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Abstract. 

In the model for proportional covariance matrices of p-dimensional 

normally distributed random variables, it is shown that when maximising 

over the covariance matrix, the profile likelihood is strictly concave. 

From this result follows the existence and uniqueness of the maximum 

likelihood estimator. 

A simple result on the global convergence of the Newton-Raphson 

algorithm is given for one dimensional exponential families. 
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1. INTRODUCTION AND SUMMARY. 

Let XI"",Xn be independent and p-dimensional normally distributed 

random variables with mean zero and covariance matrices given by 

V(X.) = A.~, i = I, ... ,n. 
1 1 

We want to discuss the maximum likelihood estimation of the 

Note first that the parameters are only 

n 
identified if they are restricted by a constraint like IT A. = 1. 

i=I 1 

The main result is that if the likelihood function is maximised over 

~, then the logarithm of the likelihood profile is strictly concave as a 

function of ~. = log(A.), i = 1, ... ,n, under the constraint mentioned 
1 1 

above if n > p. Further the likelihood profile goes to zero in all 

directions which guarantees the existence of a unique maximum likelihood 

estimator. 

This problem has been treated recently by Eriksen (1987) and Flury 

(1986), where the history of the problem is given. The starting point 

for the recent interest is the report by Guttman, Kim and Olkin (1983) 

We shall show that the results follow simply from the following alge-

braic identity. 

LEMMA 1. Let Y = (YI , ... ,Yn) be a pxn matrix and define for any or-

dered subset I = (i I , ... ,ip ) of (I, .... n) the matrix YI = (Y. , ... , Y. ). 
11 1p 

Then 

* det(YY ) n * * = det(~ Y.Y.) = ~ det(YIYI ). 
i=I 1 1 /1/= p 
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Proof. This result can be derived from the formula for the expansion of 

a determinant in terms of minors. see Karlin (1968). A proof can be given 

from first principles as follows: By the definition of the determinant 

we get 

* det(IT ) 
p n 

= 2: sgn(a) IT (2: Y .. Y (.).) 
. l' 1 Jl. a J l. a J= l.= 

where the summation is over all permutations a of (l ..... p). 

If we interchange IT and 2: we get 

* n n p 
det(IT)= 2: ... 2: 2: sgn(a) IT Y .. Y (.) .. 

. 1 . 1 . 1 Jl.. a J l.. l.1= l.p= a J= J J 

If. for r # s. we have i = i . then we define T as the transposition of 
r s rs 

r and s. Then clearly a and aOT have different sign but the same rs 

coefficient. thus the terms cancel each other. Hence we can assume that 

(i 1 •...• i p ) is a p-subset of (l •.... n) and we have 

* p 
det(YY) = 2: 2: sgn(a) IT ( 2: Y .. Y (.).) 

III=p a j=l icI Jl. a J l. 

2.THE EXISTENCE AND UNIQUENESS OF THE MAXIMUM LIKELIHOOD ESTIMATOR. 

The likelihood function corresponding to the observations Xl'" "Xn 

is given by 
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(2.1) 

L(A,2:) 

or 

(2.2) 

-2IogL(A,2:)/n = 

p n 1 n * -1 -1 
plog(2rr) + log(det(2:)) + - 2: log(A.) + - 2: X. 2: X.A. 

n i=l 1 n i=l 1 1 1 

THEOREM 1. If n > p then the log likelihood profile is strictly concave 

as a function of {3=logA if {3 is restricted to any subspace that does not 

contain the vector (1, ... ,1). Further the likelihood function goes to 

zero in all directions, which shows that the maximum likelihood estimator 

exists uniquely and can be found by optimising a concave funstion. 

Proof. It follows from the theory of exponential families, that for 

fixed A1, ... ,An the likelihood equation becomes 

(2.3) 
n *-1 

ru = 2: X.X. A. 
i=l 1 1 1 

And for fixed 2: the equation for A. is 
1 

* -1 (2.4) pA. = X. 2: X .. 
1 1 1 

If (2.3) is inserted into (2.2) we find the likelihood profile 

p n 
-2log L(A,2:(A))/n = plog(2rr) + log det(2:(A)) +- 2: log(A.) +p 

n i=l 1 

= plog(2rr) + log(g(A)) +p. 

