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SUMMARY. 

Tjur (1984) showed that an orthogonal (= balanced) analysis of variance 

(ANOVA) design may be described and analyzed in terms of an associated 

factor structure diagram. In this paper an extended class of orthogonal 

designs is defined and studied. the class of geometrically orthogonal 

(g.o.) designs of linear regression models. which includes all well

behaved ANOVA and regressions designs. It is shown that such designs may 

be characterized and analyzed most naturally in terms of the lattice 

structure of 5£. the family of regression subspaces in the design. For 

example. a design is g.o. only if ~ is distributive. and the ANOVA table 

is determined by the contrast subspaces indexed by J(~). the set of join

irreducible elements of 5£. Furthermore. any g.o. design may be extended 

in a natural way to a f ami ly of canoni cal var iance component ( c. v . c . ) 

models. called a geometrically orthogonal variance component design. 

whose structure and analysis are also determined by ~ and J(~). A neces

sary and sufficient condition is given for a random effect modelassociat

ed with the design to be a C.V.c. model. hence well-behaved. 

AMS 1980 subject classification. Primary 62H05; secondary 62J05. 

Key words and phrases. Analysis of variance. ANOVA table. linear regres

sion model. geometrically orthogonal design. distributive lattice. par

tially ordered set. Mobius function. join-irreducible elements. variance 

component model. random effect model. normal distribution. 
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O. INTRODUCTION. 

Linear regression models and variance component models lie near the 

center of statistical theory and practice. This paper presents a unified 

framework for the study of so-called orthogonal (or balanced) designs 

consisting of models of these types. All analysis of variance (ANOVA) 

designs with orthogonal factors and all well-behaved random effect models 

are included in the framework. 

As mentioned in the Summary, this investigation may be regarded as an 

extension of the paper by Tjur (1984), who studied orthogonal ANOVA de

signs in terms of their factor structure diagrams. In the more general 

case of geometrically orthogonal (g.o.) linear model designs considered 

here, the role of this diagram is assumed by the partially ordered set 

(poset) J(~) consisting of all join-irreducible elements of the lattice ~ 

of linear subspaces in the design. All information needed for the statis~ 

tical analysis of the models in the design, such as the structure of its 

ANOVA table, is determined by J(~). Furthermore, this statement is also 

true for the extended design of canonical variance component (c.v.c.) 

models determined by the original design. 

The main mathematical concepts used are those of finite partially 

ordered sets (posets), fini te distributive lattices, and fini te-dimen

sional vector spaces. These concepts are very simple and the complica

tions, if any, are of a combinatorial character. By disregarding all 

extraneous structure which is not essential for the definition and analy

sis of a statistical problem, one is able to obtain a mathematically 

efficient formulation of the problem, which we refer to as the "invari-
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ant" formulation. This formulation (hopefully) leads to a precise charac

terization of the class of models with the desired statistical prop

erties, and to a unified and efficient mathematical analysis of the 

models. All pertinent definitions and results are directly suggested by 

the invariant formulation. For example, we shall obtain a definition of 

the ANOVA table, which for the case of analysis of variance with ortho

gonal factors, is slightly different from the defini tion in Tjur (1984). 

We hope that our approach is in the spirit of Bailey's points (i)-(iii) 

in her discussion of Tjur's paper (bottom of p.73) 

The necessary concepts from the theory of partially ordered sets and 

lattices are presented in Section 1. The main reference for this section 

is Gratzer (1978). We have omitted all proofs of standard results. On the 

other hand, the one-to-one correspondence between the categories of fi

ni te partially ordered sets and finite distributive lattices is treated 

(Theorem 1.2, Proposition 1.2 and 1.3) because of its importance for our 

study of variance component models. Furthermore. we prove a useful condi

tion for a distributive lattice to be finite (Proposition 1.1). 

In Section 2, the results from Section 1 are applied to the lattice ~ 

of subspaces of a finite-dimensional vector space V. The main aim of this 

section is to describe the decomposition of a vector space into a direct 

sum determined by a distributive lattice ~ of subspaces (Theorem 2.1 and 

2.2). It is shown that ~ is distributive if and only if there exists an 

inner product 0 on V such that the subspaces in ~ are geometrically or

thogonal (perpendicular) with respect to 0 (Proposition 2.1 and 2.2). 

This existence of an inner product adapted to the lattice ~ is used not 

only in the present paper but also in a forthcoming paper on normal 
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models given by conditional independence with respect to a distributive 

lattice of subspaces (Andersson and Perlman (1988)). 

In Section 3 the invariant formulation and solution of an ordinary 

normal linear regression model is briefly reviewed. A geometrically or

thogonal design of linear models is defined, together with the associated 

decomposition of the observation space into a direct sum of independent 

components and the ANOVA table. For the special case of an orthogonal 

ANOVA design (ie. a design generated by orthogonal factors), we compare 

our treatment to that of Tjur (1984). The section concludes with a series 

of examples. 

The class of canonical variance component (c.v.c.) models extending a 

geometrically orthogonal design of linear models is defined and analyzed 

in Section 4. A necessary and sufficient condition that a random effect 

model be a c.v.c. model is derived in Theorem 4.1. For the special case 

of a completely balanced multiway ANOVA design we compare our formulation 

and results to those of Jensen (1979) and make similar comparisons with 

the work of Tjur (1984) in the case of a balanced (= orthogonal) ANOVA 

design. It .is shown that the extension presented in this section includes 

some new interesting examples of variance component models. Finally, we 

also discuss the question of the statistical interpretability of random 

effect models in general, and of our canonical variance component models 

in particular. 

Any list of references that one couldt readily compile for the stat

istical topics of linear models, analysis of variance, and variance com

ponent models would be far from comprehensive. Furthermore our formula

tion and point of view are somewhat different from those of most authors. 
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The reader is best advised to begin by referring to the paper by Tjur 

(1984) mentioned above, the discussions therein by Bai ley, Speed, and 

Wynn. and the papers in the combined lists of references, in particular 

Speed and Bailey (1982). Our approach and ideas relate most closely to 

those of Jensen (1979) and Tjur (1984). 
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1. POSETS AND DISTRIBUTIVE LATTICES. 

1.1. Posets. 

A set ~ equipped with an ordering relation ~ which is 

(PI) reflexive: Vx € ~: x ~ x 

(P2) antisymmetric: Vx,y € ~: x ~ y and y ~ x => x = y 

(P3) transitive: Vx,y,z € ~: x ~ y and y ~ z => x ~ z 

is called a partially ordered set or simply a poset. We use the notation 

x < y if x ~ y and x # y, x,y € ~. 

For a subset S of ~, x € ~ is an upper bound (lower bound) of S if Y 

~ x (x ~ y) Vy € S; x is a supremum (infimum) of S if x ~ z (z ~ x) V 

upper (lower) bound z of S. If a supremum (infimum) of S exists, it is 

unique and it is denoted by sup S (inf S). If it exists, the element 

sup ~ (inf ~) is called the unit (zero) element and is denoted by 1 (0); 

in this case ~ is called a poset wi th uni t (poset wi th zero). 

A finite sequence Xl < x2 < ••• < xn of elements from ~ is called a 

chain of length n. If there exists n € IN = {l, 2, ••• } such that every 

chain in ~ has length less than n, then ~ is said to have finite length. 

A mapping -.jJ:~1 -7 ~2 between two posets is called increasing or a 

(poset) homomorphism if Vx,y € ~1: x ~ y => -.jJ(x) ~ -.jJ(y). A composition of 

homomorphisms is a homomorphism and the identity mapping of a poset onto 

-1 
itself is a homomorphism. If -.jJ is bijective and -.jJ :~2 -7 ~1 is a homo-

morphism then -.jJ is called a (poset) isomorphism and ~1 and ~2 are said to 

be isomorphic. 
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If (~. liEI) is a family of posets then the product X(~. liEI) equipped 
1 1 

with the obvious (component-wise) ordering relation is itself a poset. 

Any subset ~o ~ ~ equipped with the restriction of the ordering ~ on 

~ is itself a poset. called a subposet. and the embedding u:~ ~ ~ is a 
o 

poset homomorphism. 

An element x E ~ is said to cover an element y E ~ if x > y and there 

is no z E ~ such that x > z > y. This concept is needed to describe the 

representation of a finite poset by a (directed) graph. The points of the 

graph correspond to the elements of ~. A line connects two points if and 

only if the left-most point covers the other one (cf. Figures 3.1 -

3.15). 

1.2. The Mobius function of a poset. 

Let ~ be a finite poset. The Mobius function ~:~x~ ~ ~ 

{O.1.-1.2.-2.3.-3.···} of ~ is defined as 

~(x.y) ={ -i(~(x.z) Ix~z<y) 

and 0 otherwise. 

for x = y 
for x < y 

Lemma 1.1. (Mobius Inversion Formula for a finite poset). Let f and g be 

two functions defined on the finite poset ~ and assuming values in the 

same vector space. Then 

f(x) = ~(g(y) IY~x). x E ~. 

if and only if 

g(x) = ~(~(y.x)f(Y)IY~x). x E~. 
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Proof: The matrix (M(x.Y)I(x.y)~x~) is the inverse of the matrix 

(e(x,y) I(x.y)~x~). where e(x.y) = 1 if Y ~ x and 0 otherwise.D 

As a space-saving convention. when we describe the Mobius function M 

for a particular ~. we will only specify the values of M(X.y) for those x 

< y. x.y €~. such that M(X.y) ~ O. 

Remark 1.1. If M. is the Mobius function for a finite poset ~., i € I. 
1 1 

and III < 00. then the Mobius function M for the product ~ = X(~. li€I) is 
1 

given by M((X. I i€I). (y. I i€I)) = 1T(M(X .. y.) I i€I). 
1 1 1 1 

The Mobius function for a finite chain poset {xl < x2 < ••• < xn } is 

specified by M(xi .xi +1) = -1. i = 1 •.... n-1. 

If J is a finite set and ~(J) denotes all subsets of J. then ~(J) 

becomes a poset under the relation ~. Since ~(J) and the product {O.l}J 

are isomorphic as posets and {O.l} is a chain. the Mobius function for 

~(J) is readily obtained as M(A.B) = (-1) IBI-IAI. A C B. A.B € ~(J). 

where 1nl denotes the number of elements in n ~(J).D 

1.3. Lattices. 

A set ~ equipped with two binary operations A and V called meet and 

join. respectively. is called a lattice if A and V are 

(L1) idempotent: Vx € ~: x A x = x and x V x = x 

(L2) commutative: Vx.y € ~: x A y = y A x and x V y = y V x 

(L3) associative: Vx.y.z €~: (x A y) A z = x A (y A z) and 

(x V y) V z = x V (y V z) 
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and satisfy the 

(L4) absorption identity: 

Vx.y € ~: x A (x V y) = x and x V (x A y) = x. 

The property (13) allows us to write expressions involving only A's 

or only V's without using parentheses. 

Every lattice ~ can be considered as a poset in the following natural 

way. If one defines the relation ~ on ~ by x ~ y iff x A y = x (or equiv

alently x ~ y iff x V y = y) then ~ equipped with ~ becomes a pose, de

noted by P(~) (or simply ~) with the additional property 

(P4) For all non-empty finite subsets S ~ ~ the elements sup S and inf S 

exist. 

Note that (P4) is equivalent to the condi tion that sup{x.y} and 

inf{x,y} exist for every two-point subset {x.y}~. 

On the other hand, if ~ is a poset with the additional property (P4) 

then ~ equipped with the binary operations A. V defined by x A y = 

inf{x.y} and x V y = sup{x,y}. becomes a lattice denoted by L(~) (or 

simply ~). It is easy to see that L(P(~)) = ~ and P(L(~)) = ~. 

A finite lattice can be represented by a meet-and-join table, but 

since it is also a poset it can also be represented by a graph as de

scribed above. 

A mapping ~:~1 ~ ~2 between two lattices is called a (lattice) homo

morphism if Vx.y € ~l: ~(x V y) = ~(x) V ~(y) and ~(x A y) = ~(x) A ~(y). 

The composition of homomorphisms is a homomorphism and the identity map-
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ping of a lattice onto itself is a homomorphism. If ~ is bijective then 

-1 
~ :~2 ~ ~1 is also a homomorphism; ~ is called a (lattice) isomorphism 

and ~1 and ~2 are said to be isomorphic. 

If ~:~1 ~ ~2 is a lattice homomorphism then ~: P(~l) ~ P(~2) is a 

poset homomorphism. It is not true, however, that if ~:~1 ~ ~2 is a poset 

homomorphism between posets ~ I' ~2 satisfying (P4) then ~:L(~ 1) ~ L(~2) 

is a lattice homomorphism. 

If (~. liEI) is a family of lattices then the product X(~. liEI) equip-
1 1 

ped with the obvious component-wise binary operations is itself a lat-

tice. 

