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SUMMARY .

Tjur (1984) showed that an orthogonal (= balanced) analysis of variance
(ANOVA) design may be described and analyzed in terms of an associated
factor structure diagram. In this paper an extended class of orthogonal
designs is defined and studied, the class of geometrically orthogonal
(g.0.) designs of linear regression models, which includes all well-
behaved ANOVA and regressions designs. It is shown that such designs may
be chafacterized and analyzed most naturally in terms of the lattice
structure of ¢, the family of regression subspaces in the design. For
example, a design is g.o. only if ¢ is distributive, and the ANOVA table
is determined by the contrast subspaces indexed by J(¥), the set of join-
irreducible elementsbof ¢. Furthermore, any g.o. design may be extended
in a natural way to a family of canonical variance component (c.v.c.)
models, called a geometrically orthogonal variance component design,
whose structure and analysis are also determined by ¢ and J(¥). A neces-
sary and sufficient condition is given for a random effect modelassociat-

ed with the design to be a c.v.c. model, hence well-behaved.

AMS 1980 subject classification. Primary 62H0O5; secondary 62J05.

Key words and phrases. Analysis of variance, ANOVA table, linear regres-—

sion model, geometrically orthogonal design, distributive lattice, par-
tially ordered set, Mobius function, join-irreducible elements, variance

component model, random effect model, normal distribution.



0. INTRODUCTION.

Linear regression models and variance component médels lie near the
center of statistical theory and practice. This paper presents a unified
framework for the study of so-called orthogonal (or balanced) designs
consisting of models of these types. All analysis of variance (ANOVA)
designs with orfhogonal factors and all well-behaved random effect models
are included in the framework.

As mentioned in the Summéry, this investigation may be regarded as an
extension of the paper by Tjur (1984), who studied orthogonal ANOVA de-
signs in ferms of their factor structure diagrams. In the more.general
case of geometrically orthogonal (g.o.) linear model designs considered
here, the role of this diagram is assumed by the partially ordered set
(poseti J(¥) consisting of all join-irreducible elements of the lattice &
of linear subspaces in the design. All information needed for the statis-
tical analysis of the models in the -design, such as the structure of its
ANOVA table, is determined By J(£). Furthermore, this statement is also
true for tpe extended design of canonical variance component (c.v.c.)
models determined by the original design.

The main mathematical concepts used are those of finite partially
ordered sets (posets), finite distributive lattices, and finite-dimen-
sional vector spaces. These concepts are very simple and the complica-
tions, if any, are of a combinatorial character. By disregarding all
extraneous structure which is not essential for the definition and analy-
sis of a statistical problem, one is able to obtdin a mathematically

efficient formulation of the problem, which we refer to as the "invari-



ant"” formulation. This formulation (hopefully) leads to a precise charac-
terization of the class of models with the desired statistical prop-

erties, and to a unified and efficient mathematical analysis of the

models. All pertinent definitions and results are directly suggested by
the invariant formulation. For example, we shall obtain a definition of
the ANOVA table, which for the case of analysis of variance with ortho-
gonal factors, is slightly different from the definition in Tjur (1984).
We hope that our approach is in the spirit of Bailey’s points (i)-(iii)
in her discussion of Tjur’s paper (bottom of p.73)

The necessary concepts from the theory of partially ordered sets and
lattices are presented in Secfion 1. The main reference for this section
is Gradtzer (1978). We have omitted all proofs of standard results. On the
other hand. the one-to—-one correspondence befween the categories of fi-
nite partially ordered sets and finite distributive lattices is treated
(Theorem 1.2, Proposition 1.2 and 1.3) because of its importance for our
study of variance component models. Furthermore, we prove a useful condi-
tion for a distributive lattice to be finite (Proposition 1.1).

In Section 2, the results froﬁ Section 1 are applied to the lattice ¢
of subspaces of a finite-dimensional vector space V. The main aim of this
section is to describe the decomposition of a vector space into a direct
sum determined by a distributive lattice ¥ of subspaces (Theorem 2.1 and
2.2). It is shown that ¢ is distributive if and only if there exists an
inner product & on V such that the subspaces in ¢ are geometrically or-
thogonal (perpendicular) with respect to & (Proposition 2.1 and 2.2).
This existence of an inner product adapted to the lattice £ is used not

only in the present paper but also in a forthcoming paper on normal



modéls given by conditional independence with respect to a distributive
lattice of subspacés (Andersson and Perlman (1988)).

In Section 3 the invariant formulation and solution of an ordinary
normal linear regression model is briefly reviewed. A geometrically or-
thogonal design of linear models is defined, together with the associated
decomposition of the observation space into a direct sum of independent
components and the ANOVA table. For the special case of an orthogonal
ANOVA design (ie. a design generated by orthogonal factors), we compare
our treatment to that of Tjur (1984). The section concludes with a series
of examples.

The class of canonical variance component (c.v;c.) models extending a
geometrically orthogonal design of linear models is defined and analyzed
- in Section 4. A necessary and sufficient condition that a random effect
modelﬂﬁe a c.v.c. model is derived in Theorem 4.1. For the special case
of a completely balanced multiway ANOVA design we compare our formulation
and results to those of Jensen (1979) and make similar comparisons with
the work of Tjur (1984) in the case of a balanced (= orthogonal) ANOVA
design. It;is shown that the extension presented in this section includes
some new interesting examples of variance component models. Finally, we
also discuss the question of the statistical interpretability of random
effect models in general, and of our canonical variance component models
in particular.

Any list of references that one couldt readily compile for the stat-
istical topics of linear models, analysis of variance, and variance com—
ponent models would be far from comprehensive. Furthermore our formula-

tion and point of view are somewhat different from those of most authors.



Thé reader is best advised to begin by referring to the paper by Tjur
(1984) mentioned ébove, the discussions therein by Bailey, Speed, and
Wynn, and the papers in the combined lists of references, in particular
Speed and Bailey (1982). Our approaéh and ideas relate most closely to

those of Jensen (1979) and Tjur (1984).



1. POSETS AND DISTRIBUTIVE LATTICES.

1.1. Posets.

A set P equipped with an ordering relation < which is

(P1) reflexive: Vx € $: x { x
(P2) antisymmetric: Vx,y € $: x {yandy {x=>x =y
(P3) transitive: Vx,y,z€ $: x<{yandy {z=>x¢{z

is called a partially ordered set or simply a poset. We use the notation

x<<yif x {yand x #y, x,y € &.

For a subset S of #, x € # is an upper bound (lower bound) of S if y

{x (x<y) Vy €S; x is a supremum (infimum) of S if x { z (z { x) V

upper (lower) bound z of S. If a supremum (infimum) of S exists, it is
unique and it is denoted by sup S (inf S). If it exists, the element
sup #? (inf #) is called the unit (zero) element and is denoted by 1 (0);

in this case % is called a poset with unit (poset with zero).

A finite sequence Xy < Xy (ool X of elements from % is called a

chain of length n. If there exists n € N = {1,2,+++} such that every

chain in % has length less than n, then % is said to have finite length.

A mapping ¢:@1 - @2 between two posets is called increasing or a

(poset) homomorphism if Vx,y € ?12 x £y = Y(x) < Y(y). A composition of

homomorphisms is a homomorphism and the identity mapping of a poset onto
itself is a homomorphism. If ¢ is bijective and ¢—1Z@2 - @1 is a homo-

morphism then Y is called a (poset) isomorphism and @1 and @2 are said to

be isomorphic.



If (@ilieI) is a family of posets then the product X(@iliel) equipped
with the obvious (éomponent—wise) ordering relation is itself a poset.

Any subset @o C % equipped with the restriction of the ordering < on
# is itself a poset, called a subposet, and the embedding u:@o > % is a
poset homomorphism.

An element x € # is said to cover an element y € % if x > y and there
is no z € ¥ such that x > z > y. This concept is needed to describe the

representation of a finite poset by a (directed) graph. The points of the

graph correspond to the elements of #. A line connects two points if and

only if the left-most point covers the other one (cf. Figures 3.1

3.15).

1.2. The Mobius function of.a poset.

Let $ be a finite poset. The Mobius function u:%x# - Z :=

{0,1,-1,2,-2,3,-3,+++} of ? is defined as

(%.y) 1 for x =y
Hx.y) = -3(n(x,z) |x<z<y) for x < y

and O otherwise.

Lemma 1.1. (Mobius Inversion Formula for a finite poset). Let f and g be

two functions defined on the finite poset % and assuming values in the
same vector space. Then

f(x) = 3(g(y) ly<x). x €9,

if and only if

g(x) = Z(u(y.x)f(y) lyx), x € &.



Proof: The matrix (u(x.y)|(x.y)€Px#) is the inverse of the matrix

(e(x,y)l(x,y)G@x@); where e(x,y) = 1 if y { x and O otherwise.O

As a space-saving convention, when we describe the Mobius function p
for a particular #, we will only specify the values of p(x,y) for those x

<y, x,y €%, such that u(x,y) # O.

Remérk 1.1. If By is the Mabigs function for a finite poset 91, i € 1,
and |I| < ©, then the Mobius function p for the product % = X(@iliel) is
given by p((x, |1€1). (v, [i€I)) = O(n(x,.y,) |i€I).

The Mﬁbius function for a finite chain poset {xl < X, {eeel xn} is
specified by u(xi,xi+1) =-1, i=1,...,n-1.

If J is a finite set and 9(J) denotes all subsets of J, then %(J)
become; a poset under the relation C. Since Z(]J) and the product {0,1}J
are isomorphic as posets and {0,1} is a chain, the Mobius function for
9(J) is readily obtained as u(A,B) = (—l)lBl_lAl, A C B, A,B € %3(]J),

where |D| denotes the number of elements in D €Z(J).O

1.3. Lattices.

A set € equipped with two binary operations A and V called meet and

join, respectively, is called a lattice if A and V are

(L1) idempotent: Vx € ¥: x Ax=xand x Vx =X

(L2) commutative: Vx,y € ¥: x Ay =y AxandxVy=yVx

x AN (y ANz) and

(L3) associative: Vx,y,z € £: (x Ay) Az

xVy)Vz=xV (yV z)



and satisfy the
(L4) absorption idéntity:

Vx,y € ¢: x A (xVy)=xand xV (x Ay) = x.

The property (L3) allows us to write expressions involving only A's
or only V's withouf using parentheses.

Every lattice ¥ can be considered as a poset in the following natural
way. If one defines the relation { on £ by x { y iff x A y = x (or equiv-
alently x { y iff x V y = y) then ¢ equipped with { becomes a pose, de-

noted by P(¥) (or simply ¢) with the additional property

(P4) For all non-empty finite subsets S C £ the elements sup S and inf S

exist.

Note that (P4) is equivalent to the condition that sup{x,y} and

inf{x,y} exist for every two-point subset {x,y}C¥.

On the other hand, if #? is a poset with the additional property (P4)
then % quipped with the binary operations A, V defined by x A y =
inf{x,y} and x V y = sup{x,y}, becomes a lattice denoted by L(@) (or
simply #). It is easy to see that L(P(£)) = ¢ and P(L(%)) = &.

A finite lattice can be represented by a meet-and—-join table, but

since it is also a poset it can also be represented by a graph as de-

scribed above.

A mapping @:Ql e»Qz between two lattices is called a (lattice) homo-

morphism if Vx,y € £;: ¢(x V y) = ¢(x) V ¢(y) and o(x A y) = ¢(x) A #(y).

The composition of homomorphisms is a homomorphism and the identity map-



ping of a lattice onto itself is a homomorphism. If ¢ is bijective then

¢_1!82 > 21 is also a homomorphism; ¢ is called a (lattice) isomorphism
and 21 and 92 are said to be isomorphic.
If @:31 - 22 is a lattice homomorphism then ¢:P($1) - P($2) is a

poset homomorphism..It is not true, however, that if ¢:@1 e-@z is a poset
homomorphism between posets @1, @2 satisfying (P4) then ¢:L(@1) - L(@2)
is a lattice homomorphism.

If ($i|i€I) is a family of lattices then the product X(Qiliel) equip-

ped with the obvious component-wise binary operations is itself a lat-

tice.
A subset QO C ¢ is called a sublattice if x,y € 20 => xAy, xVy € 20;
in this case the embedding u:¥, - £ becomes a lattice homomorphism.

0

A representation of an element x € £ as x = V(iniGI), where I is a

finite set and X, € ¢, i € I, is called join-irredundant if there does
not exist a proper subset J C I such that x = V(iniGJ). An element z € ¢

is called join-irreducible if z = x V y implies z = x or z = y. The set

J(2) of all join-irreducible elements of ¥ plays an important role in the

study of finite distributive lattices.

