion will emphasize the centrality of these underlying 

point process convergence results. 

As indicated in the list of contents, this paper is organized in three 

main parts. This first introductory part contains central distributional 

results of the classical LLd. theory and, in particular, the "Extremal Types 

Theorem" which restricts the possible limiting distributions for maxima to 

essentially three "different types". We shall indicate only the general 

organization and main features of the most recently available derivations of 
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these results. 

The second part of the paper concerns extremes of sequences - primarily 

(but not always) assumed stationary and is largely based on point process 

methods. It will be seen that the classical theory may be regarded as a special 

case of the more general theory for dependent sequences - some results being 

identical and others generalizing in interesting and non-trivial ways. For 

example. under weak dependence restrictions. the general "type" of limiting 

distribution for the maximum is the same as for an i.i.d. sequence with the same 

marginal d.f. (though the normalizing constants may change). However. the 

limiting distributions for other order statistics can be quite different from 

those under i.i.d. assumptions. 

Some particular cases of special interest (e.g. normal sequences. moving 

averages. Markov sequences) will be discussed in Part 2. Other aspects of the 

theory (e.g. rates of convergence. multivariate extremes) are also briefly 

described along with some interesting connections with convergence of sums. 

In Part 3 attention is turned to continuous parameter processes. The 

theory here may be made to rest on the sequence case by the simple device of 

regarding the maximum of a process §(t) up to. say. time T = n as the maximum of 

the values of the sequence 'i=suP{§(t): i-l~t~i}. for l~i~n. While this is 

simple and obvious in principle. the details are more complicated and require 

analogous but somewhat more intricate assumptions regarding the dependence 

structure of the process. The point process approach is also very valuable here 

- considering. for example. upcrossings of high levels in lieu of exceedances. 

Again. a rather full and satisfying theory results and is applied. in 

particular. to special cases such as normal and x2 processes. Properties of 

point processes of local maxima may also be obtained. as will be briefly 

indicated. 

It may be noted that the stationarity assumption. where made. primarily 
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provides for convenience and clarity, and that some departures from this will 

either not alter the result, or will alter it in an interesting way which can be 

determined. This will be evident, e.g. in discussion of normal sequences, where 

extensions to useful non-stationary cases will be briefly mentioned. Finally 

this paper is not by any means intended as a complete review of all aspects of 

extremal theory - a number of important topics are not referred to at all. 

Rather it is our purpose to provide an overview of much of a developing area 

which includes but is more widely applicable than the classical theory, and is 

based on the interplay of interesting mathematical techniques. In particular we 

emphasize recent results - especially those obtained since the publication of 

the volume [66]. 

1.2 Classical extreme value theory 

The principal concern of classical extreme value theory is with 

asymptotic distributional properties of the maximum Mn=max(f1 ,f2 , ... ,fn ) from an 

i.i.d. sequence {f.} as n ~ 00. While the distribution function (d.f.) of M may 
1 n 

be written down exactly (P{Mn ~ x} = Fn(x) where F is the d.f. of each f i ), 

there is nevertheless virtue in obtaining asymptotic distributions which are 

less dependent on the precise form of F, i.e. relations of the form 

d 
(1.2.1) P{an(Mn - bn ) ~ x} ~ G(x) 

where G is a non-degenerate d.f. and a > 0, b , are normalizing constants. 
n n 

The central result of classical extreme value theory, due in varying 

degrees of generality to Frechet [42], Fisher and Tippett [41], and Gnedenko 

[45], restricts the class of possible limiting d.f's G in (1.2.1) to essentially 

three different types as follows. 

Theorem 1.2.1 (Extremal Types Theorem). Let Mn = max(f1 ,f2 ,.··,fn ) where fi are 
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i.i.d. If (1.2.1) holds for some constants a > 0, b and some non-degenerate 
n n 

G, then G must have one of the following forms (in which x may be replaced by ax 

+ b for any a > 0, b): 

Type I: G(x) 
-x = exp(-e ) 

Type II: G(x) = 
{ ~(_x-a). for some a > ° 

{ 
exp(-(-x)a), for some a > ° 

Type Ill: G(x) = 
1, 

x ~ ° } 
x > ° 

x < ° } 
x > 0. 

Conversely any such d.f. G may appear as a limit in (1.2.1) and in fact does so 

when G is itself the d.f. of each f .. 
1 

It will be convenient to say that two non-degenerate d.f. 's G1 and G2 

are of the same type if G1(x) = G2 (ax + b) for some a > 0, b, and to refer to 

the equivalence classes so determined as "types". The use of "type" in the 

above theorem is a slight abuse of this since Types 11 and III really represent 

famiLies of types--one corresponding to each a > 0. However this abuse is 

convenient and it is conventional to refer to "the three types" of limit. It 

should also be noted that the three types may be incorporated into a single 

1/a family, for example by writing Ga(x) = exp{-(1-ax) }, -00 < a < 00, ax < 1, GO 

being interpreted as lim G (x) = exp(-e-x ). (Such a parametrization was 
a->O a 

introduced by von Mises). 

A straightforward proof of Theorem 1.2.1 is given in [66, Theorem 

1.4.2] and here we note only the fact that this consists of two parts - a 

division which is most useful for later forms of the result. The first part is 

to show that the class of limit laws G in (1.2.1) is precisely the class of 

max-stabLe d.f. 'so Specifically a d.f. G is called max-stabLe if for each 
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n=1.2 •... the d.f. Gn is of the same type as G. i.e. if there exist constants a n 

> O.bn such that Gn{anx + bn ) = G{x). 

The second part of the proof of Theorem 1.2.1 is to identify the class 

of max-stable d.f.·s with the Type I. 11 and III extreme value d.f. ·s. This is 

a purely function-analytic (non-probabilistic) procedure and will apply verbatim 

in dependent cases. A smooth proof due to de Haan (using inverse functions) may 

be found in [66]. 

It is. of course. important to know which (if any) of the three types of 

limit law applies when f has a given d.f. F. Necessary and sufficient 
n 

conditions are known. involving only the behavior of the tail 1-F{x) as x 

increases. for each possible limit. For example the criterion for a Type 11 

limit is simply that 1-F{x) should be regularly varying with index -a (a>O) as 

x ~ 00. The conditions for all three types may be found in [66. Theorem 1.6.2] 

together with simple proofs of their sufficiency. The necessity is more 

complicated (though perhaps also less important) but may·be achieved by using 

methods of regular variation (cf. [48] for a recent smooth treatment). 

The following almost trivially proved result is also used in "domain of 

attraction" determinations. and has important (and less trivially proved) 

extensions to dependent cases. 

Lemma 1.2.2. Let {un' n ~ 1} be constants and 0 ~ T ~ 00. If f 1. f 2 •... are 

i.i.d. with d.f. F then 

(1.2.2) 

if and only if 

(1.2.3) 

-T 
~e 

n{1 - F{u )) ~ T. 
n 

It may be noted that (1.2.1) is a special case of (1.2.2) using a linear 

-1 parametrization. by making identifications T = -log G{x). u = a x+b. Thus a n n n 

necessary and sufficient condition for the limit G is 
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n(l - F(a-1x + b » ~ -log G(x). as n ~ 00, 
n n 

for each x, and some a > 0, b. This explains the relevance of the tail 1-F(x) n n 

for domain of attraction criteria. Use of Lemma 1.2.2 also enables expressions 

to be obtained for the normalizing constants a ,b in terms of the (1-n-1) 
n n 

-1 
percentile ~n defined to satisfy F(~n-) ~ 1-n ~ F(~n). For example in the 

-1 Type II case a , b may be taken to be a = ~ • b = O. Of course while ~ may n n n n n n 

be determined (and hence a ,b found) when F is known, the practical problem n n 

lies in the estimation of those constants when the form of F is not precisely 

known. 

It is readily checked that a standard normal sequence belongs to the 

Type I domain with normalizing constants 

(1.2.4) 1/2 
a =(2 log n) 

n 
1/2 1 -1/2 

bn=(2 log n) - ~2 log n) (log log n + log 4rr). 

The exponential and log normal distributions also have Type I limits as does the 

d.f. F(x) = 1_e1/ x (x ( 0) with a finite right endpoint ~ = o. The Pareto and 

Cauchy distributions give Type II limits, whereas the uniform distribution 

belongs to the Type III domain. 

Not every d.f. F belongs to a domain of attraction at all. For example 

this occurs for the Poisson and geometric distributions--for which there is no 

sequence {u } such that (1.2.3) holds for O(T(oo. This typically happens in cases 
n 

when the jumps of the d.f. do not decay sufficiently quickly relative to the 

tail ([66, Theorem 1.7.13)]. However it is also possible for there to be no 

limit even if there is a sequence {u } satisfying (1.2.3) for any T - such as 
n 

-x-sin x 
the d.f. F(x)=l-e , an example due to Von Mises. 

We turn now, in this brief tour of classical results, to other extreme 

order statistics, writing M(k) for n 
the kth largest among the i. i. d. f 1 ,· .. ,fn 

with common d.£. F. Suppose that M = M(1) has the limi ting distribution G as 
n n 

in (1.2.1). By identifying u -1 b, -log G(x) it follows that =a x + T = n n n 
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(1.2.3) holds. Let S be the number of exceedance~ of u by f1' ... f ' i.e. the n n n 

number of i, 1 ~ i < n such that r. > u. Then S is binomial with parameters 
- ~l n n 

(n, p = 1-F(u )), and np ~ T so that S has a Poisson limit with mean T. The 
n n n n 

obvious equivalence of the events {M~k) ~ un} and {Sn < k} leads directly to the 

relation 

(1.2.5) 
s 

(-log G(x)) /s!. 

Thus if the maximum M has a limiting distribution G, then the kth largest M(k) 
n n 

has a limiting distribution given by (1.2.5) (with the same normalizing 

constants a,b as the maximum itself). 
n n 

These results foreshadow a more detailed discussion of the exceedances 

and related point processes, which will be taken up in the next section. 

Finally, topics from the classical theory not dealt with in this present 

part include (a) rate of convergence results (considered in the dependent 

setting in Section 2.8, (b) asymptotic distributions of minima (obtainable by 

simple transformations of the results for maxima), and (c) asymptotic theory of 

variable rank order statistics (cf. [99]). 

1.3 Point processes associated with extremes 

The above asymptotic Poisson property of the number of exceedances of u 
n 

satisfying (1.2.3), may be generalized by considering the actual point process 

N of exceedances of the level u. Specifically N consists of the point 
n n n 

process on (0,1] formed by normalizing the actual exceedance points by the 

factor l/n i.e. if i is the time of an exceedance (fi > un) then a point of Nn 

is plotted at i/n. If E C (0,1] then N (E) denotes the number of such points in 
n 

E, so that N (E)=#{i/n t E: r. > u , l<i<n} = #{i t nE:r. > u , l<i<n}. The n ~l n - - ~l n --

actual exceedance points and the point process N are illustrated in Figure 
n 

1 .3. 1 be 1 ow . 
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Figure 1.3.1 Point process of exceedances. Upper: actual exceedance 
points; lower: the point process N . 

n 

d 

For u satisfying (1.2.3) it follows immediately as above that 
n 

N (I) ~N(I) where N is a Poisson Process on [0,1] with intensity T, for each 
n 

interval I C [0,1]. By independence, corresponding convergence holds for joint 

distributions of Nn (I1), ... Nn(Ik ) for disjoint intervals 11 , ... Ik . This is in 

d 
fact sufficient for convergence in distribution N ~N (i.e. full weak 

n 
-1 -1 convergence of PN to PN ) of the point processes N to N. This may be n n 

regarded as a "fountainhead" result from which the asymptotic distributions for 

the maximum and all extreme order statistics follow. The result may be extended 

([66, Section 5.5]) by considering the vector point process of exceedances of 

multiple levels, to give joint asymptotic distributions of finite numbers of 

order statistics. For example if the maximum has the asymptotic distribution G 

given as in (1.2.1), consideration of two levels leads to the asymptotic joint 

distribution of the first two order statistics M(l) (= M ), M(2): 
n n n 

(1.3.1) p{an(M~l)-bn) ~ Xl' an(M~2)-bn) ~ x2} ~ 

G(x2 )(log G(x1) - log G(x2 ) + 1) as n ~ 00, (xl> x2 ). 

In general, consideration of r levels enables calculation of the 
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asymptotic joint distribution of r extreme order statistics. On the other hand 

these results for r=I.2 .... may be summarized simultaneously in one theorem 

sometimes referred to as a "complete" convergence result. This can be given 

quite a general form cf. [66. Theorem 5.7.1J which reduces to the following when 

the maximum has a limiting distribution G (and writing xO=inf{x: G(x) > O}). 

This result was first proved by Pickands ([82J). 

Theorem 1.3.1 Suppose (1.2.1) holds. for the i.i.d. sequence {t.}. and let N' 
J n 

be the point process in the plane with points at (j/n. a (t.-b )). Then N' ~ N' n J n n 

on (0. 00 ) x (xO. oo ) where N' is a Poisson process whose intensity measure is the 

product of Lebesgue measure and that defined by the increasing function log 

G(y) . 

In the i.i.d. case the above theorem may be regarded as fundamental in 

yielding all relevant asymptotic distributional properties. On the other hand. 

when dependence is introduced the "partial" r-Ievel results require somewhat 

fewer assumptions than does the "complete" result. For 1. Ld. sequences the 

proofs of both "r-Ievel" and "complete" results rely on similar (though somewhat 

more complicated) arguments to those already indicated for single level 

exceedances. 

2. Extremes of sequences 

2.1 The Extremal Types Theorem for stationary sequences. 

Obviously some form of dependence restriction is necessary to obtain an 

extremal types result in dependent cases (since e.g. one might take all t. to be 
1 

equal with arbitrary d.f .. so that M would also have this assigned d.f.). 
n 

Loynes ([72J) first obtained such a result under strong mixing (viz. 

sup{lp(AnS)-P(A)P(B)I: A 6 a(t1 •. ... t n ). B 6 a(tn+i . t n+i +1 .... ). n=I.2 .... } ~ 0 

as i ~ 00 where a( ) denotes the a-field generated by the indicated r.V. ·s). 



10 

Weaker (distributional) conditions will suffice and will be used here. The 

difference is not too important for our present purposes since the main ideas of 

proof are essentially the same. The main condition to be used (termed D(u » is 
n 

defined with reference to a sequence {u } of constants in terms of the finite 
n 

dimensional d.f. 's F. . (x1 , ... ,x ) = P{f. ~ xl' ... ,f. ~ x } of the 
11 ... In n 11 In n 

stationary sequence {f}. Writing F. . (u) = F. . (u,u, ... u), define 
n 11' ... In 11 .···1n 

a J = max{ IF. .. . (u) - F. . (u ) F. . (u) I: 
n,~ 11 , ... l p ,J 1 ... Jp ' n 11 , ... l p n J 1 , ... Jp ' n 

1 S i1 < ... S ip < j1··· < jp, S n, j1-ip ~ L} 

Then D(u ) is said to hold if a J ~ 0 for some sequence L = o(n). n n,~ n 
n 

It is, incidentally, obviously possible to weaken the condition D(u ) 
n 

very slightly to involve "intervals" of consecutive integers (See O'Brien ([79J) 

for the details of such a procedure and for some advantages in application to 

periodic Markov chains.) 