A subset ~O ~ ~ is called a sublattice if x,y E ~O => xAy, xVy E ~O; 

in this case the embedding u:~o ~ ~ becomes a lattice homomorphism. 

A representation of an element x E ~ as x = Vex. liEI), where I is a 
1 

finite set and x. E ~, i E I, is calledjoin-irredundant if there does 
1 

not exist a proper subset J C I such that x = Vex. liEJ). An element z E ~ 
1 

is called jOin-irreducible if z = x V y implies z = x or z = y. The set 

J(~) of all join-irreducible elements of ~ plays an important role in the 

study of finite distributive lattices. 

1.4. Distibutive lattices. 

A lattice ~ is called distributive if 

(DL) Vx,y,z E ~: x A (y V z) = (x A y) V (x A z). 

This condition is equivalent to 
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(DL) Vx,y,z € ~: x V (y A z) = (x V y) A (x V z). 

An important example of a distributive lattice is the following: Let 

M be a non-empty set and ~ a set of subsets of M. ~ is called a ring if 

RI n R2 € ~ and RI U R2 € ~ for every R1 ,R2 € ~. It is obvious that ~ 

equipped with n and U as A and V becomes a distributive lattice. The 

following is a major result in the theory of lattices. 

Theorem 1.1. (Birkhoff (1933). Stone (1936)). A lattice is distributive 

if and only if it is isomorphic to a ring of subsets of a set. 

Proof: See Gratzer. (1978) Theorem 19, p.64.D 

Since we shall mainly be interested in finite distributive lattices 

the following result is useful: 

Proposition 1.1. Let ~ be a distributive lattice of finite length. Then ~ 

is finite. 

Proof: Zorn's lemma and the finite length assumption implies that ~ has a 

maximal element xl €~. If x € ~ then x V xl = xl' hence x ~ xl for every 

x € ~. Thus xl = 1:= sup ~ ; similary, one shows that 0:= inf ~ exists. 

Next we show that for any x € ~ such that x ~ 0, there exists a fi-

ni te chain x = Zo > zl > ••• > zm = o such that z. covers z. l' 
1 1+ 

i = 

0,···,m-1. If x does not cover 0 then there exists Y1 such that x > Yl > 

O. If x does not cover Y1 then there exists Y2 such that x > Y2 > Y1 > O. 

This process can continue for at most n steps, where n is the maximal 

length of any chain in ~. Thus there exists an zl such that x > zl > 0 
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and x covers zl. If zl does not cover 0 we repeat the argument wi th x 

replaced by zl and obtain z2 such that x > zl > z2 > 0 and zl covers z2· 

Again this process must terminate within at most n steps, hence the as-

sertion is established. 

Now define ~O = {O}. ~l = {xe£ Ix covers O}. ~2 = U( {xe£ Ix covers 

z} Ize£l)' ••• '~n = U({xe£ Ix covers z} Ize£n_l). Then the above assertion 

implies that ~ = U(~. li=O,l.···.n). 
1 

If xl ~ x2 both cover y € ~ then neither xl < x2 nor x2 < xl can 

occur. hence xl > xl A x2 ~ y. Since xl covers y. this implies that xl A 

x2 = y. 

Next we claim that the set {xe£lx covers y} is finite for every y € 

~. If not. let x l .x2 .••• be an infinite sequence of distinct elements in 

~ such that xi covers y, i = 1,2,···. Then xl < (xl V x2 ) < ••• < (xl V···V 

xr ) ( ••• is an infinite chain. since xl V···V xr = xl V···V xr Y xr+l => 

xr+l ~ xl Y···V xr => xr+1 = (xl V···Y xr ) A xr+l = (xl A xr +l ) Y···V (xr 

A x 1) = y y ... y y = y contradicting that X 1 covers y. Since every r+ r+ 

chain in ~ is finite. the claim is established. It then follows that ~ = 

U(~.li=O, 1, ... . n) is finite.O 
1 , 

Remark 1.2. It can be shown that Proposition 1.1 remains valid under the 

weaker condition that every chain in ~ has finite length.O 

Remark 1.3. For a fini te distributive lattice ~. the MCibius function /.l 

for the poset ~ is specified by: /.l(x.y) = (_l)k if Y is the join of k 

distinct elements covering x (Gratzer (1978). Exercise 36. p.191).O 
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1.5. Finite distributive lattices and posets with zero. 

For the remainder of this section, ~ denotes a fini te distributive 

lattice. Then ~ is a lattice with zero and with unit and the set 

J(~) = { x E ~ I sup{y~IY<x} < x } U {O} 

is the set of all join-irreducible elements of ~. Since 0 E J(~), the 

subposet J(~) of ~ is a poset with zero - see the right hand graphs in 

figures 3.1-3.15. (Gratzer (1978) excludes 0 from J(~) but our definition 

is more convenient for our purposes.) Conversely, let ~ be a finite poset 

with zero. A non-empty subset S of ~ is called hereditary if x E S and y 

~ x implies that yES. Let H(~) denote the set of all hereditary subsets 

of ~. Then H(~) becomes a finite distributive lattice under the binary 

operations A := n and V := U. The mappings ~ ~ J(~) and ~ ~ H(~) deter

mine a fundamental correspondence between the class of all finite distri

butive lattices and the class of all finite posets with zero (cf. Gratzer 

(1978), Theorem 9 and Corollary 10. pp. 61-62). 

Theorem 1.2. (i): Let ~ be a finite distributive lattice. Then the map

ping 

(1.1) ~ ~ H(J(~)) 

x ~ r(x) := {yEJ(~) IY~x} 

is a lattice isomorphism i.e., H(J(~)) =~. 
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(ii): Conversely let ~ be a poset with zero. Then the mapping 

(1.2) ~ ~ J(H(~)) 

x ~ sex) := {y~IY~x} 

is a poset isomorphism i.e., J(H(~)) ~~. 

The proof of (i) requires the following lemma. 

Lemma 1.2. Let x E J(~) and x1'···'~ E~. If x ~ xl V···V ~ then there 

exists i E {l,···,k} such that x ~ Xi. 

3 i: x A x. = x => 3 i: x < x .. 0 
1 - 1 

Proof of Theorem 1.2: (i) That r(x) E H(J(~)) and r(xAy) = r(x)Ar(y) 

follow trivially, while Lemma 1.2 implies that r(xVy) = r(x)Vr(y). Since 

~ is finite, x = Vr(x) for every x E ~, hence the mapping (1.1) is one to 

one. To show that (1.1) is onto, choose R E H(J(~)) and define x = YR. 

Clearly, R ~ r(x). If y E r(x), then y = yAx = yt\(VR) = V(yt\z IZER); Since 

Y E J(~) , this implies that y = yt\z for some z ER, i.e., y ~ z. As R is 

hereditary, y E R, hence r(x) = R. 

(ii): To see that sex) E J(H(~)) suppose that sex) = SlU S2 for Sl,S2 

E H(~). Since x E sex), without loss of generality assume that x E Sl· 

Then sex) .~ Sl' hence S2 ~ Sl' so sex) E J(H{~)). Trivially, x ~ y => 

sex) ~ s(y), x,y E P. Since x = sup sex), the mapping (1.2) is one to 

one. To see that (1. 2) is onto, choose S E J(H(~)) and let X ••• x, 
l' 'K 
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denote the maximal elements in S. Since S is a hereditary subset of ~. S 

= U(s(x.) li=l,···,k), while, since S is join-irreducible, 3 i such that S 
1 

= s(x.).O 
1 

Corollary 1.1. Every element in a finite distributive lattice has a 

unique join-irredundant representation as a join of join-irreducible 

elements. 

Proof: See Gratzer (1978), Corollary 13, p. 62.0 

The next proposi tion establihes the natural correspondence between 

homomorphisms of finite distributive lattices and homomorphisms of finite 

posets with zero. 

Proposition 1.2. (i): Let ~1 and ~2 be two posets with zero and let ~:~1 

~ ~2 be a poset homomorphism such that ~(o) = o. The mapping 

(1.3) H(~): H(~2) ~H(~l) 

h ~ ~-l(h) 

is a lattice homomorphism with the property H(~)(l) = 1. 

(ii): Conversely, let ~1 and ~2 be two finite distributive lattices 

and ~: ~1 ~ ~2 a lattice homomorphism such that ~(1) = 1. The mapping 

(1.4) J(~): J(~2) ~J(~l) 

x ~ inf{x'E~ll~(x' )~x} 
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is a poset homomorphism such that J(~)(O) = O. 

-1 -1 
Proof: (i): To see that ~ (S) € H(~l)' suppose that x € ~ (S) and y ~ 

x. Then ~(y) ~ ~(x) € S, hence y € ~-l(S). It is trivial to verify that 

H(~)(SlUS2) = H(~)(Sl)UH(~)(S2) and the analogous property for n. Also, 

-1 
H(~)(l) = H(~)(~2) = ~ (~2) = 1. 

(ii): To show that J(~)(x) € J(~l)' note first that {x'~ll~(x')LX} # 

o for every x € ~2 because ~(1) = 1. Let J(~)(x) = Y1 y ••• y Yk be the 

unique join-irredundant representation of J(~)(x) as the join of join-ir-

reducible elements (cf. Corollary 1.1). To see that k = 1, note that 

~(J( ~)(x)) = ~(Y1) y ••• y ~(Yk) L x € J{~2)· By Lemma 1.2, this implies 

that there exists i such that ~(y i) l x. Thus we have Y i l J( ~ )(x) = Y 1 

y ••• y Yk and therefore k = 1. Next for X,Y € J(~2) with x ~ Y we have 

J(~)(x) = inf{x'~ll~(x'nx} ~ inf{x'~ll~(x')lY} = J(~)(y). Finally, 

J(~)(O) = inf{x~ll~(X)lO} =inf{x~l} =0.0 

Remark 1.4. If the lattice ~. is identified with H(J(~.)) through (1.1) 
1 1 

and the poset ~. is identified with J(H(~.)) through (1.2), i=1,2, then 
1 1 

J(H(~)) = ~ and H(J(~)) = ~.O 

Remark 1.5. For the identity mappings id~ and id~ we have H(id~) = idH(~) 

and J(id~) = idJ(~). It can also be seen that if ~1:~1 ~ ~2 and ~2:~2 ~ 

~3 are homomorphisms of finite posets with zero such that ~1(0) = 0 and 

~ ~3 are homomorphisms of finite distributive lattices such that ~1(1) = 
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Proposition 1.3. (i): Let u:~o ~~, where ~o and ~ are finite distribu

tive lattices, be an injective lattice homomorphism such that u(l) = 1. 

Then J(u):J(~) ~ J(~O) is surjective. 

(ii): Conversely, let p:~ ~ ~O' where ~ and ~O are posets with zero, 

be a surjective poset homomorphism such that p(O) = O. Then H(p):H(~O) ~ 

H(~) is injective. 

Proof: (i): Let Xo E J(~O). We shall find x E J(~) such that J(u)(x) = 

xo. Since u(xO) E ~, there is a unique join-irredundant representation 

u(xO) = Xl V···V ~ of u(xO) as the join of join-irreducible elements. 

Since Xi ~ u(xO) we have J(u)(xi ) ~ xo' i=l,···,k, hence J(u)(x1) V···V 

J(u}(xn ) ~ xo· On the other hand, Xi ~ u(J(u)(xi )), i=l,··· ,k, so Xl 

V···V ~ ~ u(J(u)(x1)) V···V u(J(u)(~)) ~ u(xO). Thus Xo = J(u)(x1) 

V···V J(u)(~). Since Xo E J(~O)' there exists an i such that J(u)(xi ) = 

xo' as claimed. The proof of (ii) is trivial.D 
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2. THE LATTICE OF SUBSPACES OF A VECTOR SPACE. 

2.1. Distributive lattices of subspaces. 

Let V be a finite-dimensional real vector space with zero element Q. 

A subspace of V is a pair (L,u) consisting of a vector space L and an 

injective linear mapping u:L ~ V. (For example, in the definition of a 

linear model (cf. Section 3 ), L represents the parameter space and u 

the parametrization mapping.) Let (L, u) and (L', u') be two subspaces of 

V. If there exists an injective linear mapping v:L' ~ L such that u' = 

uov, then we write CL', u') ~ (L, v). Note that v is unique and that (L', v) 

is a subspace of L. The inclusion relation ~ is not antisymmetric on the 

set of all subspaces of V, but is antisymmetric on the set ~(V) of all 

equivalence classes of subspaces of V determined by the following equiv

alence relation: (L,u) ~ (M,v) if u(L) = v(M). Equipped with the ordering 

relation induced by ~ (also denoted ~), ~(V) becomes a poset. The usual 

representation of ~(V) is the set of all embedded subspaces in the clas

sical sense, that is, all pairs (L,u) where L is a subset of V closed 

under the vector space operations in V and u:L ~ V is the embedding (u(x) 

= x). (Usually we omit the embedding u and simply write L for (L,u).) For 

this representation, the relation ~ on ~(V) is the usual inclusion rela

tion for embedded subspaces. We shall study the structure of the poset 

~(V) through this representation. The usual vector space concepts such as 

intersection, sum, direct sum (ffi) and complement may be defined in ~(V). 