1.4. Distibutive lattices.

A lattice € is called distributive if

(DL) Vx,y,z € L: x A (yVz)=(xAy)V (xAz).

This condition is equivalent to
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(DL) Vk,y,z€%: xV (yAz)=xVy)A(xVz).

An important example of a distributive lattice is the following: Let
M be a non-empty set and % a set of subsets of M. % is called a ring if
R1 n R2 € % and Rl U R2 € % for every RI’R2 € %. It is obvious that %

equipped with N and U as A and V becomes a distributive lattice. The

following is a major result in the theory of lattices.

Theorem 1.1. (Birkhoff (1933), Stone (1936)). A lattice is distributive
if and only if it is isomorphic to a ring of subsets of a set.

Proof: See Gratzer, (1978) Theorem 19, p.64.0

Since we shall mainly be interested in finite distributive lattices

the following result is useful:

Proposition 1.1. Let £ be a distributive lattice of finite length. Then ¥

is finite.
Proof: Zorn's lemma and the finite length assumption implies that ¢ has a
maximal element x, € ¥. If x € £ then x V x1 = Xy, hence x £ x1 for every

1

x € £. Thus x, = 1:= sup ¢ ; similary, one shows that O:= inf ¥ exists.

1
Next we show that for any x € ¥ such that x # 0, there exists a fi-

nite chain x = z, > z, >+*+> z = 0 such that z, covers z, ., 1 =
0 1 m i i+l
0,+++,m-1. If x does not cover O then there exists ¥y such that x > vy >
0. If x does not cover ¥y then there exists Yo such that x > Yo > Y1 > 0.
This process can continue ‘for at most n steps, where n is the maximal

length of any chain in ¥. Thus there exists an z; such that x > z4 >0
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and x covers zq- If z4 does not cover O we repeat the argument with x

replaced by z4 and obtain Zq such that x > Zq > Z, > 0 and z, covers z,.

Again this process must terminate within at most n steps, hence the as-
sertion is established.

0 =
z}|z€21),~'°,$n = U({x€¢|x covers z}lzegn_l). Then the above assertion

Now define £, = {0}, 91 = {x€¢|x covers O}, 92 = U({x€¢|x covers

implies that ¥ = U(gili=o,1,--~,n).

1 # X, both cover y € £ then neither X < X5 DOT Xg < Xy gan

occur, hence X1 > X A X 2 y. Since X, covers y, this implies that Xy A

If x

X = Y-
Next we claim that the set {x€¢|x covers y} is finite for every y €

€. If not, let X 1 Xg,tt® be an infinite sequence of distinct elements in
¢ such that x; covers y, i = 1,2,+++. Then Xy < (x1 v x2) (oo el (x1 VeeoV.
X ) <°;° is an infinite chain, since x, V+++V x_ = x, Vee*V x_ V x =>
T’ . _ 1 T 1 T r+1 :

X < X) VeeoV X, =X = (x1 VeeoV Xr) A X o1 = (x1 A Xr+1) VesooV (xr

r+1 -
A Xr+1) =y VeV yv = y contradicting that xr+1 covers y. Since every

T+1

chain in ¢ is.finite, the claim is established. It then follows that ¢ =

U($i|i=0,1,f°°,n) is finite.O

Remark 1.2. It can be shown that Proposition 1.1 remains valid under the

weaker condition that every chain in £ has finite length.O

Remark 1.3. For a finite distributive lattice ¥, the Mobius function p
for the poset ¢ is specified by: p(x.,y) = (—l)k if y is the join of k

distinct elements covering x (Grdtzer (1978), Exercise 36, p.191).0
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1.5. Finite distributive lattices and posets with zero.

For the remainder of this section, ¢ denotes a finite distributive

lattice. Then £ is a lattice with zero and with unit and the set

J(#) = { x € 2 | sup{yee|y<x} < x } U {0}
is the sef of all join-irreducible elements of ¥. Since 0 € J(¥), the
subposet J(¥) of ¥ is a poset with zero - see the right hand graphs in
figures 3.1-3.15. (Grdtzer (1978) excludes O from J(¥) but our definition
is more convenient for our purposes.) Conversely, let $ be a finite poset
with zero. A non-empty subset S of # is called hereditary if x € S and y
< x implies that y € S. Let H(?) denote the set of all hereditary subsets
of #. Then H(?) becomes a finite distributive lattice under the binary
operations A :=N and V := U. The mappings ¢ - J(¢) and % - H(®) deter-
mine a fundamental correspondence between the class of all finite distri-

butive lattices and the class of all finite posets with zero (cf. Gr&dtzer

(1978), Theorem 9 and Corollary 10, pp. 61-62).

Theorem 1.2. (i): Let € be a finite distributive lattice. Then the map-

ping

(1.1) ¢ - H(J(¥))

x = r(x) = {yeJ(¥) |ly<x}

is a lattice isomorphism i.e., H(J(¥)) =@
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(ii): Conversely let # be a poset with zero. Then the mapping

(1.2) % - J(H(%))
x - s(x) = {y€?|y<x}

is a poset isomorphism i.e., J(H(%)) = %.
The proof of (i) requires the following lemma.
Lemma 1.2. Let x € J(¥) and Xpatotux € ¢ If x(< X4 VeeoV X then there
exists i € {1,+++,k} such that x £ X -
Proof: x ¢ Xy VesoV X =X =X A(xl‘V'°'V xk) = (x A xl)V°°°V(x A xk) =>

Ji: x A X, =X => 3 1i: x ¢ Xi'D

Proof of Theorem 1.2: (i) That r(x) € H(J(¥)) and r(xAy) = r(x)Ar(y)

follow trivially, while Lemma 1.2 implies that r(xVy) = r(x)Vr(y). Since
¢ is finite, x = Vr(x) for every x € £, hence the mapping (1.1) is one to
one. To show that (1.1) is onto, choose R € H(J(¥)) and define x = VR.
Clearly, R C r(x). If y € r(x), then y = yAx = yA(VR) = V(yAz|z€R); Since
y € J(£) , this implies that y = yAz for some z € R, i.e., y { z. As R is
hereditary, y € R, hence r(x) = R.

(ii): To see that s(x) € J(H(@))Vsuppose that s(x) = SIU S2 for Sl,S2
€ H(?). Since x € s(x), without loss of generality assume that x € Sl'
Then s(x) C Sl’ hence 52 C Sl’ so s(x) € J(H(#)). Trivially, x { y =>
s(x) C s(y), x,y € P. Since x = sup s(x), the mapping (1.2) is one to

one. To see that (1.2) is onto, choose S € J(H(?)) and let Xpstetu X
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denote the maximal elements in S. Since S is a hereditary subset of %, S
= U(s(xi)|i=1,°°°,k), while, since S is join-irreducible, 3 i such that S

= S(Xi).D

Corollary 1.1. Every element in a finite distributive lattice has a

unique join-irredundant representation as a join of join-irreducible

elements.

Proof: See Gratzer (1978), Corollary 13, p. 62.0

The next proposition establihes the natural correspondence between
homomorphisms of finite distributive lattices and homomorphisms of finite

posets with zero.

Proposition 1.2. (i): Let @1 and @2 be two posets with zero and let w:@l

ﬂ»@2 be a poset homomorphism such that y(0) = 0. The mapping

(1.3) H(v): H(®,) - H(®))
h -y l(h)

is a lattice homomorphism with the property H(y)(1) = 1.

(ii): Conversely, let ¥, and ¥, be two finite distributive lattices

1 2
and ¢: $1 a,gz a lattice homomorphism such that ¢(1) = 1. The mapping
(1.4) Jle): J(gy) = J(£;)

x o inf{x'€$ll¢(x’)2x}



15

is a poset homomorphism such that J(¢)(0) = O.
Proof: (i): To see that ¢_1(S) € H(@l), suppoée that x € ¢_1(S) and y ¢
x. Then Y(y) € ¥(x) € S, hence y € ¢—1(S)’ It is trivial to verify that
H(¢)(S1U82) = H(¢)(Sl)UH(w)(82) and the analogous property for N. Also,
HW) (1) = HO)(®y) = ¥ (%) = 1.

(ii): Tp show that J(¢)(x) € J(Ql), note first that {x'€$1|¢(x‘)2x} #
@ for every x € 82 because ¢(1) = 1. Let J(¢)(x) = Y4 VesoV Vi be the
unique join-irredundant representation of J(¢)(x) as the join of join-ir-
reducible elements (cf. Corollary 1.1). To see that k = 1, note that
?(J(0) (%)) = o(yy) Ve=+V o(y}) 2 x € J(4,). By Lemma 1.2, this implies
that there exists i such that ¢(yi) > x. Thus we have ¥y 2 J(e)(x) = vy
VeeoV Yy and therefore k = 1. Next for x,y € J(Qg) with x { y we have
J(9)(x) = inf{x'€L |o(x')2x} < inf{x'e? |o(x')2y} = J(¢)(y). Finally,

J(#)(0) = inf{xe2, |o(x)20} = inf{x€2 } =0.

Remark 1.4. If the lattice Qi is identified with H(J(Qi)) through (1.1)

and the poset ?i is identified with J(H(?i)) through (1.2), i=1,2, then

JEH()) = ¥ and BI()) = ¢.0

Remark 1.5. For the identity mappings id@ and idg we have H(id@) = idH(@)
and J(idg) = idJ(g)' It can also be seen that if w1191 - @2 and Vo Py =
@3 are homomorphisms of finite posets with zero such that ¢1(O) = 0 and
¢2(O) = 0, then H(¢20¢1) = H(¢1)0H(¢2). Likewise if ¢1:$1 - 82 and ¢2:$2

- 33 are homomorphisms of finite distributive lattices such that ¢1(1) =

1 and ¢2(1) = 1, then J(¢20¢1) = J(@l)OJ(¢2).D
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Proposition 1.3. (i): Let u=$£o - ¢, where EBO and £ are finite distribu-

tive lattices, be an injective lattice homomorphism such that u(l) = 1.

Then J(u):J(£) - J(&BO) is surjective.

(ii): Conversely, let p:® - fﬁo, where # and 9]50 are posets with zero,

be a surjective poset homomorphism such that p(0) = 0. Then H(p):H(?ﬁo) -

H(#) is injective.
Proof: (i): Let Xy € J(§£O). We shall find x € J(¥) such that J(u)(x) =

Xq- Since u(xO) € ¢, there is a unique join-irredundant representation
u(xo) = %

Since Xg < u(xo) we have J(u)(xi) < Xy i=1,+++,k, hence J(u)(xl) VeeoV

VeeoV X of u(xo) as the join of join-irreducible elements.

J(u)‘(xn) X5 On the other hand, x; £ u(J(u)(xi)), i=l,+++,k, so x;

VeeooV X < u(J(u)(xl)) VeseV u(J(u)(xk)) < u(xo). Thus Xy = J(u)(xl)

I

VeeoV J(u)(xk) Since X € J(F.PO), there exists an i such that J(u)(xi) =

Xy as claimed. The proof of (ii) is trivial.O
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2. THE LATTICE OF SUBSPACES OF A VECTOR SPACE.

2.1. Distributive lattices of subspaces.

Let V be a finite-dimensional real vector space'with zero element O.
A subspace of V is a pair (L,u) consisting of a vector space L and an
injective linear mapping u:L - V. (For example, in the definition of a
linear model (cf. Section 3 ), L répresents the parameter space and u
the parametrization mapping.) Let (L,u) and (L',u') be two subspaces of
V. If there exists an injective linear mapping v:L' - L such that u' =
uov, then we write (L',u') C (L,v). Note that v is unique and that (L',v)
is a subspace of L. The inclusion relation C is not antisymmetric‘on the
set of all subspaces of V, but is antisymmetric on the set ¢(V) of all
equivalence classes of subspaces of V determined by the following equiv-
alence relation: (L,u) ~ (M,v) if u(L) = v(M). Equipped with the ordering
relation induced by C (also denoted Q); ¢(V) becomes a poset. The usual

representation of ¥(V) is the set of all embedded subspaces in the clas-—

sical sense, that is, all pairs (L,u) where L is a subset of V closed
under the vector space operations in V and u:L =V is the embedding (u(x)
= X). (Usuaily we omit the embedding u and simply write L for (L,u).) For
this representation, the relation C on ¥(V) is the usual inclusion rela-
tion for embedded subspaces. We shall study the structure of the poset
¥(V) through this representation. The usual vector space concepts such as
intersection, sum, direct sum (®) and complement may be defined in ¥£(V).
Since the poset ¥(V) satisfies conditon (P4) of Section i, £(V) is a

lattice with A and V defined by LAM := LMM and LVM := L+M = span{L,M},

L,M € £(V). In fact, £(V) satisfies a stronger condition namely:
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(2.1) For any subset S C £(V) the elements 3S := sup(S) (=spanS) and NS
= inf(S) exist. Furthermore, there exist finite subsets S1 SO cSs

suqh that 3S = ESI and NS = ﬂSo.