The following result is basic for the discussion of M and shows the 
n 

form in which D(u ) entails approximate independence. 
n 

Lemma 2.1.1. Let {u } be a sequence of constants and let D(u ) be satisfied by 
n n 

the stationary sequence {fn}. Let {kn ~ 1} be constants such that kn=o(n) and 

(in the notation used above for D(u », k L = o(n), k a ~ O. Then n n n n n,L 

k 
P{Mn ~ un} - P n{Mr ~ un} ~ 0 

n 

where r = [n/k J. 
n n 

n 

as n ~ 00, 

The proof of this result is perhaps the key method in dependent extremal 

theory. The type of argument was used first in this context by Loynes ([72J) 

but was used earlier in dependent central limit theory (cf. [22J). The basic 

idea is to divide the integers 1,2, ... n into kn "intervals" of length rn and 

clip out small (but expanding) intervals of length L from the right hand end of 
n 
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each. Then M is approximated by the largest submaximum over each remaining 
n 

interval. the submaxima having a degree of independence from D(u ) which allows 
n 

the conclusion to be obtained. 

The Extremal Types Theorem now follows simply from this result by 

showing max stability of the limit G ([66. Theorem 3.3.3J). 

Theorem 2.1.2. (Extremal Types Theorem for Stationary Sequences) Let {f } be a 
n 

stationary sequence such that Mn = max(f1 .f2 •.... f n ) has a non-degenerate 

limiting distribution G as in (1.2.1). Suppose that D(u ) holds for each u of n n 

the form u =xla +b . for x with 0 < G(x) < 1. Then G is one of the three n n n 

classical extremal types. 

2.2 The Extremal Index 

While the introduction of dependence into a sequence can significantly 

affect various extremal properties. it does not. within broad limits. affect the 

distributional type for the maximum. The purpose of this section is to make 

that rough statement precise and to explore the explicit changes brought by a 

dependence structure. This depends essentially on a single parameter sometimes 

called the "extremal index" of the (stationary) sequence {f }. 
n 

Following Loynes ([72J) it will be convenient. for a given stationary 

sequence {f }. to define the a~~ocLated Lndependent ~e~uence {f } to be i.i.d. 
n n 

A A A A 

with the same d.f. F as fn and to write Mn = max(f1 .f2 •... f n ). with 

Mn=max(f1.f2 .... f n ) as before. As noted originally for strongly mixing 

sequences in [72J. if u = u (T) satisfies (1.2.3) for each T. then any limit n n 

(function) for P(Mn S Un(T» must be of the form e-9T with fixed 9c[0.1J rather 

than just the function e-T given by (1.2.2) in the i.i.d. case. 

-9T If P{Mn S Un(T)} ~ e for each T > O. with Un(T) satisfying (1.2.3). 

we say that the stationary sequence {f } ha~ ext~emaL Lndex 9 (L 0). This 
n 

definition does not involve any dependence restriction on the sequence {f }. 
n 
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If, however, {f } is a stationary sequence with D{u (T)} holding for each T>O 
n n 

(u (T) satisfying (1.2.3» it may be shown by Lemma 2.1.1 that there exist n 
-9T 

constants 9, 9', 0 ~ 9 ~ 9' ~ 1 such that lim sUPn~ P{Mn ~ Un(T)} = e , 

lim infn~ P{Mn ~ Un(T)} = e-9 'T for each T, so that if P{Mn ~ Un(T)} converges 

-9T 
for some T)O then 9' = 9 and P{Mn ~ Un(T)} ~ e for all T)O and {fn} has 

extremal index 9, 0 ~ 9 ~ 1. (See [64] for details). 

-9T If P{Mn ~ Un(T)} ~ e it is clear that 9LO. One might suspect that 

also 9 ~ 1 on the grounds that one feels intuitively that the maximum M of n 

i.i.d. r.v.'s should be stochastically at least as large as M which would 
n 

imply e-T=lim P{Mn ~ Un(T)} ~ lim P{Mn ~ Un(T)} = e-9T. In fact it follows 

simply that 9 ~ 1 since 

n 
P{Mn ~ Un(T)} = 1-P{Y(fi ) Un(T)} ~ 1-n P{f1 ) Un(T)} 

= 1-n[1-F(un (T»] 

~ 1-T as n~. 

Since the lefthand side tends to e-9T it follows that e-9T ~ 1-T, which is only 

possible for aii T>O if 9~1. 

Clearly any i.i.d. sequence for which U (T) may be chosen satisfying 
n 

(1.2.3), has extremal index 9=1. A stationary sequence {f } satisfying D(u (T» 
n n 

for each T>O also has extremal index 9 = 1 if 

[n/k] 
lim sup n ~ P{f1 > U , f. > U } ~ 0 
n -+ co j=2 n J n 

(2.2.1) as k ~ co. 

For proof see [66, Theorem 3.4.1] where (2.2.1) is referred to as D'(u ». n 

Many stationary sequences satisfy (2.2.1), including normal sequences 

with covariance sequence {r } satisfying the "Berman Condition" r log n -+ O. 
n n 

Sufficient conditions for values of 9(1 are given in [64], and an example with 

9=1/2 appears later in this section. Examples can be found where the extremal 

index is zero, or does not even exist. This obviously has some theoretical 

interest but appears to occur in somewhat pathological cases and will not be 
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pursued in the present discussion. 

It may be shown by obvious arguments ([64]) that if a stationary 

sequence {f } has extremal index 9>0, {v } is any sequence of constants, and p 
n n 

any constant with O~p~l, then P{Mn ~ vn} ~ p if and only if P{Mn ~ vn} ~ p9. 

(This result makes no assumption about dependence). By taking v =xla + bone n n n 

then obtains the following important result. 

Theorem 2.2.1 Let the stationary sequence {f } have extremal index 9 > 0. If 
n 

A 9 
P{an(Mn-bn ) ~ x} ~G(x) then P{an(Mn-bn ) ~ x} ~ G (x) and conversely. That is 

M has an asymptotic distribution if and only if M does, with the power n n 

relation between the limits and the same normalizing constants. 

By way of comment, note that G9 is of the same type as G if one of them 

is of extreme value type (e.g. [exp(_e-x )]9 = exp[_e-(x-log9)], and similarly 
"-

for type 11 and Ill). If 9=1 the limits for M and M are precisely the same. 
n n 

Indeed for 0<9<1 the limits may also be taken to be the same by a simple change 

of normalizing constants. 

The practical implication of this result is that often dependence in 

data does not invalidate application of classical extreme value theory. Indeed 

one may not have to worry about the precise value of the extremal index since 

this only alters parameters of the distribution which usually must be estimated 

in any case. Further, if 9 > 0, the fact that the distributional type under 

dependence is the same as under independence means that the classical domain of 

attraction criteria may be applied to the marginal d.f. of the terms to 

determine which type applies. 

The folloWing simple example provides a case where 9 < 1, and will also 

be useful later when the effects of the value of 9 on the clustering of 

exceedances will be discussed. 



14 

Example 2.2.2 Let ~1'~2 ... be i.i.d. with d.f. H and write Ej=max(~j'~j+1)· 

Then {E } is stationary with d.f. F = ~ and an easy calculation shows that if 
n 

Un(T) satisfies (1.2.3) then n[l-H(un (T»] ~ T/2 and 

P{Mn ~ Un(T)} = P{max (~l'···~n) ~ Un(T)} P{~n+1 ~ Un(T)} 

so that {E } has extremal index 9=1/2. 
n 

-T/2 
~e 

Criteria for determining the extremal index are discussed in [64]. 

Finally, we note that an interesting and informative approach to the relating of 

dependent and i.i.d. cases has been given recently by O'Brien [79] (cf. also 

[92]). This is based on the general result 

u I El > u } 
n n ~ 0 

which is shown in [79] to hold under weak dependence conditions, for a wide 

variety of sequences {u } and integers p ~oo with p =o(n). n n n 

2.3 Relevant point process concepts. 

In dealing with dependent cases it will be necessary to be somewhat more 

formal than previously in the use of point process methods. Here we establish 

the notation and framework (substantially following Kallenberg ([63]», and 

review a few key concepts which will be needed. 

In general a point process is often defined on a locally compact second 

countable (hence complete separable metric) space S, though here Swill 

invariably be a subset of the line or plane. Write ~ for the class of Borel 

sets on S and ~(S) for the bounded (i.e. relatively compact) sets in~. A 

point process E on S is a random element in M=M(S), the space of locally finite 

(i.e. finite on ~(S» integer-valued measures on ~ where M has the vague 

topology and Borel a-field ~=M(S). 
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Write ~ = ~(S) for the class of non-negative ~-measurable functions, 

Mf=Jf~ for M c M, fcF(S}. The distribution Pf-1 of a point process f is 

uniquely determined by the distributions of (f{ll)' ... f(lk}}' k=1,2 ... , ljc~ 

if ~ is 'any semiring whose generated ring is~. The distribution of f is also 

uniquely determined by the Laplace Transform Lf(f} = Ee-ff , fcF. 

A {general} Poisson Process with intensity measure A has the Laplace 

-f Transform Lf (f}=exp{-A(l-e }} whereas a Compound Poisson Process has Laplace 

Transform 

{2.3.1} 

where ~ is a positive integer-valued random variable with Laplace Transform 

(No confusion should arise with this dual use of L). This 

consists of multiple events of (independent) sizes ~ located at the points of a 

Poisson Process having intensity measure A. 

Convergence in distribution of a sequence {fn} of point processes to a 

point process f is, of course, simply weak convergence of Pf-1 to Pf-1. It may 
n 

d 
be shown {cf. [63]} that fn ~ f if and only if Lf (f) ~Lf(f} for every f c ~c' 

n 

the subclass of ~ consisting of the nonnegative continuous functions with 

compact support. Point process convergence is also equivalent to convergence of 

finite dimensional distributions. Even more simply f ~ f if and 
n 

only if 

d 
{fn (ll}' ... fn(lk}} ~ (f(ll)' ... f(lk}}' k=1,2 ... , l.~ where ~~ is a semiring 

J 

such that f{8B}=O a.s. for each Bc~, and such that for any B c ~, c)O, B may be 

covered by finitely many sets of ~ with diameter less than c (cf. [63, Theorem 

4.2]). The results of Section 1.3 use the facts that semiclosed intervals and 

rectangles form such classes. 

2.4 Convergence of point processes associated with extremes 

We return now to the stationary sequence {f } and consider point process 
n 
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convergence results along the same lines as for the i.i.d. case in Section 1.3. 

The notation of that and other previous sections will be used. In particular N 
n 

will denote the point process of exceedances on (0.1] as defined in Section 1.3. 

viz Nn(E)=#{i/ncE: fi>un • l~i~n}. for a given sequence of constants un. 

When {f } has extremal index 9=1. the Poisson convergence result of 
n 

Section 1.3 for exceedances may be proved provided D(u ) holds. This leads 
n 

again to the classical form (1.2.5) for the asymptotic distributions of extreme 

order statistics. Similarly r-Ievel convergence results hold under an r-Ievel 

version D (u ) of D(u ) (cf. [66. p. 107]) leading to the classical forms for 
r n n 

the asymptotic joint distributions of extreme order statistics when 9=1 {cf. 

(1.3.1)). The "complete convergence" result Theorem 1.3.1 also holds giving 

again a Poisson limit in the plane when 9=1 provided the multilevel conditions 

D (u ) all hold. These results are described in [66]; here we indicate the new r n 

features which arise when 0(9(1. 

As noted in Section 2.2. cases when 9(1 occur when there is "high local 

dependence" in the sequence so that one exceedance is likely to be followed by 

others (see Example 2.2.2 as an illustration of thiS). The result is a 

clustering of exceedances. leading to a compounding of events in the limiting 

point process. 

To include cases where such clustering occurs (i.e. 0(9(1) we require a 

modest strengthening of the D(u ) condition (cf.[60]). Let ~~(u ) be the n 1 n 

a-field generated by the events {fs ~ un}' i~s~j. For l~l~n-l write 

(2.4.1) ~n.l = max{lp(A n B)-P(A)P{B)I: A~~{un)' BC~+l(un)' l~k~n-l}. 
Then the condition A{u ) is said to hold if P l ~ 0 for some sequence l with 

n n. n n 

l =o{n). {~ /} will be called the m~x~n~ coett~c~ent~ for A. The condition A n n.t. 

is of course stronger than D but still significantly weaker than strong mixing. 

The condition A will be applied through the following lemma which is a 
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special case of [98. Equation 1 ' ). 

Lemma 2.4.1. For each n and l~t~n-l write ~n.t = Isup E~r-E~Erl where the 

supremum is taken over all ~.r measurable with respect to ~i{un)' ~~+t{un) 

respectively. O~~.r~l. l~j~n-t. Then Pn . t ~ ~n.t ~ 4Pn . t where Pn . t is the 

mixing coefficient for A. given by (2.4.1). In particular {f } satisfies A{u ) 
n n 

if and only if ~ t ~ 0 for some t =o{n). 
n. n n 

It will be convenient to have the following simple notion of clusters. 

Divide the {fi } into successive groups (f1.···.fr ). (fr +1.···.f2r ) .... of rn 
n n n 

consecutive terms where r (=o{n» is appropriately chosen. Then all n 

exceedances of u within a group are regarded as forming a cluster. Note that n 

since r =o{n) the positions of the members of a single cluster will coalesce n . 

after the time normalization. giving nearly multiple points in the point process 

N on {0.1]. The follOWing lemma (proved similarly to Lemma 2.1.1 but using 
n 

Lemma 2.4.1 - cf. [60]) shows that the clusters are asymptotically independent. 

Lemma 2.4.2. Let T)O be constant and let A{u ) hold with u =u (T) satisfying 
n n n 

(2.2.1). Suppose {k }. {t } are sequences of integers such that k t /n ~ 0 and n n nn 

k ~ t ~ O. where ff J is the mixing coefficient of A{u). Then. for each 
n n. n n. t- n 

non-negative continuous f on (0.1]. 

k ir 
n n n 

(2.4.2) E exp{-~ f{j/n)~ .) - IT E exp{-~ f{j/n)~ .) ~ O. 
j=l .J i=l j={i-l)r +1 .J 

n 

where ~.j is the indicator l{f.)u } and rn=[nlkn]. 
J n 

The number of exceedances in the ith cluster is 

ir 
n 

N ({i-l)r /n. ir /n])= ~ x . and the cluster size distribution is 
n n n j={i-l)r +1 ~.J 

n 

therefore conveniently defined to be given by 



18 

r r 
n n 

(2.4.3) T (i) = P{ ~ x . = i I ~ x.) O}, 
n j=l 'Il, J j=l 'Il, J 

i=1,2, ... 