Since the poset ~(V) satisfies conditon (P4) of Section 1, ~(V) is a 

lattice with A and V defined by LAM := LnM and LVM := L+M = span{L,M}, 

L,M € ~(V). In fact, ~(V) satisfies a stronger condition namely: 
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(2.1) For any subset S ~ ~(V) the elements ~S := sup(S) (=spanS) and ns 

= inf(S) exist. Furthermore. there exist finite subsets SI,SO ~ S 

such that ~ = ~1 and ns = nsO' 

~(V) is a lattice with unit and zero given by the subspaces V and {Q} 

respectively. If dim (V) ~ 2 then ~(V) is not distributive and I~(V) I = 00, 

but ~(V) has finite length (= dim(V)+I). 

Lemma 2.1. Let L,M € ~(V) and let VL, VM be complements of LnM in L and M 

respectively. Then L + M = VLm(LnM)mvM. 

Proof: Staightforward from the definitions of direct sum and complement.D 

Let ~ ~ ~(V) be a distributive sublattice. Since ~(V) has finite 

length, so does ~, hence ~ is a· fini te by Proposi tion 1.1. Since ~ is 

finite, it has a unit 1 = 1~ and a zero 0 = O~. Note that in general, 1 ~ 

V and 0 ~ {Q} .. 

Theorem 2.1. (Decomposi tion Theorem). Let ~ ~ ~(V) be a distributive 

sublattice with V € ~. For L € J(~)~{O}, let VL be a complement of J(L) 

:= ~(L'~IL'CL) in L; for L = 0, let VL = O. Then 

(2.2) V = m(vL,IL'€J(~)) 

Proof: We shall need the fact that for any L € ~, the set ~ := 

{L'~IL'~} is a distributive lattice with L as the unit element and 
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(2.3) 

To prove (2.2) proceed by induction on IJ(~)I. If IJ(~) 1 = 1 or 2. 

(2.2) is immediate. For n~3 suppose that (2.2) is true whenever IJ(~) 1 ~ 

n-1. and assume that IJ(~) 1 = n. Suppose first that V€J(~). Then J(V) C V 

and IJ(~J(V)) I=IJ(~)\{V}I = n-1 by (2.3). hence 

J(V) = ffi(VL.IL'€JC~).L'~JCV)) 

by the induction hypothesis and (2.3). But V = VVffiJ(V). hence (2.2) 

holds. 

Next. suppose that V~J(~). Then V = L + M. where L.M € ~ with L C V and 

M C V. It follows from Lemma 1.2 that 

(2.4) {L'€J(~) IL'~}U{L'€J(~) IL'~} = JC~)· 

By (2.3) this implies that IJ(~) I<n. IJ(0) I<n and IJ(~) I<n. By in-

duction and (2.3). 

L = ffiCYL, IL'€JC~).L'~ ) = 

Cffi(:L' IL'€JC~).L'~.L'gLnM)) Ell Cffi(VL, IL'€JC~).L'SLnM)) = 

ffiCVL' IL' €JC~).L' ~.L' gLnM)ffiCUIM). 

and an analogous formula holds for M. namely 

M = ffiCVL' IL'€JC~).L'~.L'gLnM)EIlCUIM). 

By Lemma 2.1 and C2.4). 

V=L+M= 

ffiCVL' IL'€JC~).L'~.L'gLnM)) ffi CffiCVL' IL'€JC~).L'~)) ffi 

CffiCVL' IL'€JC~).L'~.L'gLnM)) = ffiCVL' IL'€JC~))·D 

For any L € ~. we may apply Theorem 2.1 with V and ~ replaced by L 
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and ~and invoke (2.3) to obtain 

(2.5) L = al(VL , IL'EJ(~).L'g.,). L~. 

We call (2.5) a decomposition of L~ with respect to ~. It is not unique. 

since for every LEJ(~) the complement VL can be choosen in many ways. 

(Compare with Theorem 2.2.) 

Remark 2.1. In fact any (abstract) finite distributive lattice A can be 

represented as a distributive sublattice ~ ~ ~(V) for some finite -dimen-

sional vector space V with V E ~. One such representation is constructed 

as follows. For each x E J(A) let V be an arbitrary finite -dimensional x 

vectorspace of dimension ~ 1. Define 

V = al(V ,lx'EJ(A)) x 

and 

Then ~ := {LxlxEA} ~ ~CV) is a distributive sublattice and the mapping x 

~L of A onte ~ is a lattice isomorphism. x 

2.2. Geometrically orthogonal lattices of subspaces. 

Linear statistical models and variance component models are defined 

on a real vector spaces V equipped with an inner product 0 (cf. Section 3 

and 4). In the remainder of Section 2 we study the interplay between the 

distributive property for a sublattice ~ ~ ~(V) and a geometric orthogon-

ality property (with respect to 0) of the subspaces in ~. 

Let 0 be an inner product on V. i.e .. o:VxV ~ ffi is a positive defi-

ni te form. If CL. u) is a subspace of V the mapping 00 (uxu) becomes an 

* inner produQt on L. The adjoint linear mapping u : V ~ L with respect to 

* Cwrt) 0 and oo(uxu) defined by the equation o(x,u(z)) = oo(uxu)(u (x).z) 
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* (:o(u(u (x)).u(z)), VxEV. VzEL is called the orthogonal projection onto 

(L.u) (or just onto L) wrt O. This should not be confused with the linear 

* mapping qL:= UOU :V ~ V which is usually called the orthogonal projection 

on L. The mapping qL depends on (L.u) only through its equivalence class. 

-1 
The complement qL (0) = (E ~(V)) of L in V is called the orthogonal com-

plement of L in V wrt O. and is denoted by L~. 

Definition 2.1. Two subspaces L.M E ~(V) are called geometrically ortho-

gonal (g.o.) wrt 0 if the orthogonal projections qL and qM commute. i.e .. 

qLqM = qMqL' A subset ~ ~ ~(V) is called geometrically orthogonal wrt 0 

if every pair L.M E ~ is g.o.D 

If L and M are g.o. wrt 8 then 

(2.6) 

(2.7) 

Furthermore. one can easily see that L and M are g.o. wrt 0 if and only 

if the two subspaces Ln(LnM)~ and Mn(LnM)~ are orthogonal wrt o. 

Remark 2.2. Let ~ ~ ~(V) be a g.o. subset and let ~ be the smallest lat-

tice containing ~. Any element in ~ is obtained from ~ by means of fi-

nitely many binary operations using n and + (cf. Gditzer (1978) p. 27 

Lemma 3). It follows from (2.6) and (2.7) that ~ is also g.o.D 
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Proposition 2.1. Let the sublattice ~ ~ ~(V) be geometrically orthogonal 

wrt D. Then ~ is distributive, hence finite. 

Proof: Let L.M.N E ~ and let qL,qM and qN be the corresponding orthogonal 

projections. Since they all commute. it follows from (2.6) and (2.7) that 

the orthogonal projections on Ln(M+N) and (LnM)+(LnN) are qL(qM+qN-qMqN) 

and qLqM+qLqN-(qLqM)(qLqN) respectively. Since these two orthogonal pro

jections are identical it follows that Ln(M+N) = (LnM)+(LnN). and thu 

that ~ is distributive. The final assertion is immediate from Proposition 

1.1.0 

By Proposition 2.1 and Remark 2.2. if ~ ~ ~(V) is g.o .. it must be 

finite. 

The following result is a partial converse to Proposition 2.1. 

Proposition 2.2. Let ~ ~ ~(V) be a distributive sublattice. Then there 

exists an inner product 0 on V such that ~ is geometrically orthogonal 

wrt D. 

Proof: Without loss of generality we may suppose that V E ~. Consider a 

decomposition (2.2) of V wrt ~. Then we can choose an inner producer 0 

such that the direct sum in (2.2) becomes orthogonal wrt O. It follows 

from (2.5) that all pairs L,M E ~ are g.o. wrt O. 0 

Theorem 2.2. (Orthogonal Decomposition Theorem). Let the sublattice ~ ~ 

~(V) be geometrically orthogonal wrt O. For L E J(~) choose each comple-

ment VL in Theorem 2.1 to be the orthogonal complement of J(L) in L wrt 

J. D. i.e., VL = LnJ(L) . Then the direct sums (2.2) and (2.5) become ortho-
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gonal wrt o. 

Conversely, if the direct sum in (2.2) is orthogonal wrt 0, then VL = 

LnJ(L)~, L € J(~)~{O}. 

Proof: Let L,M€J(~) with L ~ M. Then the orthogonal projections on VL and 

VM become r L = qL-qJ(L) and r M = qM-qJ(M) respectively. Since all qN' 

N~. commute, rL and rM commute, hence VL and VM are g.o. wrt o. Since 

, VL n VM = {Q}, they must be orthogonal wrt 0.0 

Remark 2.3. When V is equipped with an inner product 0 and a direct sum 

is orthogonal wrt 0, it will be written with the symbol ~ rather than ffi.O 
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3. GEOMETRICALLY ORTHOGONAL DESIGNS OF NORMAL LINEAR MODELS. 

3.1. The linear statistical model. 

Let V # {Q} be a finite-dimensional vector space and 0 a fixed inner 

product on V. Every subspace (P.u) of V together with 0 determines a 

normal regression model in the following well-known way: the observation 

space is V. the parameter space is Pxffi+, where ffi+ = JO.oo[. and the set of 

unknown probability measures on V consists of the normal distributions 

with mean u(f) and precision a-20. where (f.a2 ) E Pxffi+. The vector space 

P and the mapping u are the parameter space for and the parametrization 

of the mean value subspace (= regression subspace) L = u(P). It is well 

known that the maximum likelihood (ML) estimator (~.~2) for (f.a2 ) E pxffi 
+ 

'exists with probability 1 if and only if P is a proper subspace of V. In 

this case the ML estimator is unique and is given by 

(3.1) (~.~2)(x) = (p(x).o(x-q(x))/n). x E V. 

where p:V 7 P is the orthogonal projection wrt O. q = uop. n = dim(V). 
, 

and o(x):=o(x.x). x E V. The ML estimator is a minimal sufficient statis

tic and its distribution can be described in the following way: ~ and ~2 

are independent. ~ is normally distributed on P with mean f and precision 

a -200 (uxu). and ~2 is X2-distributed wi th n-n' degrees of freedom and 

1 2/ h 'd· (P) U 11 h b O d ° 2 sca e a n, were n = Im . sua y one uses t e un lase estImator s 

= ~2n/(n-n')o It is thus seen that the solution to the likelihood infer-

ence problem is reduced to the algebraiC problem of representing p and 

calculating dim(P). In the calculation of ~2 or s2 one uses the formula 
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o(x-q(x)) = o(x)-o(q(x)), x€ Y. 

3.2. Nested designs of linear models. 

We now discuss a simple case of a geometrically orthogonal (g. o. ) 

design of normal linear models (the general case is defined in Section 

3.3). Let 

(3.2) 

where idy is the identity mapping, be a nested family of subspaces in V. 

These subspaces are trivially pairwise g. o. and together with 0 they 

determine k+l linear models. The likelihood ratio (LR) statistic Qij for 

testing model i against model j, O~i<j<k, is given by 

(3.3) 

where 

Under 

grees 

Q .. (x)2/n 
IJ 

o(x-q/x) ) 
= o(x-q.(x)) , x € V, 

1 

q.:y -7 V is the orthogonal projection onto u.(P.), i=O,l,---,k. 
III 

d 1;· Q2/n h h b d· ·b· . h d d mo e 1, .. as t e eta Istrl utlon WIt nk-n. an n.-n. e-
IJ J J 1 

of freedom, where n. = dim(P.), (n = ~) which does not depend on IlK 

the unknown parameters. Furthermore, Qk-2,k-l,---,Qi,i+l and the ML esti

mator (~,~2) in model i are independent under model i, i = O,···,k-2. The 

calculation of these statistics do not require any new quantities. There-

fore, the testing problems also reduce to the algebraic problem described 

above. 

The ANOYA table associated with the design (3.2) is as follows: 
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(3.4) 

where SSD.(x) = 5(q.(x)-q. l(x)). i=l.···.k. and SSDO(x) = 5(qO(x)). x € 
1 1 1-

V. fi = n i -ni _1• i=l,···.k. and fO = nO' All quantities needed to calcu

late the LR test statistics Q ..• O~i<j<k, and the ML estimators of 0 2 
1J 

under the models 0.1,···.k-1 are readily obtained from this table. The 

ANOVA table (3.4) arises from the orthogonal decomposition of V deter-

mined by the subspaces (3.2) and 5: 

(3.5) 

where L. = u.(P.). i=O.l.···.k. 
III 

3.3. Geometrically orthogonal designs. 

The reader is undoubtedly familiar with the classical examples of 

balanced ANOVA designs. where such orthogonal decompositions of V and 

ANOVA tables may also be defined and possess analogous properties to 

(3.4) and (3.5). e.g., balanced multi-way ANOVA and split plot designs. 

