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A metal bar or a glass fibre breaks when the load exceeds itsinhe

rent strength. Stochastic extreme value theory provides models both 

for predicting maximum loads and for the strength of the material. 

The talk this note is based on was about the "Weibull theory" where 

the observed statistical variation of strengths of brittle materials 

is explained via extreme value theory and about extremes of load pro

cesses of the "filtered Poisson process" type. For a general discus

sion of the connections between structural engineering and extreme 

values we refer to the paper by Bolotin in these proceedings, andto 

[10] for a survey of the last few years developments in stochastic 

extreme value theory. For reasons of space we here concentrate on 

the first part, and refer to [11] for the second part of the talk. 

STRENGTH OF BRITTLE MATERIALS 

The starting point is the empirical fact that strengths of pieces of 

material manufactured under similar conditions show a pr?ctically lm

portant stochastic variation from piece to piece. This is connected 

with extreme values through the so-called weakest Zink principZe, 

which says that for some materials, such as glass fibres or iron bars, 

the strength of a piece is determined by the strength of its weakest 

part. Weibull's argument C[ 12], cf. also [3,7]), which were quite 

informal, involved a "microscopic",unobservable, model for strengths, 

which then motivates an observable "macroscopic" model. 

Here mathematically formalized versions of the two models will be 

introduced. We will show that the two are in fact equivalent, and 

discuss ways of testing the assumptions on observed strength data. A 

longstanding point of debate is which distribution is appropriate for 

material strengths. Of course the Weibull distribution is the main 

contender, but e.g. In [2 ] strengths of glass fibres is described 

by the product of two different Weibull distribution functions, to 
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take into account surface and interior defects, and many other distri

butions, such as normal, lognormal, and gamma have been suggested 

[ 3,7). An important feature of the statistical procedure proposed 

here is that it makes it possible to investigate homogeneity and weak

est link behaviour without involving any assumptions aboutdistribu

tional forms. 

We only consider the simplest case, of a specimen subjected to unl

axial tension. In the microscopic theory it is noted that observed 

strengths are much lower than the strength of the bonds between mole

cules, and the discrepancy is explained by the presence of small 

flaws or microcracks ([ 5) . The flaws are assumed to be "randomly"distri-

buted in a homogeneous material, 
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Figure 1 
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Plot of strengths x. of micro
cracks against thei~ location y .. 

1 

with the material breaking when the local stress at any of the flaws 

exceeds its inherent strength. In Figure 1 this is illustrated by 

plotting the strength y. of the i-th microcrack against its location 
1 

x., measured along the specimen. The microscopic model for the strength 
1 

of homogeneous brittle materials is that {(x"Y')}~-l are the points 
1 1 1-

of a Poisson process, N, in the first quadrant of the plane, with in-

tensity measure dx x m(dy) , and with m an arbitrary locally finite mea

sure on [0,00). The strength ~L of a piece of the specimen correspond

ing to the interval L is then 

(1) ~L=min{y.;x. EL}, 
1 1 

cf. Figure 1. Thus the survival function (s.f.) SL(x) of the piece 

L of length £ is given by 

(2) SL (x) = P(~L > x) 
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P (N (L x [0, x])= 0) 

exp { - t m ( [ ° , x] ) } , 

smce E(N(L x [O,x]» = tm( [O,x]). 

3 

The mathematical formalization of the macroscopic model is as fol

lows. We again consider a piece of material L with ·lengdl t and strength 

sL and assume that it can be subdivided, at least hypothetically, in

to smaller pieces Ll, ... ,Ln of arbitrary lengths tl, ... ,tn , and with 

definite (random) strengths sL "",sL ' respectively. We say that 

the material is stochasticallyl n 

( i) brittle if sL = min(sL , ... , sL ), 
1 n 

homogeneous if the marginal distribution 

only on tl, ... ,tn , 

of sL , ... , sL depends 
1 n . 

(ii) 

( iii) disconnected if sL ' ""sL are independent for all disjoint 
1 n 

divisions Ll, ... ,Ln of L. 

