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Abstract 

Certain polynomials of a skew-symmetric matrix are considered. These 

polynomials can be expressed in terms of the zonal polynomials on the 

Hermitian matrices, and they are used to obtain a series expansion for 

the density of the non-central distribution of the maximal invariant 

corresponding to the problem of testing for reality of the covariance 

matrix of a complex multivariate normal distribution. 
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1. Introduction 

In a paper by Andersson, Br0ns and lensen (1983) ten fundamental tests 

concerning the structure of covariance matrices in multivariate analysis 

are treated. Each of the ten problems is invariant under a group of 

linear transformations and the maximal invariant statistic is obtained in 

terms of eigenvalues of matrices with certain structures; the 

distribution of the maximal invariant under the null hypothesis was found 

in terms of a density with respect to a Lebesgue measure. A series 

expansion for the density of the distribution of the maximal invariant 

under the alternative hypothesis has been obtained for some of the ten 

problems by lames (1964) and Constantine (1963) by use of zonal 

polynomials and hypergeometric functions; it concerns the tests for 

independence and the tests for identity of two sets of variates where the 

simultaneous covariance matrix has real or complex structure.In this 

paper one of the remaining non-central distribution problems are treated 

by using methods similar to those of lames and Constantine. It concerns 

the test that a 2m x 2m covariance matrix with complex structure has real 

structure; this test was considered for the first time by Khatri (1965). 

Andersson and Perlman (1984) study the noncentral distribution of the 

maximal invariant and we use their results as a starting point. The 

theory of group representations is used to define polynomials of a 

skew-symmetric matrix. The polynomials are shown to be eigenfunctions of 

a certain differential operator, and using this it is shown that they can 

be expressed in a simple way in terms of the complex zonal polynomials on 

the Hermitian matrices. Finally the polynomials are used to get a series 

expansion for the distribution of the maximal invariant. 

I 
i 

_ _ l 
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2. The statistical problem Following Andersson et. al. (1983) let 

xl,···,xN N ~ m,be i.i.d .. observations from a normal distribution on ffi2m 

with mean vector 0 and unknown covariance matrix 

(I) 

where 2: + is positive definite; ~ belongs to H (m,ffi) , the set of positive 

definite m x m matrices; ~ belongs to A(m,ffi), the set of m x m 

skew-symmetric matrices. The set of positive definite matrices of the 

form (I) is called H+(m,~). 

+ Let HI denote the hypothesis that 2: € H (m,~), i.e., that 2: has complex 

structure. 

The group of 2m x 2m non-singular matrices of the form 

where A and B are m x m matrices is called GL(m,~). This group acts on 

+ H (m,~) 

+ + 
GL(m,~) x H (m,~) ~ H (m,~), (M,S) ~ MSM' 

N 

The emperical covariance matrix is - -I 
S = N 2: x. 

i=l 1 

be a partion into m x m matrices, and put 

• x'· 
i' 

let 

(2) 
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8 = ~ ~ll + ~22 ~12 - ~211 
lS21 - 812 811 + 822 

+ In Andersson et. al. (1983) it is shown that 8 € H (m,C) a.s., that 8 is 

the maximum likelihood estimator of ~ (under Ht) and that the 

distribution of 8 has density 

N 

rdet 8]2 1 -1 
Lciet ~ exp(- 2tr(~ 8)) (3) 

w.r.t. a unique measure D, which is invariant under the action (2). 

For m > 1 we shall consider the hypothesis HO that ~ = 0, i.e. that ~ has 

real structure. The statistical problem of testing HO is invariant under 

the restriction of the action (2) to the subgroup G = {diag(L,L)IL e 

GL(m,IR)} . 

Let tr be the orbit projection 

+ + 
tr H (m,C) ~H (m,C)/G (4) 

A representation of tr is found by using the following lemma. 

