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ABSTRACT 

In this paper we characterize simple transformation models by means of the 

functional form of the densities. We discuss sufficiency of the pair (t,n) 

where t is an equivariant estimator and n is a maximal invariant. Further

more, we introduce and discuss the algebraic concept of structural sufficiency. 

This gives rise to an example of a simple transformation model where (t,n) 

is non-sufficient. 
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1. INTRODUCTION 

In the analysis of statistical models it ~s sometimes convenient to make use of 

invariance properties of the model in question. For instance, the invariance 

principle (see Lehmann [20] or Hall et al [16]) ~s a widely accepted and fre

quently used statistical tool. Closely related to this concept ~s the notion 

of transformation models. Let E be a sample space, 8 a parameter set and 

G a group acting on E and 8. In our set-up a transformation model is a 

family of probability measures (Pe)eE8 with the property 

(1.1) ve E 8 Vg E G: P g8 = gP e . 

Though much attention has been g~ven to the study of particular transformation 

models (see e.g. Andersson et al [5], Andersson and Perlman [4], Eriksen [14,] 

or Jensen [18]) a more general treatment of transformation models has only 

been given in some special cases (see e.g. Barndorff-Nielsen et al [8], Eaton 

[12], Eriksen [13], Fraser [15], Roy [22] and Rukhin [23]) using different 

set-ups. The a~m of this paper is to introduce a basic set-up for general 

transformation models. In this set-up we will characterize the models (1.1) by 

means of their densities in the case where G acts transitively on 8. Fur

thermore we will discuss the concept of unique maximum likelihood estimation. 

If t: E ~ 8 ~s a MLE and 1T is a maximal invariant it is sometimes assumed 

that (t,1T) ~s sufficient (see e.g. Barndorff-Nielsen [6],[7] and Barndorff

Nielsen et al [8]). We will g~ve conditions ensur~ng (t,1T) to be sufficient 

and, by a non-trivial example, show that (t,1T) is indeed not always suffi

cient. 

In this paper we will make some apparently harmless topological regularity 

assumptions. These assumptions are nevertheless strong enough to imply that 

the results, proofs etc. almost only depend on the algebraic structure of the 

groups and actions involved. He will rely heavily on the theory of invariant 
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measures and group theory at a fairly elementary level. For an extensive ex

position of the theory of invariant measures see Bourbaki[lOJ or Reiter [21J. 

For a more introductory exposition see Andersson [2J. In the theory of invari

ant measures the notion of a proper action appears naturally. For more com

ments on proper actions see Andersson [3J and Wijsman [25J. 
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2. TRANSFORMATION MODELS: TWO APPROACHES 

The definition (1.1) of transformation models goes back to, at least, Lehmann 

[20]. Recent treatments of transformation models see e.g. Barndorff-Nielsen 

[6],[7], Barndorff-Nielsen et al [8], Fraser [15], Jensen [18], Roy [22] and 

Rukhin [23] use a slightly different approach: let Po be a probability 

measure on E then P= {gPOlgEG} ~s a (simple) transformation model, or 

more generally: an invariant family of probability measures P, i.e. 

PEP,gEG=>gPEP, H called a (composite) transformation model. Now, if P= 

(P S)SE8 satisfies (1.1) then it H an invariant family of probability measures 

and if G acts transitively on 8 then it is the form P = (P S ) EG = 
g 0 g 

(gPs ) EG' Conversely, if P is an invariant family of probability measures 
o g 

we can parametrize P by itself (8 = P) which obviously defines a transforma-

tion model as in (1.1). If P = {gP 0 I g E G} we define P = gP 
g 0 

so 

~s a transformation model in the sense of (1.1) (with 8 = G). Note that if 

we let K = G = {g E G I gP = P } 
Po 0 0 

and then P = (P gK) gKEG/K and this 

parametrization is one-to-one. 

In a statistical context it seems to be most natural to use the concept 

defined by (1.1) since any statistical analysis is intimately connected with 

concepts such as parameter estimation, sufficiency, ancillarity etc. Using 

the other approach one is forced to introduce, say, G/K as a parameterset 

which seems to be both artificial and unsatisfactory. 