Now define Y. = X.A~1/2, then since 
III 

n * ru(A) = 2: Y.Y. 
i=l 1 1 
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we find from Lemma 1 that 

-p * -p -1 * det(2(A)) = n 2 det(YIYI ) = n 2 IT A. det(XIXI ) 
III=p III=p icI 1 

Hence we get the representation for the function g: 

(2.5) g(A) = n-p ( 2 (~A~/n-1I(i))det(XlxI*)). 
III=p i=1 1 

We can then identify g(A) with the Laplace transform of a measure ~ on 

the set {I : III=p} 

If n > p then ( as long as det(2) > 0) we have ~(I) > 0 ( with proba-

bility 1). It is then well known, from the theory of exponential fami-

lies, that h({3) = 10g(g(e{3)) is a convex function. Moreover, if we 

consider h({30+t({31-{30)), tcR, then this function is strictly convex, 

unless 

n 
2 ({31-{3 ).(p/n - 1I (i)) = ° for all I : III =p. 

i=1 0 1 

It follows, by choosing I suitably, that we must have ({3 -(31).=c, but 
o 1 

because of the constraint on (3 we must have c = 0, which proves that h is 

strictly convex. 

We shall now show that g(A) tends to infinity if (A /A.) tends to max mln 

infinity.For any choice of I(A) we have 

-p n p/n-1 (i) * 
g(A) 2 n IT Ai I(A) min det(XIXI ). 

j=1 III=p 

Now we choose I(A) to contain the index of the p smallest values of A. 

Without loss of generality we can let A1~ ... ~An and let I(A) = (1, ... ,p) 

then 

n p 1/n p n-p = (IT A. / IT A. ) 
. 11 . 1 1 I=P+ 1= 
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Hence. since det(XIX~) > 0 for all I : III = p. we find that for AnlA1 

going to infinity we have g(A) going to infinity. This completes the 

proof of the theorem. 

COROLLARY 1. Let Sl ..... Sk be independently distributed such that Sj has 

a Wishart distribution W (n .. T.~). Then the maximum likelihood estimator 
p J J 

k k 
exists uniquely if ~ n. > p. under the restriction IT T. = 1. 

. 1 J . 1 J J= J= 
k 

Proof. This follows by letting n = ~ n. and restricting A1 ..... An to the 
j=l J 

subspace 

A1=·· .Anl=Tl.Anl+1= ... = A = T2 . etc. n1+n2 

Eriksen (1987) proves this result only in the case where n. ~ p. 
J 

j=l •.... k. Flury(1986) has conjectured that the results hold for any 

k 
positive n .• j=l ..... k. 

J 
However. for ~ n. = p it is seen from (2.5) that 

. 1 J J= 
k 

the likelihood profile is constant. and for 2 n. < p equation (2.3) has 
. 1 J J= 

no solution. 

3. CALCULATION OF THE MAXMlMUM LIKELIHOOD ESTIMATOR. 

Since the log-likelihood function is strictly concave a natural proce 

dure for calculating the estimate is to use a Newton-Raphson procedure 

with some modification of the step length to guarantee an increasing 

function. For this purpose we give the derivatives of the likelihood 

profile. 



6 

Using the matrix differentials 

d(log(det(A))) = tr(A-1d(A)) 

~d 

we find 

n * _~ 
where ~ = L(A) =( L X.X.e i)/n. 

i=l 1 1 

One c~ of course use these to show the concavity of the log 

likelihood profile, ~d with some extra work also the strict concavity, 

but the representation in Lemma 1 is useful for getting the behaviour at 

infinity. 

Another algorithm which is simply implemented is given by the 

equations (2.3) ~d (2.4). The m'th step of the algorithm consists in 

calculating 

~d 

n 
L(m+l) = n-1 L X.X~(A~m+l))-l. 

i=l 1 1 1 

This algorithm was studied by Eriksen (1987), who proved convergence from 

~y starting value. 
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An apparently different algorithm is given by Flury(1986). It 

consists of a reparametrisation of ~ by its eigenvalues and eigenvectors 

but his PCM-algorithm is in fact the same. 