The following result of [60] giving sufficient conditions for N to have a 
n 

Compound Poisson limit is proved by using Lemma 2.4.2 (cf. [60]). 

Theorem 2.4.3. Let the stationary sequence {f } have extremal index B)O, and 
n 

suppose that the conditions of Lemma 2.4.2 hold. If T (i) (defined by (2.4.3)) 
n 

has a limit T(i) for each i=l,2, ... , then T is a probability distribution on 

1,2, ... and the exceedance point process N converges in distribution to a 
n 

Compound Poisson Process N with Laplace transform 

(2.4.4) 
00 

~(f) = exp {-Br S~(l- ~ e-f(t)i T(i)) dt} 
i=l 

The Laplace Transform (2.4.4) is of the form (2.3.1) with the integer 

valued r.v. ~ satisfying P{~=i} = veil and intensity measure simply Brm where m 

is Lebesgue measure. That is N consists of multiple events of size whose 

distribution is v(i), located at the points of a Poisson Process having 

intensity Br. 

The following result, showing that the Compound Poisson Process is the 

only possible limit for N under the conditions A is proved along similar lines 
n 

to Theorem 2.4.3. (Full details may be found in [60]). 

Theorem 2.4.4. Suppose the condition A(u ) holds for u =u (r) satisfying n n n 

(1.2.3) for a r)O, for the stationary sequence {f j }. If N converges in 
n 

distribution to some point process N, then the limit must be a Compound Poisson 

Process with Laplace Transform (2.4.4) where v is some probability measure on 

-1 . 
{1,2, ... } and B=-r log llm P{Mn ~ un(r)} ~ [0,1]. If B # 0 then 

n-lOO 

T(i) = lim T {i} where v is defined by (2.4.3) for r =[nIk ], k (~oo) being any n n n n n 

sequence chosen as in Lemma 2.4.2. 
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Example 2.2.2. (continued) . It is evident that the exceedances of u by the 
n 

process f.=max{~"~'+l) in Example 2.2.2 occur in (at least) pairs, since if 
J J J 

f' l < u but f.>u then ~'+1 > u and hence f. 1 > u. It is readily seen by J- - n J n J n J+ n 

direct evaluation that ~ (2) ~ 1 and hence ~{i)=l or ° according as i=2 or i#2. 
n 

Thus the limiting point process N consists entirely of double events and (2.4.4) 

gives ~(f) = exp{-{T/2)f6{1-e-2f{t))dt}. 

The most important application of the Compound Poisson limit is to give 

the asymptotic distribution of the kth largest value M{k) of 
n 

8<1, using the equivalence {M~k) ~ Un{T)} = {Nn{{O,l] < k} 

Theorem 2.4.5. Suppose that for each T>O, A{u ) holds with u =u (T) satisfying n n n 

(1.2.3) and that N (=N{T)) converges in distribution to some non-trivial point n n 

process N (=N{T)) (which will occur e.g. if the conditions of Theorem 2.4.3 

hold) . Assume that the maximum M has the non-degenerate asymptotic 
n 

distribution G as given in (1.2.1). Then for each k=1,2, ... 

k-l k-l 
(2.4.5) P{a (M{k)-b ) ~ x} ~ G{x) [1+ L L ({-log G{x))j/j!) ~*j{i)] 

nn n '1'1 J= 1= 
*. 

(zero if G{x)=O), where ~ J is the j-fold convolution of the probability 

~ = lim ~ , ~ being given as in Theorem 2.4.4. n n 

Note that the form (2.4.5) differs from the (classical) case 8=1 {i.e. 

(1.2.5)), by inclusion of the convolution terms. These arise since e.g. the 

second largest may be the second largest in the cluster where the maximum occurs 

or the largest in some other cluster. This contrasts with the case k=l for the 

maximum itself involving only the relatively minor change (Theorem 2.2.1) of 

replacing the classical limit by its 8th power. 

Finally in this section we note that the "complete" convergence result, 
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Theorem 1.3.1, still holds giving a Poisson limit under appropriate conditions, 

when {f } has extremal index 1. However, as for the exceedance point process, 
n 

the I imi t may undergo "compounding" when 9<1. 

The possible limiting forms for N' (defined as in Theorem 1.3.1) were 
n 

discussed first by Mori ([76]) under strong mixing conditions. More recently a 

transparent derivation has been given by Hsing ([57]) under weaker conditions, 

of A(u ) type but involving multiple levels u (T.). A derivation similar to n n 1 

that for the exceedance process shows that any limit in distribution of N~, N' 

say, must have independent increments, be infinitely divisible and have certain 

stationarity properties. These properties restrict the Laplace transform of N' 

to a form which can be readily determined (though requiring further notation). 

It is also possible to give an illuminating "cluster representation" which 

exhibits N' as a Poisson Process in the plane together with a countable family 

of points with integer valued masses on vertical lines above and emanating from 

each Poisson point (cf. [58]). 

As noted in Sec. 1.3, results of this type summarize the relevant 

information concerning asymptotic joint distributions of extreme order 

statistics, in contrast to the individual marginal distributions obtained in 

Theorem 2.4.5. 

2.5 Normal sequences: the comparison method. 

For stationary normal sequences with covariances {r }, the condition 
n 

D(u ) holds - as also does the sufficient condition (2.2.1) for the extremal n 

index to be 1 prOVided the "Berman Condition" holds, viz. 

(2.5.1) r log n -+ 0 
n 

as n -+ co. 

These results are simply proved by means of a widely used comparison 

method which, in particular, bounds the difference between two (standardized) 

normal d.f.'s by a convenient function of their covariances. This result - here 
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given in a general form ([66, p. 81) - was essentially developed by Berman [10J, 

and Slepian [95J. 

Theorem 2.5.1 (Normal Comparison Lemma). Suppose that f 1 , ...• f n are standard 

normal random variables with covariance matrix A1 = (A:.) and ~1' ... '~ 1J n 

similarly with covariance matrix (AO = A?), and let p .. = max(IA: .1. IA?I). 
1J 1J 1J 1J 

Then. for any real numbers u1.u2 .•.... un . 

(2.5.2) P{fj ~ u j . j=1.2 •...• n} - P{~j ~ u j • j=1.2 ....• n} ~ 

-1 1 0 + 2 -1/2 2 2 (21T) ~ (A . . - A .. ) (l-p .. ) exp[ -(u.+u .)/(2(1+p . . )) J 
1J 1J 1J 1 J 1J 

l~i<j~n 
+ where x = max(x.O). Further. replacing (A:. - A?)+ by the absolute value on 

1J 1J 

the right hand side of (2.5.2) yields an upper bound for the absolute value of 

the difference on the left hand side. 

By taking f 1 . f2 ... to be a stationary sequence of standardized normal 

r.v.·s with covariance sequence {rn} and ~1' ~2 ... to be i.i.d. standard normal 

r.v.·s it follows simply from the theorem that if sup Ir I < 1 then for any real 
n 

sequence {u }. 
n 

n 

n 
IF. . (u) - <ps(u)1 ~ Kn ~ Ir.1 exp u2/(1+lr.l) 

1 1 ···1 s n n j=l J n J 
(2.5.3) 

where F. . is the joint (normal) distribution of f .....• f. and <p is the 
1 1 ... 1 s 11 IS 

standard normal d.f .• i 1 ... i s being any choice of distinct integers from 

1, 2 ... n. 

Now if n(l-<P(un )) is bounded and (2.5.1) holds it can be shown (by some 

routine calculation) that the right hand side of (2.5.3) tends to zero as n ~ 00, 

showing that P{f i ~ un' ... f i ~ un} is approximately the same as it would be if 
1 s 

the r.v. 's were i.i.d. instead of being correlated. 

One can clearly (by identifying i 1 .... i s with 1 .... n) then show directly 
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that P{Mn ~ un} is approximately the same as for the i.i.d. standard normal 

sequence, leading to the following result of Berman ([10]). This result may 

also be proved from Theorem 2.2.1 by verifying the condition D(u ), and (2.2.1). n 

Theorem 2.5.2. Let {f } be a (standardized) stationary normal sequence with 
n 

covariances {r } such that r log n ~ 0 as n ~oo. Then 
n n 

P{a (M -b ) ~ x} ~ exp(-e-x ) n n n 

where an' bn are given by (1.2.4). 

Thus if r log n ~ 0, the maximum M from the stationary normal sequence 
n n 

has precisely the same asymptotic distribution as an i.i.d. normal sequence. 

The same is true of the distributions of all extreme order statistics. Although 

a slight weakening of (2.5.1) is possible this condition is close to being 

necessary for Theorem 2.5.2. Indeed if r log n ~ ~ > 0 and u = xla + b n n n n 

(with a , b given by (1.2.4)) then the time normalized point processes of 
n n 

exceedances converge in distribution to a certain doubly stochastic Poisson 

Process. This leads to the asymptotic distribution of the maximum given by the 

convolution of a normal and Type 1 extreme value distribution. (See [66 Sec. 

6.5] for details). Further, Mittal and Ylvisaker ([75]) have shown that if 

r ! 0 but r log n ~ 00 then M has an asymptotic normal distribution. Thus in n n n 

these "highly dependent" cases where D(u ) fails the classical theory no longer 
n 

applies. 

As noted previously stationarity has been assumed in many of the results 

to avoid the complications of notation and calculation which a nonstationary 

framework entails. For normal sequences, however, the sufficient correlation 

conditions still remain quite simple in nonstationary cases. For example the 

following result holds. 
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Theorem 2.5.3 Suppose that {f } is a standardized normal sequence with 
n 

correlations r .. satisfying Ir .. 1 < PI' ., for i#j where P <1 for all nand lJ lJ - l-J n 

Pn log n ~ 0 as n ~ 00. Let uni (1~i~n, n=1.2 .... ) be constants such that An= 

1/2 min u .>c (log n) for some c>O. nl 

-T 
~ e as n ~ 00. 

n 
If for some T~O, ~ (1-~(uni» ~ T. then 

1 

Theorem 2.5.3 has a very useful corollary in the case where a sequence 

{~ } is obtained from a stationary normal sequence {f } by adding a varying mean n n 

- such as a seasonal component or trend. Calculations then show that the double 

exponential limit for the maximum still holds. but the normalizing constant b 
n 

can require an appropriate modification. Specifically suppose that D. = f. + m. 
1 1 1 

where {f.} is a standard (zero mean unit variance) normal sequence (not 
1 

necessarily covariance stationary) and m. are added deterministic components 
1 

with the property that 

(2.5.4) f3 = max n 
1~i~n 

I I 1/2 
m. = o(log n) 

1 
as n ~ 00. 

* Under this condition it may be shown that a sequence of constants {m } 
n 

may be found such that 

1 n * * 1 * 2 (2.5.5) - ~ exp(a (m.-m ) - -2 (m.-m ) ) ~ 1 as n ~ 00 
n i=1 n 1 n 1 n 

* in which a = a - log log n/(2a ). with a as in (1.2.4). With this notation. n n n n 

the following result holds. 

Theorem 2.5.4. 

sequence with 

P log n ~ O. 
n 

Let D. = f. + m. as above where {f } is a standard normal 
III n 

correlations r .. satisfying Ir .. 1 < PI' . I for i#j with P < 1 and lJ lJ J-l n 

* Suppose that (2.5.4) holds and m satisfies (2.5.5). Then M = 
n n 

* -x P{a (M - b - m ) < x} ~ exp (-e ) n n n n-
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with a and b given by (1.2.4). n n 

Thus the non-stationarity in the correlation structure has no effect on 

the limit law, and that introduced by the added deterministic component is 

. * adJusted for by the change of b to (b + m). For details see [66, Chapter 6J. 
n n n 

Normal processes provide a widely used source of models for describing 

physical phenomena, and it is gratifying that extremal theory applies so simply 

to them. Another convenient source of models is of course Markov chains, whose 

extremal behavior we discuss next. 

2.6 Regenerative and Markov sequences 

Most limit results for Markov chains are intimately tied to the theory 

of regenerative processes. For extreme values, this has been used in [2J, [10J, 

some further references on extremes of Markov chains being [12], [79], [92]. 

The "classical" case, exemplified by the GI/G/l queue, is when a recurrent atom 

exists. However, recently regeneration techniques have been extended, in [6], 

[7], [78], to show that any Harris recurrent chain {~ } on a general state space 
n 

is regenerative or I-dependent regenerative (concepts to be defined below), and 

to give effective criteria for regeneration. Further, clearly a function 

f =f(r ) of a (l-dependent) regenerative sequence is (l-dependent) regenerative. n n 

An example where this added generality is useful is given by ARMA (p,q) -

processes. They are naturally considered as functions of a Markov chain in md, 

for d = max(p, 1) + q and can be shown to be I-dependent regenerative under weak 

conditions but usually not to be regenerative (cf. [92]). 

Regenerative and I-dependent regenerative sequences are strongly mixing, 

and hence the theory from Sections 2.1-2.4 applies, in particular the Extremal 

Types Theorem and the Compound Poisson limit for exceedances hold. However, 

this can also be obtained directly, and the direct approach gives some added 
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insight. also into the results for general stationary sequences. In the present 

section this will be briefly outlined. along with some results directly tailored 

to Markov chains. 

A sequence {ft : t=1.2 •... } is regenerative if there exists 

integer-valued random variables 0 < So < SI < ... which divide the sequence into 

"cycles" 

which are independent and such that in addition c1.c2 •... follow the same 

probability law. Then {~} is a renewal process. i.e. TO=SO' T1=Sl-S0' 

T2=S2-Sl' ... are independent and T1 .T2 •... have the same distribution. We shall 

here assume that m=ET1<00 and that the distribution of Tl is aperiodic. i.e. that 

the only integer for which P(T1 6 {d.2d •... })=l is d=l. The sequence {f } is 
n 

I-dependent regenerative if there exists a renewal process {~} as above. which 

makes cO.c1 •... I-dependent (i.e. cycles separated by at least one cycle are 

independent) and c1 .c2 •... stationary. 

Suppose now that {f :n=O.l •... } is a stationary regenerative sequence. n 

let 10=max{fi: 0 ~ i < SO}, 11 = max {fi : So ~ i< SI}' 12 = max {f1 : 

Sl~i<S2}' ... be the cycle maxima and define vt=inf{k~l: ~>t}. By the law of 

large numbers vt/t ~ l/m a.s. and Mn=max {f1 •...• f n} is easily approximated by 

max {11 ..... 1Vn}. which then in turn can be approximated by max {11 •...• 1[n/m]}. 