4 

3. PRELIMINARIES AND REGULARITY ASSUMPTIONS 

In this section we will state the basic assumptions used throughout this paper. 

We will first introduce some notation. 

Definition 3.1 A locally compact topological space (group) with a denumerable 

basis for the topology is called aLCD space (group). 0 

Remark A LCD space is in fact a locally compact Polish space so it 1S indeed 

0~compact, metrizable with a complete metric and there exists a countable 

dense subset. o 

Let, as usual, E denote the sample space, e the parameter set and G 

a group. 

Assumption T G 1S aLCD group, e andE are LCD spaces. o 

We will asume that G acts continuously on both E and e by 

ex E E 
(3.1) 

(g,x) y(g) (x) = gx 

GX8 e 
(3.2) 

(g,8) y(g) (8) = 88 

(Both actions being leftactions). The action (3.1) induces an action of G 

on neE), the Set of all probability measures on E, by 

(3.3 ) 
Gxn(E) -4 

(g,P) -4 

lICE) 

y(g)(P)=gP 

Sometimes we will consider sample spaces with a particular simple algebraic 

structure. 
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Definition 3.2 E lS a TT-space if E lS isomorphic and homeomorphic to a 

product space El x E2 so that 

(3.4 ) G acts trivially on El 

(3.5) G acts transitively on E2 l.e. E-2 = {gx21 g E G}. o 

Remark TT is an abbreviation for Trivial, Transitive. o 

Note that a TT-space E is a LCD space if and only if Eland E 2 are LCD 

spaces. 

Proposition 3.1 Let E~El xE2 be a TT-space. Then 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

E2 lS a homogeneous space 

El lS homeomorphic to 
E 

"-
G 

G acts properly on E (i.e. the mapping (g,x) ~ (x,gx) is proper) 

if and only if G acts properly on E2 . 

If ~ lS a relatively invariant measure on E with multiplier X 

then w:~ K ® V where v lS a relatively invariant measure on the 

homogeneous space E2 with multiplier X and K lS a measure on 

El' K and v are determined uniquely up to a norming factor. 

Proof Omitted. o 

Remark G lS a-compact so the action on E2 lS proper if and only if the lSO-

tropic groups G = {g E G I gx = x} 
x 

are compact (see Bourbaki [10]). o 

In general, if there lS no risk of confusion, we will use TI to denote 

an orbitprojection e.g. 
E Ex8 

TI:E~G"- , TI:E x 8~G"- lS respectively the orbitpro-

jection under G's action on E and the orbitprojection under Gls diagonal 

action on Ex 8 (i.e. (g, (x,8)) ~ (gx,g8)). We will equip the orbitspaces 
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with the finest topology making ~ continuous. If G acts properly then the 

orbitspace ~s a LeD space as well. 

We will restrict our attention to families P = (PS) SE8 which are parti-

cular n~ce: 

Assumption D P ~s dominated by a relatively invariant measure ~ with a 

continuous multiplier X and supp(~) = E. We can choose Radon-Nikodym deri
dPS 

vates fS = d]:l so that the mapping 

(3.10) 
E x 8 ~ JR+ 

~s continuous. 0 

Finally we will impose assumptions on the parameterset 8 as follows 

Assumption P 

(3.11) G acts transitively on 8 

(3.12) There exists a modulator for X on 8 ~.e. a strictly positive 

continuous function m: 8 ~ JR with the property 
+ 

Vg E GV8 E 8: m(gS) =X (g)m(8). o 

Remark (3.11) means that we only consider simple transformation models, i.e. 

8 ~s a homogeneous space. If G acts properly on 8 then (3.12) is auto-

matically fulfilled (see Bourbaki[lO]); this ~s also the case if ~ can be 

chosen to be invariant ~. e. X == 1. o 

While Assumptions T and D seem quite harmless Assumption P is more re-

strictive. Some of the results in this paper hold under less restrictive 

assumptions but Assumption T, D and P were made to define a basic setup for 

transformation models. 
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4, CHARACTERIZATION OF TRANSFORMATION MODELS 

First, we need an easy but fundamental lemma. 