(V) is a lattice with unit and zero given by the subspaces V and {0}
respectively. If dim(V) > 2 then £(V) is not distributive and [£(V)]| = »,

but ¥(V) has finite length (= dim(V)+1).

Lemma 2.1. Let L,M € (V) and let V_, VM be complements of /M in L and M

respectively. Then L + M = VLQ(LﬂM)QVM.
Proof: Staightforward from the definitions of direct sum and complement.O

Let ¢ C £(V) be a distributive sublattice. Since ¥%(V) has finite
length, so does ¥, hence ¢ is a-finite by Propoéition 1.1. Since ¢ is

‘finite, it has a unit 1 = lg and a zero O = Og. Note that in general, 1 C

V and 0 2 {Q}..

Theorem 2.1. (Decomposition Theorem). Let £ C ¥(V) be a distributive
sublattice with V € £. For L € J(¥£)\{0}, let VL be a complement of J(L)

:= 3(L'€¢|L'cL) in L; for L = 0, let V; = 0. Then
(2.2) V=g (V.|Ley)

Proof: We shall need the fact that for any L € ¢, the set $L =

{L'€2|L'CL} is a distributive lattice with L as the unit element and
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(2.3) J(€h) = Jnet
To prove (2.2) proceed by induction on [J(£)]|. If |J(£)]| = 1 or 2,
(2.2) is immediate. For n)>3 suppose that (2.2) is true whenever |J(¥)| <
n-1, and assume that lj(i)l = n. Suppose first that VEJ(¥). Then J(V) C V
and IJ(QJ(V))|=IJ(Q)\{V}| = n-1 by (2.3), hence
J(V) = o(V, , [L'€J(£).L'CI(V))
by the induction hypothesis and (2.3). But V = VVQJ(V), hence (2.2)
holds.
Next, suppose that V&€J(¥). Then V =L + M, where LM € £ with L C V and

M C V. It follows from Lemma 1.2 that
(2.4) {L'eJ(L) |L'cLyU{L eJ(L) |L'aM} = J(¥).

By (2.3) this implies that |J(£%)|<n, |J(€D)|<n and |J(£“™)|<n. By in-
duction and (2.3),
L =@, |L'eJ(¢).L'cL ) =
(&(V, . IL'eJ(£).L'CL.L'ZLn)) & (8(V, . |L'€J(¢).L'CLm)) =
| a(V, . [L'eJ(2) L CL, L' gLm)e (L),
and an analogous formula holds for M, namely
M=6(V,, |L'€J(L),L 'TM, L' gLAM)®(LNM) .
By Lemma 2.1 and (2.4),
V=L+M=
O(V . [L'eJ(9).L'cL.L'aun) & (8(Vy . |L'eJ(£).L L)) o
(6(V, . |L'€J(¢),L'aM,L'gLMM)) = &(V. , |[L'€J(£)).O

For any L € ¥, we may apply Theorem 2.1 with V and ¢ replaced by L
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and QLand invoke (2.3) to obtain
(2.5) L = ®(V,,|L'€eJ(¢L),L'CL), Le.

We call (2.5) a decomposition of L€¥ with respect to £. It is not unique,

since for every L€J(¥) the complement VL can be choosen in many ways.

(Compare with Theorem 2.2.)

Remark 2.1. In fact any (abstract) finite distfibutive lattice M can be
represented as a distributive sublattice £ C (V) for some finite -dimen-
sional vector space V wifh V € ¢. One such representation is constructed
as follows. For each x € J(H) let Vg be an arbitrary finite —-dimensional
vectorspace of dimension 2> 1. Define
V=8V, |x'€J(4))
and L, =8V, [x'€J(H).x'<x), x € M.
Then ¢ := {LXIX€M} C (V) is a distributive sublattice and the mapping x

%>LX of M onte £ is a lattice isomorphism.

2.2. Geometrically orthogonal lattices of subspaces.

Linear statistical models and variance component models are defined
on a real vector spaces V equipped with an inner product 6 (cf. Section 3
and 4). In the remainder of Section 2 we study the interplay between the
distributive property for a sublattice ¥ C ¥(V) and a geometric orthogon-
ality property (with respect to 6) of the subspaces in ¥.

Let 6 be an inner product on V, i.e., 6:VxV - R is a positive defi-
nite form. If (L,u) is a subspace of V the mapping &6o(uxu) becomes an
inner product on L. The adjoint linear mapping u*: V - L with respect té

(wrt) 6 and 6o(uxu) defined by the equation 6(x,u(z)) = 60(uxu)(u*(x),z)
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(Eﬁ(u(u*(x)),u(z)), Vx€V, Vz€L is called the orthogonal projection onto

(L,u) (or just onto L) wrt &. This should not be confused with the linear
mapping qp ‘= uOu*IV'é VYV which is usually called the orthogonal projection

on L. The mapping ap depends on (L,u) only through its equivalence class.

The complement qil(O) = (€ €(V)) of L in V is called the orthogonal com-

plement of L in V wrt 6, and is denoted by Ll.

Definition 2.1. Two subspaces L,M € £(V) are called geometrically ortho-

gonal (g.o.) wrt 6 if the orthogonal projections q and Ay commute, i.e.,

q QY = Gy - A subset M C (V) is called geometrically orthogonal wrt 6

if every pair LM € Ml is g.o0.0

If L and M are g.o. wrt 6 then
(2.6) AUy = Y Yy

(2.7) | Lay = YLy

Furthermore, one can easily see that L and M are g.o. wrt & if and only

if the two subspaces Lﬂ(LﬂM)l and Mﬂ(LﬂM)'L are orthogonal wrt 6.

Remark 2.2. Let M C £(V) be a g.o. subset and let ¥ be the smallest lat-
tice containing M. Any element in ¥ is obtained from M by means of fi-
nitely many binary operations using N and + (cf. Gratzer (1978) p.27

Lemma 3). It follows from (2.6) and (2.7) that ¢ is also g;o.D
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Proposition 2.1. Let the sublattice ¥ C (V) be geometrically orthogonal

wrt 6. Then ¢ is distributive, hence finite.

Proof: Let L,M,N € ¢ and let qp -y and Ay be the corresponding orthogonal
projections. Since they all éommute, it follows from (2.6) and (2.7) that
the orthogonal projections on LN(M+N) and (LMM)+(LMNN) are qL(qM+qN—quN)
and quM+quN_(quﬁ)(quN) respectively. Since these two orthogonal pro-
jections are identical it follows that LN(M+N) = (LMM)+(LMN), and thu

that ¢ is distributive. The final assertion is immediate from Proposition

1.1.0
By Proposition 2.1 and Remark 2.2, if # C ¥(V) is g.o., it must be
finite.

The following result is a partial converse ‘to Proposition 2.1.

Proposition 2.2. Let ¥ C (V) be a distributive sublattice. Then there

exists an inner product 6 on V such that ¢ is geometrically orthogonal
wrt 6.

Proof: Without loss of generality we may suppose that V € £. Consider a
decomposition (2.2) of V wrt ¥. Then we can choose an inner producer &
such that the direct sum in (2.2) becomes orthogonal wrt &. It follows

from (2.5) that all pairs LM € £ are g.o. wrt 6. O

Theorem 2.2. (Orthogonal Decomposition Theorem). Let the sublattice £ C
£(V) be geometrically orthogonal wrt &. For L € J(¥) choose each comple—
ment V. in Theorem 2.1 to be the orthogonal complement of J(L) in L wrt

L
6, i.e., VL = LﬂJ(L)l. Then the direct sums (2.2) and (2.5) become ortho-
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gonal wrt 6.

Converseiy, if fhe direct sum in (2.2) is orthogonal wrt &, then VL =
LNJ(L):, L € J(£)\{0}.
Proof: Let L,M€J(¥) with L # M. Then the orthﬁgonal projections on VL and
VM become T = qL_qJ(L) and Ty = qM—qJ(M) respectively. Since all ay-
Ne¥, commute, T and Ty commute, hence VL and VM are g.o. wrt 6. Since

V. NV

L M= {0}, they must be orthogonal wrt 6.0

Remark 2.3. When V is equipped with an inner product 6 and a direct sum

is orthogonal wrt &, it will be written with the symbol L rather than 6.0
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3. GEOMETRICALLY ORTHOGONAL DESIGNS OF NORMAL LINEAR MODELS.

3.1. The linear statistical model.

Let V # {0} be a finite-dimensional vector space and § a fixed inner
product on V. Every sﬁbspace (P,u) of V together with 6 determines a
normal regression mbdel in the following well-known way: the observation
space is V, the parameter space is PxR_, where R _ = 10,«[, and the set of
unknown probability measures on V consists of the normal distributions
with mean u(f) and precision 0—26, where (§,02) € PxR, . The vector space
P and the mapping u are the parameter space for and the parametrization
of the mean value subspace (= regression subspace) L = u(P). It is well
known that the maximum likelihood (ML) estimator (@,92) for (§,a2) € PR,
‘exists with probability 1 if and only if P is a proper subspace of V. In

this case the ML estimator is unique and is given by
é A2
(3.1) (8,07)(x) = (p(x).6(xq(x))/n), x €V,

~where p:V = P is the orthogonal projection wrt &, q = uop, n = dim(V),
and 6(x):=6(x,x), x € V. The ML estimator is a minimal sufficient statis-
tic and its distribution can be described in the following way: ? and 92
are independent, ? is normally distributed on P with mean £ and precision
0_26°(uxu), and 92 is x2—distributed with n-n' degrees of freedom and
scale Uz/n, where n' = dim(P). Usually one uses the unbiased estiﬁator s

= 92n/(n—n’). It is thus seen that the solution to the likelihood infer-

ence problem is reduced to the algebraic problem of representing p and

calculating dim(P). In the calculation of 92-0r 52 one uses the formula



5(x-q(x)) = 6(x)-6(a(x)). x€ V.

3.2. Nested designs of linear models.

We now discuss a simple case of a geometrically orthogonal (g.o.)

design of normal linear models (the general case is defined in Section

3.3). Let
(32) (Po’uo) c (Pl’ul) Cee-C (Pk_l'uk_l) Cc (Pk’uk) = (V'idv)'

where id,, is the identity mapping, be a nested family of subspaces in V.

V.
These subspaces are trivially pairwise g.o. and together with & they
determine k+1 linear models. The likelihood ratio (LR) statistic Qij for

testing model i against model j, 0<{i<j<k, is given by

o 80a,00))

(-3) %0977 = S Gy * €V

where qi:V - V is the orthogonal projection onto ui(Pi)’ i=0,1,+-- k.
Under model i, Q?gn has the beta distribution with nk—nj and nj—ni de-
grees of freedom, where n, = dim(Pi), (n = nk) which does not depend on
the unknown parameters. Furthermore, Qk—2,k—1’...’Qi,i+1 and the ML esti-
mator (€,92) in model i are independent under model i, i = O,<++,k-2. The

calculation of these statistics do not require any new quantities. There-—

fore, the testing problems also reduce to the algebraic problem described

above.

The ANOVA table associated with the design (3.2) is as follows:
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(3.4) (SSDy.£4). (SSD;.£),+==,(SSD.£,),

where SSDi(x) = 5(qi(x)—qi_1(x)), i=1,+--,k, and SSDo(x) = é(qo(x)), X €

V, f., =n.,-n, ., i=1,¢++,k, and f, = n.. All quantities needed to calcu-
i i Ti-1 0 0

late the LR test statistics Qij’ 0<i<j<k, and the ML estimators of o

under the models 0,1,<-+,k-1 are readily obtained from this table. The

ANOVA table (3.4) arises from the orthogonal decomposition of V deter-

mined by the subspaces (3.2) and &:
(3.5) V = LoL(L,NLo)Le=-1( L)L L )
: ott1"o L 1My 10y
where L, = u_,(P.), i=0,1,+-- k.
i itti

3.3. Geometrically orthogonal designs.

The reader is undoubtedly familiar with the classical examples of
balanced ANOVA designs, where such orthogonal decompositions of V and
ANOVA tables may also be defined and possess analogous properties to
(3.4) and (3.5), e.g., balanced multi-way ANOVA and split plot designs.
Furthermore, it is wellknown that in unbalanced designs, no such decompo-—
sitions and tables exist (cf. Examples 3.4 and 3.13). It is the main aim

of this section to characterize those designs (= families of linear re-

gression models) where suitable decompositions and ANOVA tables exist. In
this generality, this question has not yet been adequately answered in
the literature. It will be shown that these are exactly the geometrically

orthogonal (g.o.) designs.