Lemma 1. + For every R € H (m,IR) and F € A(m,IR) there exists L € GL(m,IR) 

such that LRL' = I and LFL' = A, where 
m 

(5) 



Here Al ~ A2 ~ ••• ~ An ~ 0 

Proof. Bourbaki (1959 page 123) 
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The lemma implies that for every S € H+(m,~) there exists a M € G such 

that 

(6) 

where A has the form (5) 

+ 
It is seem that 1 > AI' when S c H (m,~) and that +Al,···,+A[ml2] are 

uniquely determined as the eigenvalues of [~-~J w.r.t. [~~J, each with 

mUltiplicity two (when m is odd, 0 is always an eigenvalue with 

multiplicity two), i.e. the solutions to the equation 

(7) 

As a consequence of the lemma we have that for every F € A(m,ffi) there 

exists a H € O(m), the set of real orthogonal m x m matrices, such that 

HFH' = A where A has the form (5). 

The eigenvalues of Fare +Al i, ••• ,+A[ml2]i, and 0 when m is odd. 
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Let t be the linear map 

+ + S = [RF -RF] -7 [Ro RO] t H (m,C) -7 H (m,ffi) ® 12 , 

It now follows (Andersson et. al. 1983)) that (4) can be represented by 

7r: + 
H (m,C) -7 A[m/2] (8) 

where 7r(S) = is the ordered family of non-negative 

eigenvalues of S - t(S) w.r.t. t(S). 

In the same paper it is shown that the likelihood ratio statistic for 

testing HO is 

(9) 

and that under HO the distribution of 7r(S) has density (9) w.r.t. a 

quotient measure v/~ on A[m/2]' where ~ is a Haar measure 

unimodular), see Andersson (1982). v/~ has density 

where c = m - 2[m/2], w.r.t. a Lebesgue measure on A[m/2]. 

on G (G is 

(10) 

The problem now is to find the distribution of 7r(S) under the alternative 
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+ L: E H (m,CC) 

The density (3) is called p. It follows from Andersson(1982) that the 

distribution of tr(S) has density q, where 

q(tr(S)) = f p(MSM')dB(M) 

G 

w.r.t. the quotient measure v/B. We get that 

( 11) 

q(tr(S)) = Q(tr(S)) f [det£!t~M'»JN/2eXP(-l/2tr(L:-IMSM'))dB(M) (12) 

G 

Using that the integral in (12) as a function of L: and S is invariant 

under the action of G on H+(m,CC) we can write (12) as 

q(tr(S)) = Q(tr(S)) • K(tr(S),tr(L:)) (13) 

This function K is called the correction factor, following Andersson 

(1982) . 

[
I -f 1 

M2L:M2 = fm Im where A and f has [
I -f 1 

the form (5). Let tr fm Im = 

(~1'···'~[m/2J)' Then 
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[
I _fj-N/2 

K(rr(S),rr(2))=det fm Im f f(A,f,L)d~l(L) 
GL(m,ffi) 

where 

and ~l is a Haar measure on GL(m,ffi). 

[
Im + f2 0 j-l/2 

Letting Ml = 2 it is seen that o I + f 
m 

and we get 

K( rr(S) ,rr(2)) = 
[m/2] 2 N 

IT (l-~.) • I(A,f), where 
i=l 1 

I(A,f) = f (det L)2Nexp(-tr(LLI))exp(-tr(fLAL'))d~1(L) (15) 

GL(m,ffi) 

Let a be the normed Haar measure on O(m) and 
m 
IT -i 

t .. 
i=l 

11 
® dt .. a right Haar 
i~j 1J 

measure on T+(m) , the group of upper triangular matrices with positive 

diagonal elements. Using Andersson (1978, page 45) we can write l(A,f) as 

f(det T)2Nexp(-tr(TT'))}exp(-tr(fHTAT'H')da(H) ~ t~~ ® dtj (16) 
. 1 11. < . 1= 1_J 

T+(m) O(m) 

The problem is to evaluate these integrals. 
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3. The polynomials C2k . Let V(k) be the real vector space of homogeneous 

polynomials ~(B) of degree k in the m(m - 1)/2 different elements of B c 

A(m.IR) . 

The action 

GL(m.IR) x A(m.IR) ~A(m.IR). (L.B) ~ LBL' 

induces transformations T(L) of V(k) 

These transformations define a representation of GL(m.IR) on V(k). 