Of these properties, (ii) and (iii) are of purely statistical cha

racter, while (i) depends on the mechanism involved in a failure. The 

properties all have definite physical meanings. It follows at once 

from (ii) that the s.f. SL(x)=P(sL>x) only depends on the length 

t of L, i.e. SL(x) = St(x), and (i) and (ii) are then seen to imply 

that 

(3) t 
S t (x) = S (x) , 

with Sex) = SI (x). 

x,t>O, 

Both models of course involve idealizations of reality. E.g. itmay 

not be meaningful to assume that very short pieces have a definite 

(measurable) strength as is done in the macroscopic model, and micro

cracks have a physical extension which is not taken into account in 

the microscopic model. Nevertheless, on the scale of interest the 

models might still be quite accurate. It is then interesting to note 

that the microscopic and macroscopic models are mathematically equi

valent. Thus, e.g. if one believes that a material shows the behavi

our specified by (i)-(iii) then necessarily the physical mechanism 

behind failures must be the one given by the microscopic model. 

We briefly outline a proof of this result. One half ~s immediate: 

clearly a material which satisfies (1) with {(x.,y.)} the points of 
~ l 
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a Poisson process with intensity dx x mCdy) also satisfies the assump

tions (i)-(iii) of the macroscopic model. For the converse, suppose 

the material satisfies (i)-(iii) with s.f. S£(x) given by (3). It 

~s straightforward to see that this determines all joint distribu

tions of strengths (of intervals). Now, by the first part of theproof, 

the microscopic model specified by 

m([O,x]) = -log S(x), x> 0, 

satisfies Ci)-(iii), and according to (2) also (3) holds. Hence, as 

was to be shown, this microscopic model leads to precisely the same 

distributions as the macroscopic model we started outwith. The further, 

more difficult problem of how to recover the Poisson process of mi

crocracks from (hypothetical) measurements of strengths of allpieces 

will be treated elsewhere. 

In practical situations one often needs not only the assumptions 

(i)-(iii) but also a parametric model for Sex). One way to obtain 

this lS to add an ad hoc notion which is that the material is 

(iv) Size-stable if each S£ is a location-scale transformation of 

S, i.e. if there are 0.£ > 0, B£ such that 
-1 

S£(x)=S(a£ (x- B£», £>0. 

It follows from (3) and Civ) that Sex) ~s min-stable, and hence lS 

one of the three extreme value s.f. 's for minima (see [9], p.27l -

273). A final assumption lS that strengths are 

Cv) Non-negative if 1;L ~ 0 for all L and if values arbitrarily 

close to zero are possible. 

This further assumption makes the type III extreme value CorWeibull) 

s.f. the only possibility, so that then 

(4) 

o x < 0 

a 
exp{-£(x/o) } x ~ 0, 

where 0.,0> 0 are material parameters. 

An alternative argument to (iv),(v) lS to assume that Sex) decrea-
a 

ses as a power at x= 0, i.e. Sex) ~l- (x/a) as x+ O. Together with 

(3) and the standard criterion for the domain of attraction for mini

ma for the Weibull distribution this again leads to (4). Further, in 
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the engineering literature (4) is often advocated for directly, for 

its mathematical simplicity and flexibility. 

5 

We now turn to the problem of empirically testing the models. As 

far as I know, direct tests of the microscopic model ~s beyond pre

sent capabilities, and we will hence discuss how the assumptions of 

the macroscopic model can be checked using measurements of strengths 

of specimens of varying sizes. The independence assumption (iii) 

can be checked by applying any of the standard independence tests to 

a series of streneth measurements. It seems less obvious how to test 

(i) and (ii) separately. Instead we investigate them together by em

bedding (3) into the larger model 

9,S 
(5) S9,(x)=S(x) , 

where S> 0 and S (x) are free "parameters",and then test for S = 1. 

Writing z = log 9, and hex) = s' (x) /S(x) (assuming that Sex) is diffe-
x 

rentiable) (5) takes the form S9, (x) = exp{ - e Sz f Oh(t)dd and is recog-

nized to be of the Cox-model type. We can hence use standard methods 

for the Cox model to estimatet S, test for S= 1, combine observa

tions of strengths of pieces of different lengths to one estimate of 

the "underlying s.f." Sex), and compare it with the Weibull s.f. 

resulting from (iv), (v) . ([8] is a general reference on the Cox model) . 

A. Deis in his masters thesis [4 ] makes a detailed study of these 

testing problems, and applies them to a number of data sets. Here we 

will as examples show the (still somewhat preliminary) results from 

two of his sets. 