4. MAXIMUM LIKELIHOOD ESTIMATION IN EXPONENTIAL FAMILIES. 

In this section we shall show a very simple result about the 

Newton-Raphson algorithm for one dimensional exponential families, and 

conjecture that the same result holds for p-dimensional exponential 

families. Consider a real valued function f defined on R with a 

continuous positive derivative. We want to discuss the Newton-Raphson 

algorithm given by 

(4.1) 

for some initial value x . We define 
o 

x* = inf{x/ f(x) ~ O}. 

Since f is increasing we have that f is positive on the interval from 

to 00 

THEOREM 2. If 

(4.2) * f is convex on the interval from x to 00 

* then the Newton-Raphson algorithm converges for any choice of Xo to x . 

* x 
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Proof. Note that if f has a zero x' then x· 

* -00, and if f < 0 then x = + 00 

Let us distinguish three cases 

* =x, if f ) 0 then * x = 

1. For all n = 0,1, ... we have f(x ) < o. In this case it is easily 
n 

seen from (4.1) that x is increasing. If the limit is finite then (4.1) 
n 

implies that the limit is a zero for f, and hence equal 

* limit is infinite then f < 0 and then also x = 00 

* to x. If the 

2. By the same type of argument it follows that if f(x ) ) 0 for all n 
n 

the result holds. 

3. The last case is clearly that the sequence f(x ) 
n 

contains negative 

* and positive elements, and hence that f has a zero at a finite point x . 

Let n be such that f(x ) ~ o. Now the convexity of f on the interval from 
n 

* x to infinity gives 

o = f(x*) ) f(x ) + f'(x )(x* - x ) = f'(x )(x*-x +1) - n n n n n 

* which shows that xn+1~ x , but from (4.1) it follows that xn+1 ~ xn · 

Hence if f(xn ) ~ 0 then also f(xn+1) ~ 0, and xn+1 ~ xn ' By induction 

one gets that x k is decreasing as k goes to infinity. The limit point n+ 

must be finite and it follows from (4.1) that the limit point is a zero 

for f. 
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COROLLARY 2. Let f have a continuous positive derivative and define 

If 

x** = sup{x/ f(x) ~ O} 

** f is concave on the interval from -00 to x 

** then the Newton-Raphson algorithm converges for any starting point to x . 

Proof. We can apply Theorem 1 to the function g(x) = -fe-x). 

Let now ~ be a non-negative measure on R with a finite Lap lace 

transform ~. We assume to avoid a trivial case, that ~ is not a one 

point measure. We define the exponential family generated by ~ by the 

densities 

f(x,S) = exp(xS)/~(S). 

It is well known that if X is in the interior of the convex support of ~ 

then there exists a unique maximum likelihood estimator. If X is in 

either end of the convex supprt of ~ then the likelihoood function is 

monotone giving an infinite value of the estimator. This defines an 

extended real valued maximum likelihood estimator. 

COROLLARY 3. In a one-parameter exponential family with canonical para-

meter set R, the Newton-Raphson algorithm applied to the reciprocal 

likelihood function converges for every choice of starting value to the 

maximum likelihood estimator. 
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Proof. The reciprocal likelihood function can be written as 

K(S) = fexp(S(x-X))~(dx). 

It is well known that K is convex, and that k(S) = K'(S) is increasing 

since 

k'(S) = f(x-X)2exp(S(x-X))~(dx) > o. 

We also find that 

k"'(S) = f(x-X)4exp(S(x-X))~(dx) > 0 

which shows that k" is strictly increasing. If k" is positive then k 

is convex and Theorem 2 can be directly applied. If k"is negative then 

Corollary 2 can be applied. If k" changes sign then there is a point 

S** such that k is concave for S < S** and convex for S > S**. If now k 

is positive then Corollary 2 applies and if k is negative then Theorem 2 

applies. * * ** Finally if k has a zero S then if S is greater than S then 

* ** Theorem 2 can be applied, and if S is less than S then Corollary 2 can 

be applied. This completes the proof. 

We have not been able to prove a similar result for p-dimensional 

exponential families. Such a result would be a useful addition to the 

applicability of these models. 
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