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Summary 
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Two Generalizations of the Problem of Points 

by Bernoulli, de Moivre and Montmort 

At the same time as they solved the classical problem of points Ber

noulli, de Moivre and Montmort also solved the problem of poifits for a game 

of bowls and for tennis. Using modern terminology and notation an account is 

given of the solutions. It is pointed out that Montmort independently of 

Bernoulli gave a more elegant and comprehensive solution for the game of 

tennis than Bernoulli's recursive solution,and that Montmort also generali

zed and solved de Moivre's problem on the game of bowls. 
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1 The problem of points 

The problem of points, also called the division problem, is defined 

as follows. Two players, A and B, agree to play a specified number 

of games, where in each game A has probability p and B has probability 

q = 1-p of winning a point. If the play is interrupted when A lacks 

a points and Blacks b points in winning, how should the stake be divided 

between them? 

The problem of points was discussed by Italian mathematicians 

in the 16th century, but they did not succeed in finding the correct 

solution; see Cantor (1900, Vol.2), Kendall (1956), David (1962), 

Coumet (1965) and Schneider (1985). 
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It is well known that the problem was solved by Pascal and Fermat 

for p = ~ in their correspondence (1654) and by Pascal (1665); see 

Todhunter (1865), David (1962) and Edwards (1982, 1987). Besides 

combinatorial arguments Pascal also used recursion. 

Denoting A's probability of winning or his expectation, when the 

stake is unity, by e(a,b), Pascal's recursion formula may be written as 

e(a,b) = ~e(a-1,b) + ~e(a,b-1), (a,b) = 1,2, ... , 

with the boundary conditions e(O,n) = 1 and e(n,n) = ~, n = 1,2, .•. 

Pascal, Huygens (1657) and Bernoulli (1713) tabulated the solution 

for small values of (a,b) by means of this formula. The recursion 

formula is the same as for the numbers in the arithmetical triangle 

and Pascal (1665) derived the explicit solution in his Traite. 

Using the combinatorial arguments of Pascal and Fermat the general 

solution of the problem of points was obtained by John Bernoulli in 1710 

in his correspondence with Montmort (1713, pp. 294-295) and independently 

by de Moivre (1712) in the form 

( b) _ a~-l (a+b-1J' i a+b-1-i 
e a. - ~ .. p q 

. 1 l=a 

Using a waiting time argument Montmort (1713, pp. 245-246) gave the 

solution in the form 

b-1 
e(a,b) = pa L 

i=O 

They knew of course the generalization of the recursion formula 

e(a,b) = pe(a-1,b) + qe(a,b-1), (a, b) = 1,2, ... , 

with the boundary conditions e(a,O) = 0, a = 0,1, ... , and e(O,b) = 1, 

b = 1,2, ... , but they did not have a general method for solving such 

partial difference equations; this had to wait for the contributions 

of Lagrange and Laplace in the 1770s. 

By 1713 the classical problem of pointsior t.wo players had thus 

been completely solved. 
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2 The problem of points for a game of bowls 

In 1708 Francis Robartes (1650?-1718), politician, scientist and 

musician, after having read Montmort's Essay (1708) posed the following 

problem to de Moivre , who gave the solution in his De Mensura Sortis 

(1712), Problems 16 and 17 : "A and B, whose skills are equal between 

themselves, play with a given number of bowls; now after a certain number 

of games are completed, A lacks 1 game from coming out the winner, 

and B 2 : the ratio of their expectations is sought". (This is Problem 

16; in Problem 17 the number of games lacking is 1 and 3, respectively.) 

It follows from de Moivre's solution that in each game the winner gets 

a number of points equal to the number of his bowls that are nearer 

to the jack than any of the loser's bowls. Furthermore, the problem 

should have been formulated as "A lacks 1 point from coming out the 

winner and B 2". 

Montmort (1713, pp. 248-257, 366-367) generalized the problem 

as follows: 

A and B play a game of bowls, A with m bowls and B with n. The 

skill of A is to the skill of B as r to s. In each game the winner 

gets a number of points equal to the number of his bowls which are 

nearer to the jack than any of the loser's. If the play is interrupted 

when A lacks a points and B b points in winning, how should the stake 

be divided equitably between them? 

Montmort explicitly defines "skill" by referring to a game with 

one bowl for each player. A's skill, r!(r+s), is then A's probability 

of getting nearer to the jack than B. He also points out that for 

m = n = 1 we have the classical problem of points. 

Montmort assumes that the total stake is 1 so that A's expectation, 

f(a,b) say, equals his probability of winning the stake. 