Lemma 4.1 (Pe )eE8,Pe = fell, ~s a transformation model if and only if 

(4.1) ve E 8Vg E GVx E E : fe (x) = fge (gx)X(g) 

Proof 

so (1.1) is satisfied if and only if 
-1 -1 

fge (x) = fe (g x)X(g) which ~s equi-

valent to (4.1). o 

The following theorem gives the basic structure of transformation models. 

Theorem 4.1 If (P e)eE8,Fe = fell, B a tranformation model then there exists 

a continuous function with 

(4.2) 

(4.3) 

VeE8VgEGVxEE: fe(x) =p('lT(x,e))/m(e) 

ve E 8 : Efp('lT(x,e))dll(x) =m(e). 

On the other hand, if 
Ex8 

p :' ~ JR G + 
~s a continuous function so that 

(4.4) 

then, possibly after a normalization of p, (4.2) defines a transformation 

model. 

Proof Let (P e )eE8 be a transformation model. Lemma 4.1 shows that fe(x) = 

fge (gx)X (g) = f ge (gx)m(ge) / m(e) so the mapping 1fJ: E x 8 ~ JR + defined by 

1fJ(x,e)=fe (x)m(e) ~s invariant under the diagonal action of G on Ex8 Le. 

1fJ factorizes through the orbitprojection ,'IT, 1fJ=pO'lT, where p ~s continuous. 

This establishes (4.2). (4.3) is trivial. On the other hand, if 
Ex8 

P:' ~JR G + 

~s G continuous function f 's e defined by (4.2) obviously satisfy (4.1) and 
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-1 -1 
ffgS(x)d)..l(x) = ffe(g x)x(g )d)..l(x) = ffS(x)d)..l(x) which shows that p can be 

normalized to make (fs)..l)eEG a transformation model. o 

Definition 4.1 If (p ) ~s a transformation model we will denote p S SEG 

the associated modeZfunction. o 

If G acts properly on G (4.3) and (4.4) can be formulated in a more 

natural way. If G acts properly on G then G acts properly on E x G 

(see Bourbaki [9 ], Ch.3, §4, 10, ) 
ExG 

locally exerc~se c ~.e. '" ~s com-G 

the orbitprojection 
ExG 

composition pact and TI:EXG~G'" ~s proper. TIS ~s a 

of the two proper mappings x ~ (x, e) and TI and hence a proper mapping. 

Therefore is a well-defined measure on 

are proportional because 

(4.5) 

so (4.3) and (4.4) can be reformulated as 

(4.4' ) 

VSEG: f pdTIS()..l)=m(e) 
ExG 

'" G 
:3 S E G f pd TI S ()..l) < + = 

ExG 
'" G 

ExG 
'" G 

and the 

If E ~s a TT-space 
ExG 

G'" can be represented ~n a particularly n~ce way. 

Fix So E G and set L=GS = {gEG/gS O= SOL 
o 

Proposition 4.2 ExG 
If E = El x E2 ~s a TT-space G'" B homeomorphic to 

E E 
L'" (=El xL'" 2). (L",E denotes the orbit space under L's action on E). 

Proof Since E2 and G are homogeneous spaces it is obviously enough to 

show that, say, is homeomorphic to 

subgroups of G. Define 

(4.6) G/K rv rv-l 
1jJ: G/Kx G/L~L'" ,1jJ(gK,gL) =Lg gK 

",G/K 
L 

where K and L are 
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w ~s easily seen to be well defined, invariant, onto and continuous (using the 

relevant quotient topologies). To see that W is maximal invariant let 

g,g,h,hEG with w(gK,gL) "'W(hK,hL). Then r:g-\K"'Lh-~K #g-lgELh-1hK 

~.e. 

(4.7) 

(4.8) 

",-1",,-1 
3iE13kE-K with g g"'ih hk. 