We shall show that a design is g.o. only if its lattice € of regres-
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sion subspaces is distributive. Furthermore, in this case the structure
and analysis of thevdesign (eg.., the contrast estimates and ANOVA table)
are uniquely and unambiguously determined by the contrast subspaces in—
dexed by J(¢), the poset of join-irreducible elements of .

Let M C £(V) beAa family of embedded subspaces of V. Let (PL,uL) be a
subspace of V such that uL(PL) =L, L € . We refer to the family of
linear models determined by the subspaces (PL,uL), L € M, and by the
fixed inner product &, as a design of linear models. If M is g.o. wrt &
it follows from Remark 2.2 and Proposition 2.1 that the smallest lattice
¢ containing M is g.o., hence distributive, and thus finite. The exten-
sion from # to the lattice ¢ is statistically ﬁatural, since interest in
the models corresponding to the subspaces in M implies interest in the
models corresponding the subspaces obtained from M by means of the oper-—
ations + and N. The g.o. condition on A insures ¥ is finite. (Without the

orthogonality condition ¥ may be infinite even if M is finite.)

Definition 3.1. For a fixed inner product § on V, let ¥ be a geometrical-

ly orthogonal (hence distributive and finite) lattice of embedded sub-
spaces of V. Let (PL,uL) be a subspace of V such that uL(PL) = L, Le¥.

The design determined by ((PL,uL)lLGQ) and 6 is called a geometrically

orthogonal design of linear models. When there is no danger of confusion

we simply refer to the g.o. design determined by £.0

Remark 3.1. If £ is a g.o. lattice of embedded subspaces of V, then the
lattice $U{V} is also a g.o. lattice. For notational convenience we here-

after assume without loss of generality in Definition 3.1 that V € £. The
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nested chain of linear models given by (3.2) is trivially a g.o. design.O

3.4. Contrast vector estimates and the ANOVA table.

We now show that each g.o. design of linear models determines a de-
composition of V together with an associated ANOVA table from which every
LR test statistic Q and variance estimator s2 within the design may be
obtained, together with their distributions.

Consider a g.o. design of linear models determined by the family
((PL,uL)ILGQ) of subspaces in V and the inner product &. From Theorem 2.2

and Remark 2.3 we obtain the orthogonal decompositions

(3.6) M l(VL]LGJ(Q),LQM), Me g,

(3.7) \'s L(VLlLej(Q)),

where VL = LﬂJ(L)l, L € J(¢). Next for L €J(¢), let rLZV - V denote the

orthogonal projection onto V., SSD (x) := 6(r,(x)), x € V, and £, :=
L L L L

dim(VL). The contrast (vector) estimates and the analysis of variance

(EANOVA) table corresponding to an observation x € V are then defined as

the families

(3.8) | (r; (x) |LeJ(2))

and
(3.9) ((SSDL(x),fL)|LeJ(w))

respectively. Often, the quantities si(x) also appear in the table, where
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sﬁ ‘= SSDL/fL, L € J(¢). The mean value ML estimators L’ Leg, (see

(3.10)) can readily be obtained from the contrast estimates (see (3.12)),
and the variance estimators SgL’ Le#, (see (3.10)) and LR test statistics
QMN’ M.Ne£, (see (3.11)) can readily be obtained from the ANOVA table,
together with their distributions, (see Remark 3.2 below).

3.5. Estimation and testing in a geometrically orthogonal design.

For L € ¥, let pL:V A»PL denote the ofthogonal projection onto P, , qr
=y op, SSL(X) = 6(qL(x)), x€ V, n = dim(L) (= tr(qL)), and n := ny.

For N € ¢, N CV, the statistics éN and sgN given by

SS,,~-SS

e — N
(3.10) uN(@N) = gy and Soy = o oy

are the mean value ML estimator for § € PN and the unbiased estimator for
02 € R+ under the model corresponding to N; éN is normally distributed on

PL with mean §N and with precision 0_260(uquN) (or equivalently with

variance 025—10(p§Xp§), where pﬁ:P; - V* is the dual mapping to pN), and

is x2 distributed with nyhy degrees of freedom and scale 02/(nv—nN).

For M € £ and MC N CYV, the LR statistic QMN for testing the linear

s2
ON

model corresponding to M against that corresponding to N is given by

SS,,—-SS

o/m Sy ™SSy
(3.11) r o LN
, WY = 55,755,

under the null hypothesis, Q§§n has the beta distribution with ny Ny and

NN~y degrees of freedom.
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Remark 3.2. In order to calculate the contrast estimates and the ANOVA
table proceed as follows. For an observation x € V begin by calculating
qM(x), SSM(X), and ny for all M € J(¢). The following formulas are im-

mediate from (3.6):

(3.12) | ay = z(rLlLeJ(g),LgM), Me g,
(3.13) SS z(SSDLlLeJ(g),LgM), Me g,
(3.14) Dy = E(leLGJ(Q),LgM), M€ ¢

The equations (3.12-14) for M € J(¥) are then solved using the Mobius

function p for J(¥) to obtain:

(3.15) ry = 3L [LeJ(©), ¥ € J2),
(3.16) SSD, = 3(u(L.M)SS, [LeJ(2)), M € e,
(3.17) £y = E(u(L,M)nLILGJ(Q)), M€ J(¥).

From these equations the contrast estimates (3.8) and the ANOVA table
(3.9) are obtained. Finally one uses (3.12-14) again to calculate qM(x),

SSM(X) and n,, for M € ¥\J(¥).O

Remark 3.3. If L € J(¥¢), then we refer to L as a subspace of main effect
and VL as the subspace of the associated contrast (= contrast vectors).

This agrees with the terminology used in classical ANOVA examples.O

If the family M of subspaces of interest is not g.o. wrt &, but the

smallest lattice ¥ containing # is still distributive (hence finite),




31

then the decompositions in (3.6-7) are not orthogoﬁal (eg. Example 3.4).
This implies that‘(3.12), (3.13), (3.15) and (3.16) are not valid. In
this situation estimators and LR statistics cannot be determined from the
contrasts and the ANOVA table. Furthermore, the SSD statistics defined by
(3.16) are not indepenaent. (Note that by Proposition 2.2, in this case
there does‘exist Some other inner product 3, i.e., another precision
structure, such that ¥ becomes g.o. wrt 5. However, 5 may not be statis—
tical meaningful.) If ¥ is not distributive but still finite the decompo-
sition of V cannot be defined. These considerations show that theonly
designs of linear models for which meaningful and useable decompositions

and ANOVA tables can be defined are the g.o0. designs.

3.6. Orthogonal factor—generated designs.

Tjuf (1984) has studied a subclass of g.o. designs of linear models,

namely, the class of analysis of variance designs with orthogonél fac—
tors. His treatment and formulation of such designs is essentially the
same as ours, with one important difference. The cardinality of Tjur’s
set 9 (= th§ set of all factors in the design - see below) used by him to
index his orthogonal decomposition of the observation space (Tjur, p. 42)
and to index his ANOVA table (Tjur, Section 5) may be strictly greater
than.the cardinélity of our set J(gw) (= the set of all join-irreducible
elements of the lattice Q@ determined by 9 - see below). Thus his decom-—
position and ANOVA table may contain trivial components and entries,
whereas ours does not (cf. (3.6-9)). This reflects the fact that, in the

general g.o. design, the index set J(¥) has a fundamental connection with

the lattice structure ¢ of the design of subspaces.
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We briefly review the formulation and notation in Tjur (1984) and
compare them to oufs. In Tjur (1984) the observation space is V = lRI,
with I a finite index set, & is the usual inner product, and the design
of linear models is determined by a finite set 9 of orthogonal factors. A
factor is a mapping F:I - F, where F is a finite set. We shall in the
present work suppose that factors are surjective. Usually one simply
refers to "the factor F", subsuming the mapping F:I = F from the context.
Two factors are said to be equivalent if they induce the same partition
of I. The set F(I) of equivalence classes is finite and is equipped as a
poset by the ordering < given by: F1 < F2 if the partition induced by F2
is finer than ‘that induced by Fl' By convention we do not distinguish
between equivalent factors, hence speak of a factor as an element of
F(1). I.n fact, F(I) becomes a finite lattice with the one point set O as
 the minimal element and I as the maximal element.

A factor F defines a subspace (PL,uL) of lRI in the following way:

PL i= IRF,
(3.18) ; L i=Lg := {(xﬁ(i)|i€I)€RI|(xf|f€F)€RF},

uL((xf|f€F)) = (X?Ti)liel).

The matrix XF for u; is given by (XF)if =1 if F(i) = f and O otherwise.

Thus the matrices for the orthogonal projections pLilRI -> lRF and q =
u, °p :IRI - lRI become (Xt )—1  and X (X)c )—IXt respectively. The matrix
L°PL FF)  Xp r(Xp¥p) Ap :

(XIEXF) is diagonal with diagonal (nflf€F), where n, = lf_l(f)l, f € F.

I

For x = (xilieI) € R™ it follows that
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(3.19) a0 - (DF_(%.) Sp(1 (0 [1€D).
where

(3.20) S, (x) = E(XilieF_l(f)), feF.
Futhermore,

(3.21) S8, (x):= 6(ay (x)) = 3(S,(x)*/n, | £€F)
and

(3.22) n := dim(L) = IF] = tr(q ).

It is obvious that equivalent factors correspond to equivalent sub-
spaces and that the mapping F - LF of F(I) into Q(RI) is an injective

homomorphism of posets with the property
(3.23). LFAG = LFﬂLG, F,GeF(1).

In the sequel, we shall frequently denote LF simply by F.

It is seen from the definition of orthogonal factors in Tjur (1984)
that two factors are orthogonal if and only'if the corresponding sub-
spaces are ‘g.o. Since 9 is assumed to consist of orthogonal factors, the
lattice ¢ = Q% generated by A = M% 1= {LFIFGQ} is g.o., therefore distri-
butive and finite. Note that 9 and M@ are isomorphic posets. It is seen
from (3.23) that there is no loss of generality if one supposes that 9 is
closed under A; hence, as in Tjur (1984), we subsequently assume this.

In order to complete the comparison of our treatment with that of
Tjur (1984) for this special case of orthogonal factor-generated designs,
it is seen that only one question remains: what is the relation between

the poset J(gm) of join-irreducible elements and the poset M@ of factor
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subspaces? It is routine to check that in general one has M@ 2 J(im);
furthermore, this inclusion may be strict (cf. our Example 3.11 and sub-
sequent Remark 3.4). When ﬂ@ n J(Q@) all terms in Tjur’s decomposition
(p. 42) and ANOVA tablg (Section 5) that are indexed by F € M@\J(Qw) will
be trivially O. By contrast, no term in our decompositions (3.6-7) and

ANOVA table (3.9) is trivial.

When € = £ is generated by a set of orthogonal factors, the quan-—

)
tities qy, SSM, and oy Me J(QE) (c M@) needed in Remark 3.2 are immedi-

ately obtained from (3.19-22). Thus to complete the determination of the
contfast estimators and ANOVA table, as outlined in Remark 3.2, it re-

mains only to find the subposet J(Qg) of M@ and to find the Mobius func-

tion for J(Q@).

3.7. Examples.

In the remainder of this section we present a series of examples to
illustrate the specification and analysis of g.o. designs of linear
models. In each example, V = RI and & is the usual inner product. Many of
our examples treats factor-generated designs, in which (following (Tjur

(1984)) we identify the isomorphic posets 9 and Mm. Also in each figure

below, the elements of J(¥) are circled on the graph of the poset <.

Example 3.1. (Homogeneous observations = the i.i.d. case). Let 9§ = {I,0}.