Furthermore. it is wellknown that in unbalanced designs. no such decompo-

sitions and tables exist (cf. Examples 3.4 and 3.13). It is the main aim 

of this section to characterize those designs (= families of linear re-

gression models) where suitable decompositions and ANOVA tables exist. In 

this generali ty. this question has not yet been adequately answered in 

the literature. It will be shown that these are exactly the geometrically 

orthogonal (g.o.) designs. 

We shall show that a design is g.o. only if its lattice ~ of regres-
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sion subspaces is distributive. Furthermore, in this case the structure 

and analysis of the design (eg., the contrast estimates and ANOVA table) 

are uniquely and unambiguously determined by the contrast subspaces in-

dexed by J(~), the poset of join-irreducible elements of ~. 

Let ~ ~ ~(V) be a family of embedded subspaces of V. Let (PL,uL ) be a 

subspace of V such that uL(PL ) = L, L € ~. We refer to the family of 

linear models determined by the subspaces (PL , uL), L € ~, and by the 

fixed inner product 0, as a design of linear models. If ~ is g.o. wrt 0 

it follows from Remark 2.2 and Proposition 2.1 that the smallest lattice 

~ containing ~ is g.o., hence distributive, and thus finite. The exten

sion from ~ to the lattice ~ is statistically natural, since interest in 

the models corresponding to the subspaces in ~ implies interest in the 

models corresponding the subspaces obtained from ~ by means of the oper

ations + and n. The g.o.condition on ~ insures ~ is finite. (Without the 

orthogonality condition ~ may be infinite even if ~ is finite.) 

Definition 3.1. For a fixed inner product 0 on V, let ~ be a geometrical

ly orthogo~l (hence distributive and finite) lattice of embedded sub

spaces of V. Let (PL,uL ) be a subspace of V such that uL(PL ) = L, Let. 

The design determined by ((PL,uL ) IL€~) and 0 is called a geometrically 

orthogonal design of linear models. When there is no danger of confusion 

we simply refer to the g.o. design determined by ~.o 

Remark 3.1. If ~ is a g.o. lattice of embedded subspaces of V, then the 

lattice ~{V} is also a g.o. lattice. For notational convenience we here

after assume without loss of generality in Definition 3.1 that V € ~. The 
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nested chain of linear models given by (3.2) is trivially a g.o. design.D 

3.4. Contrast vector estimates and the ANOVA table. 

We now show that each g.D. design of linear models determines a de-

composition of V together with an associated ANOVA table from which every 

2 LR test statistic Q and variance estimator s within the design may be 

obtained, together with their distributions. 

Consider a g.o. design of linear models determined by the family 

((PL,uL)IL~) of subspaces in V and the inner product o. From Theorem 2.2 

and Remark 2.3 we obtain the orthogonal decompositions 

(3.6) 

(3.7) 

.L where VL = LnJ(L) , L € J(~). Next for L €J(~), let rL:V ~ V denote the 

orthogonal projection onto VL , SSDL(x) := o(rL(x)), x € V, and f L := 

dim(VL). The contrast (vector) estimates and the analysis of variance 

(=ANOVA) table corresponding to an observation x € V are then defined as 

the families 

(3.8) (rL (x) IL€J(~)) 

and 

(3.9) 

respectively. Often, the quantities s~(x) also appear in the table, where 
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s~ := SSDL/fL , L € J(~). The mean value ML estimators ~L' L~, (see 

(3.10)) can readily be obtained from the contrast estimates (see (3.12)), 

and the variance estimators s~L' L~, (see (3.10)) and LR test statistics 

QMN' M,N~, (see (3.11)) can readily be obtained from the ANOYA table, 

together with their distributions, (see Remark 3.2 below). 

3.5. Estimation and testing in a geometrically orthogonal design. 

For L €~, let PL:Y ~ PL denote the orthogonal projection onto PL , qL 

.= uLoPL ' SSL(x) = o(qL(X)) , x€ y, nL := dim(L) (= tr(qL))' and n := ny . 

For N € ~, N C Y, the statistics ~N and s~N given by 

(3.10) 

are the mean value ML estimator for t € PN and the unbiased estimator for 

a2 € ffi+ under the model corresponding to N; ~N is normally distributed on 

PL with mean tN and with precision a-2oo(uNxuN) (or equivalently with 

. 2 -1 t t t * *. . var1ance a 0 ° (PNxPN), where PN:PN ~ Y 1S the dual mapp1ng 

s~N is X2 distributed with ny-nN degrees of freedom and scale 

to PN), and 

2 
a /(ny-nN). 

For M € ~ and MeN C y, the LR statistic QMN for testing the linear 

model corresponding to M against that corresponding to N is given by 

(3.11) 

under the null hypothesis, Q~n has the beta distribution with ny-nN and 

nN-nM degrees of freedom. 
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Remark 3.2. In order to calculate the contrast estimates and the ANOVA 

table proceed as follows. For an observation x € V begin by calculating 

qM(X) , SSM(x), and ~ for all M € J(~). The following formulas are im

mediate from (3.6): 

(3.12) 

(3.13) 

(3.14) 

qM = 2(rLIL€J(~).LbM), M € ~. 

SSM = 2(SSDLIL€J(~),LbM), M € ~, 

~ = 2(fLIL€J(~),LbM), M € ~. 

The equations (3.12-14) for M € J(~) are then solved using the Mobius 

function ~ for J(~) to obtain: 

(3.15) 

(3.16) 

(3.17) 

r M = 2(~(L,M)qLIL€J(~)), M € J(~), 

SSDM = 2(~(L,M)SSLIL€J(~)), M € J(~), 

fM = 2(~(L,M)nLIL€J(~)), M € J(~). 

From these equations the contrast estimates (3.8) and the ANOVA table 

(3.9) are obtained. Finally one uses (3.12-14) again to calculate qM(X) , 

SSM(x) and nM, for M € ~\J(~).D 

Remark 3.3. If L € J(~), then we refer to L as a subspace of main effect 

and VL as the subspace of the associated contrast (= contrast vectors). 

This agrees with the terminology used in classical ANOVA examples.D 

If the family ~ of subspaces of interest is not g.o. wrt 0, but the 

smallest lattice ~ containing ~ is still distributive (hence fini te), 
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then the decompositions in (3.6-7) are not orthogonal (eg. Example 3.4). 

This implies that (3.12). (3.13), (3.15) and (3.16) are not valid. In 

this situation estimators and LR statistics cannot be determined from the 

contrasts and the ANOVA table. Furthermore, the SSD statistics defined by 

(3.16) are not independent. (Note that by Proposition 2.2, in this case 

'" there does exist some other inner product 0, i. e., another precision 

structure, such that ~ becomes g.o. wrt 6. However, 6 may not be statis-

tical meaningful.) If ~ is not distributive but still finite the decompo-

si tion of V cannot be defined. These considerations show that theonly 

designs of linear models for which meaningful and useable decompositions 

and ANOVA tables can be defined are the g.o. designs. 

3.6. Orthogonal factor-generated designs. 

Tjur (1984) has studied a subclass of g.o. designs of linear models, 

namely, the class of analysis of variance designs wi th orthogonal fac-

tors. His treatment and formulation of such designs is essentially the 

same as ours, with one important difference. The cardinality of Tjur's 

set ~ (= the set of all factors in the design - see below) used by him to 

index his orthogonal decomposition of the observation space (Tjur, p. 42) 

and to index his ANOVA table (Tjur, Section 5) may be strictly greater 

than the cardinality of our set J(~~) (= the set of all jOin-irreducible 

elements of the lattice ~~ determined by ~ - see below). Thus his decom

posi tion and ANOVA table may contain trivial components and entries, 

whereas ours does not (cf. (3.6-9)). This reflects the fact that, in the 

general g.o. design, the index set J(~) has a fundamental connection with 

the lattice structure ~ of the design of subspaces. 
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We briefly review the formulation and notation in Tjur (1984) and 

compare them to ours. In Tjur (1984) the observation space is V = IRI , 

with I a finite index set, 0 is the usual inner product, and the design 

of linear models is determined by a finite set !fl) of orthogonal factors. A 

factor is a mapping F:I ~ F, where F is a finite set. We shall in the 

present work suppose that factors are surjective. Usually one simply 

refers to "the factor F", subsuming the mapping F:I ~ F from the context. 

Two factors are said to be equivalent if they induce the same partition 

of I. The set ~(I) of equivalence classes is finite and is equipped as a 

poset by the ordering ~ given by: Fl ~ F2 if the partition induced by F2 

is finer than that induced by F l' By convention we do not distinguish 

between equivalent factors, hence speak of a factor as an element of 

~(I). In fact. ~(I) becomes a finite lattice with the one point set 0 as 

the minimal element and I as the maximal element. 

A factor F defines a subspace (PL,uL) of IRI in the following way: 

(3.18) 

. F PL .= IR , 

L := ~ := {{XF{i)liEI)EIRII{XflfEF)EIRF}, 

uL((xflfEF)) = (xF{i) liEI). 

The matrix XF for uL is given by (XF)if = 1 if F{i) = f and 0 otherwise. 

I F 
Thus the matrices for the orthogonal projections PL: IR ~ IR and qL = 

I I t -1 t t -1 t. . 
uLoPL: IR ~ IR become (XfXF) Xi and XF(XfXF) XF respectlvely. The matrlx 

t I ,-I , (XfXF) is diagonal with diagonal (nf fEF), where nf = F (f) , f E F. 

For x = (x. liEI) E IRI it follows that 
1 



(3.19) 

where 

(3.20) 

Futhermore, 

(3.21) 

and 

(3.22) 
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= (_1 SF(.)(x) liEI), 
nF(i) 1 

I -1 
Sf(x) = 1(xi iEF (f)), fEF. 

It is obvious that equivalent factors correspond to equivalent sub

spaces and that the mapping F ~ LF of ~(I) into ~(ffiI) is an injective 

homomorphism of posets with the property 

(3.23), LFAG = L~G' F.G~(I). 

In the sequel. we shall frequently denote ~ simply by F. 

It is seen from the definition of orthogonal factors in Tjur (1984) 

that two factors are orthogonal if and only if the corresponding sub-

spaces are :g.o. Since ~ is assumed to consist of orthogonal factors, the 

lattice ~ =:£~ generated by.A( =.A(£lj := {~IFE~} is g.o .. therefore distri

butive and finite. Note that ~ and .A(~ are isomorphic posets. It is seen 

from (3.23) that there is no loss of generality if one supposes that ~ is 

closed under A; hence. as in Tjur (1984). we subsequently assume this. 

In order to complete the comparison of our treatment with that of 

Tjur (1984) for this special case of orthogonal factor-generated designs, 

it is seen that only one question remains: what is the relation between 

theposet J(:£~) of join-irreducible elements and the poset .A(~ of factor 
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subspaces? It is routine to check that in general one has .M~ 2 J(~~); 

furthermore. this inclusion may be strict (cf. our Example 3.11 and sub-

sequent Remark 3.4). When .M~ J J(~~) all terms in Tjur's decomposition 

(p. 42) and ANOVA table (Section 5) that are indexed by F € .M~'J(~~) will 

be trivially O. By contrast, no term in our decomposi tions (3.6-7) and 

ANOVA table (3.9) is trivial. 

When ~ = ~~ is generated by a set of orthogonal factors. the quan

tities qM' SSM' and nM' M € J(~~) (~.M~) needed in Remark 3.2 are immedi

ately obtained from (3.19-22). Thus to complete the determination of the 

contrast estimators and ANOVA table, as outlined in Remark 3.2, it re-

mains only to find the subposet J(~~) of .M~ and to find the Mobius func

tion for J(~~). 

3.7. Examples. 

In the remainder' of this section we present a series of examples to 

illustrate the specification and analysis of g. o. designs of linear 

I models. In each example, V = ffi and 0 is the usual inner product. Many of 

our examples treats factor-generated designs, in which (following (Tjur 

(1984)) we identify the isomorphic posets ~ and .M~. Also in each figure 

below. the elements of J(~) are circled on the graph of the poset ~. 

Example 3.1. (Homogeneous observations == the LLd. case). Let ~ = {I,O}. 