To solve the problem Montmort introduces an urn with mr white 

chips and ns black chips representing A's and B's chances of winning. 

The total number of chips is t = mr + ns. 
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Let P. be A's probability of getting at least i points, i. e. 
1 

the probability of getting a run of i white chips by drawings without 

replacements from the urn. It follows that 

mr mr-r 
Pi =T t-r 

mr-(i-l)r 
t-(i-l)r i = 1,2, ... , m. 

Let Pi be A's probability of getting exactly i points, i. e. the 

probability of getting a run of i white chips followed by a black. 

Hence 

p. 
1 

mr mr-r ---
t t-r 

mr-(i-l)r ns 
t-(i-l)r t-ir i = 1, 2, ... , m. 

P. and p. are defined as zero otherwise. 
1 1 

The corresponding probabilities for B will be denoted by O. and 
1 

ql" i = 1, 2, ... , n, and they are obtained from P. and p. by interchan-
1 1 

ging (m,r) and (n,s). 

Note that Pi = Pi - Pi +1 and that 

Montmort gives the solution as the recursion 

a-I b-1 
1, ? 

f.{a, b) p .f(i,b) q.f(a,b-i) a = = p + L: + 2: 
~, , 

a i=l 
a-l 

i=l 1 b 1, 2, 

and f(a,a) = f(a,b) = 1. The proof follows directly from the addition 

and multiplication theorems. 

If the players have only one bowl each then PI = PI = r/(r+s), 

01 = q1 = s/(r+s) and 

f(a,b) = P1f(a-l,b) + qif(a,b-l), 

which is the recursion for the classical problem of points. 

Montmort states that similar results hold for any number of players 

and gives a numerical example for three players. 

In his formulation and discussion of Robartes' problem de Moivre 

(1712) assumes that the players are of equal skill and have 
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the same number of bowls. He then derives the formulae for .f(2,1) and 

f(3,1) and states that the general formula may be found by the same 

method. In the Doctrine of Chances (1718 P bl 27 ) , ro ems and 28 de Moivre 

acknowledges Montmort's general solution and derives fea,b) for m = n. 

They did not give an explicit solution of the problem. 

In modern terminology the problem may be described as a random 

walk in two dimensions, the horizontal steps being of length 1 or 2, 

... , or m, and the vertical steps being of length 1 or 2, ... , or n. 

A wins if the random walk crosses the vertical line through (a,O) before 

crossing the horizontal line through (O,b). 

3 The problem of points for the game 6f tennis 

Bernoulli's Lettre a un Amy sur les Parties du Jeu de Paume 

was printed as an appendix to the Ars Coniectandi (1713).Bernoulli begins 

with a summary of his considerations in the Ars Conjectandi on the 

difference between games of chance and games depending on the skill 

of the players, on the corresponding determination of probabilities 

a priori and a posteriori and on the law of large numbers,which justi-

fies the use of the relative frequency of winning as a measure of the 

probability of winning. Apart from this short introduction the letter 

is really an exercise in probability theory and could well have been 

included in Part 3 of the Ars Conjectandi. 

Bernoulli writes that he will not explain the rules of the game 

because they are well known. The game is more complicated than tennis 

but with the same scoring rules; a detailed description of the game 

has been given by Haussner (1899). 
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Bernoulli gives an analysis of a large number of problems on tennis. 

There is, however, no new methods involved in his analysis; he keeps 

strictly to the methods used by Huygens, solving most of the problems 

by recursion between expectations. We shall confine ourselves to a 

discussion of the main points,leaving out most of the details. It seems 

that Bernoulli's results have been overlooked by modern writers on the 

game. 

For convenience we shall give a player one point for each play 

he wins instead of using Bernoulli's scoring system (0,15,30,45,game). 

Player A's probability of winning a point will be denoted by p and 

players B's probability by q, p+q = 1. We shall denote the state of 

a game by the number of points, (i,j) say, won by the two players. 

The game is won by the player who scores 4 points before the other 

player scores more than 2 points; furthermore, if the game reaches 

the state (3,3) the player who first wins 2 points more than his op

ponent wins the game. 

Using modern terminology the play may be described as a random 

walk in two dimensions with absorbing barriers, see Fig. 1~ The 

random walk starts at (0,0) and moves one step to the right with pro

bability p, if player A wins, and one step up with probability q, if 

player B wins. In the figure we have cut off the continuation region 

at the score (7,7). 