Then Qw = J(Qﬁ) = 9 (see Figure 3.1) and the Mobius function for J(Qg) is

specified by u(0,I) = -1.0

Example 3.2. (One-way analysis of variaﬁce). Let G be a finite set with
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[G]>2 and let Ig be finite sets with lIglzl, g € G. The set G indexes the
distinct groups of.observations, while the set Ig indexes the observa-—
tions within the group with index g € G. Suppose that there exists at
least one g € G such that |Ig|22. Set I = O(IglgGG) and let 9 = {I,G,0},
where the factor G:I - G is given by G(gi) = g, gielg, g€G. (The notation
gi is the usual subscript notation indicating an observation within group
g.) Here Q% = J(Qg) = 9 is a chain of three elements (see Figure 3.2) and

the Mobius function for J(Q%) is specified in Remark 1.1.0

Example 3.3. (Comparison of several one-way analyses of variance). Let H
be a finite set with |H[>2, let G, be finite sets with lchlzz, h€H and

let I be finite sets hg€G,, h€H. Suppose that there exist at least one

hg
h € H gnd one hg€G, such that lIhglzz. Set I = U(U(Ihglgecljl) |h€H) and set
9 = {I,G,H,0}, where G = L’J(GhlgeH), H(hgi)=h, G(bgi)=hg, hgi€l ;. hg€G, ,
h€H.. As in the previous examples 3@ = J(Qg) = 9 is a chain (see Figure

3.3) and the Mobius function is specified in Remark 1.1.0

Example 3.4. (Two-way analysis of variance). Let G = RxC, where R (for

rows) and C (for columns) are finite sets with |R[>2, |C[>2 and let

I be a finite set with |I 21, (r,c)€RxC. Suppose that there
(I‘, ) I (r’c)l— ( ) PP

exists at least one (r,c)€eRxC such that II(r C)|22. Set

I=U(I(r’c)l(r,c)€RXC) and let ¥ = {I,RxC,R,C,0}, where RxC((r,c)i) =

(r.c), R((r.c)i) = r, C((r.c)i) = c, (r,c)i€Irc, (r.c)€RxC. Then 7 is
closed under A and the corresponding subspaces are g.o. if and only if

II(r,C)IIII = lIr'I|I~cI’ (r,c)€RxC, where IIr.I=E(|I(r’C)|Ic€C), T€R,

and |I__|=3(]I | |[r€R), c€C. The lattice ¥, consists of the five fac-
*C (r,c) )]
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tor subspaces and the subspace LR+LC. Thus 2@ . J(Q@) = 9 (see Figure
3.4). The Mobius function is specified by p(RxC,I) = p(R,RxC) = p(C,RxC)

= (0.R) = p(0.C) = -1 and p(0.RxC) = 1.0

Example 3.5. (Multi-way analysis of variance with one observation per
cell). Let J be a finite set with |J|>2 and let Kj be finite sets with
IKj|22. j€J. Set I = X(Kj|j€J). For any BCJ define Fp = X(KjljeB) and let
Fﬁ:I%FB be the projection mapping i.e., fﬁ((kjljej))=(kjlj€B).
(kj|j€J)€I. Set 9 = {FB[BG%(J)} (see Remark 1.1). Then 9 is closed under
A since FBAFC = FBﬂC’ B,Ce%(J). Furthermore FBVFC = FBUC shows that 9 is
also closed under V. Also, all factor subspaces are g.o. It is seen that
Q@ ) J(im) = 9 (see Figure 3.5 for J = {a,b.c}) and, since 9 is isomor-
phicito 2(J) as a poset, the Mobius function is specified by p(B,C) =

(—1)'0[“131, COB (cf. Remark 1.1). Note that the ANOVA table is indexed

by 9(J).O

Example 3.6. (Comparison of several two-way analyses of variance with one
observatiop;per cell). Lét G be a finite set with |G|>2 and let Rg and Cg
be finite sets with lelzz and lcg]zz, g€G. Set I = O(Rgxcg[gec) and 9 =
{I.R;.C,.G.0},  where R, = O(Rglgec), Cq = D(cglgec),
ﬁé(g(r,c)):gr,ab(g(r,c)):gc and G(g(r,c))=g, g(r,c)eRgXCg, g€G. The fac-—
tors are g.o. and 2@ 3 J(Qg) = 9 (see Figure 3.6). The Mobius function is
specified by u(RG,I) = p(CG,I) = u(G,RG) = u(G,CG) = p(0,G) = -1 and

]J,(G,I) =1.0
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Example 3.7. (Split-plot desigﬁ). Let G, Rg, Cg, g € G be as in Example
3.6 and suppose that Rg:R is independent of g € G. Under this assumption
we can add the factor R given by R(g(r.,c))=r to the factors in Example
3.6 to obtain the split-plot design 9 = {I.Ry.C4.G. R.0}. As in the pre-

vious examples every factor subspace is join—irreducible, i.e., J(Q@) =9

(see Figure 3.7). The Mobius function is specified by u(RG,I) = u(CG,I)

n(G.Cy) = r(G.Ry) = p(R.R;) = p(0,R) = p(0,G) = -1 and p(G,I) = n(0.R,)

1.0

Example 3.8. (Two-way comparison of several two-way analyses of variance
with one observation per cell). In Example 3.6 replace G by GxH, where H
is a finite set with |H|>2. Then we can add to the factors in Example 3.6
the factors G and H given by G((g,h)(r.c))=g and H((g,h)(r.c))=h,
(g,h)(r,c)GRghXCgh, (g,h)€GxH, to obtain I = {I’RGxH’CGxH'GxH’G’H’O}'

Here again 2@ D J(Qw) = 9 (see Figure 3.8). The Mobius function is speci-

fied by u(RGXH,I) = u(Cbe,I) = u(GXH,RGXH) = u(GXH,CGxH) = u(G,GxH) =

p(H,GxH) = n(0,G) = p(0,H) = -1 and p(GxH,I) = pu(0,GxH) = 1.0

Example 3.9. (Two-way split-plot design). In Example 3.8, suppose that
R(g h)zRg’ g€G is independent of h€H (cf. Example 3.7). Then we can add

the factor R, = O(RglgGG) given by ﬁé((g,h)(r,c)):gr, (g.,h)(r,c) €

R xC (g,h)€GxH, to the factors 1in Example 3.8 to obtain 9 =

g gh’
{I’RGxH’RG’CGxH’GXH’G’H’O}' Again 3@ 3 J(Q@) = 9 (see Figure 3.9). The
Mobius function is specified by u(RGXH,I) = u(CGxH,I) = u(GXH,RGXH) =
]..L(GxH,CGxH) = p,(G,RG) = u(G,GxH) = p(H,GxH) = p(0,G) = pu(0,H) = -1 and

r(GxH,I) = ]J,(G,RGXH) = 1(0,GxH) .= 1.0
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Example 3.10. (Two-way analysis of variance with one observation per cell

and subdivision of rows and colums) In Example 3.9 suppose furthermore
that C(g,h)zch’ h€H, is independent of g€G. Then we can add the factor CH
= lJ(ChIhGH) given by ‘Eﬁ((g,h)(r,c))zhc, ghrCGRgXCh, (g.h)€GxH to the
factors in Example 3.9, obtaining 9 = {I,RGXH,RG,CGXH,CH,GxH,G,H,O}.

Again Qg 3 J(Qw) = 9 (see Figure 3.10) and the Mobius function is speci-

fied by u(RGXH,I) = u(Cbe,I) = u(RG,RGXH) = ”(CH’CGXH) = u(GXH,RGXH)
u(GxH,CGxH) = u(G,RG) = p(H,CH) = u(G,GxH) = p(H,GxH) = p(0,G) = p(0,H) =

-1 and p(GxH,I) = ]J,(G,RGXH) = LL(H,CGXH) = u(0,GxH) = 1.0

In each of the preceding examples, 9 = J(%m), the poset J(Q%) is a
lattice (i.e., 9 is closed under maximum (V) in %(I)) and, in fact, even
a distributive lattice. Thus the Mobius function for J(Q%) readily can be
determined from Remark 1.3. The next example presents a case where again

D = J(Q%), J(Qg) is a lattice, but not a distributive lattice.

Example 3.11. (Latin square). Let R (for "Rows"),C (for " Columns™) and G

(for the third index) be finite sets with [R] =|c| = |G] > 3 and let I C
RxCxG be a subset such that the factors RxC, Ggarand RxG on RxCxG, when
restricted to I, are equivalent to I. Set ¥ = {I,R,C,G,0}. Then 2@ o]
J(Q@) = 9 (see Figure 3.11) and ¥ is not distributive. The Mobius func-
tion is specified by p(R,I) = p(C,I) = p(G,I) = p(0,R) = p(0,C) = p(0.G)

= -1 and p(0,I) = 2.0

Remark 3.4. If we takevIRl=[C[=lG|=2 in Example 3.11 we obtain an example

where 2 D J(Q@) (see Figure 3.12) and J(Q@) is not a lattice. (Note that
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9 is still closed under V in #(I).) In this example our ANOVA table (3.9)
is different fromvTjur (1984) (though not essentially different) since
ours does not include term‘indexed by the factor I. Nevertheless in
Tjur's ANOVA table the term indexed by I will be trivially 0. Thus, fac-

tor subspaces are not always join-irreducible.O

‘In the following three examples £ is not a factor-generated analysis
of variance design, hence (strictly speaking) these examples fall outside
realm of Tjur’s paper, but the sample space decompositions (3.6-7), the
contrast estimates (3.8), and the ANOVA table (3.9) are still well-de-
fined. Of course, fhe formulas (3.19-22) are not applicable for those
subspaces L € J(¢) that are not factor subspaces. Therefore in order to
analyze these designs, we must find J(¥), qalculate q SSL’ and np for

the remaining subspaces, and determine the Mobius function on .J(¥).

Example 3.12. (Regression analysis). In the one-way analysis of variance

(Example 3.2), assume that |G|23 and suppose that the qualitative index

g€G is quantified by the family (tgGRIgGG), where I{tglgGG}I 2 2. Set & =

{RI,LG,T,LO}, where T is the subspace given by PT = R2 and uT(a,B) =

(a+Btg|gi€I) € RI. Since ¢ is a chain, J(¥) = ¢ and the Mobius function

. . - _ 2
is trivial. Set S_ = E([Ig[tg [geG), t, = St/III, ss, = E(IIgItg |geq),

t
StSO(x)/II], where Sg(x) and So(x) are defined as in (3.20), XGRI. Then

2
SSD, = sst—st/lll, SP (x) = E(Sg(x)tg lg€G). and SPD (x) = SP (x)

ap(x) = (BP0t leieD).

$S.(x) = (A()+BEIT,)%+B() s,

nT=2,
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where P(x) = SPD_(x)/SSD, and &(x) = S,(x)/|1|-B0)T,. xer .o

Example 3.13. (Comparison of several regression lines). In Example 3.3,

suppose that the qualitative index hg € G = O(GhthH) is quantified by
the family (thgemlthG ,h€H), where l{thglthGh}l 2 2 for at least one h

I .
€ H. Set ¢ = {R ,LG,L.T+LH.T,LH,LO}. where T and L are subspaces given by

Pp = B>, ug(a.pB) = (a+pty, [hgicl) e R P, = )Y, u (((o,.5,) [her)) =

(ah+ﬁhthg|hgi€I) € RI, respectively. Here ¢ is a distributive (not neces-
sarily g.o.) lattice with J(¥) = 8\{T+LH} (see Figure 3.13). The Mobius
r(T.L) = p(ly,L)
w(Ly.T) = n(lyly) = -1 and m(Ly,L) = 1. Set S 3(11,, ]ty lecey)
T, | = 3011, lleeey). T, = si/|, | s = E(IIhgltﬁg lgec, ). sspf

function on J(¥) is specified by u(LG,RI) = u(L,LG)

h . .h,2 , h - .
SSH (st) /|Ih_|, heH. ‘Also set S_ = 3(S.|heH)., t , = S./|I|. ssD, =
E(SSDIEIhGH), ss; = z(ssi‘]heH), SSD, = ss;—(s;)z/lll. Furthermore, set

h h h h
SP (x) = z(thgshg(x) lgech), SPD (x) = SPt(x)—StSh(x)/lIh.I, h€H, and

SPD;(x) = E(SPD};(X) |heH), SP;(X) = E(SPl;(x) |heH), SPD (x) = SP;(X)—

StSO(x)/III, where Shg(x), Sh(x) and So(x) are defined as in (3.20), x €
I

R™. Then
A cosh .
a () = (4,004, (e, Ibmten),
ss, (x) = 3((5, (x)+B, ()T, .)>+B, (x)%ssD” [het).
n = 2|H|,
and

4G = (@GP b, IhsieD).

ssp(x) = (BB, )?|1[+BeassD,,

np = 2,



41

h h A -
where Qh(x) = sPDp(x)/ssDt, & (x) = s,(/ 11, 1-B, (0T, .. ner, Bx) =
SPDt(x)/SSDt, and é(x) = So(x)/lll—ﬁ(x)zo.. The subspaces LH and T are
not in general g.o.; nevertheless the projection qy on M := T#LH is
~s ~e . I ~
easely found to be qM(x) = (ah(x)+B(x)thg|hg1€I) € R, where Bh(x) =
SPD, (x)/SSD; (= 3(SSD'B, (x) [heH)/SSD) and & (x) = S, (x)/|1,, [-B(x)T, ..
I ~ o= (2 ~ 20’
heH, x€R™. Also SSy(x) = 3((a (x)+B(x)t,.) IIh.HheH)+B(x) SSD,, and
dim(M) = |H|+1. The subspaces T and LH are g.o. if and only if —h' = E_’,

h€H, and only in this case may the ANOVA table be defined. Furthermore,

in this case ﬁ(x) = é(x),>x€RI.D

From a distributive lattice point of view, the next example is ident-

ical to the Latin square design in Example 3.11.