Then ~~ = J(~~) = ~ (see Figure 3.1) and the Mobius function for J(~~) is 

specified by ~(O,I) = -1.0 

Example 3.2. (One-way analysis of variance). Let G be a finite set with 
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IGI~2 and let Ig be finite sets with IIgl~l, g € G. The set G indexes the 

distinct groups of observations, while the set I indexes the observa
g 

tions within the group with index g € G. Suppose that there exists at 

least one g € G such that IIgl~2. Set I = U(Iglg€G) and let ~ = {I,G,O}, 

where the factor G:I ~ G is given by G(gi) = g, gi€I , g€G. (The notation 
g 

gi is the usual subscript notation indicating an observation within group 

g.) Here ~~ = J(~~) = ~ is a chain of three elements (see Figure 3.2) and 

the Mobius function for J(~~) is specified in Remark 1.1.0 

Example 3.3. (Comparison of several one-way analyses of variance). Let H 

be a finite set with IHI~2, let Gh be finite sets with IGhl~2, h€H and 

let Ihg be finite sets hgEGh , hEH. Suppose that there exist at least one 

h € H and one hgE~ such that IIhgl~2. Set I = U(U(Ihglg€Gh) IhEH) and set 

~ = {I,G,H,O}, where G = U(GhlgEH), H(hgi)=h, G(hgi)=hg, hgi€Igh,hg€Gh' 

h€H. As in the previous examples ~~ = J(~~) = ~ is a chain (see Figure 

3.3) and the Mobius function is specified in Remark 1.1.0 

Example 3.4. (Two-way analysis of variance). Let G = RxC, where R (for 

rows) and C (for columns) are finite sets with IRI~2, Icl~2 and let 

I(r,c) be a finite set with II(r,c) I~l, (r,c)ERxC. Suppose that there 

exists at least one (r,c)ERxC such that II(r,c) 1~2. Set 

I:U(I( ) l(r,c)ERxC) and let CfJ) = {I,RxC,R,C,O}, where RxC((r,c)i) = r,c 

(r,c), R((r,c)i) = r, CCCr,c)i) = c, (r,c)i€I , (r,c)€RxC. Then ~ is rc 

closed under A and the corresponding subspaces are g.o. if and only if 

II(r,c)IIII = IIr.III.c l , (r,c)ERxC, where IIr. 1=2:(II(r,c) I IcEC), rER, 

and II. c l=2:(II(r,c) I IrER), cEC. The lattice ~~ consists of the five fac-
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tor subspaces and the subspace ~+LC' Thus ;e~ :J J(;e~) = ~ (see Figure 

3.4). The Mobius function is specified by ~(RxC,I) = ~(R,RxC) = ~(C,RxC) 

= ~(O,R) = ~(O,C) = -1 and ~(O,RxC) = 1.0 

Example 3.5. (Multi-way analysis of variance with one observation per 

cell). Let J be a finite set with IJI~2 and let Kj be finite sets with 

IKjl~2, j€J. Set I = X(Kjlj€J). For any B~J define FB = X(Kjlj€B) and let 

FB:I~B be the projection mapping i.e., FB((kjlj€J))=(kjlj€B), 

(kjlj€J)€I. Set ~ = {FBIB€~(J)} (see Remark 1.1). Then ~ is closed under 

A since FBAFC = FBnC, B,C€~(J). Furthermore FBVFC = FBUC shows that ~ is 

also closed under V. Also, all factor subspaces are g.o. It is seen that 

;e~ :J J(;e~) = ~ (see Figure 3.5 for J = {a,b,c}) and, since ~ is isomor

phic to ~(J) as a poset, the Mobius function is specified by ~(B,C) = 

(-1) Icl-IBI, <:::;;2B(cf. Remark 1.1). Note that the ANOVA table is indexed 

by ~(J).O 

Example 3.6. (Comparison of several two-way analyses of variance with one 

observationyer cell). Let G be a finite set with IGI~2 and let Rg and Cg 

be finite sets with IRgl~2 and ICgl~2, g€G. Set I = U(RgxCglg€G) and ~ = 

{I,RG,CG,G,O}, where RG = U(Rglg€G), CG = u(cglg€G), 

RG(g(r,c))=gr,CG(g(r,c))=gc and G(g(r,c))=g, g(r,c)€RgxCg , g€G. The fac

tors are g.o. and ;e~ :J J(;e~) = ~ (see Figure 3.6). The Mobius function is 

specified by ~(RG' I) = ~(CG' I) = ~(G,RG) = ~(G,CG) = ~(O,G) = -1 and 

~(G, I) = 1.0 
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Example 3.7. (Split-plot design). Let G, R , C , g € G be as in Example 
g g 

3.6 and suppose that R =R is independent of g € G. Under this assumption 
g . 

we can add the factor R given by R(g(r,c))=r to the factors in Example 

3.6 to obtain the split-plot design ~ = {I,RG,CG,G, R,O}. As in the pre

vious examples every factor subspace is join-irreducible, i.e., J(~~) = ~ 

(see Figure 3.7). The Mobius function is specified by ~(RG,I) = ~(CG,I) = 

~(G,CG) = ~(G,RG) = ~(R,RG) = ~(O,R) = ~(O,G) = -1 and ~(G,I) = ~(O,RG) = 

1.0 

Example 3.8. (Two-way comparison of several two-way analyses of variance 

with one observation per cell). In Example 3.6 replace G by GxH, where H 

is a finite set with IHI~2. Then we can add to the factors in Example 3.6 

the factors G and H given by G((g,h)(r,c))=g and H((g,h)(r,c))=h, 

(g,h)(r, c) €Rgh x Cgh , (g,h)€GxH, to obtain ~ = {I.RGxH,CGxH,GxH,G,H,O}. 

Here again ~~ ~ J(~~) = ~ (see Figure 3.8). The Mobius function is speci

fied by ~(RGxH,I) = ~(CGxH,I) = ~(GxH,RGxH) = ~(GxH,CGxH) = ~(G,GxH) = 

~(H,GxH) = ~(O,G) = ~(O,H) = -1 and ~(GxH,I) = ~(O,GxH) = 1.0 

Example 3.9. (Two-way spli t-plot design). In Example 3.8, suppose that 

R(g,h)=Rg , g€G is independent of h€H (cf. Example 3.7). Then we can add 

the factor RG = U(Rglg€G) given by RGCCg,h)(r,c))=gr, (g,h)(r,c) € 

R xC h' (g,h)€GxH, to the factors in Example 3.8 to obtain ~ = 
g g 

{I,RGxH,RG,CGxH,GxH,G,H,O}. Again ~~ ~ J(~~) = ~ (see Figure 3.9). The 

Mobius function is specified by ~(RGxH' I) = ~(CGxH' I) = ~(GxH,RGxH) = 

~(GxH,CGxH) = ~(G,RG) = ~(G,GxH) = ~(H,GxH) = ~(O,G) = ~(O,H) = -1 and 

~(GxH,I) = ~(G,RGxH) = ~(O,GxH) = 1.0 
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Example 3.10. (Two-way analysis of variance with one observation per cell 

and subdivision of rows and colums) In Example 3.9 suppose furthermore 

that C{g,h)=Cb' hEH. is independent of gEG. Then we can add the factor CH 

= U{~lhEH) given by Sr{{g,h)(r,c))=hc, ghrcERgx~, (g,h)EGxH to the 

factors in Example 3.9. obtaining qj = {I.RGxH,RG,CGxH'CH,GxH.G,H.O}. 

Again ~qj J J{~qj) = qj (see Figure 3.10) and the Mobius function is speci-

fied by ~(RGxH,I) = ~(CGxH.I) = ~(RG,RGxH) = ~(CH,CGxH) = ~(GxH,RGxH) = 

~(GxH,CGxH) = ~(G,RG) = ~(H,CH) = ~(G,GxH) = ~(H,GxH) = ~(O,G) = ~(O,H) = 

-1 and ~(GxH,I) = ~(G.RGxH) = ~(H,CGxH) = ~(O.GxH) = 1.0 

In each of the preceding examples. qj = J{~qj)' the poset J{~qj) is a 

lattice (i.e .. qj is closed under maximum (V) in ~(I)) and. in fact. even 

a distributive lattice. Thus the Mobius function for J{~qj) readily can be 

determined from Remark 1.3. The next example presents a case where again 

qj = J{~qj)' J{~qj) is a lattice, but not a distributive lattice. 

Example 3.11. (Latin square). Let R (for "Rows") ,C (for" Columns") and G 

(for the th~rd index) be finite sets with IRI =ICI"= IGI L 3 and let I ~ 

RxCxG be a subset such that the factors RxC, CxG and RxG on RxCxG. when 

restricted to I. are equivalent to 1. Set qj = {I.R,C,G,O}. Then ~qj J 

J{~W) = qj (see Figure 3.11) and W is not distributive. The Mobius func

tion is specified by ~(R,I) = ~(C,I) = ~(G,I) = ~(O,R) = ~(O,C) = ~(O,G) 

= -1 and ~(O,I) = 2.0 

Remark 3.4. If we take IRI=lcl=IGI=2 in Example 3.11 we obtain an example 

where qj J J(~qj) (see Figure 3.12) and J(~W) is not a lattice. (Note that 
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~ is still closed under V in ~(I).) In this example our ANOVA table (3.9) 

is different from Tjur (1984) (though not essentially different) since 

ours does not include term indexed by the factor I. Nevertheless in 

Tjur's ANOVA table the term indexed by I will be trivially O. Thus, fac-

tor subspaces are not always join-irreducible.D 

In the following three examples ~ is not a factor-generated analysis 

of variance design, hence (strictly speaking) these examples fall outside 

realm of Tjur's paper, but the sample space decompositions (3.6-7), the 

contrast estimates (3.8), and the ANOVA table (3.9) are still well-de-

fined. Of course, the formulas (3.19-22) are not applicable for those 

subspaces L E J(~) that are not factor subspaces. Therefore in order to 

analyze these designs, we must find J(~), calculate qL' SSL' and nL for 

the remaining subspaces, and determine the Mobius function onJ(~). 

Example 3.12. (Regression analysis). In the one-way analysis of variance 

(Example 3.2), assume thatlGI~3 and suppose that the qualitative index 

gEG is quantified by the family (t EmlgEG), where I{t IgEG} I ~ 2. Set ~ = 
.; g g 

{mI ,LG, T,LO}. where T is the subspace given by PT = m2 and ~(a,f3) = 

(a+f3t IgiEI) E mI . Since ~ is a chain, J(~) = ~ and the Mobius function g 

is trivial. Set St = 2(11 It IgEG), t = St/III, SSt = 2(11 It2 IgEG) , g g. g g 

SSDt = SSt-S~/I1I, Sptex ) = 2(Sg(X)tg IgEG). and SPDt(x) = SPt(x)-

StSO(x)/III, where Sgex) and SO(x) are defined as in (3.20), xEm1. Then 

qT(x) = (~(x)+~(X)tglgiEI), 

SST(x) = (~(x)+~(x)t.)2+~(x)2SSDt' 

~ = 2, 
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Example 3.13. (Comparison of several regression lines). In Example 3.3, 

suppose that the qualitative index hg E G = U(~/hEH) is quantified by 

the family (thgEm/hgEGh,hEH), where l{thg/hgEGh}/ ~ 2 for at least one h 

I E H. Set ~ = {m ,LG,L,T+Lu,T'Lu,LO}' where T and L are subspaces given by 

2 I. I 2 H / PT = m , ~(a.~) = (a+~thg hglEI) Em, PL = (m ) , uL(((~'~h) h€H)) = 

(~+~hthg/hgiEI) E mI , respectively. Here ~ is a distributive (not neces

sarily g.o.) lattice with J(~) = ~\{T+Lu} (see Figure 3.13). The Mobius 

function onJ(~) is specified by ~(LG.mI) = ~(L,LG) = ~(T.L) = ~(Lu,L) = 

~(LO' T) = J.1.(Lo'Lu) = -1 and ~(LO,L) = 1. Set S~ = 2:( / Ihg / t hg /gEGh), 

I Ih _ I = 2:( / Ihg I/gEGh), t h • = S~/ I Ih _ /. SS~ = 2:( I Ihg / t~g /gEGh), SSD~ = 

h h 2 / / hi - / I -SSt -CS!:) / Ih _ ' h€H. Also set St = 2:(St hEH). t.. = St/ I , SSDt = 

2:(SSD~ IhEH), SS~ = 2:(SS~ IhEH). SSDt = SS~ _(S~)2 / I I I. Furthermore, set 

SP~ (x) = 2: ( t hg Shg (x) / gEGh) . SPD~ (x) = SP~ (x) -S~Sh (x)/ I Ih • /' hEH, and 

• hi· hi· SPDt(x) = 2:(SPDt (x) hEH) , SP t(x) = 2:(SP t(x) hEH) , SPDt(x) = SP t(x)-

S~SO(x)/III, where Shg(x) , Sh(x) and SO(x) are defined as in (3.20), x E 

/RI. Then 

and 

qL(x) = (~(x)+~h(x)thg/hgi€I), 
A ~ - 2 ~ 2 hi SSL(x) = 2:((~(x)+Ph(x)th.) +Ph(x) SSDt hEH). 

nL = 2/HI. 

qT(x) = (~(X)+~(X)thg/hgiEI), 

SST(x) = (~(x)+~(x)t •• )2II/+~(x)2SSDt' 

~ = 2, 
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where ~h(x) = SPD~(X)/SSD~, ~Cx) = Sh(x)/IIh.I-~h(x)th.' hEH. ~(x) = 

SPDt(x)/SSDt , and ~(x) = SO(x)/III-~(x)t ••. The subspaces ~ and Tare 

not in general g.o.; nevertheless the projection qM on M := T+~ is 

easely found to be qM(x) = (~(x)+~(x) t hg IhgiEI) E IRI , where ~h (x) = 

SPD~(x)/SSD~ (= 2:(SSD~h(x) IhEH)/SSD~) and ~(x) = Sh(x)/IIh.I-~Cx)th.' 

hEH, xEIRI. Also SSM(x) = 2:((~(x)+~(x)th.)2IIh. I IhEH)+~(x)2SSD~, and 

dim(M) = IHI+1. The subspaces T and ~ are g.o. if and only if the = t •• _ 

hEH. and only in this case may the ANOYA table be defined. Furthermore, 

in this case ~(x) = ~(x), xEIRI.o 

From a distributive lattice point of view, the next example is ident-

ical to the Latin square design in Example 3.11. 