'" '" -1 '" ",-1 gK'" gih hkK'" gih hK 

rv rv .r-..:I-11"V -1 rv .rv-I,....., 
g1 '" gih hi 1'" gih h1 

This implies 

showing that 

that ,G/K 
1 

(gK,g1) G (hK,h1) and hence that W ~s maximal invariant. To see 

and ,G/KxG/ 1 are homeomorphic it rema~ns te show that the map
G 

p~ng 19K~ 'IT (gK,1) is continuous but this is trivial. o 

Remark Fix Xo E E and set K'" G 
Xo 

By symmetry we have 
Ex8 8 , ~E x , 

G 1 K 

This is a useful observation. o 

Now we can formulate Theorem 4.1 for TT-spaces. 

Theorem 4.2 Assume that G acts properly on 8 and that E~E1 x E2 ~s a 

TT-space. Fix e E 8 o and set If 

transformation model then there exists a continuous function 

with 

(4.9) 

(4.10) <+00 

E 
('IT • E ~ , 2 
l' 2 L ~s the orbitprojection). On the other hand, if 

~s a 

E 
P : El x , 2 ~ 1R 

1 + 

~s continuous fulfilling (4.10) then, possibly after a normalization of p, 

(4.9) defines a transformation model. 0 

Remark Under the assumptions ~n the theorem one can construct transformation 

models ad libitum as soon as and have been identified. 

o 
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We will comment a little bit on unique max~mum likelihood estimation. 

First, a well known result: 

Proposition 4.3 If (PS)SE8 ~s a transformation model admitting unique max~

mum likelihood estimation then the max~mum likelihood estimator (MLE) t: E ~ 8 

~s equivariant ~.e. 

(4.11) Vx E E Vg E G: t(gx) = gt(x). o 

If t ~s equivariant we have G cG 
x = t(x) so if G acts properly on 8 

the G 's are compact so if E is a TT-space then G acts properly on E. x 

In this situation it is no restriction to assume that ]1 = K ® v is invariant. 

Let (p S) SE8 be a transformation model. Fix i'2 E E2 and set K = G'" . 
x 2 

Accor-

ding to Theorem 4.2 and the remark to Proposition 4.2 the densities have the 

form where 8 p :El x '- ~ JR is continuous. 
K + 

Proposition 4.4 (PS)SE8 admits unique max~mum likelihood estimation if and 

only if - for each xl EEL - the mapping KS ~ P (xl' KS) has a unique max~mum 

at, say, Ke (xl) with KG (xl) degenerate i. e. Ke (xl) = (8' (xl) }. 

Proof Straight forward. o 

We will close this section with some applications of Theorem 4.2 and Pro-

position 4.4. 

Example 4.1 (Multivariate location- and scaleparameter models) 

Take d + d E = JR, 8 = H (d) x JR and G = AG (d). AG (d) = ([ A, a] I A E GL (d) ,a E JR d} ~s 

the affine group of order d and H+(d) ~s the set of positive definite 

p x p-rnatrices. The composition rule ~n AG(d) is defined as follows 

-1 -1 -1 
[A,a][B,S] = [AB,AS+a], [A,a] = [A ,-A a] the unity being [1,0]. The 

actions are given by 
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(4.12) 

([A,a] ,x) ~ Ax + a 

(4.13) 

([A,a], (L:, 0) ~ (AI:A* ,Ar; + a) 

e = (L:, 0 should be thought of as the covariance and the mean respectively. 

Both actions are transitive, (4.13) is proper whereas (4.12) is non-proper. 