EXample 3.14. (Two-way analysis of variance with one observation per cell

and regression in the rows). In Example 3.4 suppose that II(r c)l =1,
(r.c)eRxC, i.e., I = RxC. Also suppose that the family (tremerR) is a
quantification of the qualitative index r€R such that I{trerR}l 2 2 and

3(t_|reR) = 0. Let 2 = {IRI,LR+U+V,U+V,LR+V,LR+U,V,U,LR,T}, where the

subspaces T, U and V are given by PT = R2, UT(a,ﬁ) = (a+7trl(r,c)€I) €
I C I C
R*. Py = R<R. uU(a,('rcchC)) = (a+’rctr|(r,c)€I) € R, P, = R'<R,

uV((aCICGC),7) = (ac+7tr|(r,c)€I) € RI, respectively. Then J(¥) =
{RI,V,U,LR,T} (see Figure 3.14) and V, U, LR are g.o., hence ¥ is g.o.
Clearly the lattice ¥ and the poset J(¥) are isomorphic to the lattice 2@

and the poset J(Q@) in Example 3.11, hence the Mobius functions are the
2 c

same. Note that Lp+L, = Lp+V. Set SS_ = E(trlreR). SP (x) =

- C I

~ = = € N

E(trx(r,c)erR), and SP_ (x) E(SPt(x)ICGC), X (x(r,c)l(r,c)eRXC) R



From Examples 3.12 and 3.13 it follows that

and

where éc(x) =

q;5(x) (Q(x)+4£x) t. | (y,c)eI)eﬂiI

ss,(x) = [1180)2ss 3(A_(x)2|cec).

n; = [c|+1,

ay(x) = (B ()R t_|(r.c)eD).
s8,(x) = [R[3(A_(x)?|cec)+|clA(x)%ss, .
ny = [c|+1,
ar() = GEAE |(r.e)e),

ssp(x) = 118 [c]At)%ss,.

np = 2,

S.(x), &) = Sy(x), A () = sPS(x)/ss, and A(x)

SP;(X)/(SStICI), c€C, and where Sc(x) and So(x) are defined as in (3.20),

x = (X(p o)l

I

(r.c)€ERxC) € R™.O

In each of Examples (3.1-14) the poset J(¥) C € is closed under mini-

mum ("A") in €. For a general distributive lattice £ of subspaces, how-

ever, this property of J(¥) need not be valid, e.g., the lattice ¢ in

Figure 3.15, which, by Remark 2.1, can be represented as a g.o., hence

distributive, lattice of subspaces.
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4. VARIANCE COMPONENT DESIGNS.

4.1. Extending a design of linear models.

When analyzing an experiment by means of a linear model, or rather a
design of linear models, it may occur that the smallest mean value sub-
space that fits the data is too complex to answer questions of fundamen-
tal interest for the experiment. For example in a two-way layout with
significant interaction between treatments (rows) and individuals (col-
umns), one is unable to estimate the effects ofvthe treatments. One pos-
sible explanation for this occurence might be that the requirement that
the covariance structure is known up to a positive constant is too re-
strictive. One ﬁay out of this difficulty is to allow a more complex
covariance structure which may then permit a simpler mean value subspace
to fit the data.

The extension of the covariance structure is usually limited by the
requirement that the the ANOVA table still shall provide the necessary
information for the analysis of the design. This approach has led to the
extension of common analysis of variance designs to so-called variance
component godels'(actually, designs), also called random effect models.
The specific form of this extension is usually determined by declaring
certain systematic (=fixed) effects in the original design to be random
effects. For example the variation between individuals may be declared to
be random while the variation between treatments remains systematic.

Except for Tolver Jensen (1979) and Tjur (1984) the literature con-
tains no clear definition of a variance componéﬁt model or design. The

main aim of this section is to define these concepts in a precise and
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general way and to show that the canonical variance component models
that we define aré exactly those that allow a complete solution of the
likelihood inference problem using the associated ANOVA table. Further-—
more our treatment of these designs will shed light on some of the well-
known difficulties associated with so-called variance component models.
It will be seen that these difficulties do not arise within the class of

canonical variance component models.

4.2. Geometrically orthogonal variance component designs.

We shall define a canonical extension of a given class of a given
g.o0. design of linear models. We shall call this extension the geometri-

cally orthogonal variance component design (g.o.v.c. design) associated

with the given design of linear models.

For V and 6 as in Section 3, let ¥ C (V) be a g.o. sublattice of

embedded subspaces with V € ¢ and ((PL,uL)ILGQ) an associated g.o. design

as defined in Section 3. Let Sub*(g) denote the set of all sublattices

C ¢ such that V € 4. For A € Sub (¥), let
(4.1) Vo= L(Wy[MeJ(4))
be the orthogonal decomposition of V wrt M (see Theorems 2.1 and 2.2),

where WM = MﬂJ(M)L, MeJ(H)\{O}, WO = O (here 0 = OM)' For L € £ and H €

*
Sub (%), the canonical variance component model (c.v.c. model) determined

by the pair ((PL,uL),M) (or simply (L,#)) is defined as follows: the
observation space is V, the parameter space is PLx'Ri(M), and the set of

unknown probability measures on V consists of the normal distributions

with mean uL(f) and precision
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(4.2) (X’Y)—)E(U;I26M(XM‘YM) [MeJ(4)),

where x = (lemeJ(m)) €Vand y = (yMIMGJ(M)) €V (see (4.1)). &, is the
restriction of & to WM’ and (’g‘,(aﬁlMéZJ(ﬂ))) € PLx lRf(M). Clearly the
c.v.c. model determined by ((PL,uL),M) is an extension of the original

linear model determined by (PL,uL) (take O’ﬁ = 02, Me J(A).

Remark 4.1. If M # M', then the c.v.c. models determined by ((PL,uL),M)

and ((PL,uL),.M') may be identical in the sense that the sets of unknown

probability measures are identical.O

Definition 4.1. The geometrically orthogonal variance component design

(g.0.v.c. design) determined by the g.o. design ((PL,”uL) |Leg) is the set

consisting of all canonical variance component models determined by

((P,u).H), L €2, MesSub(£).0

The subset obtained by fixing Ml = {V} is the original g.o. design.

When there is no danger of confusion we shall refer simply to the

g.o.v.c. design determined by &.

Example 4.1. In the two-way analysis of variance design of Example 3.4, ¢

E3
= 9. lggl = 6 and |Sub (wg)l = 26.0

4.3. ML estimation in a canonical variance component model.

Let u:Ml - £ denote the embedding mapping (u(M) = M). By Proposition

.3, the mapping ¥ = J(u):J(¥) = J(H#) is a surjective poset homomorphism.

-
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Lemma 4.1. Let L(W,,, [M'€J(H)) and L(V,.|L'€J(¥)) be the orthogonal decom—

positions of V with respect to M and € respectively. Then for L € £ and M

€ J(A),
(4.3) L = L(L(VL.|L'€J($),L'QL,¢(L')=M')]M'GJ(M)),
(4.4) Wy = L(VL.IL'GJ(Q),¢(L')=M).

Proof: Since Y is surjective it follows that L = L(V,,|L'€J(¢).L'CL) =
L(L(V, , |L'€eJ(®),L'CL,y(L"')=M") [M'€J(H)). Since [L'QM,Yy(L')=M'] <=
[M'CM,y(L')=M'] whenever M € A, M' € J(A), and L' € J(£), in particular
we have that

= L(L(V, . |L'€J(£). L' M, y(L"')=M") M €J(4))

=
|

L(L(V, . |L'€J(L) ,W(L")=M") IM'€J(H),M"'CH).

Then (4.4) follows from the uniqueness of the orthogonal decomposition

wrt 4.0

From the lemma it follows that

(4.5) L = 1M meg(a),
where
(4.6) LM o 1(v, L Lte(9) L'CLw(L ) M) € Wy, M€ J(A)

Thus the c.v.c. model determined by ((PL,uL),M) is a product of linear
models indexed by J(#). The linear model corresponding to M€J(H) has

observation space W, , precision given by ai 5M, and mean value subspace
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LM having the parametrization uf:P%e WM’ where Pg = {§€PL|uL(§)€LM} and
uf is the restrictionbof u; to PL'

For any c.v.c. model in the g.o.v.c. design determined by ¢, the
ML-estimator and its distribution are thus readily obtained from this
decomposition into a product of linear models. Furthermore, all of the
quantities needed for the variance estimators 02, M € J(#), and their
simultaneous distribution are obtained from the ANOVA table
((SSDL(X),fL)ILeJ(Q)), x € V, associated with the g.o. design determined
by ¥, cf. (3.8) and (3.9). Also, the mean value estimator @ is the same
as in the linear model given by L (and &6). The results are as follows.
For the c.v.c. model determined by ((PL,uL),M), thé ML estimator

(g,(;ﬁlMeJ(M))) of (§,(a§|MeJ(M))) 13 PLxmi(M) exists if and only if

(4.7) Mo, Me J.

In this case it is unique and given by

(4.8) wof = ap = 3(rp. [L'eJ(®).L'A).

(4.9) 0% = m ' (3(SSD, . |L'eJ(£).L gL, y(L")=1)).
where

(4.10) my = dim(Wy) = E(fL.IL'eJ(Q),w(L')zM), MeJ(A).

The unbiased variance estimators

(4.11) sy =

where
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(4.12) L °= dim(LYy = 3(fp . [L7ed(2) L CLp(L")=M), MeJ(4).

To describe the distribution of the ML estimator, decompose £ e PL into £
= (fMIMeJ(M)) I3 X(PglMeJ(M)) and let quvav denote the orthogonal projec-—
tion on LM, M e J(H). Then the ML-estimator EM for the component EM e PE
is given by ug o gM = qg = E(rL,lL’eJ( ¢),L'CL,y(L’)=M), MeJ(H). The
distribution of the family ((gM,;§)IMeJ(M)) is described as follows: the
2XIJ(M)| components are independent, gM'is normally distributed on Pg

~2

with mean §M and precision oi25M°(ugxuf), and N is xz—distributed with

mM—lM degrees of freedom and scale aﬁ/mM, Me J(H).

Remark 4.2. Consider M e J(#) such that M C L. If Yy(L') = M for some L' e
J(¥£) then L' C M and thus also L' C L. This shows that LM'= WM. It is

therefore seen from (4.7) that the condition
(4.13) MZL, VMe J(H)

onL e ¢ iﬁ necessary for the existence of the ML estimator. In particu-
lar if Oi € J(M) then (4.13) cannot hold, so the ML estimator cannot
exist. If J(H) C J(¥) then the condition (4.13) also becomes sufficient,
since [LM = WM’ Y(M) = M] => M C L. The condition (4.13) can be inter-—
pretéd as follows: if there is stochastic variation in the Subspae M e

J(H#) then there cannot be a systematic effect associated with any L e ¢,

that is "higher"” than M, i.e., L 3 M.O
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. . I .
Example 4.1 (contlnged). Consider L = LC (€ Qm) and {4 = {R ’LRxC’LR} i=

{I.RxC,R} (€ Sub*(s‘}%)). Then 4 = J(4) C J(2y). From (4.4), W = Vi, W .
RxC _ R

. I
= VRxC 1 VC' Wp = VR L Vg, while L. = {0}, Lo = Vo and LC = V, from
(4.6). (In the case where all lI(r c)l are the same, we recognize the
c.v.c. model determined by this (L,#) as the extension to the maximal
parameter domain of the two-way layout with random interaction effect,
random row effect, and systematic column effect - see & 4.6 and Tjur
(1984), § 7.6.) It is easy to verify (4.7) (and (4.13)), hence the ML
estimator exists.

Next consider L = LRfLC and Ml as before. Since LR+LC 2 LR € J(),
(4.13) fails and the ML estimator does not exist. In fact, from (4.6)

I RxC R
= = = = !

(LR+LC) = {0}, (LR+LC) = VC’ and (LR+LC) = VR.LVO = WR(.).

Altogether there are 12 sublattices 4 € Sub*(Q%) such that O ¢ M. For

each such M, the ML estimator exists for the c.v.c. model determined by

(L,4), L € £, if and only if (4.13) holds. In this example it can be

%’

seen that 24 such c.v.c. models exist.O

4.4. Variance component models in a multi-way layout (Jensen (1979)).

Jensen (1979) studied the broad class of so-called variance component
models (= random effect models) associated with the multi-way layout with
one observation per cell (see our Example 3.5). One of his main results,
Lemma 4.2 below, characterizes the subclass of such models which, in this
example, are also c.v.c. models in our sense. Our trea;ment of so-called
random effect models in this case (see & 4.6) was strongly influenced by

his results, which we now review.