Example 3.14. (Two-way analysis of variance with one observation per cell 

and regression in the rows). In Example 3.4 suppose that IIC ) I = 1, r,c 

(r.c)ERxC, i.e., I = RxC. Also suppose that the family (t EIRlrER) is a 
r 

quantification of the qualitative index rER such that l{trlrER}I L 2 and 

2:(trlrER) O. Let ';£ = {IRI,~+U+Y,U+y,~+y,~+u,Y,U,~,T}, where the 

subspaces T. U and Y are given by PT = IR2, ~Ca.7) = Ca+7trl(r,c)EI) E 

IRI C I I I C • Pu = IRxlR, uU(a, C7c cEC)) = (a+7ctr Cr,c)EI) E IR, Py = IR xlR. 

Uy((acICEC) ,7) = (ac+7trICr,c)EI) E IRI , respectively. Then J(';£) = 
I {IR ,y,U,~,T} (see Figure 3.14) and Y. U, ~ are g.o., hence';£ is g.o. 

Clearly the lattice ';£ and the poset J(';£) are isomorphic to the lattice ';£~ 

and the poset J(';£~) in Example 3.11, hence the Mobius functions are the 

21 c same. Note that ~+LC = ~+v. Set SSt = 2:(tr rER) , SPt(x) = 

2:(t Xc ) IrER) , and SPt·Cx) = 2:(Spc (x) ICEC) , x = Cx( ) l(r.c)ERxC) E rn I . r r,c t r,c 
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From Examples 3.12 and 3.13 it follows that 

and 

where 

A A I I QU(x) = (a(x)+~bx)tr (r,c)EI)Effi 

I lA 2 A 21 SSU(x) = I a(x) +SSt2(~c(X) CEC) , 

nU = Icl+1. 

Qy(x) = (~ (x)+~(x)t l(r,c)EI), c r 

SSy(x) = IRI2(~c(x)2IcEC)+lcl~(x)2SSt' 

ny = Icl+1. 

A A I QT(x) = (a(x)+~(x)tr (r,c)EI), 

SST(x) = III~(x)2+lcl~(x)2SSt' 

~ = 2, 

SP~(x)/(SStlcl), cEC, and where Sc(x) and SO(x) are defined as in (3.20), 
, I 

x = (x( ) I (r,c)ERxC) E ffi .0 r,c 

In each of Examples (3.1-14) the poset J(~) ~ ~ is closed under mini-

mum ("A") in ~. For a general distributive lattice ~ of subspaces, how-

ever, this property of J(~) need not be valid, e.g., the lattice ~ in 

Figure 3.15, which. by Remark 2.1. can be represented as a g.o., hence 

distributive. lattice of subspaces. 
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4. VARIANCE COMPONENT DESIGNS. 

4.1. Extending a design of linear models. 

When analyzing an experiment by means of a linear model, or rather a 

design of linear models. it may occur that the smallest mean value sub

space that fits the data is too complex to answer questions of fundamen

tal interest for the experiment. For example in a two-way layout with 

significant interaction between treatments (rows) and individuals (col

umns), one is unable to estimate the effects of the treatments. One pos

sible explanation for this occurence might be that the requirement that 

the covariance structure is known up to a positive constant is too re

strictive. One way out of this difficul ty is to allow a more complex 

covariance structure which may then permit a simpler mean value subspace 

to fit the data. 

The extension of the covariance structure is usually limited by the 

requirement that the the ANOVA table still shall provide the necessary 

information for the analysis of the design. This approach has led to the 

extension of common analysis of variance designs to so-called variance 

component models (actually, designs). also called random effect models. 

The specific form of this extension is usually determined by declaring 

certain systematic (=fixed) effects in the original design to be random 

effects. For example the variation between individuals may be declared to 

be random while the variation between treatments remains systematic. 

Except for Tolver Jensen (1979) and Tjur (1984) the literature con

tains no clear definition of a variance component model or design. The 

main aim of this section is to define these concepts in a precise and 



47 

.. 
general way and to show that the canonical variance component models 

that we define are exactly those that allow a complete solution of the 

likelihood inference problem using the associated ANOVA table. Further-

more our treatment of these designs will shed light on some of the well-

known difficulties associated with so-called variance component models. 

It will be seen that these difficulties do not arise within the class of 

canonical variance component models. 

4.2. Geometrically orthogonal variance component designs. 

We shall define a canonical extension of a given class of a given 

g.o. design of linear models~ We shall call this extension the geometri-

cally orthogonal variance component design (g.o.v.c. design) associated 

with the given design of linear models. 

For V and 0 as in Section 3, let ~ ~ ~(V) be a g.o. sublattice of 

embedded subspaces with V € ~ and ((PL,uL) IL~) an associated g.o. design 

* as defined in Section 3. Let Sub (~) denote the set of all sublattices ~ 

* ~ ~ such that V €~. For ~ € Sub (~). let 

(4.1) 

be the orthogonal decomposition of V wrt ~ (see Theorems 2.1 and 2.2), 

.L 
where WM = MnJ(M) , M€J(~)~{O}. Wo = 0 (here 0 = O~). For L € ~ and ~ € 

* Sub (~). the canonical variance component model (c.v.c. model) determined 

by the pair CCPL. uL).~) (or simply (L.~)) is defined as follows: the 

observation space is V. the parameter space is PLx ·ffii(~). and the set of 

unknown probabili ty measures on V consists of the normal distributions 

with mean uL(f) and precision 
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(4.2) 

where x = (~IM€J(~)) € V and y = (YMIM€J{~)) € V (see (4.1)), oM is the 

restriction of ° to WM, and (f, (a~ IM€J(~))) € PLx lRi(~). Clearly the 

C.V.c. model determined by ((PL,uL)'~) is an extension of the original 

linear model determined by (PL,uL) (take a~ = a2 , M € J(~)). 

Remark 4.1. If ~ F ~'. then the c.v.c. models determined by ((PL,uL)'~) 

and ((PL,uL),~I) may be identical in the sense that the sets of unknown 

probability measures are identical.D 

Defini tion 4.1. The geometrically orthogonal variance component design 

(g. o. v ~ c. design) determined by the g. o. design CCPL .uL) ILee) is the set 

consisting of all canonical variance component models determined by 

The subset obtained by fixing ~ = {V} is the original g.o. design. 

When there, is no danger of confusion we shall refer simply to the 

g.o.v.c. design determined by ~. 

Example 4.1. In the two-way analysis of variance design of Example 3.4. ~ 

4.3. ML estimation in a canonical variance component model. 

Let u:~ ~ ~ denote the embedding mapping (u(M) = M). By Proposition 

1.3, the mapping ~ = J(u):J(~) ~ J(A) is a surjective poset homomorphism. 
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Lemma 4.1. Let L(WM, IM'€J(~)) and L(VL , IL'€J(~)) be the orthogonal decom

positions of V with respect to ~ and ~ respectively. Then for L € ~ and M 

€ J(~). 

(4.3) L = L(J.(VL, IL'€J(~).L'~.,p(L')=M')IM'€J(~)). 

(4.4) WM = L(VL, IL'€J(~).,p(L')=M). 

Proof: Since ,p is surjective it follows that L = L(VL , IL'€J(~).L'~) = 

J.(L(VL , IL'€J(~).L'~,,p(L')=M') IM'€J(~)). Since [L'QI.,p(L')=M'] (=) 

[M'QI,,p(L')=M'] whenever M € ~, M' € J(~), and L' € J(~), in particular 

we have that 

M = L(J.(VL , IL'€J(~).L'QI,,p(L')=M') IM'€J(~)) 

= L(L(VL , IL'€J(~).,p(L')=M') IM'€J(~),M'QI). 

Then (4.4) follows from the uniqueness of the orthogonal decomposition 

wrt ~.o 

From the lemma it follows that 

(4.5) 

where 

(4.6) LM := L(VL , IL'€J(~).L'~L,,p(L')=M) ~ WM, M € J(~) 

Thus the C.v.c. model determined by ((PL.uL)'~) is a product of linear 

models indexed by J(~). The linear model corresponding to M€J(~) has 

observation space WM, precision given by a;2oM' and mean value subspace 
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LM having the parametrization u~:~~ WM, where ~ = {f€PLluL(f)€LM} and 

M M uL is the restriction of uL to PLo 

For any c. v. c. model in the g. o. v. c. design determined by <£, the 

ML-estimator and its distribution are thus readily obtained from this 

decomposition into a product of linear models. Furthermore. all of the 

quanti ties needed for the variance estimators a~. M € J(vU.). and their 

simultaneous distribution are obtained from the ANOVA table 

((SSDL(x),fL) ILcJ(<£)). x € V. associated with the g.o. design determined 

by <£. cf. (3.8) and (3.9). Also. the mean value estimator ~ is the same 

as in the linear model given by L (and 0). The results are as follows. 

For the c.v.c. model determined by ((PL.uL),vU.). the ML estimator 

(E. (;~ IMcJ(vU.))) of (E. (a~ IMcJ(JIl))) c PL xlR!.(vU.) exists if and only if 

(4.7) M L C WM, M c J(vU.). 

In this case it is unique and given by 

(4.8) 

(4.9) 

where 

( 4.10) 

uLoE = qL = 2:(rL , IL'cJ(<£).L'Q..). 

"2 1 aM = m; (2: (SSDL , IL'cJ(<£).L'gL.~(L·)=M)). 

The unbiased variance estimators 

(4.11) 

where 
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( 4.12) 

To describe the distribution of the ML estimator, decompose f c PL into f 

= (fMIMcJ(~» c X(P~IMcJ(~» and let q~:V~V denote the orthogonal projec

tion on LM, M c J(~). Then the ML-estimator iM for the component fM c ~ 

is given by u~ 0 iM = q~ = L(rL , IL' cJ( ~).L '~, '#CL' )=M) , McJ(~). The 

distribution of the family ((iM';~) IMcJ{~» is described as follows: the 

2x IJ{~) I components are independent, iM is normally distributed on ~ 
. th l: d .. -2", (M M) d "2. 2 d' . b d . th Wl mean ~M an preCISIon aM uMo uLxuL ' an aM IS X - Istrl ute Wl 

2 
~-lM degrees of freedom and scale aM/~' M c J{~). 

Remark 4.2. Consider M c J(~) such that M k L. If ~(L') = M for some L' c 

M 
J(~) then L' k M and thus also L' k L. This shows that L = WM' It is 

therefore seen from (4.7) that the condition 

( 4.13) M g L, V M c J(~) 

on L c ~ is necessary for the existence of the ML estimator. In particu-, 

lar if O~ € J(~) then (4.13) cannot hold, so the ML estimator cannot 

exist. If J{~) k J(~) then the condition (4.13) also becomes sufficient, 

since [LM = WM, ~(M) = M] => M k L. The condition (4.13) can be inter-

preted as follows: if there is stochastic variation in the subspae M c 

J(~) then there cannot be a systematic effect associated with any L c ~, 

that is "higher" than M, i. e., L :2. M.D 
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Example 4.1 (continued). Consider L = LC (€ ~~) and ~ = {mI.~xC'~} := 

* {I.RxC.R} (€ Sub (~~)). Then ~ = J(~) ~ J(~~). From (4.4). WI = VI' WRxC 
. I . RxC R = VRxC i VC' WR = VR i VO' wh1le LC = {Q}. LC = VC' and LC = Vo from 

(4.6). (In the case where all II(r.c) I are the same, we recognize the 

c. v. c. model determined by this (L . .M) as the extension to the maximal 

parameter domain of the two-way layout with random interaction effect. 

random row effect. and systematic column effect - see § 4.6 and Tjur 

(1984). § 7.6.) It is easy to verify (4.7) (and (4.13)). hence the ML 

estimator exists. 

Next consider L = ~+LC and ~ as before. Since ~+LC ~ ~ € J(~). 