Since 11.12 •... are i.i.d .• this can be shown to lead to 

(2.6.1) 

with G(x) = P(11 

sup Ip(Mn ~ x) - Gn(x) I ~ o. 
x 

l/m 
~ x) • see e.g. [9]. [92]. 

as n ~ 00. 

Since G is a d.f. it follows at 

once that the Extremal Types Theorem holds for {fn}. and criteria for domains of 

attraction are obtained by applying the criteria for i.i.d. variables to G(x). 

(2.6.2) 

In particular it follows from (2.6.1) and Lemma 1.2.2 that 

P(M < u ) ~ e~. 
n - n 

as n ~ 00. 
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if and only if n(l-G(un » ~~. As in Section 2.2 let f 1.f2 •... be the 

associated independent sequence which has the same marginal d.f. F as f 1.f2 •... 
A A A 

and write M = max{f1 •...• f }. 
n n 

If in addition n(l-F(u »=nP(f1 > u ) ~ T > 0 
n n 

A -T 
then P(Mn ~ un) ~ e and {fn} hence has extremal index 9 = ~/T. Since 1-G(u ) 

n 

~ P(C1 > un)/m. this can be formulated as follows. If there exists a sequence 

{u } such that n(l-F(u » ~ T > 0 and 
n n 

(2.6.3) 
P(C1 > u )/m 
_~_---:;;n~_ ~ 9 > 0 

P(f1 > un) 

then {Ct} has extremal index 9. In the same way it can be seen that conversely 

if {Ct} has extremal index 9>0 then for any T>O there exists a sequence {un} 

which satisfies n(l-F(u » ~ T and (2.6.3). However. it should be noted that 
n 

there are examples of regenerative sequences {ft } which satisfy (2.6.2). even 

for u =u (x) = xla +b • for all x. but for which (P(C1>un)/m)/P(f1 > u ) does n n n n n 

not converge. and hence the extremal index does not exist. even if this is not 

expected to occur in cases of practical interest. 

A counterpart to the Compound Poisson limit Theorem 2.4.3 for the 

exceedance point process N given by N (E) = #{! ~ E: f. > u }. is also easy to n n n 1 n 

obtain for stationary regenerative sequences. Let N' be the point process on 
n 

{0.1] which has points of multiplicity ~. = #{t: ft>u • S. 1 < t < S.} at i/n 
1 n 1- - 1 

for each i for which~. > 0. i.e. N' is defined by N'(E) = ~ ~ .. 
1 n n i/n~E 1 

is an i.i.d. sequence. and if (2.6.2) holds so that nP(~l > 0) = nP(C1 > un) ~ 

~ and if 

(2.6.4) as n ~ ClO. 

for all i. for some {~(i); i=1.2 •... } then it follows at once that N' converges n 

in distribution to a Compound Poisson process N' with Laplace transform ~I(f) = 

1 ClO -f(t)i 
exp{-~O (1- ~i=l e ~(i»dt}. By definition. a non-zero ~. corresponds 

1 

to a cluster of ~. exceedances of u by f t for S. l<t<S .• and since S./i ~ m as 
1 n 1- - 1 1 

i ~ ClO there is hence a cluster of ~. points located approximately at mi/n in N . 
1 n 
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Hence for an interval E. N (E) is approximated by N'(m-1.E). (for m-1.E={x: mx 6 
n n 

E}) and asymptotically N (E) should have the same distribution as N'(m-1E). 
n 

This argument can easily be extended and made stringent. to give the following 

result of [92] (cf. also [93]). 

Theorem 2.6.1 Let {f : n=O.l •... } be a stationary aperiodic regenerative 
n 

sequence with m < 00 and let {u } be constants such that n 

Then N converges in distribution 
n 

to a Compound Poisson Process N with Laplace transform (2.4.4). i.e. 

1 00 -f(t)i 
~(f) = exp {-n J (1- ~ e ~(i» dt}. 

o i=l 

These results may also be extended to 1-dependent regenerative 

sequences. however with some extra complexity. Here we mention that the 

criterion (2.6.3) for the extremal index to be 9 then is replaced (cf. [92]) by 

(2.6.5) 
p(r1 ~ un' r2 > un)/m 

p(r1 > un) ~ 9. 

In [92]. (2.6.5) is further used to find conditions for 9=1 for a 

function ft=f(nt ) of a Markov chain on a general state space. This result is 

expressed directly in terms of the transition probabilities 

Theorem 2.6.2 Let {n } be a stationary regenerative Markov chain with the cycle 
n 

length T1 aperiodic and satisfying E T~ < 00. for some a>l. 

satisfies (1.2.3) for some T>O and 

as n ~ 00 

If u =u (T) 
n n 

for some s>l with l/a + l/s < 1 then {f } has extremal index 9=1. n 

We also refer to [92. Theorem 4.1] and [79. Theorem 2.1] for additional 

results on the extremal index and Compound Poisson Convergence. for general 
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distributionally mixing sequences, in a form which is particularly convenient 

for applications to Markov chains. Finally the restriction that the Markov 

chain (or regenerative sequence) is started with the stationary initial 

distribution is not essential. All the results hold for arbitrary initial 

distributions, provided only that 

as k -+ (lO. 

2.7 Moving averages 

Here, a stationary sequence {Et} is a moving average if it can be 

written in the form 
(lO 

(2.7.1) Et =}; c.Ct ·, 
• 1-1 
1=-00 

t = O,±l, ... , 

where {Ct} is an i.i.d. sequence (the "noise sequence") and {ci } is a sequence 

of constants (the "weights") and where the suins are assumed to converge with 

probability one. If a stationary normal sequence has a spectral density - this 

holds e.g. if };r! < (lO, it can be represented in a non-unique way, as a moving 

average with normally distributed C's. Further, (2.7.1) includes the 

ARMA-processes (which satisfy a finite linear difference equation in the C's and 

hence also are multi-dimensional Markov chains), which are extensively used in 

time series analysis. Thus, in particular, some of the themes from Sections 2.5 

and 2.6 will be taken up again here, but from a slightly different point of 

view. 

The extremal behavior of {Et} depends on both the weights and the two 

tails of the marginal d.f. of the noise variables in an intricate and 

interesting way. To reduce the amount of detail, we shall only describe the 

asymptotic distribution of the maxima, for the case of non-ne~atL~e c. 's. The 
1 

general case involves some extra complexity, since then an extreme negative 

noise variable which is multiplied by a negative c. may contribute to a large 
1 
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ft-value. In addition to this, the references cited below prove point process 

convergence and give rather detailed information on the sample path behavior 

near extremes, including the clustering which occurs when the extremal index is 

less than one. Here we will only exhibit the limiting form of the sample paths 

near extreme values without going into technicalities, referring to [87], [90], 

[36] for further details. 

(2.7.2) 

In cases when (1.2.1) holds, i.e. when 

d 
P{a {M -b } S x} ~ G{x}, n n n 

as n ~ ClO, 

the asymptotic behavior of the maximum is specified by the constants a )O,b and 
n n 

the d.f. G. However, this involves an arbitrary choice, since if a , bare n n 

replaced by a',b', where a /a' ~a) 0 and a (b' - b ) ~b, then (2.7.2) still nn nn nn n 

holds, but with G(x} replaced by G(ax + b}. In the sequel we will keep the G's 

fixed, as the standard d.f.'s displayed in Theorem 1.2.1 and hence describe 

extremal behavior by a , b and the type of G. 
n n 

Extremal behavior of the moving average {ft } can be put into perspective 

by comparing with extremes of the noise sequence and of the associated i.i.d. 
,.. 

sequence {ft } with the same marginal d.f. {ft }. Specifically, for Mn = 
A A A A 

max{r1 , ... ,r } and M ={f1 , ... ,f } there are norming constants an' a ) 0 and b , n n n n n 

b such that for the cases we consider here, n 

{2.7.3} 

and 
A A A 

{2.7.4} P{an{Mn - bn } S x} ~ G{x} , 

with the same G as in {2.7.2}, and we shall indicate the relations between the 

different norming constants. 

The articles by Rootzen {[87]} and Davis and Resnick {[36]} are 

concerned with noise variables which are in the domain of attraction of the type 

11 extreme value distribution, or equivalently when the noise variables have a 
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regularly varying tail. 

(2.7.5) 

with a ) O. and L slowly varying at infinity. Hence. using the prescription for 

norming constants given after Lemma 1.2.2. if ~ satisfies 
n 

1/a 
P('0<~n)~1-1/n~P('0~~n)' so that ~n is roughly of the order n • then (2.7.3) 

holds. with 

(2.7.6) 

a =7 .b=O n n n { 
'" -1 '" 

G(x) = exp{-x-a ). x ) O. 

= 0.±1 •... }. Then also (2.7.2) is satisfied. with 

-1'" 

{
a=ca.b=O n + n n 

-a 
G(x) = exp(-x ). 

This is elegantly proved in [36]. by first noting that complete Poisson 

convergence of extremes of the ,-sequence is immediate (cf. Section 1.3) and 

then obtaining the corresponding result for the f's by a "continuous mapping" 

and approximation argument. [36] uses some summability assumptions on the c. ·s. 
1 

and for convenience that c.=O for i=-1.-2 •.... However. it seems clear that 
1 

the results hold without any restrictions beyond the assumption that the sums in 

(2.7.1) converge. cf. [87]. 

An intuitive explanation of (2.7.6) is that when the tails of the noise 

variables decrease slowly. as in (2.7.5). then the extreme noise values are very 

much larger than the typical ones. and that hence the maximal ft-value 

asymptotically is achieved when the largest et-value is multiplied by the 

largest weight. c+. This of course agrees with (2.7.6). since the norming 

constants there are the same as those which apply to max{c+'1 •...• c+'n}. These 

heuristic arguments also easily lead to the following form of the normalized 

sample path ft+T/fT near an extreme value at. say. the time point T; 

asymptotically this ratio has the same distribution as the function Yt given by 
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(2.7.7) Y t = UC_ t • 

where U is a certain random variable with values in the set 

{ ... 1/c_1 .1/cO.1/c1 .... }. Thus. except for a random height. sample paths near 

extremes are asymptotically deterministic. 

The special case of (2.7.5) when the noise variables are stable (or 

"sum-stable". as opposed to max-stable) was studied first. in [87]. It has the 

appealing feature that then also the moving average. and indeed all linear 

functions of the noise variables are jointly stable. For such variables. it is 

easily seen that (2.7.4) holds. with 

A a l/a ~ A 

{
a = (~c.) a. b 

n 1 n n 

G(x) = exp{-x-a }. 

= 0 

a a and hence also that the extremal index is c ~c .• for the case of non-negative 
+ 1 

c's discussed here. Although not considered in [36]. this can be shown to hold 

also for the general case (2.7.5). provided the sums involved are convergent. 

The other class of moving averages which has been studied. in [90]. is 

specified by 

(2.7.8) 
- p 

P(CO > x) ~ Kxae x as x ~ 00. 

where K.p > 0 and a are constants. Again it follows. using Lemma 1.2.2. that 

(2.7.3) holds. with 

l-l/p I a = p{log n) 

b
n 

= (log n)l/p + p-l((a/p)log log n + log K)(log n)1/p-1 

G(X~ = exp {_e-x}. 

Thus the center of the distribution of M tends to infinity roughly as 
n 

l/p -1 1/p-1 (log n) • and the "scale parameter" a is of the order (log n) . which 
n 

shows that for p>l the distribution of M becomes more and more concentrated as 
n 

n ~ 00. and that it becomes increasingly spread out for O(p(l. while the order of 

the scale does not change for p=l. As we shall see. the same holds for M and 
n 
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The case when (2.7.8) holds with p=1 leads to intermediate behavior, and 

we will only discuss the remaining cases. For O<p<1 again a large f-value is 

caused by just one large noise variable, in a similar way to the behavior when 

(2.7.5) holds. However, the non-zero b -terms cause some extra complications. 
n 

Thus, (2.7.2) holds with 

-1'" 

{
a = ca, b = c+bn n + n n 

G(x) = exp{-e-x}. 

in analogy with (2.7.6), but, writing k for the number of i's with ci=c+' the 

appropriate version of (2.7.4) involves 

c (b +(log k)/a ) + n n 

Also the asymptotic form of the sample path ft+T/fT near an extreme value at T 

is similar. For k = 1 it is given by the deterministic function 

while in the general case it is a random translate of this. 

The case when (2.7.8) holds with p>1 is more intricate, since then an 

extreme f-value is caused by many moderately large noise variables in 

conjunction, and since extremal behavior is determined by the constant I Icl Iq = 

p: Ic. Iq) 1/q and the function 
1 

(2.7.9) 

-1 
with q=(1-1/p) . In fact, the normalized sample path f t /f near an extreme +T T 

at T asymptotically has the deterministic form (2.7.9), and (2.7.2) and (2.7.4) 

hold, with 

(2.7.1O) 

Here b 
n 

A -1 ~ A 

{
a =a =Ilcll a,b =b n n q n n n 

-x 
G{x) = exp {-e } 

= b is not determined by (2.7.8) alone, except for finite moving 
n 



33 

averages, it is also influenced by the center of the distribution of the r's. 

However. it is roughly of the order Ilc II b , but still a I (b -llc II b) I may qn n n q n 

in general tend to infinity. It of course follows at once from (2.7.10) that 

the extremal index is one for p>l. 

For p=q=2, which includes the normal case, (2.7.9) is the correlation 

function and I Icl I is proportional to the standard deviation, in agreement with 
q 

Section 2.5. However, it is interesting to note that for p~2 covariances seem 

to have little bearing on extremes. 

The results for the case (2.7.8) use the assumption that Ic.I=O(lil-Tl), 
1 

for some TI > max (1,2/q), and for p>l in addition a number of smoothness 

restrictions on the distribution of the noise variables. These are mainly used 

in the derivations of the behavior of the tail of fO=LC.r ., which for p>l is 
1 -1 

the main difficulty, cf. [91J. It is fairly easy to see that D(u ) holds for 
n 

all the moving averages considered here, and the results above for p>l are 

obtained along the lines set out in Section 2.2, by verifying (2.2.1). For 0 ~ 

p ~ 1, i.e. in the cases when e may be less than one, the proofs use ad hoc 

methods, closely related to the heuristic arguments given above. 

Finally it should be mentioned that Finster ([40J) obtains some related 

results using autoregressive representations of the processes, and that Chernick 

([25J) provides an example with qualitatively different behavior. 

2.8 Rates of convergence 

Rates of convergence for the distribution of the maximum have mainly 

been studied for i.i.d. variables. In the present section we briefly review 

this work, discussing in turn pointwise rates, uniform convergence of d.f. 's, so 

called "penultimate" approximations, uniform convergence over the class of all 

sets, and "large deviation" type results. Although generalizations seem 

straightforward, the only dependent sequences which have been considered are the 
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normal ones. The quite precise results available for this case are discussed at 

the end of the section. A useful general observation, which applies to i.i.d. 

and dependent cases with extremal index 9=1, is that once rates of convergence 

of the maximum have been found, then it is typically quite easy to find similar 

th rates for k order statistics. 