In the context of our Example 3.5, for every B € %(J) and k(B) :=
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(kjljeB) € FB let Yﬁ(B) be a normally distributed stochastic variable

with values in R, mean value §§(B) e R, and variance wp 2 0. Suppose,

furthermore, that all the Yﬁ(B)’ k(B) € F,, B € 9(J), are independent and

set

(4.19) %) = L e B e 20

where k(B) = Fh(k(J)). B e 9(J). and X = (Xk(J)lk(J)eFJ). Define

(4.15) ¥R s (Yﬁ(B)lk(B)GFB):
note that

(4.16) | E(Y") = & i= (Eﬁ(B)Ik(B)€FB)
and B

(4.17) X = 3(Y° [Ben(])).

The family of normal distributions of X parametrized by (§B|B€@(J)) 3
X(RFBIB&@(J)) and (mBIBe@(J)) e [O,w[@(J) is thus a statistical model.

Consider the two hypotheses Hg and H%,rwhere J C9(J) and B C 3(J),

defined as follows:

(4.18) Hy: €L =0 if and only if T € 7,

(4.19) Hy? op > 0 if and only if B e 3.

One usually thinks of YB, B € 3, as the random effect and §T, T €9, as

the systematic (= fixed) effect. The natural requirements J € & and @ € T
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are also imposed. In multi—waykanalysis of variance, all hypotheses of
the form HgﬂHé are‘referred to as variance component models. The hypoth-
esis Hﬁ is equivalent to the hypothesis E(X) € Ly i= E(LT|T€7) € 8%;
however, two distinct J's may give rise to the same Lg (cf. Tjur (1984),
§ 6.2).

Consider the c.v.c. model determined by L € 2@ and { = Qg. Let
(ange 9(J)) e R?(J) be the variance parameters for the model. Jensen
noted that any submodel defined by a set of equalities among the op is
also a product of linear models, hence may be solved explicitly. He posed
the questiqn! which variance component models of the form HgﬂHgg are sub-

models of this type?

Lemma 4.2 (Jensen (1979)). The hypothesis H&ﬂ@m is defined by a set of

equalities among the 02, B e @(J), if and only if % is closed under in-

tersection.

Jensen noted that this result is not'quite true as stated - one must
ignore the :restrictions imposed on the 02, B € 9(J), by the requirements

w, > 0, B€ 3B - cf. Tjur (1984), § 7.6 and our Remark 4.3.

B
In Theorem 4.1, we shall extend Jensen's lemma to the general case

considered in this paper.

4.5. Variance component models in factor-generated designs (Tjur (1984)).

Tjur (1984, Section 7) defines a family of variance component models
arising from a design generated by a set 9 of orthogonal factors with I e

9 (see also our & 3.6). Each of his variance component models is deter-



55

mined by two subsets 7,3 Q 9 and by a formula similar to (4.14). He as-

sume that % satisfies four conditions:

(C1) | Ie%.

(c2) All factors in % are balanced.

(C3) . % is closed under formation of minima (in %).
(C4) The matrices XBXE are linearly independent, B€E®.

The variance component model determined by ¥ and % is equivalent (except
for restriction on the parameter_domain - cf. Tjur (1984, & 7.6) and our
Remark 4.3) to the c.v.c. model given by (L,Q%), where L = E(LT|T€ﬁ) and
%% is the smallest lattice containing {LBIBG%}, and therefore has an
explicit solution. (StrictlyAspeaking, it should also be assumed that J #
- 9.) In the following subsection we shall return to this case and discuss
the relation between Tjur's conditions (C1)-(C4) and our specification of

a c.v.c. model via the sublattice 3%.

4.6. Canonical variance component models and random effect models.

After the digression.of the preceding two subsections, we now return
to the general case condered in 84.2 and 4.3. We shall proposena general
definition of a random effect model and obtain a necessary and sufficient
condition for such a model to be a c.v.c. model (cf. Theorem 4.1).

Let 7 and 3 be two nonempty subsets of £. Set

(4.20) Ly = S(T|TeT) = z(uT(PT)ITeﬁ) e <.
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Let (YBIBe%) be a family of independent stochastic variables, where YB is

normally distributed on PB with mean Q and precision wgléo(quuB). (Our

wp correspond to Tjur's a%.) Set

(4.21) X = £ + 3(ug(Y") [Bes),
where f e Lg and (wB!Be%) e R?. (Alternatively, in place of § in (4.21)
we can write E(uT(ET)ITeﬁ), where the parameter (§T|Teﬂ) € X(PTITeﬂ), but

this parametrization is not in general one-to—one.) If the two conditions

(R1) | 3% =V,
(R2) 3 C J(Ly)

are satisfied, where 2% is the smallest lattice containing %, we refer to

the family of distributions of X in (4.21) as the random effect model

determined by (7.%).

From (4.21) it follows that the covariance V(X) is given by

V(X) = 3(V(up(Y")) [Be)

S(V(Y")o (ugrug) [Bes)

2((wgléo(quuB))-lc(ugxug)IBe%)

3(ugd” o (ugpp) “*(ugpg) ©) [Be)
3(wp3(6 o (rxr]) [LeJ(2y) LCB) [Bes)

E(E(wBé—lo(rEer) |Best, BOL) |LeJ(2,))

3(3(wy B, BIL) )6 o (rfxry) [Led(2y)).
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where ugiP;-e V* and r{iv* e»V* are the dual mappings. The fifth equality
follows from the relation (cf. (3.12)) qg = UgPp = E(rLILeJ(Q%),LgB).
This shows that the random effect model (4.21) determined by (7.%) is a
submodel (= hypothesis) Hé (= Hé %) within the c.v.c. model determined by

(L

y’g@)' Specifically, H@ is the submodel specified by the restrictions

(4.22) (o7 ILed(2y)) € {(o7(w) [Lei(2y)) € B Fa) |o=(oy [Bem)er?),
where '

(4.23) af(o_)) = 3(wg[BeB,BIL), L € J(¢y).

(We suppress the J in Hé since the discussion and results in the re-

mainder of & 4.6 depend only upon the covariance structure, not the mean

value structure.)

Remark 4.3. Since % C J(Q%) the formula (4.23) determines a linear iso-—

morphism of R% given by

(4.24) A = 3(e , |B'e%,B'2B), Be%, (mB.IB'e%) e I

(4.25) W z(ﬂ(B,B')xB.]B'e.%), Be#, (A, [B'e®) e R

1l

where ﬁ(B,B') = u(B',B), B, B' € 3 and p is the Mobius function for the
poset 3. For (A,.|B'€%) € R? in (4.24), (wBlBGQ) lies in a corresponding
cone (0 2 R?. It will be necessary to replace R? by 2 in the definition of
Hé {(thereby obtaining an extended hypothesis H%) in order to establish

the precise connection between random effect models and c.v.c. models

(cf. Theorem 4.1). By allowing this extension, we are ignoring the re-
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strictions on (UEIL&J(Q)) imposed by the original assumption that wg > 0,
B e 3. This extension to (2 appears in the literature as the well known
questions of allowing negative variance components in the model and of

interpreting negative estimates when they occur (cf. Tjur (1984),87.6).0

In general, even the extended model H% cannot be solved explicitly.
Further conditions must be imposed on % in order that H% becomes a

c.v.c.model.

Theorem 4.1. Under the conditions (R1) and (R2), the hypothesis H% speci-
fied by replacing R? by @ in (4.22) is a canonical variance component

model if and only if the following condition holds:
"
(R2) | g = J(2y).

In this case H@ is the canonical variance component model determined by
(Lg’gg)-
Proof: If 3 = J(Q%) then obviously |%| = IJ(Q%)I, hence it follows im—

mediately from (4.22) that H% is the c.v.c. model determined by (Lg,ﬁé).

Conversely, suppose that H% is a c.v.c. model determined by (L,#) for

some L € £ and M € Sub*(w). Thenvfor every K,M € J(Q%), [Vo € Q, aﬁ(g) =
o2(w)] <=> [{Be#[BK} = {Bes[BOM}] <=> [{BEJ(¥,)[BK} = {BeJ(%y) [BIM)]
{=> K = M. The second <=> follows from thé fact that every element in
J(Q%) is an intersection of elements from‘%. ;t follows that [J(H)]| 2

IJ(Q%)I. Since also |J(#)| = |8| we conclude that % = J(Q%) and and that

H

5 can be determined by (Lg,g%).ﬂ



59

Corollary 4.1. Assume that (R1) and (R2) hold.

(i): If % is closed under N, then'H@ is a canonical variance component

model .

(ii): If 3 C J(¥), J(£) is closed under N, and H93 is a canonical variance
component model, then % is closed under N.

Proof: (i) Since every subspace in Q% can be expressed as a sum of sub-
spaces in &%, J(%m) C %, hence J(%%) = % and the theorem applies.(ii)
Since # QIJ(Q)ﬂ&% c J(Q%), the theorem implies that % = J(Q)DQ%, thus is

closed under N.O

Remark 4.4. If the condition % = J(Qﬁ) is not satisfied in Theorem 4.1

one can still estimate the unknown parameters (wBIBG%) in the model as

follows. Since % C J(Q%) we have that

2
(4.26) o] = E(mBIBeB,BQL), LeJ(2y)
and A

2 ~ [ 2 L}
(4.27) vp = 3(1(B.B')oy. [B'e®). Bes,

First estimate ag, B e %, in the c.v.c. model determined by (Lg’gg) by
the ML estimator a%, B e 3. Then the estimates wp (possible negative) for

w,, B e B, are obtained from (4.27).0.

B’
Remark 4.5. By Theorem 4.1, any c.v.c. model given by (L,#) can be inter-
preted in terms of a random effect model in the following way. Let J be
any non-empty subset of ¢ such that Lg =L, take % = J(H), and consider

the random effect model determined by (7,%). Ignoring the restrictions on
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(aﬁlMej(M)) imposed by the restrictions Wy > 0, M € J(H), this random
effect model is just a reparametrization of the original c.v.c. model.

The correspondence between the parameters is given by

(4.28) o = (ay. [M'eJ(4).J'DM), MeJ(A).
and
(4.29) ay = S(ROLN )02, M eJ(H)), MeJ(4),

where H(M,M') = u(M',M) and p is the Mobius function for J(#). Thus every

c.v.c. model can be represented as a random effect model.O

Remark 4.6. Consider the special case of the multi-way layout treated by
Jensen (1979) (cf. §4.4). Recall that, as in Example 3.5, we may identify
the isomorphic posets J(Q@(J)) and 9(J). Since %(J) is closed under N and

B C 9D(J), Jensen's Lemma 4.2 follows from Corollary 4.1.0

Remark 4.7. In the more general case of an orthogonal factor-generated
design treated by Tjur (1984) (cf. our §3.6), let 7, # be nonempty sub-
sets of 9. Let (YBIBG%) be a family of independent stochastic variables
with YB normally distributed on RB with mean 0O and precision
w_léo(u xu,), where (w,|BE%) € R%, 6 is the usual inner product on RI,
B B B B +
and uB:RB - RI is the embedding determined by the factor B, i.e.,
. . . B
uB((xbleB)) = (Xﬁfi)llel) (cf. (3.8)). The covariance matrix for Y then

becomes wB(XBXB)_l, where XB is the matrix for Up. As in (4.21), define

(4.30) X =F + z(xBYBlBe%).
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where £ € L := 37. Note that in this case of a factor-generated design,
the statistical moael given by this family of distributions for X is of
course the same as that given by the family of distributions for X in
(4.21). This model dogs not coincide with the model considered by Tjur
(see the first display in Section 7 of Tjur (1984), p.51) unless Tjur's
condition (C2) that all factors B € # are balanced is imposed, in which
case the two models are identical, with our ©p and Tjur's U% related by

w, = a%III/IBI. When the condition (C2) holds, we can make the following

B

comparisons between Tjur's conditions and ours: (i) (Cl) => (Rl); (ii)
under (R1), (R2) <=> (C4): (iii) under (R1) and (R2), (C3) => (R2)™. (cf.
Theorem 4.1 and Corollary 4;1.) Thus, when (C2) holds, Tjur's conditions
(C1), (C3), and (C4) are (strictly) more restrictive than our conditions

(R1) and (R2)* for a random effect model given by H@ to be a c.v.c.