Let Pn(k) be the set of ordered sequences k = (kl.···.kn). where 

n 

(17) 

(18) 

k. 
1 

EmU {O}. kl ~ k2 ~ •• ·~kn and .~ k i = k. The elements of Pn(k) are 
1=1 

ordered lexicographically. (see Constantine (1963. page 1272)). For 

k E P (k) we let 2k = (2kl .···.2k ) E P (2k) and k2 = (kl.kl.···.k .k ) E n n n n n 

P2n(2k) . 

Thrall ((1942). page 380) and Hua (1963) have shown that the 

representation of GL(m.IR) given by (18) decomposes into the irreducible 

representations corresponding to the partitions k2. each of which is 

contained exactly once. and k runs through P (k). 
n 

Let V(k) be the 

invariant irreducible subspace of V(k) in which the irreducible 

representation of GL(m.IR) corresponding to the partition k2 acts. 



9 

For each k € P (k) it is seen that (18) with L restricted to be 
n 

orthogonal defines a representation of O(m) on V(k); by this 

representation V(k) decomposes into a direct sum of irreducible invariant 

subspaces V(k,i), i = l,···,n(k). It follows from Littlewood (1940) that 

if k is a partion in even parts, i.e. each k. is even, then exactly one 
1 

of the subspaces, say V(k,l), has the following property: it is one 

dimensional and the corresponding representation of O(m) is the identity 

representation; if k is not a partition in even parts none of the 

subspaces has this property. Using a method similar to that of 

Constantine (1963), page 1272-1273) it can be shown that a polynomial ~, 

_ _ 2kl 2kn 
which generates V(2k) has the form ~(A) = d(k) • Al ···An + terms of 

i l in 
lower weight (n = [m/2] ). Here is A of the form (5), and terms Al ••• An 

are ordered corresponding to the ordering of the partitions i € P (2k). 
n 

Definition C2k is the polynomial which generates V(2k,1) normed such 

that the coefficient to the term with highest weight is 1. (19) 

It follows that 

C2k(LBL') € V(2k) for each L € GL(m,ffi) (20) 

(21) 

and C2k(A) is a homogeneous, symmetric polynomial of degree 2k in 
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We shall later obtain an explicit expression for C2k(A); writing C2k(A) 

by means of the elementary symmetric functions of "). ••• A 
1\1' 'n 

(Muirhead(1982, page 247» it is then possible to get an explicit 

expression for C2k(B). 

+ For S E H (m,ffi) there exists T E T+(m) such that S = T'T and since the 

eigenvalues of SB and TBT' are equal for B E A(m,ffi) we can define C2k(SB) 

As in Constantine (1963, page 1273) we find 

2kl 2kn k l -k2 k2-k3 k 
C2k-(SA) = A ---A det S2,2 det S --det S n + lower terms (22) 1 n 4,4 2m,2m 

where S. . is the principal i x i minor of S. 
1,1 

Lemma 2 For T E T+(m) 

IC2k(THBH'T')da(H) = c l (k,T)C2k(B) 

O(m) . 

where a is the normed Haar measure on O(m). 

(23) 

Proof: For each T E T+(m) we have that C2k(TBT') E V(2k); assuming a 

basis has been chosen in each V(2k,i), i = 1, ... ,n(2k), we can write 

C2k(TBT') as a linear combination of terms each of which belongs to a 
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V(2k,i). Now f ~(HBH')da(H) = 0 when ~ € V(2k,i), i > 1, (Littlewood 
O(m) 

(1940)), and fC2k(HBH')da(H) = C2k(B) for which the lemma follows. 0 

O(m) 

Theorem 1 + Let S € H (m,ffi) then 

f exp(-tr(S))(detS)aC2k(SB)d~(S) = f m(a,2k)-C2k(B) (24) 

+ 
H (m,ffi) 

where ~ is a measure on H+(m,ffil invariant under the action 

+ + GL(m,ffi) x H (m,ffi) ~ H (m,ffi), (L,S) ~ LSL' (25) 

and 

m 
f (a,I) = rr l / 4m(m-l) IT f(a+L. - 1/2(i-l)) 

m i=l 1 

(if I c P (L) and n < m we set L 1 = O,---,L = 0). n n+ m 

Proof Let f(B) be the left side of (24). Using the fact that ~ is 

invariant under (25) we get that f(HBH') = f(B) for H c O(m). Then 

f(B) = J f(HBH')da(H) = 
O(m) 