For i.i.d. random variables and a given u , the error P(M < u )_e-T in n n - n 

the approximation (1.2.2) is easy to compute directly, since then P(Mn ~ un) = 

Fn(u ), where F is the common d.f. of the variables. Further if F is continuous 
n 

-1 -T/n 
one can always make the difference zero for any n,T)O (by taking u =F (e )). 

n 

However, often u is determined from other considerations, e.g. in (1.2.1) it is 
n 

chosen as u =u (x)=x/a +b and correspondingly T = T(X) = -log G(x). Then the n n n n 

behavior of the approximation error 

perhaps over a range of x-values, and in particular of 

d (a ,b ) = sup /A (x)/ = sup/pea (M -b ) < x) - G(x) / nnn n nnn-x x 

is less immediate. If (1.2.1) is used as an approximation or, more importantly, 

if it motivates statistical procedures, when a , b have to be estimated, 
n n 

interest centers on which rate of decrease is attainable when the "best" a , b 
n n 

are used, i.e. on 

d =inf d (a,b) = inf sup /P{a(Mn-b) ~ x} - G(x)/. 
n a)O,b n a)O,b x 

It is easy to give examples of distributions F for which d tends to zero 
n 

arbitrarily slowly, and to any exponential rate there is an F which achieves 

this rate. However faster than exponential decrease of d implies that F is 
n 

max-stable, and then d =0 for all n, ([8], [89]). Also different standard 
n 

distributions give quite different rates, e.g. for the normal distribution d is 
n 

of the order l/log n while for the uniform and exponential distributions the 

order is l/n. 
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Let T = T (x) = n(l-F(u (x))). In the sequel we will usually, for 
n n n 

brevity, delete the explicit dependence on x. An obvious approach to 

analysing A (=A (x)) in the i.i.d. case is to introduce 
n n 

so that 

(2.8.1) 

-T 
A'=(l-T /n)n -e n 
n n A" = e 

n 

-T 
n -T 

- e 

Here 0 ~ Tn ~ n, and for such values the satisfying uniform bound 

(2.8.2) I I -1 -1-2 
A~ ~ n (a + n )e 

is derived by Hall & Wellner ([55]). Further, for fixed T, by Taylor's formula 

(2.8.3) 

as T -+ T. 
n 

However, (2.8.3) is only uniform for T -T = T (x) - T(X) in n n 

intervals which are bounded from below, and to bound d a further argument has 
n 

to be added. Often this runs as follows; (2.8.2) and (2.8.3) give sharp 

estimates of sup lA (x) I, for any a > xo' where Xo is the left-hand endpoint of 
x>a n 

the d.f. G, and then also for sup lA (x) I if x is taken to converge to Xo 
x>x n n 

n 

sUitably slowly. Combining this with 

(2.8.4) sup lA (x)1 < max {Fn(x /a +b ), G(x )} 
< n - nnn n 

xx - n 

leads to a bound for d (a , b ), and then by varying a , b , to bounds for d . n n n n n n 

This approach is used, with some variations, by Hall & Wellner ([55]), Davis 

([33]), Cohen ([26] [27]), and Leadbetter et al. [66]). Here the bounds 

corresponding to (2.8.2) and (2.8.3) are asymptotically sharp, but there is a 

possibility that A' and A" can at least partially cancel. However, this 
n n 

2 happens only if T = T - T /(2n) + o(l/n), and hence in fairly special cases, as 
n 

is readily seen (cf. Davis ([33]». 

A number of papers, some of the later references being Cohen ([26][27]), 

Smith ([96]), and Resnick ([85]), have introduced conditions which permit more 
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explicit bounds than (2.8.1) - (2.8.4) to be calculated. Their approach is to 

take some set of conditions for attraction to an extreme value distribution, 

typically involving convergence of some quantity related to the tail of F, and 

show that if this holds at a specific rate then d (a ,b ) converges at a n n n 

corresponding rate. In this a set of simple sufficient conditions due to von 

Mises ([74]) (cf. [66], p. 16) have been particularly useful. There are many 

possible versions of such conditions, and hence many partially overlapping 

results have been obtained. As a typical example we cite the following result 

of Resnick ([85]). 

Suppose F is differentiable and that there exists a continuous function 

g which tends monotonically to zero and which satisfies 

F(x) 
xF'(x) _ a I ~ g(x), 

(-log F(x» 
x ) 0, (2.8.5) 

for some a ) O. Then, if a 
n 

is chosen to -1 -1 
satisfy -log F(a ) = n , n 

for n such 

-1 -1 
.2701 g(a )/(a-g(a », 

n n 
sup IFn(x/a) - exp{-x-a } I ~ 
x~1 n 

that g(a-1) < a. 
n 

Here (2.8.5) is a slight variation of von Mises' 

condition for attraction to the type 11 extreme value distribution, and the 

proof is somewhat different from the method outlined above, the main ingredient 

being an estimate of -log (-log F(x». Resnick also obtains a somewhat more 

complicated bound for the supremum d (a ,0) over all x. 
n n 

For i.i.d. variables bounds on the rate of convergence of the maximum 

th automatically lead to bounds for the rate of convergence also of k largest 

values. This follows as in (1.2.5), by using any of the known bounds for the 

difference between the binomial and Poisson distributions, since S is binomial 
n 

with parameters n,T /n (see e.g. [66], Section 2.4). n 

The normal case, briefly mentioned above, of course has attracted 

special attention. 

(1.2.4) 

Straightforward calculations show that for a ,b given by n n 
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A (x) ~ [exp(_e-x)e-x (log log n)2J/(16 log n) as n ~ 00 
n 

and in Hall ([53J) is shown that for i.i.d. normal variables there are constants 

0<c1<c2<3 such that cl/log n ~ dn ~ c2/log n, for n ~ 3, i.e. the best rate of 

convergence is of the disconcertingly slow order l/log n. However, this is 

partially offset by the fact that d is, nevertheless, fairly small for small n, 
n 

e.g. for n ~ 10,000 it compares well with the error in the normal approximation 

to the binomial distribution. 

In their pioneering paper [41J, Fisher & Tippet had already noticed the 

slow convergence rate for the normal case, and suggested improved "penultimate" 

approximations. The idea is that since the type I extreme value d.f. can be 

approximated arbitrarily well by type 11 (or type Ill) d.f. 's, if a d.f. can be 

approximated by a type I d.f., the same error can (in the limit) be achieved by 

a type 11 (or Ill) d.f., and there is always a possibility they can do better. 

This has been further developed by Cohen ([26J [27J) , who in particular shows 

that a penultimate approximation of the maximum of normal random variables by a 

2 type 11 extreme value d.f. improves the rate of convergence to l/(log n). The 

disadvantage with this approach is that the exponent a in the approximating d.f. 

then has to be chosen differently for different values of n. A related approach 

is to consider a function IM la instead of M itself. This is pursued in Hall n n 

([54J) and Haldane & Jayakar ([52J), and gives the rate of convergence l/(log 

2 n) for a=2, while other values of a lead to the same order l/log n as for M 
n 

itself. Numerical computations show that these approximations also do better 

for small and moderate values of n, as could be expected. 

A further statistically relevant question is to find rates of uniform 

convergence, i.e. to bound 

d' = inf sup IP(a(M -b) 6 B) - G(B) I 
n a)O,b B6~ n 

where ~ denotes the Borel sets in R, and G(B) is the probability that a random 
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variable with d.f. G belongs to B. The obvious approach is to bound the 

difference between the density (which is assumed to exist) of a(M -b) and G' . 
n 

-x -a-1 a-I 
Let G'(x)=G(x)~(x), so that ~(x) = e ,ax ,and a(-x) for the type I, II 

and III extreme value distributions, respectively. Since (for i.i.d. 

variables) , 

d d n n-1 -1 
dx P{a (M -b ) < x} = dx F (x/a +b ) = F(x/a + b) na F'(x/a +b ), nnn- nn n n n nn 

where the first factor tends to G at a rate given by the references cited above, 

the main problem is to bound the difference na-1 F'(x/a + b) - ~(x). The recent 

thesis by Falk ([39J) contains a survey of results in this direction, some 

further recent work being that of de Haan & Resnick ([51J) and Weissman ([100J). 

Another problem which has attracted some attention, partly because of 

reliability applications, is the uniformity of the convergence of 

P{a (M -b »x}/(l-G(x)) for large x; see Anderson ([2J) and de Haan & Hordijk n n n 

([49J). 

For a stationary dependent sequence with extremal index 9=1, a further 

source of error is the approximation by the associated independent sequence, 

i.e. the difference 

11"'(x) = P{a (M -b ) < x} - Fn(x/a +b ) n nnn- nn 

where F is the marginal d.f. of the sequence. Cohen ([26J) shows, under weak 

covariance conditions, that for a stationary normal sequence 11'" is o(l/log n), 
n 

and hence that the rate of convergence in (1.2.1) is determined by the 

difference Fn(x/a +b ) - G(x), and hence is the same as in the i.i.d. case. Let 
n n 

p be the maximal correlation in the stationary normal sequence. Rootzen ([88J) 

gives a first order approximation and bounds for 11'" which are roughly of the 
n 

order l/n(l-p)/(l+p) for PLO. 

By using an embedding technique, these rates are extended also to M(k) 
n 

and to point processes of exceedances. This embedding can be used more 

generally, and hence also in dependent cases rates for the maximum often easily 
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lead to similar rates for k-th largest values. 

2.9 Multivariate extremes 

We shall discuss here only one multivariate problem. the Extremal Types 

Theorem for i.i.d. random vectors. and its extension to dependent sequences. As 

shown by de Haan & Resnick ([50]) and Pickands ([83]) the problem of 

characterizing the possible limit laws of the vector of coordinatewise maxima 

splits into two independent problems. to find the marginal d.f.·s which may 

occur - by the one-dimensional result this is just the class of extreme value 

d.f.·s - and to characterize the limiting dependence between components. 

Following Deheuvels ([37]) and Hsing ([59]) we will use the concept of 

dependence functions to discuss this. 

Let f = (f1 •...• f d ) be a d-dimensional random vector with d.f. G and 

marginal d.f.·s G .• 1 ~ j ~ d. The dependence function D of f (or of G) is 
J 

defined by 

D(x1·····xd ) = P{G1(f1) ~ x1·····Gd(fd) ~ xd}· 

D is the d.f. of a distribution on [O.l]d. and it has uniform marginal 

distributions if the G.·s are continuous. The marginal distributions together 
J 

with the dependence function determine G. since 

This is a consequence of the relation 

d 
{G.(f.) < G.(x.); 1 ~ j ~ d}' .U {GJ.(fJ.) ~ GJ.(xJ.). f J. > xJ.} 

J J - J J J=l 

c {fj ~ xj ; 1 ~ j ~ d} C {Gj(fj) ~ Gj(Xj ). 1 ~ j ~ d}. 

since it is readily seen that P{G.(f.) < G.(x.). f. > x.} = 0 for for each j. 
J J - J J J J 

A further useful property is that convergence of d-dimensional 

distributions is equivalent to convergence of the dependence function and the 

marginal distributions. provided the limit has continuous marginal d.f. ·s. This 
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can be proved rather easily. using (2.9.1). Similarly to the one-dimensional 

case. ad-dimensional d.f. G is said to be max-stable if there exist constants 

a .) 0. b .. i=l, ...• d. such that n.l n.l 

(2.9.2) cP(an . 1x1 + bn.l •...• an.dxd + bn . d)=G(x1 •.... xd ) x1 ....• xd 6 R 

for each n=1.2 •.... Further. a dependence function D is max-stable if 

(2.9.3) 

for n = 1.2 •... 

Theorem 2.9.1 Ad-dimensional (d ~ 2) d.f. with nondegenerate marginal 

distributions is max-stable if and only if its marginal d.f.·s and its 

dependence function are nondegenerate max-stable. 

Proof. If G1 •...• Gd are max-stable. or if G is max-stable, then there are 

constants a .) 0, b . with G~(a .x + b .) = G.(x), for i=l, ... ,d. Hence, n,l n,l 1 n.l n.l 1 

in either case, 

(2.9.4) cP(a lx1+b l'···.a dXd+b d) n, n, n. n. 

= rP(Gl(an.lxl+bn,l)·····Gd(an,dxd+bn,d» 
~ l/n l/n 

= u (G1(x1) , ... ,Gd{xd) ). 

Thus (2.9.2) follows at once if D is max-stable, by (2.9.1). The converse, i.e . 

...n l/n l/n . 
that ~ (Yl ""'Yd ) = D(yl'···.yd). for Yi 6 (0,1), l=l, .... d if G is 

max-stable also follows from (2.9.4). by taking x.=G~l(y.) there (note that each 
111 

G. is nondegenerate max-stable and hence continuous and strictly increasing on 
1 

its support). 

00 

Let {f } = {(f 1,···,f d)} -1 be a sequence of i.i.d. random vectors, n n, n. n-

write M • = max{f l .....• f .} and suppose there are constants a .)0, b . n,l ,1 n.l n.l n.l 

such that 

(2.9.5) 

where we may assume without loss of generality that the marginal distributions 

of G are nondegenerate. It then follows exactly as in the one-dimensional case 
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that the possible limits G in (2.9.5) are precisely the max-stable d.f.'s. 

Thus, by Theorem 2.9.1 each marginal d.f. is max-stable and hence one of the 

three extreme value types, and the dependence function is max-stable. Further 

the distribution of a .(M .-b .) tends to G., for i=l, ... ,d and the n,l n,l n,l 1 

dependence function of {M .: i=l, ... ,d} converges to the dependence function of n,l 

G. To complete the characterization of the limits, it only remains to describe 

the max-stable dependence functions. Again, this is a purely analytical 

problem, to solve the functional equation (2.9.3), and we thus only cite the 

result, which is obtained in somewhat varying forms in [50], [83], [37], and 

[59]. 

Theorem 2.9.2 A function D on [O,l]d is a max-stable dependence function if and 

only if it has the representation 

D(Yl'··.'Yd) = exp {J 
S 

where S is the simplex {(xl,···,xd ): Xi 

min {x. log y.}dJ.t.}, 
l~i~d 1 1 

~ 0, i=l, ... ,d, ~~Xi=l}, 

finite measure ~ on S which satisfies Jx.dJ.t. = 1, for i=l, ... ,d. 
S 1 

for some 

Hsing, ([59]) also makes the observation that while the 

characterization of the limiting marginal d.f.'s is crucially tied to linear 

normalizations, this is not so for the dependence function. Specifically, if 

{u .(x)} are levels which are continuous and strictly increasing in x, and if n,l 

P{M . ~ u .(x.), i=l, ... ,d} ~ G(x1 ,··· ,x d) n,l n,l 1 

where G has continuous marginal distributions, then the dependence function of G 

is max-stable. The basic reason for this is the obvious fact that if T1 , ... ,Td 

are continuous and strictly increasing, then (f1 , .. ·,fd ) and (T1(f1), ... ,Td(fd» 

have the same dependence function. 