(4.13) fails and the ML estimator does not exist. In fact. from (4.6) 

(~+LC)I = {Q}. (~+LC)RxC = VC' and (~+LC)R = VRiVO = WR(!). 

* Al~ogether there are 12 sublattices .M € Sub (~~) such that 0 ~ ~. For 

each such ~. the ML estimator exists for the c.v.c. model determined by 

(L.~). L € ~~. if and only if (4.13) holds. In this example it can be 

seen that 24 such C.V.c. models exist.D 

4.4. Variance component models in a multi-way layout (Jensen (1979)). 

Jensen (1979) studied the broad class of so-called variance component 

models (= random effect models) associated with the multi-way layout with 

one observation per cell (see our Example 3.5). One of his main results. 

Lemma 4.2 below. characterizes the subclass of such models which. in this 

example. are also C.V.c. models in our sense. Our treatment of so-called 

random effect models in this case (see § 4.6) was strongly influenced by 

his results. which we now review. 

In the context of our Example 3.5. for every B € ~(J) and k(B) := 
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(kj I jEOB) EO FB let. Y~(B) be a normally distributed stochastic variable 

with values in ffi, mean value f~(B) EO ffi, and variance wB ~ O. Suppose, 

B 
furthermore, that all the Yk(B) , k(B) EO FB, B EO ~(J), are independent and 

set 

( 4.14) 

where k(B) = FB(k(J)), B EO ~(J), and X = (~(J) Ik(J)EOF J)' Define 

( 4.15) 

note that 

( 4.16) 

and 

(4.17) 

The family of normal distributions of X parametrized by (fB I Be7J(J) ) EO 

X(ffiFBIBEO~(J)) and (wBIBEO~(J)) EO [O,oo[~(J) is thus a statistical model. 

Consider the two hypotheses ~ and H~, where ~ ~ ~(J) and ~ ~ ~(J). 

defined as follows: 

( 4.18) ~: fT = 0 if and only if T i ~, 

(4.19) H~: wB > 0 if and only if B EO ~. 

One usually thinks of yB, B E ~, as the random effect and fT, T E ~, as 

the systematic (= fixed) effect. The natural requirements J E ~ and 0 E ~ 
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are also imposed. In multi-way analysis of variance. all hypotheses of 

the form ~~ are referred to as variance component models. The hypoth

esis ~ is equivalent to the hypothesis E(X) € L:r : = L(r.,.ITG) € ;J!CZD; 

however. two distinct :r's may give rise to the same L:r (cf. Tjur (1984), 

§ 6.2). 

Consider the c. v.c. model determined by L € ;J!CZJj and oM = ;eCZJj' Let 

(a~ IBc CZD(J)) c lR~(J) be the variance parameters for the model. Jensen 

noted that any submodel defined by a set of equalities among the a~ is 

also a product of linear models, hence may be solved explicitly. He posed 

the question: which variance component models of the form ~~ are sub

models of this type? 

Lemma 4.2 (Jensen (1979)). The hypothesis ~~ is defined by a set of 

equalities among the a~. B c CZD(J). if and only if ~ is closed under in-

tersection. 

Jensen noted that this result is not quite true as stated - one must 

ignore the restrictions imposed on the a~. B € CZD(J). by the requirements 

wB > O. B € ~ - cf. Tjur (1984), § 7.6 and our Remark 4.3. 

In Theorem 4.1. we shall extend Jensen's lemma to the general case 

considered in this paper. 

4.5. Variance component models in factor-generated designs (Tjur (1984)). 

Tjur (1984, Section 7) defines a family of variance component models 

arising from a design generated by a set CZJj of orthogonal factors with I c 

CZJj (see also our § 3.6). Each of his variance component models is deter-
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mined by two subsets ~,~ ~ ~ and by a formula similar to (4.14). He as-

sume that ~ satisfies four conditions: 

(Cl) 

(C2) 

(C3) 

(C~) 

I E. ~. 

All factors in ~ are balanced. 

~ is closed under formation of minima (in ~). 

t 
The matrices XBXB are linearly independent, B~. 

The variance component model determined by ~ and ~ is equivalent (except 

for restriction on the parameter domain - cf. Tjur (1984, § 7.6) and our 

Remark 4.3) to the c.v.c. model given by (L,~~), where L = ~(LrITer) and 

;e~ is the smallest lattice containing {~IB~}, and therefore has an 

explic~t solution. (Strictly speaking, it should also be assumed that ~ # 

0.) In the following subsection we shall return to this case and discuss 

the relation between Tjur's conditions (C1)-(C4) and our specification of 

a c.v.c. model via the sublattice ~~. 

4.6. Canonical variance component models and random effect models. 

After the digression of the preceding two subsections, we now return 

to the general case condered in §4.2 and 4.3. We shall propose a general 

definition of a random effect model and obtain a necessary and sufficient 

condition for such a model to be a c.v.c. model (cf. Theorem 4.1). 

Let ~ and ~ be two nonempty subsets of ~. Set 

(4.20) 
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Let (yBIB~) be a family of independent stochastic variables, where yB is 

normally distributed on PB with mean Q and precision w~loo(uBxuB)' (Our 

wB correspond to Tjur's a~.) Set 

(4.21) 

where E c L~ and (wBIB~) c ffi~. (Alternatively, in place of E in (4.21) 

we can write ~(~(ET) IT~), where the parameter (ETITc~) € X(PTITc~), but 

this parametrization is not in general one-to-one.) If the two conditions 

(RI) 

(R2) 

~ = V, 

are satisfied, where ~~ is the smallest lattice containing ~, we refer to 

the family of distributions of X in (4.21) as the random effect model 

determined by (~,~). 

From (4.21) it follows that the covariance VeX) is given by 

VeX) = ~(V(uB(yB)) IBE~) 
B t t I = L(V(Y )o(uBxuB) BE~) 

-1 -1 t t I = ~((wB oo(uBxuB)) o(uBxuB) BE~) 

-1 t t I = ~(wBo o((uBPB) x(uBPB) ) BE~) 

-1 t t I I = ~(wB~(o o(rLxrL) LEJ(~~),L~) BE~) 

-1 t t I I = L(L(WBO o(rLxrL) B~,BdL) LEJ(~~)) 

I -1 t t I = L(~(wB BE~,BdL))o o(rLxrL) LEJ(~~)), 
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t * * t * * where uB:PB ~ V and rL:V ~V are the dual mappings. The fifth equality 

follows from the relation (cf. (3.12)) qB = uBPB = 2:(rL ILcJ(~~) ,LSE). 

This shows that the random effect model (4.21) determined by (~,~) is a 

submodel (= hypothesis) H~ (= ~,~) within the C.V.c. model determined by 

(L~,~~). Specifically, H~ is the submodel specified by the restrictions 

where 

(4.23) 

(We suppress the ~ in H~ since the discussion and results in the re

mainder of § 4.6 depend only upon the covariance structure, not the mean 

value structure.) 

Remark 4.3. Since ~ ~ J(~~) the formula (4.23) determines a linear iso

morphism of ~~ given by 

(4.24) 

(4.25) 

AB = 2:(wB, /B' ~,B'~B), 

wB = 2:(~(B,B' )AB' IB'c~), 

Bc~. (wB' /B' c~) c rn~ 

Bc~, (AB' /B' c~) c ~~ 

where ~(B.B') = ~(B' ,B). B. B' c ~ and ~ is the Mobius function for the 

poset ~. For (AB' /B'E~) E rn~ in (4.24). (wB/B~) lies in a corresponding 

cone n ~ rn~. It will be necessary to replace rn~ by n in the definition of 

H~ (thereby obtaining an extended hypothesis H~) in order to establish 

the precise connection between random effect models and C.V.c. models 

(cf. Theorem 4.1). By allowing this extension. we are ignoring the re-



58 

strictions on (a~ILcJ(~)) imposed by the original assumption that wB ) 0, 

B c ~. This extension to n appears in the literature as the well known 

questions of allowing negative variance components in the model and of 

interpreting negative estimates when they occur (cf. Tjur (1984),§7.6).D 

In general. even the extended model H~ cannot be solved explicitly. 

Further condi tions must be imposed on ~ in order that H~ becomes a 

c . v . c . mode 1. 

Theorem 4.1. Under the conditions (R1) and (R2), the hypothesis H~ speci

fied by replacing IR~ by n in (4.22) is a canonical variance component 

model if and only if the following condition holds: 

(R2)* 

In this case H~ is the canonical variance component model determined by 

(L:r'~~) . 

Proof: If.~ = J(~~) then obviously I~I = IJ(~~)I, hence it follows im

mediately from (4.22) that H~ is the c.v.c. model determined by (L:r'~~)' 

Conversely, suppose that H~ is a c. v. c. model determined by (L,.M) for 

* 2 some L € ~ and .M € Sub (~). Then for every K,M € J(~~), [V~ € n, aK(~) = 

a~(0 ] <=) [{B~ IB~K} = {B~ IB~M} ] <=> [{B€J(~~) IB~K} = {B€J(~~) IB~M} ] 

<=) K = M. The second <=> follows from the fact that every element in 

J(~~) is an intersection of elements from ~. It follows that IJ(.M) 1 .2 

IJ(~~) I. Since also IJ(.I{) I = I~ I we conclude that ~ = J(~$) and and that 

H$ can be determined by (L:r,~~).D 
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Corollary 4.1. Assume that (RI) and (R2) hold. 

(i): If ~ is closed under n, thenH~ is a canonical variance component 

model. 

(H): If ~ !;;;; J(~). J(~) is closed under n, and H~ is a canonical variance 

component model. then ~ is closed under n. 

Proof: (i) Since every subspace in ~~ can be expressed as a sum of sub

spaces in ~, J(~~) !;;;; ~, hence J(~~) = ~ and the theorem applies. (H) 

Since ~ !;;;; J(~)~~ !;;;; J(~~), the theorem implies that ~ = J(~)~~, thus is 

closed under n.o 

Remark 4.4. If the condition ~ = J(~~) is not satisfied in Theorem 4.1 

one can still estimate the unknown parameters (wBIB~) in the model as 

follows. Since ~ !;;;; J(~~) we have that 

(4.26) 

and 

(4.27) 

2 
First estimate aB' B c ~, in the c.v.c. model determined by (L~,~~) by 

A2 A 
the ML estimator aB' B c ~. Then the estimates wB (possible negative) for 

wB' B c ~, are obtained from (4.27).0. 

Remark 4.5. By Theorem 4.1, any c.v.c. model given by (L,~) can be inter-

preted in terms of a random effect model in the following way. Let ~ be 

any non-empty subset of ~ such that L~ = L, take ~ = J(~), and consider 

the random effect model determined by (~,~). Ignoring the restrictions on 
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(cr~IM€J(j()) imposed by the restrictions wM ) O. M € J(.Al). this random 

effect model is just a reparametrization of the original c.v.c. model. 

The correspondence between the parameters is given by 

(4.28) . cri = 2:(wM' IM'E-J(.Al).M'~M), ME-J(.Al). 

and 

(4.29) WM = 2:(~(M.M')cr~, IM'E-J(.Al)). ME-J(.Al). 

where ~(M.M') = ~(M' .M) and ~ is the Mobius function for J(.Al). Thus every 

c.v.c. model can be represented as a random effect model.O 

Remark 4.6. Consider the special case of the multi-way layout treated by 

Jensen (1979) (cf. §4.4). Recall that. as in Example 3.5. we may identify 

the isomorphic posets J(~q]J(J)) and q]J(J). Since q]J(J) is closed under n and 

~ ~ q]J(J). Jensen's Lemma 4.2 follows from Corollary 4.1.0 

Remark 4.7. In the more general case of an orthogonal factor-generated 

design treafed by Tjur (1984) (cf. our §3.6). let ~. ~ be nonempty sub

sets of q]J. Let (yBIB~) be a family of independent stochastic variables 

wi th yB normally distributed on with mean Q and precision 

the usual inner I product on IR 

d /RB /RI. an uB: -7 1S the embedding determined by the factor B. Le .. 

uB((~lb€B)) = (xB(i) liEI) (cf. (3.8)). The covariance matrix for yB then 

-1 
becomes wB(XBXB) . where XB is the matrix for uB. As in (4.21). define 

(4.30) 
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where E € L := ~. Note that in this case of a factor-generated design, 

the statistical model given by this family of distributions for X is of 

course the same as that given by the family of distributions for X in 

(4.21). This model does not coincide with the model considered by Tjur 

(see the first display in Section 7 of Tjur (1984). p.51) unless Tjur's 

condition (C2) that all factors B € ~ are balanced is imposed, in which 

case the two models are identical, with our wB and Tjur's a~ related by 

wB = a~III/IBI. When the condition (C2) holds, we can make the following 

comparisons between Tjur's conditions and ours: (i) (Cl) => (RI); (ii) 

* under (RI), (R2) (=> (C4); (iii) under (RI) and (R2), (C3) => (R2) . (cf. 