There exists no invariant measure on JRd under AG(d) but taking ]l as 

Lebesgue measure ]l ~s relatively invariant with multiplier x(A,a) = Idet(A) I 

and 
+ . d I 

m:H (d) x JR ~ JR , m(L:,O = det(L:):2 
+ 

is a modulator. We are thus covered 

JRd 
by Theorem 4.2. Take eO = (1,0). We thus have to identify L = Ge 'L "- the 

mapping 
-1 0 

(x,ge O) ~ Lg x and finally the measure 'ITL (]l). Now, L!::! O(d) and 

JRd 
O(d) is well known to be homeomorphic to [0, +=[ v~a the identification 

Lx!::! Ilx 112 = x*x. Let (L:,O = (AA*,r;) = [A,r;] (1,0) E 8 then L[A,E,]-::lx rv 

11 -1 112 11 -1 -1 11 2 -1 -1 1 [A,r;l x = A x-A r; =(x-E,)*(A )*A (x-O=(x-O*L:- (x-E,). Itthusre-' 

ma~ns to identify 'ITL(]l). 

group (JR+,') we see that 

Letting Y denote the left-translation on the 

-1 
yes ) 

d/2 
'ITL (]l) = s 'ITL (V) so 'ITL(]l) is relatively 

H.-l 
invariant with multiplier and hence having density s2 w.r.t. 

Lebesgue measure on JR+, 

We can thus conclude that the transformation models on JRd with para-

meterset H+ (d) x JRd are exactly those of the form PL:,r; = fL:, E,]l , ]l Lebesgue 

measure, 

(4.14) 

and p 

(4.15 ) 

where 

-1 ! 
fL: (x)=p«x-O*L: (x-O)/detCL)2 ,r; 

[0, + =[ ~ JR 
+ 

= 

~s a continuous function with 

~-l 
2 

fp(s)s ds<+ =. 
o 
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This is a well known result (see e.g. Kelker [19]) and distributions with den-

sities of the form (4.14) are called elliptic distributions. Note finally that 

if is a statistical model parametrized by the covariance and the mean 

then it ~s a transformation model under the affine group and hence of the form 

(4.14). Conversely, it is possible to show that if (PI,~) is a transformation 

model with finite expectation and covariance then the expectation equals ~ 

and the covariance is proportional to I. o 

Example 4.2 Take + 
E = 8 = H (d) and G = GL (d) the general linear group of 

order d. The action is given by 

(4.16) 

(A,I) ~ AIA* • 

This action ~s transitive and proper, the invariant measure on H+(d) has 
_! (d+l) 

density S~(detS) w.r.t. Lebesgue measure on H+(d). We are thus 

covered by Theorem 4.2. Take 80 = I then L = G1 = O(d) and can 

. . d 
be represented by Ad = {C\ , •. , ,Ad) E 1R I AI;;; ... ;;; Ad> O} using the identifi-

cation O(d)Sc:."the vector of ordered eigenvalues of SIt. (see e.g. Bourbaki 

[9]). Let I=M*EH+(d) then O(d)A-lS(A-l )* c:. "the vector of ordered eigen-

values of S w.r.t. I" which we will denote E(S;I). According to Anderson 

[1], Theorem 3.3 , TIL(Y) has density w.r.t. Lebesgue measure on Ad and the 

density is given by 

(4.17) 
_ d _! (d+l) 

8(A l , ... ,Ad)- ITA. 
i=l ~ 

IT (A. -A.). 
. . ~ J 
~<J 

We can thus conclude that the transformation models on H+(d) are those of 

the form PI = fIy, Y Lebesgue measure on H+ (d) , with 

(4.18) fI(S);:p(E(S ;I» (det S) -! (d+l) 

where p:Ad ~ 1R+ ~s a continuous function with 
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(4.19) 
d -Hd+l) 
IT L IT (L - A.)d(A l ,··. ,Ad) < +=. 
'l~ l"d~ J ~= ~~<J~ 

Since the only degenerate O(d) orbits of H+(d) are those corresponding 

to AId,A> 0, (see Lennna 4.2 below) we get, according to Proposition 4.3, that 

(P ) admits unique maximum likelihood estimation if and only if the 
L LEH+(d) 

associated modelfunction p has a unique maximum at a point of the form 

(A, ... , A) E Ad and the MLE lS then g~ven by t (S) = AS. Letting 

(4.20 ) 

we see that p has an unique max~mum at (m ••.. ,m) and p satisfies (4.19) 

so p is the associated modelfunction of a transformation model with unique 

MLE t (S) = mS - namely the d-dimensional Wishart distribution with m de-

grees of freedom and unknown parameter L. o 

Lennna 4.2 Consider the action of GL(d) on H+(d) 1il (4.16). If O(d)~GL 

then L is of the form AId' A> O. 