Hsing also extends these results to stationary dependent sequences 

{fn}, along rather similar lines as for the one-dimensional case, as treated in 
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Sections 2.1 and 2.2. Specifically. for given constants {un . j : j=l ..... d. n L 

1} the condition D{u 1 •...• u d) is defined to hold if there is a sequence 
n. n. 

/., = o{n) such that a I ~ 0 as n ~ 00 for n n.~ 
n 

a I =max {Ip(f .. ~u .: j=1. .... d. i eAUB) 
n.~ 1.J n.J 

-P{f .. u .: j=1. .... d. ieA) P{f .. ~ u .: j=1. ...• d. i e B)I} 1.J n.J 1.J n.J 

where the maximum is taken over all sets A.B such that A C {l •...• k}. 

BC{k+/., •...• n}. for some k. If D{u l •.... u d) holds the only possible limits 
n. n. 

in (2.9.5) again are the max-stable d.f.·s. Further. if in addition 

d d [n/k] 
(2.9.6) lim sup n}; }; }; P{f l . > u .• f.. > u .} ~ 0 as k~ 00 

n~ i l =l i 2=1 j=2 .11 n.l1 J.12 n.12 

then P{M . < u .• i=1. ...• d) ~ p > 0 if and only if pn{fl . ~ u .: i=1. .... d) n.l n.l .1 n.l 

~ p. i.e. the asymptotic distribution of maxima is the same as if the vectors 

were independent. ({2.9.6) of course reduces to (2.2.1) for d=l). 

A further question considered by Hsing is independence of the marginals 

in the limiting distribution. In particular. he shows that if 

d [n/k] 
lim sup n }; }; 

i 1.i2=1 j=l 
{2.9.7} P{f l . > u . • f.. > u .} ~ O. .11 n.l1 J.12 n.12 

i 1;ti2 

as k ~oo. and if D{u l •...• u d) is satisfied then (2.9.5) holds if and only if 
n. n. 

P{a . (M .-b .) ~ x} ~ G. (x). as n ~ 00. for i=1. .... d. and G then is of the nl n.l n.l 1 

form G{x1.···.xd) = G1{x1)G2{x2) ... Gd{xd). 

Now. let {f } be normally distributed with Efl .=0. V{f l .)=1 and let n .1 .1 

riJ.{n) be the covariance between fl . and fl .. If r .. (k) < 1. for 1 ~ i ;t j 
.1 +n. J IJ 

~ d for all k and r .. (n) log n ~ O. as n ~OO. for i.j=l ....• d. and 
IJ 

u .=x./a +b • with a.b as in (1.2.4) then D{u l.···.u d)' (2.9.6). and n.l 1 n n n n n. n. 

(2.9.7) are satisfied. so that the asymptotic distributions of maxima are the 

same as for a sequence of independent normal vectors with independent components 

(see [59]. [1]). 
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2.10 Convergence of sums to non-normal stable distributions. 

The central limit problem of convergence of sums to non-normal stable 

distributions hinges on the convergence of extreme order statistics, and perhaps 

the most natural approach to it, and its extensions to dependent settings, is 

via extreme value theory. In Theorem 2.10.1 below, which, is new this is made 

precise. The theorem, which builds on ideas of Durrett and Resnick ([38J) and 

Resnick ([86J), contains a functional central limit theorem, and the 

corresponding extreme value result is the "complete" convergence of upper and of 

lower extremes, which is discussed in Sections 1.3 and 2.4. A similar 

one-dimensional approach via the joint distribution of extreme order statistics 

is used in [67J and [35J and will be briefly discussed at the end of this 

section. 

The results depend essentially on the Ito-Levy representation of the 

stable process, and we shall now list the relevant properties, referring to Ito 

([61J, Section 1.12) for proofs and further information. Let {~(t): Osts1} be a 

non-normal stable stationary independent increments process (briefly, {~(t)} 

will be referred to as a stable process). {~(t)} can - and will throughout - be 

assumed to have sample paths in D[O,lJ the space of real functions on [O,lJ 

which are right continuous and have left limits at each point. Let S=[O,lJxR, 

with R=[-oo,roJ,{O}, and define the Ito process N of jumps of {~(t)} by 

(2.10.1) N(A) = #{t: (t, ~(t) - ~(t-)) c A} 

for Borel sets A C S, where ~(t) - ~(t-) is the jump of ~(.) at time t. Then 

N(A) is (measurable and) finite a.s. for each rectangle A such that A C [O,lJ x 

[-ro,-cJ U [c,roJ for some c)O. Hence N is a point process, and in fact it is a 

Poisson process with intensity measure v which is the product of Lebesgue 

-a-1 I l-a- 1 measure and the measure v' on R with density ~ y for y)O and ~ y for 
+ -
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y<O, for some constants 7+,7_ ~ 0 which are not both zero (i.e. in shorthand 

1 l-a-1 notation, dv = dtxdv' = dt x (~± y dy)). 

2 -1 
Let m(e) = 0 for O<a<l, let m(e) = Ie<IYI y(l+y) dv'(y) for a=l, and 

let m(e) = I ydv'(y) for 1<a<2. and define 
e< Iyl 

(2.10.2) n(e) = II ydN - tm(e). 
(t) O<s<t 

e< 1;;1 

Here the integral is just a finite sum: if N has the points {(t.,y.): j>l} then 
J J 

Iyjl > e and 0 ~ tj ~ 1 only for finitely many j's, and 

II 
O<s<t 
e< 1;;.1 

J 

ydN = }; 
j: tj~t and 

e< ly.1 
J 

With this notation 

(2.10.3) P( sup In(t)-n(e)(t)1 > 0) ~ 0, as e ~ 0, 
O~t~l 

for any 0>0. 
00 00 

Let {fn}n=l be arbitrary random variables, let {an>O, bn}n=l be norming 
00 

constants, define stochastic processes: {nn(t): O<t<l}n=l in D[O,l] by 

(2.10.4) 
[nt] 

n (t) = }; a (f.-b ), 
n . 1 n J n 

J= 

and in analogy with (2.10.1) let N be the point process of jumps of n , defined n n 

as 

(2.10.5) N (A) = #{t: (t,n (t)-n (t-)) e A} = #{j: (j/n,a (f.-b )) eA}, n n n n J n 

for Borel sets A C S = [O,l]xR. The following theorem specifies the connection 

between convergence in distribution of n to n and of N to N. In this 
n n 

convergence is in D[O,l] given the Skorokhod topology, see e.g. [23, Section 

16]. 

Theorem 2.10.1. Let {nn(t): O~t~l} and Nn be given by (2.10.4) and (2.10.5) and 
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let {~(t): 0~t~1} be a nondegenerate non-normal stable process with Ito process 

d N defined by (2.10.1). Then ~ ~~ as n ~ 00, in D[0,1], if and only if the 
n 

following two conditions hold, 

(2.10.6) N ~ N 
n 

as n ~ 00, on S, 

and, writing 1 . = 1 if /a (f.-b )/ ) e and I . = 0 otherwise n, J n J n n, J 

(2.10.7) limsup 
n-lOO 

Ent] 
P{ sup / ~ a (f.-b )(1-1 .) + tm(e)/ ) o} ~ 0, 

0~t~1 j=1 n J n n,J 

as e~, for each 0 ) o. 

Proof. Let N(e) and N(e) be the restrictions of N and N 
n n 

[e,oo], for e)O. Let ~(e) be given by (2.10.2) and set 

~~e) = f ydN - tm(e) = 
O<s<t n 
e</y/ 

Ent] 
~ a (f .-b)1 . 

j=1 n J n n, J 

to [0,1] x ([-oo,-e] U 

- tm(e). 

First, suppose that ~ ~~. The function which maps ~ into N(e) and ~ into 
n n 

N(e) is a.s. continuous with respect to the distribution of ~ (see [86]) and 
n 

hence N(e) ~N{e) for each e ) O. This implies that N ~N, i.e. (2.10.6) 
n n 

holds. Similarly, /~ (.)_~(e)(.)/ ~ /~(.)_~(e)(.)/ in D[0,1], and hence 
n n 

P{ sup /~ (t)~(e)(t)/ ) o} ~ P{ sup /~(t)-~(e)(t)/ ) o} as n ~ 00, 

0~t~1 n n 0~t~1 

since P(suPO~t~1 /~(t)~(e)(t)/ = 0) = 0, for 0)0. Now, 

Ent] 
(2.10.8) ~ (t) - ~(e)(t) = ~ a (f.-b )(1-1 .) + tm(e), 

n n . 1 n J n n,J 
J= 

and (2.10.7) thus follows immediately from (2.10.3). 

Conversely, suppose (2.10.6) and (2.10.7) hold. The map which takes N 
n 

into ~(e) is a.s. N-continuous, and hence ~(e) ~~(e), as n ~ 00, in D[0,1], and 
n n 

d together with (2.10.7), (2.10.8) this implies that ~ ~~, by [23], Theorem 4.2. n 

The main condition, N ~N, of "complete" convergence of extremes, 
n 
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requires much weaker asymptotic mixing conditions than those needed for 

convergence of sums to the normal disttibution. cf. the end of Section 2.4. 

However. the local dependence restrictions. such as (2.2.1) may instead be 

rather restrictive. and are not even in general satisfied for 1-dependent 

processes. cf. Example 2.2.1. 

The conditions of course become particularly simple when f 1 .f2 •... are 

i.i.d. Then N ~N is equivalent to nP(a (f1-b ) ~ A) ~ v'(A). for each Borel n n n 

set A C [-oo.-~]U[~.oo] for some ~ ) O. which in turn is the same as 

(2.10.9) for x ) 0 

dy. for x < 0 

as n ~ 00. Another way of expressing (2.10.9) is to say that the marginal d.f. 

F of the f's should belong to the domain of attraction of the type 11 

distribution for both maxima (if ~ )0) and minima (if ~ )0). with the same + -

norming constants {a )O.b }. n n Furthermore. Resnick ([86]) shows that (2.10.9) 

actually implies also (2.10.7) for i.i.d. sequences. d Thus in this case ~ ~~ 
n 

in D[O.l] is equivalent to (2.10.9). It may also be noted that b can be taken 
n 

to be zero here. 

If one is not interested in full convergence in D[O.l]. but only in 

n 
"marginal" convergence of ~ (1) = }; a (f.-b) to a non-normal stable 

n . 1 n J n 
J= 

distribution. sufficient conditions are easily found by "projecting onto the 

y-axis". Let N' be the point process of jump heights of ~. given by 

N'(A) = #{t~[O.l]: ~(t) - ~(t-) ~ A] = N([O.l] x A) 

for Borel sets A C R. so that N' is a Poisson process with intensity v' and 

similar ly let 

N'(A) = #{j ~ [l.n]: a (f. - b ) ~ A} = N ([0.1] x A). n n J n n 

By the same considerations as in the last part of the proof of Theorem 2.10.1. 

if 
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(2.10.10) N' S N' n ' as n -+ 00, in R, 

and if, as before with I . = 1 if la (f. - b )1) c and I .=0 otherwise, n, J n J n n,J 
n 

limsup P( I }; a (f .-b ) (1-1 .) + m(c) I ) 0) -+ 0, as c -+ 0 
. 1 n J n n,J J= 

for each 0)0, then ~ (1) S n(l) in R. Moreover, it can be seen that (2.10.10) 
n 

holds if and only if the joint distribution of the k largest and k smallest 

order statistics of f 1 , ... ,fn tends to the distribution of the k largest and k 

smallest jumps of {net): O~t~l} for each k, again emphasizing the connection 

with extreme value theory. This approach to convergence of }; a (f.-b) to 
n J n 

non-normal stable distributions is, with some variations, pursued in detail for 

i.i.d. f's by LePage, Woodroofe, & Zinn ([67]) and for stationary sequences 

satisfying distributional mixing conditions by Davis ([35]). 

Finally, the results of this section easily carry over to non-stationary 

situations with Ent] replaced by an arbitrary time-scale, to convergence of 

row-sums in a doubly indexed array {f .} to a Levy (independent increments) n,J 

process without continuous component, to multi-dimensional f's, and also to 

convergence of so-called self-normalized sums. 

2.11 Miscellanea 

(a) Minima cmd maxima. Since the minimum m =min{f1 , ... ,f } can be obtained as 
n n 

m =-max(-f1 , ... ,-f }, results for maxima carry directly over to minima. In n n 

particular it follows from the Extremal Types Theorem that, under distributional 

mixing assumptions, limiting d.f.'s of linearly normalized minima must be of the 

form 1-G(-x) where G is an extreme value d.f. Further, it is trivial to see 

that for i.i.d. variables minima and maxima are asymptotically independent (cf. 

[66], p. 28). 