Theorem 4.1 and Corollary 4.1.) Thus, when (C2) holds, Tjur's conditions 

(Cl). (C3). and (C4) are (strictly) more restrictive than our conditions 

(RI) and (R2)* f d ff d I' b H b or a ran om e ect mo e gIven y ~ to e a c.v.c. 

model.D 

Example 4.2. (A Latin square of Latin squares.) Let {J.RO,CO.GO'O} be a 

Latin square design and for each j € J let {I..R .• C .• G .. O.} be a Latin 
J J J J J 

square design (c£. Example 3.11). Define I := U(I.lj€J). R := U(R./j€J). 
J J 

C :=U(C./j€J). G :=U(G.ljEJ) and note that J :=U(o.lj€J). Consider the 
J J J 

set of factors ~ = {I,R,C,G,J,~,Q.Q,O} in I defined in the obvious way. 

e.g., R(ji) = jR.(i) and R(ji) = Rr.(j) , ji E 1. Suppose that IR.I = Ic./ 
J - -v J J 

= IG.I = f is independent of j E J. Then (C2) holds, i.e., all factors 
J 

are balanced. (i) Set ~ = {R,C,G,J}, let ~ ~ ~ be arbitrary. and suppose 

that f = 2. IRo/ = ICol = IGol = g > 2. Then (Cl) fails but (RI) and 

* (R2) are satisfied, hence the random effect model H~ is a c.v.c. model 

that is not contained in the class ~f variance component models described 
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by Tjur (1984), Section 7. (ii) Set ~ =~, let ~ ~ ~ be arbitrary, and 

suppose that f > 2 and g = 2. Then (Cl) holds but (C3) fails. Neverthe-

* less. (RI) and (R2) hold so again H~ is a c.v.c. model not contained in 

Tjur's class.D 

4.7. The covariance structure in a canonical variance component model. 

In Remark 4.5 a second representation of a c.v.c. model were given. A 

third representation of a general C.V.c. model is obtained through its 

covariance structure f. The covariance f can be expressed in terms of the 

parameter (a~IMEJ(~)) or the parameter (wMIMEJ(~)). From (4.1) and from 

(4.21) with ~ = J(~) it is readily obtained that 

(4.31) 

and 

(4.32) 

If V = ffiI and 0 is the usual inner product, the matrix formulations of 

(4.31) and (4.32) become 

(4.33) 

and 

(4.34) 

where RM and QM are the IxI matrices for rM and qM respectively. 

In (4.32) and (4.34) the parameter space for (wMIMcJ(~)) is n 2 ffii(~) 

as defined in Remark 4.3 with ~ = J(~). Equivalently, n can be defined by 
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requiring that r in (4.32) or (4.34) is positive definite. (In (4.31) and 

(4.33) r is positive definite if and only if a~ ) 0, M t J(A)). 

In our opinion, this representations of a C.V.c. model in terms of 

its covariance structure are more appropriate for determining its statis-

tical interpretation than its representation in terms of a random effect 

model. 

Example 4.3. Consider the one-way analysis of variance layout in Example 

3.2 with ~ = {I,G,O}. If L = LO and A = {I,G} where G is not balanced, it 

follows from (4.33) that the entries of the covariance matrix r are given 

by 

(4.35) . r. . gl,"YJ 

for g="Y, i=j 

forg="Y, i;ej 

and 0 for g ;e "Y. This determines a c.v.c. model, which may be represented 

as a random effect model (cf, Remark 4.5) given by the stochastic vari-

able X with coordinates 

(4.36) X , = a + Y +y" g E G, gi El, gl g gl 

where a E ffi and where the Y and Y , are all mutually independent and g gl 

normally distributed on ffi with mean 0 but with unequal variances given by 

V(Yg ) = wG 1lgl-1 , V(Ygi ) = wI' Equivalently, in terms of ~ = (wI,wG) we 

have 
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for g::'Y, i=j 

for g::'Y, i;tj 

and 0 for g ;t "f. Al though the c. v. c. model represented by (4.35) or 

(4.36) has a simple mathematical solution, it is likely that neither 

representation (4.35) nor (4.36) will make it palatable to an applied 

statistician, who usually would prefer the model (4.36) defined with 

equal variances V(Y ). Then, however, it is not a c.v.c. model and has no 
g -

simple solution. Thus there is a trade-off between statistical appropri-

ateness and mathematical tractability in random effect models. Of course, 

when G is balanced, i. e. , 11 I is independent of g E G, then the model 
g 

reduces to the usual one-way layout with random group (=treatment) effect 

and this conflict disappears.D 

Example 4.1 (continued). Consider the two-way analysis of variance layout 

with II(r,c) I = n > 1. (r.c) E RxC. If L = LC and A = {I.RxC,R} it fol

lows from (4.33) that the entries of the covariance matrix r are given 

by 

[ai(n-l)+(a~xc(ICI-l)+a~)/ICI'for (r.c)i=(p,"f)j 

(4.38) nf(r.c)i.(p,"f)j = ai+a~xc(lcl-l)/lcl+ai/lcl. for (r.c)=(p,"f).i;tj 

(a~-a~xc)/ Ic I, for r=p. c;t"f 

and 0 for r;tp. This determines a c.v.c. model. which may be represented 

as a random effect model (cf. Remark 4.5) given by the stochastic vari-

able X with coordinates 
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(4.39) X( ). = f +Y +Y( )+Y( ) .. (r,c) € Rxe. (r.c)i € I, r,c 1 c r r,c r,c 1 

where f € ffi, c € e and where the Y ,Y( ) and Y( ). are all mutually c r r,c r,c 1 

independent and normally distributed on ffi with mean 0 and variances given 

by nV(Y ) = wR/lel, nV(Y( )) = wR e and V(Y( )') = wI . EqUivalently, r r,c x r,c 1 

[ wrn+"Rxe"""R/ le I, for (r,c)i=(p,'"l')j 

( 4.40) nf(r,c)i,(p.'"l')j = wRxe+wR/ le I, for (r,c)=(p.'"l'),i;ej 

wR/lel, for r=p,C;e'"l' 

and 0 for r ;e p. Both representations (4.38) and (4.39) for this model 

can be easily interpreted statistically. This model may be called the 

two-way layout wi th random in terac t i on ef f ec t , random row ef f ec t , and 

systematic column effect.D 

Example 4.1 (continued). In the preceding example let instead ~ = 

I 
{ffi '~xe.~+Le}' Then 

nf(r,c)i, (p,'"l')j = 

a~(n-l)+(a~xe(IRI-I)(lel-I)+a~+e(IRI+lel-I))/IRI lel. 

for (r,c)i=(p,'"l')j 

a~xe( IRI-l)( Icl-l)+a~+e( IRI+lel-I))/IRllel, 

a~+e( IRI-I)/IRllel, 

a~+c( ICI-I)/IRllcl, 

-a~+~IRllel ' 

for (r,c)=(p,'"l'),i;ej 

for r=p,c-;e-r 

for r;ep,C='"l' 

for r;ep , '"l';eC, 
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which is difficult to interpret statistically even when IRI = Icl. Thus. 

even in the balanced case (i. e .. when (C2) holds). our class of c. v. c. 

models may include models which are not readily interpretable.D 

4.8. Testing canonical variance component models. 

Lastly. we consider the problem of testing c.v.c. models within a 

g.o.v.c. design determined by a lattice ~. We shall see that the ANOVA 

table ((SSDL (x). fL) ILcJ(~)) (cf. (3.9)) contains all information needed 

for calculation of the LR test statistics and their distributions. 

Consider the C.V.c. model determined by (L.~). The parameter space 

for this model is L x ffii(~). For LO c ~ and ~O E Sub*(~) such that LO ~ L 

and ~O ~ ~. the parameter space for the c.v.c. model determined by 

(LO'~O) is LO x lRi(~o). This model is a submodel of the c. v. c. model 

(L.~): simply note that the surjective poset homomorphism ~ = J(u):J(~) ~ 

J(~O)' where u:~O ~ ~ is the embedding, defines the injective mapping 

( 4.41) 17: L x IRJ (.AtO) ~ L x IRJ(~) 
0++ 

(fO' (a~IKcJ(JUO))) ~ (fO' (a!(M) IMcJ(~))) 

between their two parameter spaces. 

Remark 4.8. It may be seen from (4.41) that the c.v.c. model determined 

by (V.~) contains all c.v.c. models in the design as submodels. while the 

c.v.c. model determined by (O~.{V}) is a submodel of every c.v.c. model 

in the design.D 
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Let H (respectively HO) denote the hypothesis given by the c. v. c. 

model (L,",") (respectively (LO,JUO» and consider the problem of testing HO 

vs. H. The subhypothesis HO may be expressed in terms of the mean and 

variances as 

where 

Equivalently, HOv may be written as 

When LO eLand ""0 = JU, we may refer to the testing problem HO vs. H 

as testing systematic effects, while when LO = L and ""0 C "'" we are 

testing random effects. Tjur (1984), §7.9 and 7.10, treats special cases 

of these two testing problems in the context of factor-generated designs 

(cf. our §4.5). 

The LR statistic for testing HO vs. H is now obtained. Let V = 

~(UKIKcJ(""O» be the orthogonal decomposition wrt. ""0 (cf. (4.1». Then 

(cf. (4.4» and 

L~ "- J.(WMIMEJ(Ai),M~LO,,p(M)=K) 

~ J.(L M IMcJ(Ai) , ,p(M)=K) , 
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where LM is defined in (4.6). It thus follows that the existence of the 

ML estimator of (f. (a~ IMEJ(.,u))) E L x fRi(.M) under H implies the existence 

of the ML estimator of (fa. (a~ IKEJ(.Alo))) E La x lRi(.MO) under HO' From the 

general expression (4.9) for the ML estimator in a c.v.c. model. we read-

ily obtain the LR statistic 

(4.42) 

where for M 6 J(.M) and K 6 J(JUO)' mM = dim(WM). ~ = dim(UK). ;~ is the 

2 ~2 2 
ML estimator for aM 6 fR+ under H. and aK is the ML estimator for aK 6 fR+ 

under HO' 

To find the null distribution of Q. divide the numerator and the 

denominator in (4.42) by Since = 

2(~IM6J(.M).~(M)=K). K 6 J(.MO)' this shows that the distribution of Q is 

independent of the unknown parameters under HO' Using Basu's Lemma. it is 

seen the ML estimator under HO is independent of Q when HO holds. This 

implies that for a E [0. 00[. 

Furthermore. from the distribution of the ML estimators as described 

following (4.12). it follows that 
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EQa =rr m;amM/2 T((lM+amM)/2) /T(1~2)IMcJ(~) 

rr[k~akK/2 TC(jK+akK)/2)/T(jK/2) IKcJ(~O)J 

where IM = dim(LM) and jK = dim(L~). It is obvious that the usual Box 

approximation for the distribution of Q is valid. Also, it is clear from 

(4.9), (4.10) and (4.12) that all quantities needed in (4.42) and (4.43) 

can be read out directly from the ANOVA table. 

Usually it is more convenient to carry out the test for HO vs. H in 

several simpler steps. As always one should try to simplify the variance 

structure before the mean value structure. Thus H vs. H should be 
ov 

tested first and then H nHO vs. H . om v ov 
2' Testing H vs. H is the problem of testing equality of the aM s ov 

within the families (a~IMcJ(Ji) ,'i'(M)=K) , K c J(~O). The LR statistic Qv 

for this problem is then a product, Qv = rr(~IKcJ(~O))' of the LR statis

tics ~, K c J(~O) for testing equality within each family. Under HOv , 

K the Q are 
v 

independen t . Usually, QK . 
IS 

v 
replaced by the (unbiased) 

Bartlett test statistic. Thus the test for H vs. H can be carried out ov 

in IJ(~o)/ steps, each step a Bartlett test. 

The testing problem HO nHO vs. HO can be seen to be an independent . m v v 

product of testing problems indexed again by K € J(~O). The problem in

dexed by K is a testing problem in the linear model with observation 

space UK and precision a~2DK' where DK is the restriction of (j to UK. The 

K two subspaces of UK that determine the hypotheses to be tested are LO and 

.L(L M /M€J(.M), 'i'(M)=K) (;2L~). The LR statistic Qm for testing HOmnHOv vs. 

HOv is thus a product Qm = rr(Q~ IKcJ(AiO))' where the Q~, K c J(.MO) , are 

independent, QK being the LR statistic for the testing problem indexed by 
m 
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K. Thus the test for HOmnHOv vs. HOv also can be carried out in IJ(~o)1 

steps. 

Finally we again emphasize that all quanti ties needed to determine 

the above test statistics and their distributions can be obtained direct

ly from the ANOVA table associated with the underlYing g.o. design of 

linear models determined by ~. By considering the larger class of c.v.c. 

models in the g.o.c.v. design determined by ~. we only provide ourselves 

with an argument for comparing other pairs of sums of SSD's than those 

pairs allowed to be compared in the underlYing design. 
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