J exp(-tr(S) (detS)a J C2k(SHBH')da(H)d~(S) 
H+(m,ffi) O(m) 

and (23) gives 

(26) 
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To evaluate c we put B = A in (26), and compare the coefficients of the 

term of highest weight on both sides of (26). From (22) it follows that 

J a kl -k2 
c = exp(-tr(S)(detS) detS2 ,2 •• 

H+(m,ffi) 

k 
n 

detS2 2 d~(S) n, n 

~ has density (detS)-(m+l)/2 w.r.t.a Lebesque measure on H+(M,ffi) and c 

r (a,k2) follows from Constantine (1963, page 1274). m o 

= 

4. Calculation of C2k James (1968) used the fact that the zonal 

polynomials of the positive definite real symmetric matrices are 

eigenfunctions of the Laplace-Beltrami operator to obtain a recurrence 

relation between the coefficients of these polynomials. We use his 

method. 

Let + 
A (m,ffi) be the subset of A(m,ffi) consisting of those B € A(m,ffi) for 

which det(B) > o. Assume that m is even. 

Q = tr(B-ldBB-ldB) (27) 

+ is a differential 2-form on A (m,ffi) , which is invariant under (17). Put 

p = m(m-l)/2 and let x be the p x 1 vector x = (xl,···,xp)' 

(b l 2,bl 3,···,b -1 )' where b .. is the elements of the matrix B. Then 
" m ,m 1,J 

can write (27) on the form 

Q = (dx)'G(x)dx (28) 

= 

where G(x) is a p x p non-singular symmetric matrix with elements g .. (x). 
IJ 



13 

The elements of G(x)-l are called gi,j(x).The Laplace-Beltrami operator 

is then given by 

11 = detG(x) -1/2 ~ ~[detG(x) 1/2 ~ gi, j (X)~J (29) 
. Idx. . 1 dx. J= J 1= 1 

Using Helgason (1962,page 387) it is seen that 11 is invariant under (17). 

Writing 

B = HAR' (30) 

where H E O(m) and A is of the form (5) we want to express (27) and (29) 

in terms of A (and H). Put A = (Al ,···,Am/2)'; the elements of the 

skew-symmetric matrix dB = H'dH are called dB ... Using (30) in (27) we 
1,J 

get 

Q = tr(A-ldAA-ldA) - 2tr(dBA- l dBA) + 2tr(dBdB) (31) 

A direct calculation shows that for m = 4 

o 

= 2(dA'dB') (32) 

-2 0 0 A12 

0 0 -2 A12 0 
0 A12 -2 0 

A12 0 0 -2 
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Using this one sees that for any even m G(A) has the form 

and 

G(A) = 

A-2 0 
1 

-2 
o \n/2 

o 

o 

A(A) 

rn/2 
detG(A) = IT A~2 IT (A~ - A~)4(A.A.)-6 

. 11 .<. 1 J 1 J 
1= 1 J 

(33) 

(34) 

Again for m = 4 calculation shows that the part of A concerned with A has 

the form 

For any even m we get (with n = rn/2) 

d 
dA. + 

1 

'\ A~(A~ L 1 1 
(35) 

i=l j;ti 

n n 

(36) 

Now let Sk en ~ e be the Schur function corresponding to the partition 
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k E P (k), see Littlewood (1940, page 191) or Garcia and Remmel (1981) 
n 

for an explicit expression. These functions are the same as the zonal 

polynomials on the Hermitian matrices with the matrices restricted to be 

diagonal (Takemura (1984)) It then follows from Sugiura (1973) that the 

functions Sk are the eigenfunctions of the operator 

(37) 

n JR -7 JR by 

(38) 

Using the chain rule it is seen that the functions f2k are the 

eigenfunctions of AA' 

We shall also consider f2k as a function defined on A(m,JR) by requiring 

Theorem 2 

(39) 

Proof m even: By using the fact that A is invariant under (17) it can be 

shown that the function g, where 

g(B) = J f(THBH'T')da(H) 

O(m) 