Example 1 The first data are from Bader & Priest [1], and con

sist of strength measurements on about 60 carbon fibres of each of 

four different lengths £1 = 1, £2 = 10, £3 = 20, and 9,4= 50 mm's. As 

of now we unfortunately have only had access to the ordered values 

and have hence not yet tested for independence. In Figure 2 the 

empirical s.f. 's for each of the four samples is plotted. The scales 

are choosen so that if the Weibull model (4) holds then they should, 

except for random fluctuations, yield parallel straight lines of 

slope a, and with the i-th and j-th line a vertical distance 

10g(9,./9,.) apart. The plot roughly agrees with this expected beha-
J ~ 

viour. Nevertheless, the Cox estimator for S in the model (5) is 
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s= .83 which ~s significantly different from zero (p= 0.04). 

21 

o 

-2 

-4 

0.0 

Figure 2 

0.4 0.8 1.2 1.6 

Plots of log {- log S (x)} against log x for glass fibres 

of four different lengths, in order from left to right 

50 mm's, 20 mm's, 10 mm's, and 1 mm's. 

Figure 3 contains a plot of the estimated survival function S ~n (5), 

using the method of Breslow to combine all four samples. There 

~s a rather clear deviation from the straight line which would result 

if Sex) were the Weibull s.f. (4). We have not yet performed any for

mal tests of this deviation. 

0.0 

Figure 3 

0.4 0.8 1.2 1.6 

Plot of log (- log (underlying survival function) 

against log (stren~th), estimated using data from 

all four samples. 

Example 2 The data here have been provided by L. Nilsson and 
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S. Uvell, Umea University. The part we will discuss contains two 

strata (I and 11) of measurements of strengths of optical fibres, 

which differ ~n experimental conditions (rate of increase of tension). 

Both contain 40 measurements on each of the two lengths ~l = 40 and 

~2= 80 cm's. Correllations and partial autocorrellations were small 

in three of the four samples and formal tests did not indicate de

viations from independence. Figure 4 contains plots of the survival 

functions for each set. 

2 

o 

-2 

-4 

3.0 

Figure 4 

3.1 3.2 3.3 

Plot of log {- log Sex)} against log x. The first and 

third line from the left are lengths 80 and 40 cm's 

from Stratum I, and the second and fourth are the 

lengths 80 and 40 cm's from Stratum 11. 

The Cox estimates for the model (5) are 6=1.04 and 6= 0.76. With 

the size of the random variation taken into account, both estimates 

agree well with the hypothesis that 6= 1. Figure 5 shows Breslow's 

estimate for the underlying s.f. 's for the two strata. They are fair

ly linear, as predicted bytheWeibull model (4). 
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3.0 

Figure 5 

3.1 3.2 

Plot of log {- log S(x)} against log x. Left 

Stratum I, right Stratum 11. 

3.3 

o 

Hence Example 2 is seen to agree with the macroscopic model, 

while for Example 1 not even assumptions (i) and (ii) seem to be 

satisfied, since 6 is significantly different from 1. One would be 

inclined to believe that it is the homogeneity assumption (ii) which 

is violated, e.g. due to randomly varying diameters or changes in 

experimental conditions. This would then lead to a mixture model 

(6) 
Q, 

SQ,(x)=fS(x;a) dF(a), 

where F(a) represents, say, variations ~n diameter or composition 

of the material. 

Methods for analysing such models (sometimes called frailty mo

dels) are being developed, see [6 ] . 

If one tries to force the model (5) onto data which really come 

from (6), i.e. tries to find 6 such that 

Q, Q, B 
SQ, (x) = fS(x,a) dF(a) ~ SI (x) 

Q,B 
(JS(xja)dF(a) 

then, as an easy consequence of Jensens's inequality, this leads to 

B - values less than 1. A further unfortunate consequence is that 

using (5) then leads to an overestimate of the strengths of large 

spec~mens. 

In many situations one would (as for Examples 1 and 2) be rather 

convinced that (i) holds, and then the main practical use of the 

test for B= 1 is as a means to find inhomogeneities in the material 
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or experimental setup, as mentioned above. This agrees with the ex

periences of Nilsson and Uvell. Initially their experiments showed 

very marked departures from (3) and (4), but after they had elimi

nated a number of causes for inhomogeneity in the material and ex-

perimental conditions, they were consistently able to obtain data 

agreeing with the model (4). 

9 
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