In a series of papers ([30], [31], [34]), R. Davis studies the joint 

distribution of m and M for stationary sequences {f } under a number of 
n n n 
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different dependence restrictions. Here we only note that some of his results 

alternatively may be obtained as corollaries of the multivariate theory 

discussed in Section 2.9 by making the identification f. l=f., f. 2=-f., so that 
1, 1 1, 1 

M l=M, M 2=-m. For example, writing u l=u, u 2=-v, for v ~u , the n, n n, n n, n n, n n n 

mixing condition D(u l'u 2) then translates to a ~ ° for some sequence n, n, n,l 

l =o(n), with 
n 

n 

an,l = max{lp(f1 ~ un' fi L vn: i ~ AUB) -

P(f i ~ un' fi ~ vn: i ~ A) P(f i ~ un' fi ~ vn: i ~ B)I} 

where the maximum is taken over all sets A C {l, ... ,k}, BC {k+l, ... ,n}, for 

k=l, ... ,n-t. Thus if this holds for.u =xla + b and v =y/c +d , for all x and n n n n n n 

Y it follows that any limiting d.f. of (a (M -b ), c (m -d » must be of the n n n n n n 

form G(x,ro)-G(x,-y) where G is a bivariate extreme value d.f. Furthermore the 

criterion (2.9.7) for independence of componentwise maxima, i.e. here for 

asymptotic independence of M and m translates to 
n n 

[n/k] 
lim sup n }; 
n~ j=2 

{P(f1 > u , f. < v ) + P(f1 < v , f. > u )} ~ 0, as k ~ro. 
n J n n J n 

(b) Poisson Limit Theorems. Although somewhat less generally formulated, the 

Poisson and Compound Poisson limits discussed in Section 2.4 amount to 

convergence of point processes N defined from a triangular array {~ .. n n,l· 

i=l, ... ,n, n~l} of zero-one variables, with stationary rows ~ 1' ... '~ , by n, n,n 

N (E) = n 
}; 

i: i/n~E 
~ ., n,l 

for Borel subsets E of (0,1]. Thus, the proof of the Poisson limit for 9=1 (see 

[66], Section 2.5) is easily seen to show that if D(u ) and (2.2.1) hold with f. n 1 

< u and f. ) u replaced by ~ .=0 and ~ .=1, respectively, then N converges - n 1 n n,l n,l n 

to a Poisson process with intensity T if and only if nP(~ .=1) ~ T. n,l 

Conversely, the literature contains many sufficient conditions for 

convergence, which may be applied to extremes by setting ~ . equal to zero or n,l 

one according to whether f. < u or f. ) u. Two further sets of such 
1 - n 1 n 
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conditions seem particularly useful here. For the first. let ~ . be the n.l 

a-algebra generated bye 1 •...• e .. Then the relation n. n.l 
[nt] 

{2 .11. I} ~ E{ e . + 11~ .} ~ tT as n ~ co. 
i=O n.l n.l 

in probability for each t e {O.l] is sufficient for convergence of N to a 
n 

Poisson process with intensity T {[43]. [3S]}. For the second one. which is 

due to Berman {[12]. [17]}. we assume that each row has been extended to a 

doubly infinite sequence ...• e l' e O. e l' ... and write ~ . for the n.- n. n. n.l 

a-algebra generated by ...• e . l' e .. Berman's result is that if n.l- n.l 

nP{e 1=1} ~ T and if there exists a sequence 'Y of integers with 'Y =o{n}. such n. n n 

that 

'Y n 
n ~ P{e 1=1. e .=1} ~ O. 

i=2 n. n.l 
as n ~ co. 

n ~ co. 

in probability. then N again converges to a Poisson process with intensity T. n 

Neither one of these three sets of conditions imply any of the others. 

in particular they are not necessary. and each of them might be the most 

convenient one in some situation. However. e.g. for normal sequences with r n 

log n ~ 0 they all seem to lead to about the same amount of work. One useful 

feature of {2.11.1} is that it also directly gives rate of convergence results. 

cf. [SS]. 

3. Extremes of continuous parameter processes 

3.1 The Extremal Types Theorem for stationary processes. 

Let {f{t}: t ~ O} be a strictly stationary process having a.s. 

continuous sample functions and continuous one-dimensional distributions. Then, 

assuming that the underlYing probability space is complete. M{I} = sup{f{t}: t e 

I} is a r.v. for any finite interval I and. in particular. so is M{T} = 
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M([O.T]). The extremal types theorem may be proved even in this continuous 

context. showing that. under general dependence restrictions. the only 

nondegenerate limits G in 

(3.1.1) as T -+ 00. 

are the three classical types. 

Though the general result requires considerable details of proof. the 

method involves the very simple observation that for (any convenient) h)O 

(3.1.2) 

where C.=max {f(t): (i-1)h ~ t ~ ih}. Thus if (3.1.1) holds and the 
1 

(stationary) sequence C1 .C2 •... satisfies D(un ) for each un=xlanh+bnh • then it 

follows from the discrete parameter Extremal Types result (Theorem 2.1.2) that G 

must be one of the extreme value types. Hence the Extremal Types Theorem 

certainly holds for strongly mixing stationary processes since then the sequence 

{C } is also strongly mixing and thus trivially satisfies D(u). However a more n n 

general form of the theorem results from showing that the D(u ) condition holds 
n 

for the C's when the f's satisfy certain conditions - in particular a continuous 

version C(~) of D(un ). In fact the condition C(~) may be defined in terms of 

the process properties only at "time sampled" points jqT for a suitable sampling 

interval qT -+ o. 

In the following definition Ft t (u) will be written for 
1··· n 

Ft t (u •... u). where Ft t (x1····x ) = P{f(t1) ~ xl.··· f(t ) ~ xn}· 
1··· n 1··· n n n 

~he ~ond~t~on C(~) will be said to hold for the process f(t) and the 

family of constants {~: T ) O}. with respect to the constants qT -+ 0 if for any 

points sl<s2 ... < sp < t1 ... < tp belonging to {kqT: 0 < kqT ~ T} and 

satisfying t 1-sp ~ 'Y.we have 

IFs1 ... sP t 1 ... t p (~) - FS1 ... sp(~) Ft1 ... tpl(~)1 ~ ~.'Y 

where ~ -+ 0 for some family 'YT=o(T) as T -+00. 
l·'YT 
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The C. are of course maxima of f(t) in fixed intervals of length h (e.g. 
1 

C1=M(h» and the sampling interval q must be taken small enough so that these 

are well approximated by the maxima at the sample points jq. This is 

conveniently done by assuming that for each a > 0 there is a family {q} = 

{qa(u)} tending to zero as u ~ 00 such that 

( 1 . P{M(h) > u, f(jq) ~ u, 0 ~ jq ~ h} ~ 0, 
3.1.3) Im sup ~(u) ~ 

u~oo 

as a ~ O. 

Here ~(u) is a function which will later be taken to represent the tail of the 

distribution of M(h) but which for the present need only dominate P(f(O»u} i.e. 

(3.1.4) P{f(O) > u} = o(~(u». 

The following result ([66, Theorem 13.1.5]) then holds. 

Theorem 3.1.1. (Extremal Types Theorem for stationary processes) With the above 

notation suppose that (3.1.1) holds for the stationary process {f(t)}, and some 

constants ~, bT and a non-degenerate G. Suppose also that ~(u) is a function 

such that (3.1.4) holds and T~(~) is bounded for ~=xI~+bT' for each x. If 

C(~) holds for the families of constants {qa(u)} satisfying (3.1.3) then G must 

be one of the three classical extreme value types. 

3.2 Domains of attraction 

In the classical theory of extremes of i.i.d. sequences the type of 

limiting distribution for the maximum was determined by the asymptotic form of 

the tail of the distribution of f 1 . This remained true for dependent stationary 

cases with non-zero extremal index since the limiting type was that of the 

associated independent sequence. For continuous parameter processes however it 

is clearly the tail of the distribution of Cl (in view of (3.1.2» rather than 
A 

that of f t which determines the limiting type. More specifically if C1 'C2 ... 
A 

are i.i.d. random variables with the same distribution as C1=M(h) then {Cn} is 
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called the independent sequence associated with {ft}. If the r -sequence has 
n 

extremal index 9>0 then any asymptotic distribution for M(T) is of the same type 
A A A 

as that for M =max{r1 , ... ,r}. Again the case 9=1 is of special interest and n n 

sufficient conditions may be given. In particular the following condition 

(analogous to (2.2.1) for sequences) is useful: 

The Condition ct(~) will be said to hold for the process {f(t)} and the 

family of constants {~: T>O} with respect to the constants {q=q(~) ~ O} if 

lim sup (T/q) ~ P{f(O»~, f(jq»~} ~ 0 as c ~ O. 
T~ h<jq<cT 

We assume also as needed that for some function ~ 

(3.2.1) P{M(h) > u} ~ h~(u) as u ~ 00 for 0<h<6, some 6 > O. 

The following result may also be shown(see [66, Section 13.2]). 

Theorem 3.2.1. Suppose that (3.2.1) holds for some function ~ and let {~} be a 

family of constants such that for each a>O, C(~), ct(~) hold with respect to 

the family {qa(u)} of constants satisfying (3.1.3) with h in Ct(~) not 

exceeding 6/2, where 6 is from (3.2.1). Then as T ~ 00 

(3.2.2) 

if and only if 

(3.2.3) 

T~(~) ~ T > 0 

P{M(T) ~ ~} 
-T 

~e 

Hence the function ~ may be conveniently used in the domain of 

attraction criteria, and also plays the role of I-F in the continuous parameter 

analog of Lemma 1.2.2. In particular if M(T) has a limiting distribution as in 

(3.1.1) the constants ~,bT must satisfy T~(~) ~ T with ~=x/~+bT' (T=T(X» = 

-log G(x» from which ~,bT may sometimes be conveniently obtained. In some 

cases the important function ~ is readily obtained (as in Section 3.4), but in 

others (cf. Section 3.3), its calculation can be quite intricate. 
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3.3 Extremes of stationary normal processes 

Let f(t) be a stationary normal process (assumed standardized to have 

zero mean, unit variances) and covariance function r(t) satisfying 

(3.3.1) as t ~ 0 

for some C > 0, 0<a~2. This includes all the mean-square differentiable cases 

(a=2) and a wide variety of cases with less regular sample functions (0<a<2) , 

such as the Ornstein-Uhlenbeck process (a=I). It may be shown that for such a 

process a function ~(u) satisfying (3.2.1) is given by 

(3.3.2) ~(u) = C1/ a H u(2-a)/a (2~)-1/2 exp(-u2/2), 
a 

but the proof involves quite intricate computations when a<2. The Hare 
a 

constants whose numerical values are known only in the cases a=I,2 (H1=1, 

-1/2 
H2~ ). The "regular" case a=2 is simpler and ~(u) may then be alternatively 

obtained as in the next section. 

It can be shown cf. [66, Theorem 2.5.1] using the Normal Comparison 

Lemma that the (standard) stationary normal process f(t) satisfying (3.3.1) 

satisfies the required dependence conditions for the general theory provided 

that 

(3.3.3) r(t) log t ~ 0 as t ~ 00. 

The function ~(u) given by (3.3.2) satisfies the domain of attraction 

criteria for the Type 1 extreme value distribution. Indeed some calculation 

-x 
shows that T~(~) ~ T with T=e ,~=xI~+bT' for 

(3.3.4) ~ = (2 log T) 
1/2 

bT = ~ + {((2-a)/2a) log log T + log(C1/ a Ha(2~)-1/2 2(2-a)/2a)}/~. 

Hence (using the last remark of the previous section) (3.1.1) holds with ~+bT 

given by (3.3.4) and G(x) = exp(-e-x ). 

This result was obtained by Cramer ([28]) for the case a = 2 and a 

somewhat more restrictive condition on the rate of decay of r(t) as t ~ 00. The 

result in its present generality was obtained by Pickands [80], [81] (though the 
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proof was not quite complete and was subsequently corrected by QuaIls and 

Watanabe ([84]). In particular considerable generality is afforded by the 

family of covariances satisfying (3.3.1). and the requirement r(t) log t ~ 0 

imposes only a very mild assumption on the rate of convergence of r(t) to zero 

as t ~oo. 

3.4 Finite upcrossing intensities. and point processes of upcrossings. 

In the continuous parameter case exceedances of a level typically occur 

on intervals and do not form a point process. However a natural analog is 

provided by the upcrossings (i.e. points where excursions above a level begin) 

which can form a useful point process for discussing extremal properties. 

Further in many cases the intensity of this point process provides the function 

~(u) needed for the determination of extremal type. Before proceeding it is of 

interest to note that an alternative to discussing upcrossings is to consider 

the amount of time which the process spends above a level. This approach. used 

by Berman. is briefly indicated in Section 3.7. 

Let then (as before) {f(t): t ~ O} be stationary with a.s. continuous 

sample functions. and continuous one-dimensional d.f. If u is a constant. f(t) 

is said to have an upcrossing of u at to>O if for some c>O f(t) ~ u in (to-c. 

to) and f(t) ~ u in (to' to + c). 

Under the given assumptions the number N (I) of upcrossings of u by f(t) 
u 

in an interval I is a (possibly infinite valued) r.v .. If ~(u)=EN ((0.1» < 00 
u 

then N (I) < 00 a.s. for bounded I. and the upcrossings form a stationary point 
u 

process N with intensity parameter ~~(u). u 

For stationary normal processes satisfying (3.3.1) ~ is finite when a=2 
, 

and is then given by Rice's FormuLa. ~(u) = (C/2)1/2~-lexp(_u2/2) and for 

general processes ~ may be calculated under weak conditions as 

(3.4.1) 
00 

~(u) = fO z p(u.z) dz 
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where p(u,z) is the joint density of f(t) and its (q.m.) derivative f'(t). In 

fact these relations can be shown simply since ~(u) = lim J (u) where 
q!O q 

(3.4.2) 
-1 

Jq(u) = q P{f(O) ~ u < f(q)}, (q > 0), 

and hence depends only on the bivariate distribution of f(O) and f(q). Under 

general conditions it is also the case, when u ~ 00 as q ~ 0 in a suitably 

coordinated way that J (u) ~ ~(u). We shall use a variant of this property, 
q 

assuming that for each a > 0 there are constants q (u) ~ 0 as u ~ 00 with 
a 

(3.4.3) 

and that 

(3.4.4) 

J (u) 
qa 

1 im inf -~-;("""u~) ~ 1 
u..,oo 

as a ~ 00 

P(M(q) > u) = o(~(u». 

It may then be readily shown that (3.1.3) holds if ~(u) = ~(u). Also (3.2.1) is 

often satisfied in regular cases. Under such conditions it thus follows that 

~(u) may be replaced by ~(u) in previous results. (For details see [66, Section 

13.5]). 

Thus the intensity ~(u) can provide a convenient means for determining 

the type of limiting distribution for M(T). However the point process of 

upcrossings has further interesting properties analogous to those for 

exceedances in discrete parameter cases. Specifically let u=~ and T tend to 

infinity in such a way that T~(~) ~ T > O. Define a normalized point process 

* NT of upcrossings having points at t/T when f has an upcrossing of u at t i.e. 

N;(I) = #{upcrossings of ~ by f(t) for t/T t I}. Then the following result 

holds. 

Theorem 3.4.1 Suppose that the conditions of Theorem 3.2.1 hold, with 

~(u)=~(u), and with (3.1.3) replaced by (3.4.3) and (3.4.4). * Then NT converges 

in distribution to a Poisson Process with intensity T as T ~ 00. This in 

particular holds for the stationary normal processes satisfying (3.3.1) with a=2 
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and (3.3.3). 

Similar results may be obtained under appropriate conditions for the 

point process of local maxima of height at least u. as u ~ 00. leading in 

particular to the asymptotic distribution of M{k){T). the kth largest local 

maximum in [O.T]. Indeed "complete Poisson convergence" results analogous to 

those indicated for sequences in Sections 1.3 and 2.4. may be obtained for the 

point process in the plane consisting of the locations and heights of the local 

maxima. (cf. [66. Sections 9.5 and 13.6] for details). 

Finally. it is also possible to obtain Poisson limits in cases with 

irregular sample paths when ~(u) = 00 (e.g. normal with O<a<2) by the simple 

device of using the "c-upcrossings" of Pickands [81] in lieu of ordinary 

upcrossings. Specifically. for given c)O. f{t) has an c-upcrossing of the level 

each ~)O. so that clearly the number of c-upcrossings in a finite interval I is 

finite {indeed bounded by (m{I)/c)+l where m{I) is the length of I). This 

device was used in [80] to give one of the first proofs of Theorem 3.3.1. (See 

also Section 3.7 below for a different approach.). 