Let g(i,j) denote A's, probability of winning the game, given that 

the game is in state (i,j). Since A wins the next point with probability 

p and loses with probability q we have 

g(i,j) = pg(i+1,j) + qg(i,j+1). (1) 

This is the fundamental formula which Bernoulli derives and uses to 

tabulate g(i,j) with the modification that he uses n = p/q as para-

meter. 
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o 2 3 4 5 6 7 

Number of points for A 

Fig .1. A random walk diagram for the game ot 'cennis. 

Beginning with the s;tate (3,3) and us;ing the recursion two times 

Bernoulli finds 

g(3,3) = p2g(5,3) + 2pqg(4,4) + q2g(3,5). 

Since g(5,3) = 1, g(3,5) = 0 and g(4,4) = g(3,3) he gets 

22222 g(3,3) = p /(p +q ) = n /(n +1). 

Using (1) again he obtains 

g(2,3) = pg(3,3) + qg(2,4) = pg(3,3) = n3/(n3+n2+n+1), 

(2) 

and continuing in this manner he finds gCi,j) for i :;; 3 and j :;; 3 

and thus solves the problem completely. He tabulates g(i,j) as the 

ratio of two polynomials of the same degree in n = p/q as shown in 

the following example~ 

By means of these formulae Bernoulli calculates all the values of g(i,j) 

for p/q = 1,2.3,4. 
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Bernoulli uses his results to determine the size of handicaps 

to get a fair game. He first asks the question: How many points should 

be accorded the weaker player for the game to be fair? Suppose that 

p/q = 2. Then Bernoulli's table shows that g(0,2) = 208/405 = 0.514 

so that a handicap of two points to B will nearly equalize their chances 

of winning. Considering the same problem for p/q = 3 Bernoulli notes 

that g(0,2) = 891/1280 = 0.696 and g(0,3) = 243/397 = 0.612 so that 

handicaps of 2 and 3 are not enough to equalize the chances. He then 

finds that g(1,3) = 81/160 = 0.506, which means that a game starting 

with 1 point for A and 3 points for B will be nearly fair. 

He next solves the inverse problem: If B has been given a handicap 

of j points to make the game fair what does that mean for the relative 

strength of the players? Obviously one has to solve the equation 

g(O,j) = ! with respect to n = p/q for a given value of j. This leads 

to an algebraic equation in n. For j = 2, say, corresponding to the 

first example above, Bernoulli solves an equation of the 6th degree 

and finds n = 1.946. 

Bernoulli also discusses the probability of winning a set of games. 

He remarks that because of notational difficulties he will only illustrate 

this problem by examples. However, his procedure is as usual very clear 

and easy to translate to modern notation. Let s(u,v) denote A's proba

bility of winning the set when A and B have already won u and v games, 

respectively. Bernoulli's procedure corresponds to the recursion formula 

s(u,v) = g(O,O)s(u+l,v) + (1-g(0,0))s(u,v+1), (4) 

which is analogous to (1) with g(O,O) substituted for p. Bernoulli's 

difficulties stem from the fact that he does not have a short notation 

for the probabilities which we have denoted by g(i,j) and s(u,v). 
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Generalizing (4) to the case where the number of points is (i,j) 

in game (u,v) Bernoulli uses the formula 

g(i,j)s(u+1,v) + (1-g(i,j»s(u,v+1) 

to find A's probability of winning the set. Bernoulli uses these for-

mulae to discuss the problem of handicaps. We shall report only one 

of his examples. 

Suppose that B has a handicap of "half-45", which in our 

notation means that he in alternate games has a handicap of 2 and 3 

points, respectively. The problem is to find the value of n = p/q for 

which A's probability of winning equals ~. Considering two games in 

succession A's probability of winning the first and the second, respec-

tively, equals g(0,2) = a/(a+b) and g(0,3) = c/(c+d), the ratios being 

Bernoulli's notation. His reasoning may be illustrated by means of 

Fig. 2, where the states refer to the number of games. 

./" 
(0,0) 

a 

/ 
(1,0) 

/~ 

c 

d 

~b c 

~ / 
(0,1) 

~d 

(2,0) 

/ 

~(1,1) 
/ 

~(O,2) 

A wins 

Continue 

B wins 

Fig. 2. The states of two games of tennis with the number 

of chances of winning and losing. 

Let A's probability of winning in the state (0,0) and therefore 

also in the state (1,1) be denoted by z. By recursion Bernoulli finds 

that 
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{ c+dz cz 
a c+d + b c+d }/(a+b) = z, 

which leads to 

z = ac/(ac+bd). 

Setting z = ~ Bernoulli finds that a/b = d/c so that 

g(O,2)/(1-g(O,2)) = (1-g(0,3))/g(O,3), 

an equation of the 11th degree in n which according to Bernoulli has 

the root n = 2.7. 