16 

is an eigenfunction of A with eigenvalue c if f is an eigenfunction of A 

with eigenvalue c. Hence any f2k satisfies (23) (with C2k = f 2k)· f2k 

then also satisfies (24) and it follows that C2k = f2k since the 

properties (19), (20) and (24) determins the function C2k . 

m odd: We consider A(2m,ffi) (GL(2m,ffi)) as a subset of A(2m + l,ffi) (GL(2m + 

I ,ffi)) by identifying B wi th [~g] [L wi th [t ~JJ, and the vector space 

V(2k,2m) of homogeneous polynomials of degree 2k is in a natural way a 

subspace of V(2k,2m + I). We then have 

and since 

the same as 

V(2k,2m) = $ V(2k,2m + I) n V(2k,2m) 
k € P (k) 

n 

V(2k,2m + I) n V(2k,2m) ~ 0 it follows that this subspace is 

- 2m+1 2m 
V(2k,2m), and we get C2k (A) = C2k(A). o 
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5. The correction factor In the same way as James (1960, page 155-156) 

it can be shown that 

Lemma 3 

J tr(B1HB2H,)2kda(H) = L c(k)C2k(B1)C2k(B2) (40) 

O(m) k E P (k) 

and 

n 

J tr(B1HB2H,)2k+1da(H) = 0 

O(m) 

Expanding exp(-tr(THTAT'H')) as a power serie and using (40) and (24) we 

get 

Theorem 3 Let T and A be of the form (5).Then 

J ~ J m . 
(det T) exp(-tr(TT')) exp(-tr(THTAT'H')da(H) IT t~: ® dt .. 

. 1 11.<. 1J 
T+(m) O(m) 1= 1_J 

00 

(41) 

n = [m/2] and c(k) is given by 
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f tr(THAH)2kda(H) = L c(k)C _(T)C _(A). 
O(m) k E P (k) 2k 2k 

n 

(42) 

Using (16) we then have an expression for the correction factor K. 

The coefficients c(k) have only been evaluated in the cases m = 2. m = 3 

and m = 4. The cases m = 2 and m = 3 are easy. 

The case m = 4. For H = (h .. ) E 0(4) we let 
IJ 

H .. 
IJ 

= [hi. 1 hi. 2] 
h. 1 h. 2 J. J. 

and G .. 
IJ 

= [hi. 3 hi .4] 
h. 3 h. 4 J. J. 

for 1 ~ i < j ~ 4. Then 

and the left side of (42) becomes 

f 22k(~lAldet H12+~lA2det G12+~2Aldet H34+~2A2det G34)2kda(H) 

0(4) 

The relation 

1<i<'<4 _ L 

2 det H .. = 1 
IJ 

(43) 



and invariance of a gives 
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J det Hi2da(H) = 1/6 

0(4) 

Again the invariance of a implies that 

J f(PH)da(H) = J f(H)da(H) for P € 0(4) 

0(4) 0(4) 

From (45) and f(H) 2k = (det H12) we get 

and comparing coefficients to uik- 2 • u; gives 

k J (det H12)2kda(H) = 
0(4) 

[2kJJ 2k-2 2 2 (det H12) (det H14) da(H) 

0(4) 

2k 2k-2 2 2k Comparing coefficients to Al ~l ~2 and (~lAl) in (42) gives 

J 2k (det H12) da(H) 

0(4) 

From (43) we get 

= [2~J J (det H12)2k-2(det H34)2da(H) 

0(4) 

(44) 

(45) 

(46) 

(47) 
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J (det H12)2kda(H) = J (det H12)2k l (det Hij )2da(H). 

0(4) 0(4) l~i<j ~4 

From this relation together with (44),(46),(19) and using induction we 

get 

J 2k [2k2+2J -1 (det H12) da(H) = (48) 

0(4) 

Now 

222 2 
det H12 = det G34 , det H34 = det G12 and 

and it follows that 

(50) 

where i = k - [kl2],···,k-l. 

These coefficients and theorem 3 have been checked by simulation of the 

distribution of ~(S) for m = 4. 

This paper is based on the author's dissertation at the Institute of 

Mathematical Statistics, University of Copenhagen, under the supervision 

of Steen Andersson. 
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