2 3.5 X -processes 

The proofs for normal processes in Section 3.3. and also for the 

sequence case (Section 2.5) use the Normal Comparison Lemma (Theorem 2.5.1) in 

an essential way. It will also be the basis for the present section on 

functions {X{t)} of stationary d-dimensional (d ~ 2) normal processes 

f{t)=f1{t) •...• f d{t» defined as 

(3.5.1) 
d 2 

X{t) = ~ f.{t). 
i=l 1 
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We shall assume that the components are standardized to have mean zero and the 

same variance one - here this is a real restriction and not just a question of 

normalization - and also that the components are independent. Then X(t) has a 

X2-distribution and the process {X(t); t ~ O} is called a x2-process (with d 

degrees of freedom). Extremal properties of x2-processes. and of some related 

functions of f(t). have been studied in detail by Sharpe ([94]). Aronowich and 

Adler ([4]. [5]). and Lindgren ([68]. [69]. [70]). Here we will follow the 

"geometrical" approach of [69]. and use the fact that X(t) is the radial part of 

f(t) to find the asymptotic double exponential distribution of maxima of X(t). 

referring the reader to [5] for results on minima. However. we will indicate 

how the results can be obtained quite smoothly from the general theory of 

Section 3.4. rather than by using Lindgren's direct calculations. 

Now. suppose further that the component processes {f.(t)}. i=l •...• d are 
1 

continuously differentiable a.s .• and have the same covariance function r(t). 

We shall presently show that JL(u). the mean number of u-upcrossings by X(t). 0 ~ 

t ~ 1. it is easily found from (3.4.1). and then apply Theorem 3.4.1. For 

i=l •...• d. f.(O) and f:(O) are jointly normal. and hence independent. since 
1 1 

Cov(f:(O). f.(O»=lim E{h-1(f.(h)-f.(0»f.(0)} = r'(O) = O. where the last 
1 1 h-() 1 1 1 

equality holds because r(t) is symmetric around zero. Similarly. if A = -r"(O) 

is the second spectral moment. f:(t) has variance A. Thus the conditional 
1 

d d 
distribution of X'(O) = ~ 2 f.(O)f:(O) given X(O)= ~ f~(O) = u > 0 is normal 

i=1 1 1 i=1 1 

. d 
with mean zero and variance ~ 4 A f~(O) = 4 A u. Let p(zlu) be the density of 

. 1 1 1;::: 

this conditional distribution and let p(u) be the density of X(O). i.e. 

(3.5.2) 

Then. using (3.4.1). it follows that 

(3.5.3) 
co 

JL(u) = p(u) J z p(zlu)dz 
o 



58 

for u ) O. For u fixed, Jq(u) = P(~(O) ~ u < ~(q»/q ~~(u) as q ~ 0, and 

similarly (3.4.3) holds for u1/ 2 q = u1/ 2q (u) ~a) 0 (cf. [69, Lemma 2.5]). 
a 

Theorem 3.5.1 Let f(t) = (f1(t), ... ,fd(t» be a continuously differentiable 

d-dimensional standardized normal process with independent components and the 

same covariance function r(t), as above. Suppose further that r(t) log t ~ 0 as 

t ~ 00 and that 

(3.5.4) 

* and let NT be the point process of upcrossings of ~ by {~(tT} : t 6 [O,l]}. 

* Then NT converges in distribution to a Poisson process with intensity T, and in 

particular, 

(3.5.5) -T 
P{max ~(t) ~ ~} ~ e ,as T ~ 00. 

O~t~T 

Proof. We shall briefly indicate how the conditions of Theorem 3.4.1 can be 

checked. We assume that d=2, the extension to d)2 being straightforward. The 

main idea in [69] is to introduce the normal random field {~a(t): O~a<2~, t~O}, 

where 

~a(t) = f 1(t) cos a + f 2 (t)sin a 

is the component of f(t) in the direction (cos a, sin a), and to note that then 

(3.5.6) 

Thus sup ~(t) 
O~t~h 

2 
~(t) = sup ~a(t) 

O~a<2~ 
2 

= max O~t~, O~a<2~ ~a(t) , and it follows at once from the 

extremal theory for normal random fields that (3.2.1) holds, for ~(u) = ~(u) and 

any h)O, see [69, Lemma 2.2]. As noted above, for fixed a)O (3.4.3) holds for 

q=a/u1/ 2 , and (3.4.4) is an easy consequence of (3.2.1). Thus it only remains 

to establish C(~) and C'(~), for an arbitrary h, say h=l, and with q = qa(u) , 

for each a ) O. For this we introduce a further sampling, in the a-direction, 
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1/2 ~ 
given by a parameter r = b/u with b>O. Let X (t) = max {X. (t); r lr 

i=0 •...• [2T/r]}. Then. by (3.5.6) and an easy geometrical argument. 

(3.5.7) 
2 ~ 2 

X(t) cos r ~ Xr(t) ~ X(t). 

for 0<r<T/2. 
1/2 

To show that C'(~) holds let uy = (~) cos r. so that by 

(3.5.7) and stationarity. 

(3.5.8) ! ~ P(X(O) > ~. X(jq) > ~) 
q 1~jq~cT 
T ~ ~ 

~ - ~ P(X (0) > u!. X (jq) > u!) 
q 1<. <cT r T r 1 _Jq_ 
T ~ ~ 

~ - ~ Ip(x (0) > u!. X (jq) > u!) 
q 1<. <cT r 1 r T _Jq_ 

- P{~r(O) > uy)P{~r(jq) > uy)1 + c(T/q)2 P(~r(O) > uy)2. 

It is readily seen that T~({uy)2) ~ T' = T exp {b2/2} and that Xa(t) has mean 

zero and variance one. and that Icov(xa(O). Xa'(t»1 ~ Ir(t)l. for any a.a'. 

The Normal Comparison Lemma can then be applied in a straightforward way to show 

that the sum on the righthand side of (3.5.8) tends to zero. Further. it 

follows from (3.5.7) and (3.5.2) - (3.5.4) that 

2 ~ 2 2 2 2 b2/2 2 2 
c(T/q) P(Xr(O) > uy) ~ c(T/q) (P(X(O) > (uy») ~ c(Te ) 2T/(Aa ) 

and thus C'(~) is satisfied. 

Next. with the notation of C(~). 

(3.5.9) IFs1 •...• sp • t1 •...• tp,(~) - Fs1 •.... sp (~)Ft1 •.... tp,(~)1 
'" 1/2 

~ Ip(xr(t) ~ ~ : t c {s1 •.. ·.sp. t 1 ..... t p ,}) 

'" 1/2 ~-
- P(Xr(t) ~ ~ : t c (s1 •...• sp}) P(Xr(t) ~ ~~ : t c {t1 ..... tp ,})1 

+ ~ P(~ ~ X(jq) ~ ~cos2 r). 
1~jq~T 

Here the Normal Comparison Lemma may be applied. similarly as for C'(~). to 

show that the first expression On the right tends to zero as T ~ 00. if t 1-sp ~ 

~T' for suitable ~T = o(T). Further. the last sum in (3.5.9) is bounded by 

-1 -1 2 
T 2 T -2 ~ -2 ~cos r 
q P(~ ~ X(O) ~ ~cos r) - q {e -e } 
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as T -+ ()(). 

by straightforward computations. Since this limit tends to zero as b -+ O. for a 

fixed. this may be seen to prove C(~). 

It is easy to "solve" (3.5.3). to show that (3.5.4) implies that 

P{~ 

for 

-x 
(max X(t)-bT) ~ x} -+ exp(-e ) 
O~t~T 

as T -+ ()() 

2 
~ = 1/2. bT = 2 log T + (d-1) log log T - log (r(d/2) ~IA). 

It might also be noted that this proof of C(~) and C'(~) applies. with obvious 

changes also when the components of f(t) are dependent and have different 

covariance functions. 

3.6 Diffusion processes 

Diffusion processes have many useful special properties. and 

correspondingly several different approaches to their extremal behaviour are 

possible. E.g. Darling and Siegert ([29]). Newell [77]. and Mandl [73] apply 

transform techniques and the Kolmogorov differential equations (cf. also the 

survey [24]). Berman [11] exploits the regenerative nature of stationary 

diffusions. similarly to Section 2.6. and Davis [32] and Berman [14] use a 

representation of the diffusion in terms of an Ornstein-Uhlenbeck process. Here 

we shall discuss some aspects of Davis' methods. and in particular state his 

main result (relation (3.6.6) below). 

A diffusion process {f(t); t ~ O} can be specified as the solution of a 

stochastic differential equation 

(3.6.1) df(t) = ~(f(t»dt + a(f(t»dB(t). 

where {B(t): t ~ O} is a standard Brownian motion. We refer to [62] for the 

precise definition. and for the properties of {f(t)} used below. For simplicity 
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we will consider a somewhat more restrictive situation than in [62], and in 

particular we assume that {f{t)} is defined on some open, possibly infinite, 

interval I={r1 ,r2 ) and that ~ and a are continuous, with a)O on I. 

Let {sex); x t I} be a solution of the ordinary differential equation 

(3.6.2) a2{x)s"{x) + 2~{x)s'{x) = 0 

i.e. let it have the form sex) = cl + c2 I~o 

C2)O, cl real constants, for some point Xo t 

exp{-IY (2~{z)/a2{z»dz}dy, with 
Xo 

I. Then s is strictly increasing 

and by Ito's formula Dt = s{f t ) satisfies dDt = f{Dt)dB t , for f{x) = 

s'{s-l{x»a{s-l{x», i.e. s is a ~caie tunctLon and {Dt : t ~ O} is the 

diffusion on natural scale. The ~peed mea~u~e m, corresponding to this scale 

function then has density l/f{x) , i.e. m{dx) = (l/f{x»dx. We further assume 

that the speed measure is finite, /m/ = II m{dx) = II{l/f{x»dx < 00, and that 

sex) ~ 00 as x ~ r2' sex) ~ -00 as x ~ r 1 . It then follows that the boundaries 

r 1 ,r2 are inaccesible, that the diffusion is recurrent, and that there exists a 

stationary distribution so that {f{t)} becomes a stationary process if f{O) is 

given this distribution. 

The Ornstein-Uhlenbeck process, which will be denoted by {f{t)} here, is 

the stationary diffusion process (3.6.1) specified by I=R, ~(x) = X/2, a{x) = 

1, x t I. For the present purposes, a convenient choice of scale function for 

{f{t)} 
1/2 x y2/2 

is sex) = (2~) Io e dy, and the corresponding speed measure is 

2 
= (2~)-1/2e-x /2 dx. Further, it can be seen that {f{t)} is a m{dx) 

standardized stationary normal process with covariance function r{t) = e-/ t / and 

-1 
(x~{x» ,as x ~ 00. Hence, Theorem 3.3.1 may be 

applied with C=a=l and its conclusion can, e.g. by a simple "subsequence 

argument" be written as 

(3.6.3) as T ~ 0, 
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'" '" for any u >0, and with M(t) = sup{f(t) : 0 ~ t ~ T}. o 

The main additional fact needed is that the Ornstein-Uhlenbeck process 

on natural scale can, by a change of time, be made to have the same distribution 

as {~(t)}. More precisely, ([32, Theorems 2.1 and 2.2]), there exists a 

strictly increasing random function {T(t) : t ~ O} such that the processes 

{s(f(t» : t ~ O} and {S(f(T(t») : t ~ O} have the same distribution, and 

which satisfies 

(3.6.4) as T -+ 00, 

almost surely. 

As in Section 2.6 it follows easily from (3.6.3), (3.6.4) that 

sup /P(M(T(T» ~ u) - e-T/(;(u)/m/)/ -+ 0, as T -+ 00. 

u>uO 

Since for M(T) = sup{f(t) : 0 ~ t ~ T}, 

P(M(T) ~ u) = P(sup {s(f(t» : 0 ~ t ~ T} ~ s(u» 

= P(sup {S(f(T(t») : 0 ~ t ~ T} ~ s(u» 

'" "'-1 
= P{M(T(T» ~ s (s(u»}, 

(3.6.5) is readily seen to imply the main result of [34], that 

(3.6.6) sup /P(M(T) ~ u) - e-T/(s(u)/m/)/ -+ 0 as T -+ 00, 

u<u o 

for any u ~ I with s(u ) > O. o 0 
This is a quite explicit description of M(T), 

"as the maximum of T LLd. random variables with d.£. G(u)=exp{-I/(s(u)/m/n", 

and in particular domains of attraction for M(T) are found by applying the 

classical criteria to exp {-I/(s(u)/m/)}. Finally, as for Markov chains, the 

hypothesis of stationarity is not essential, (3.6.6) holds for any initial 

distribution, as can be seen e.g. by a simple "coupling argument". 

3.7 Miscellanea 

(a) Moving averages of stabLe processes. These are continuous time processes of 
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the form f(t} = fc(t-x}d((x}. with {((x}} a non-normal stable independent 

increments process. Their extremal behaviour, which is similar to that of the 

corresponding discrete parameter moving average (cf. Section 2.7), is studied in 

detai 1 in [87]. 

(b) SampLe path properties. As mentioned in Section 2.7, the asymptotic 

distribution of sample paths near extremes is studied in [87], [90] and [36]. A 

different approach to this problem, via so-called Slepian model processes, has 

been pursued by G. Lindgren in a series of papers, cf. the survey [71] and the 

references therein. 

(c) ExtremaL properties and sojourn times. In an important series of papers, 

Berman studies "the sojourn of f(t} above u", defined as Lr(u}=f61{f(t»u}dt, 

where l{o} is the indicator function. For a wide variety of cases, including 

many normal processes, x2-processes, Markov processes, and random Fourier sums, 

he finds the asymptotic form of the distribution of LT(u} as u ~ 00 for fixed T, 

and as u,T ~ 00 in a coordinated way. Further, he uses the equivalence of the 

events {M(T}>u} and {Lr(u}>O} to study the maximum of {f(t}}. The earlier work 

on these topics is reviewed in the present journal ([12]) by Berman himself. 

For later work see [13, 15, 16, 18, 19, 20, 21]. 

(d) Exceedance random measure. The sojourn time of f(t} above u can of course 

be defined for processes whose sample functions are continuous but not 

sufficiently regular to define upcrossings (though "c-upcrossings" may be 

defined and useful). However a unifying viewpoint may be obtained by 

considering the "exceedance random measure" (T(B) = f l{f(t} > u}dt for Borel 
tcT.B 

subsets of [0,1] which extends the notion of LT(u} in an obvious way. Similar 
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limiting theorems hold for 'T(B) as for the exceedance point process Nn of 

Section 2.4. In particular compound Poisson limits typically occur (with 

multiplicities which are not necessarily now integer valued). In cases where 

upcrossings are defined, this limit has the pleasant interpretation that the 

positions of the events represent upcrossing points. and the associated 

multiplicities represent the immediately following exceedance time above the 

level u. For details see [65]. 
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