Bernoulli also extends his model by taking into account that a 

player when serving has a larger probability of winning a point than 

when he is not serving. Further, he discusses a game with three and 

four players. 

The problem of points for the game of tennis is also discussed 

in the correspondence of Nicholas Bernoulli and Montmort (1713, 

pp. 333-334, 340-344, 349-350, 352-353, 371). 

Nicholas Bernoulli, who knew the content of James Bernoulli's 

Lettre before it was published in 1713, writes in a letter of the 

10th November 1711 to Montmort that James has solved many interesting 

and useful problems on the game of tennis. He quotes four of the problems 

without giving the solutions or indicating James' method of solution 

and asks Montmort to solve the problems for comparison with James' 

solutions. In his answer of the 1st March 1712 Montmort does live up 

to the challenge; he gives an explicit formula for A's probability 

of winning when A lacks a points and Blacks b points. 

Montmort considers the problem as a generalization of the classical 

problem of points. He first refers to the solution of this problem 

in terms of the binomial distribution and without further comment he 

notes that the corresponding formula for the problem of points under 

the rules valid for tennis becomes 

et(a,b) = 
a+b-2 
~ (a+b-2) i a+b-2-i + (a+b-2) a-I b-1( 2/( 2+ 2)) i P q a-I p q p p q . 
i=a 
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In the ordinary game of tennis a = 4-i and b = 4-j, but the formula 

holds for any other number than 4. 

It will be seen that Montmort's elegant result comprises all the 

formulae which Bernoulli laboriously derived by recursion since 

Montmort says that et(a,b) is obtained from e(a,b) replacing a+b-1 

by a+b-2 and multiplying the last term by p2/(p2+q2). This is also 

the proof of the formula since the first term gives A's probability 

of getting a points before B gets b-1 points and the last term gives 

the probability of winning after a deuce. 

Noting that the first term of et(a,b) equals e(a,b-1) Montmort's 

formula may also be written in the form 

b-2 
(a-~+iJ i + (a+b-ZJ a-I b-l( 2/( 2+ 2» et(a,b) = p 

a L q a-I p q p p q . 
i=O 

For example 

4 253 2 2 et (4,4) = p (1 + 4q + 10q ) + 20p q /(p +q ). 

Montmort does not mention this alternative form of his formula in the 

published part of his letter, but according to Henny (1975) the corre-

sponding form of e(a,b) is given in the letter. Presumably Montmort left 

it out of the letter and transferred it to his general discussion of 

the problem of points (1713, pp. 245-246) for systematic reasons. 

To solve the problem of handicaps for a given relative strength 

of the players Montmort solves the equation 1-et (a,b) = ~ with respect 

to m = a+b-2 for given values of a and p/q. He considers the example 

with a = 4 and p/q = 2. First he solves the corresponding equation 

for the problem of points; as pointed out by Todhunter (1865, p. 125) 

the equation given by Montmort (1713, p. 342) is wrong but the root 

is correct so that he must have had the correct equation. For the game 
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of tennis Montmort just gives the solution that B's handicap should 

11 
be j = 2 224 without giving the equation, which obviously is 

or 

8m3 + 36m2 + 16m + 30 = 5 x 3m+1 

with the approximate solution m = b+2 = 3 ~~~ 

As a check Montmort inserts a = 4 and b = 1 ~~~ in the equation 

! which leads to a homogeneous algebraic equation of the 

6th degree in p and q from which he finds that p/q = 2. 

As the handicap normally will lie between two integers Montmort 

remarks that the solution requires randomization to be carried out 

in practice. In the example above a chip is drawn from a bag with 213 

white and 11 black chips, and if the chip drawn is white B gets a handicap 

of 2 points, if black only I point. 

In his reply Nicholas Bernoulli acknowledges Montmort' solution and 

makes a further generalization. He assumes that A's probability of win-

ning a point in odd and even numbered games equals PI and P2' respectively, 

thereby taking into acccount that A's probability of winning depends on 

whether he is serving or not. Let a+b-l = m+n, m = n if m+n is even 

and m = n+l if m+n is odd. Bernoulli then gives A's probability of 

winning for the problem of points as 

b-l i ( m) m-i-j i-j (In.) ::E ::E . _ . PI ql 
i=O j=O 1 J 

He adds that for the game of tennis m+n should be replaced by m+n-l 

Acknowledgement. I am grateful to Professor Glenn Shafer for some comments 

on the first version of the paper. 
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