model.O

Example 4.2. (A Latin square of Latin squares.) Let {J,RO;CO,GO,O} be a

Latin square design and for each j € J let {Ij’Rj’Cj’Gj’Oj} be a Latin
square design (cf. Example 3.11). Define I := O(Ijljej), R := Q(lejej),
C P= O(Cj[jej), G := O(Gjljéj) and note that J := O(OJIjGJ). Consider the
set of factors 9 = {I,R,C,G,J,R,C,G,0} in I defined in the obvious way,
e.g., R(ji) = jﬁ&(i) and Exji) = Eb(j), ji € I. Suppose that lel = ICjI
= IGJI = f is independént of j € J. Then (C2) holds, i.e., all factors
are balanced. (i) Set % = {R,C.G,J}, let § C 9 be arbitrary, and suppose
that £ = 2, IROI = lcof = |6yl = g > 2. Then (Cl1) fails but (R1) and
(RZ)* are satisfied, hence the random effect model H% is a c.v.c. model

that is not contained in the class of variance component models described
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by Tjur (1984)., Section 7. (ii) Set % = @, let ¥ C @ be arbitrary, and
suppose that f > 2 and g = 2. Then (Cl) holds but (C3) fails. Neverthe-
less, (R1) and (R2)* hold so again H@ is a c.v.c. model not contained in

Tjur's class.O

4.7. The covariance structure in a canonical variance component model.

In Remark 4.5 a second representation of a c.v.c. model were given. A
third representation of a general c.v.c. model is obtained through its
covariance structure I'. The covariance I' can be expressed in terms of the
parameter (aﬁlMéJ(M)) or the parameter (wMIMGJ(M)). From (4.1) and from

(4.21) with 8 = J(H) it is readily obtained that

2.~-1 .t t
(4.31) _ r = E(GMé VO(errM)IMeJ(M))
and
(4.32) T = S(0,6 lo(qixql) [MeJ(4))
: M M =M
If V = RI and 6 is the usual inner product, the matrix formulations of

(4.31) and (4.32) become

(4.33) I = 3(o3R, [MeJ(4))
and
(4.34) r = E(wMQM[MeJ(M)),

where RM and QM are the IxI matrices for Ty and Ay respectively.
In (4.32) and (4.34) the parameter space for (mMIMeJ(M)) is 2 2 Ri(m)

as defined in Remark 4.3 with $ = J(Ml). Equivalently, Q can be defined by
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' requiring that I' in (4.32) or (4.34) is positive definite. (In (4.31) and
(4.33) T is positi?e definite if and only if Uﬁ >0, Me J()).

In our opinion, this representations of a c.v.c. model in terms of
its covariance structure are more‘appropriate for determining its statis-

tical interpretation than its representation in terms of a random effect

model.

Example 4.3. Consider the one-way analysis of variance layout in Example
3.2 with 9 = {I,G,0}. If L = LO and # = {I,G} where G is not balanced, it

follows from (4.33) that the entries of the covariance matrix I' are given

by

U?(I-II l—l) + ag]I l—l. for g=v, i=j
(4.35)- T,y 5= { 5 o g 1 &
’ (g5-07) lIg[ , for g=r, i#j

and O for g # ~v. This determines a c.v.c. model, which may be represented

as a random effect model (cf. Remark 4.5) given by the stochastic vari-

able X with‘coordinates
(4.36) Xgi =a + Yg +Ygi’ g €G, gi €1,

where a € R and where the Yg and Ygi are all mutually independent and

normally distributed on R with mean O but with unequal variances given by
-1 . . _

V(Yg) = wGIIgl , V(Ygi) = g Equivalently, in terms of v = (wI,mG) we

have
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]—1 , for g=r, i=j

| wr + 0, ]I
(4.37) Togovg = { oo -
mG|Ig| , for g=v, i#j

and O for g # ~. Although the c.v.c. model représented by (4.35) or
(4.36) has a simple mathematical solution, it is likely that neither
representation (4.35) nor (4.36) will make it palatable to an applied
statistician, who usually would prefer the model (4.36) defined with
equal variances V(Yg). Then, however, it is not a c.v.c. model and has no
simple solution. Thus there is a trade-off between statistical appropri-
ateness and mathematical tractability in random effect models. Of course,
when G is balanced, i.e., IIgl is independent of g € G, then the model

reduces to the usual one-way layout with random group (=treatment) effect

and this conflict disappears.O

Example 4.1 (continued). Consider the two-way analysis of variance layout

with II(r C)l =n> 1, (r.c) €RxC. If L = L, and 4 = {I,RxC,R} it fol-

lows from (4.33) that the entries of the covariance matrix I are given

by
2 2 2 . .
GI(D—1)+(URXC(lCl-l)‘FO’R)/ICI,fOI‘ (I',C)l:(p,’r),]
2 2 2 s
(4.38) nr(r,c)i,(p,ﬁ)j = UI+URXC([CI—l)/lC|+UR/ICl, for (r,c)=(p,7),1i#]
(ai—a%xc)/ICl, for r=p, c#v

and O for r#p. This determines a c.v.c. model, which may be represented

as a random effect model (cf. Remark 4.5) given by the stochastic vari-

able X with coordinates
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, (r.c) € RxC, (r,c)i € I,

(4.39) X = §C+Yr+Y

(r.c)i (r,c)+Y(r,c)i

where E €R, c € Cand where the Y_, Y and Y . are all mutually

c r’ (r,c) (r.,c)i .
independent and normally distributed on R with mean O and variances given
by nV(Y_) = mR/lcl, nV(Y(r,C)) = wp, o and V(Y(r'c)i) = o;. Equivalently,
in terms of w = (wI‘waC’wR) we have

W N+W +wR/|CI, for (r,c)i=(p.7)J

I” "RxC
(4.40) nr(r’c)i’(p’ﬁ)j = waC+wR/lC|. for (r,c)=(p,7),i#j
wR/ICI, for r=p,c#y

and O for r # p. Both representations (4.38) and (4.39) for this model
can be easily interpreted statistically. This model may be called the
two-way layout with random interaction effect, random row effect, and

systematic column effect.O

Example 4.1 (continued). In the preceding example let instead {d =

{®'.Ly Lo+L.}. Then

[ o2(n-1)+(o2, o ([R]-1)([C[-1)+02, o ([R]+]C]-1))/ [R] [cl.
' for (r.c)i=(p,7)]

o2 o(IRI-1) ([c|-1)+02 (IR [+[c]-1))/[R] C].

o )i (par)g S ' for (r.c)=(p.7).i%]

o2 (IRI-1)/[R[c]. for T=p,csr

2

?U§+C/|RIIC'- for r#p,v#c,
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which is difficult to interpret statistically even when |[R| = |C|. Thus,
even in the balanced case (i.e., when (C2) holds), our class of c.v.c.

models may include models which are not readily interpretable.O

4.8." Testing canonical variance component models.

Lastly, we. consider the problem of testing c.v.c. models within a
g.0.v.c. design determined by a lattice ¥£. We shall see that the ANOVA
table ((SSDL(x),fL)ILeJ(Q)) (ef. (3.9)) contains all information needed
for calculation of the LR test statistics and their distributions.
Consider the c.v.c. model determined by (L,H#). The parameter space
for this model is L x Ri(m). For LO e € and MO € Sub*(g) such that LO CL
and MO C M, the parameter space for the c.v.c. model determined by

0 * Ri(MO). This model is a submodel of the c.v.c. model

(L.#): simply note that the surjective poset homomorphism y = J(u):J(H) =

(LO’MO)_IS L
J(MO), where u=MO - Ml is the embedding, defines the injective mapping

(4.41) nil, x RIM0) L w gIM

(8- (G [KeJ () = (81 (o 3y 1MeTC)))
between their two parameter spaces.

Remark 4.8. It may be seen from (4.41) that the c.v.c. model determined
by (V,%) contains all c.v.c. models in the design as submodels, while the
c.v.c. model determined by (Ow,{V}) is a submodel of every c.v.c. model

in the design.O
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Let H (respectively HO) denote the hypothesis given by the c.v.c.
model (L,M) (respectively (LO,MO)) and consider the problem of testing HO
vs. H. The subhypothesis HO may be expressed in terms of the mean and

variances as

HO = HOm n HOV’
where
Homtf € LO
. , _ N 2 2
HOV-VM,M eJ(d), y(M) = y(M') => Oy = Oy -

Equivalently, HOV may be written as

2 2
HOv: YMeJ(4), VKGJ(A{O), y(M) =K => oy = %%~
When LO C L and MO = M, we may refer to the testing problem HO vs. H

as .testing systematic effects, while when LO = L and MO C £ we are

testing random effects. Tjur (1984), 7.9 and 7.10, treats special cases

of these two testing problems in the context of factor—generated designs

(cf. our 84.5).

The LR statistic for testing HO vs. H is now obtained. Let V =

.L(UKIKeJ(MO)) be the orthogonal decomposition wrt. MO (cf. (4.1)). Then

U, = L(WM[MeJ(M),w(M)zK)

=~

(cf. (4.4)) and

—
!

= L(WM[MEJ(M),MQLO,¢(M)=K)

L(LMIMeJ(M),¢(M)=K),

N
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where LM is defined in (4.6). It thus follows that the existence of the

ML estimator of (E,(oﬁ[MGJ(M))) €L x Ri(m) under H implies the existence
. 2 ~J(HMA)

of the ML estimator of (EO,(UKIKGJ(MO))) € LO x R0 under HO' From the

general expression (4.9) for the ML estimator in a c.v.c. model, we read-

ily obtain the LR statistic

(621" % e (4))

(o1 [KeI(4y))

(4.42)

. . ~2 .
where for M e J(M) and K e J(MO), my = d}m(WM), kK = dlm(UK), oy is the

. 2 ~2 . . 2
ML estimator for-aM e R+ under H, and Oy is the ML estimator for UK e R+

under HO'

To find the null distribution of Q, divide the numerator and the
denomiﬁétor in (4.42) Dby H([ai]kK/leeJ(Mo)). Since kK =
E(mMIMeJ(M),w(M)=K), Ke J(MO), this shows that the distribution of Q is
independent of the unknown parameters under Hb. Using Basu's Lemma, it is
seen the ML estimator under Ho is independent of'Q when Ho holds. This
implies that for a € [0,o[,

E(([5517™ > (eI (4)))

@I P keI (Hy)))

a

EQ

Furthermore, from the distribution of the ML estimators as described

following (4.12), it follows that
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(4.43) EQ* ”('“ﬁamMQ T((Lyramy)/2) /T(1,/2) lMeJ(JO]
H[k‘akK/Z F((JK+akK)/2)/F(JK/2)IKeJ(MO)]

K

where lM = dim(LM) and Jg = dim(Lg). It is obvious that the usual Box
approximation for the distribution of Q is valid. Also, it is clear from
(4.9), (4.10) and (4.12) that all quantities needed in (4.42) and (4.43)
can Be read out directly from the ANOVA table.

Usually it is more convenient to carfy out the test for HO vs. H in
several simpler steps. As always one should try to simplify the variance
structure before the mean value structure. Thus Hov vs. H should be

tested first and then H NH, vs. H
om Ov ov

Testing Hov vs. H is the problem of testing equality of the aﬁ s
within the families (aﬁlMeJ(M),¢(M)=K}, K e j(MO). The LR statistic QV
for this problem is then a product, QV = H(QﬁlKeJ(MO)), of the LR statis-
tics QE, K e J(MO) for testing equality within each family. Under H, ,
the QE are independent. Usually, QE is replaced by the (unbiased)
Bartlett test statistic. Thus the test for Hov vs. H can be carried out
in IJ(#O)I steps, each step a Bartlett test.

The testing problem HomﬂHOV vs. HOV can be seen to be an independent
product of testing problems indexed again by K € J(ﬂo). The problem in-
dexed by K is a testing problem in the linear model with observation

. -2 . o |
space UK and precision ok 6K, where 6K is the restriction of 6 to UK. The
two subspaces of UK that determine the hypotheses to be tested are Lg and
L(LMIM€J(M),¢(M)=K) (QLg). The LR statistic Qm for testing HomﬂHoV vs.
H is thus a product Qm = H(QEIK&J(MO)), where the QE, K e J(ﬂo), are

Ov
independent, Qﬁ being the LR statistic for the testing problem indexed by
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K. Thus the test for HomﬂHOv vs. HOV also can be carried out in IJ(MO)I

steps.

Finally we again emphasize that all quantities needed to determine
the above test statistics and their distributions can be obtained direct-
ly from the ANOVA table associated with the underlying g.o. design of
linear models determined by %. By considering the larger class of c.v.c.
models in the g.o.c.v. design determined by ¥, we only provide ourselves
with an argument for comparing other pairs of sums of SSD's than those

‘pairs allowed to be compared in the underlying design.
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