Proof Assume that O(d) ~ GL • The action (4.16) is transitive so L = AA* for 

a AEGL(d) i.f;. O(d)~AO(d)Al. Now, O(d) is a maximal compact subgroup 

of GL(p) (see e.g. Bourbaki [10] and AO(d)A- l ~s compact so O(d) = 

-1 . 
AO(d)A(this can also be seen using Proposition 5.5 in Section 5). This implies 

VUE 0 (d) : AU A-I E 0 (d) 

VUE O(d) : AUA-l = (A-I) *UA* 

(4.21) VUE O(d) : A*A = UA*AU* 

Now, A*A E H+ (d) so there exists an orthogonal matrix U with UA*AU* dia-

gonal Le. A*A is diagonal by (4.21). Let A*A=diag(A1 , ... ,Ad ). Letting 
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U= 1 

Repeating this argument we get 

14 

A*A = AI 
d 

but 

Remark This lemma in fact shows that the only equivariant mappings 

+ + t : H (d) -4H (d) are those of the form t(S) = AS. 

Example 4.3 (Transformation models on the unithyperboloid) 

o 

o 

Let ~d=diag(l,-l,-l, ... , ~l) be a dxd matrix and let ~d denote the cor-

responding bilinearform on The unithyperboloid is defined as H = 
d 

{(xl' ... ,xd)*EJRdl xl>O'~d(x,x) =l} and the group of hyperbolic transforma

tions is SHd={AEGL(d)lall>O,det(A)=l,A*~dA=~d}' SHd acts transitively 

and properly on Hd by 

(4.22) 

CA,x) -4 Ax (matrix mul tiplication) 

(see Vilenkin [24] or Jensen [18]). The invariant measure ~ ~s given by 

(4.23 ) 

for C a compact subset of Hd' 

We will consider transformation models with E=8=H 
d 

and G = SH 
d 

for 

d> 3. The above considerations imply that we are covered by Theorem 4.2. Let 

80 = (l,O, ... ,O)*EHd , then L={(~ ~)IAESO(d-l)} where SOCd-l) H the 

special orthogonal group of order d - 1. One can readily check that x "'. y 
L-

if and only if xl = Yl s~nce SOCd -1) acts transitively on every sphere in 

d-l 
JR . Therefore ,Hd 

L 
can be identified with [1,+=[ using the identifi-

cation L~ r-.J xl = ~d(x,80)' If 8 =A8 0 with AE SHd then 

-1 -1 
CA x) * 5E 8 = x* CA ) * ~ 8 = x*~ AS = x*~ 8 = ~ Cx, S) -d 0 -d 0 -d 0 _d -d 

which shows that the 
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transformation models have the form, P = f ]J 
8 8 

(4.24) 

where p: [1, + =[ ~s a continuous function. We will now identify the measure 

7T L (]J). For t> 1 we find - using Fubini I s theorem -

t d-1 2 2 2 1 2 
+fAd_1 ({xEJR Iy -1~x1+ .. ·+xd_1~(l-2)Y })dy 

1 t 

d-1 d-1 

r t 1 -2- d-1 t 2 -2-] 
= c J (l - --) y dy - J (y - 1) dy 

L 0 t 2 1 

where c ~s a constant depending on d. This shows that 7TL C]J) has density 

with respect to Lebesgue measure on [1, +=[ given by 

d-3 

C 4.25) 
a d-1 2 -2-

oCt) =-7T C]J) ([1 tJ) = c - Ct -1) at L ' d 

This means that the model functions ~n (4.24) have to satisfy 

CX) 

(4.26 ) 
d-3 

fp(s)s ds<+=. o 
1 
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5. STRUCTURAL SUFFICIENCY 

Let (PS)SE8 be a transformation model admitting unique max~mum likelihood 

estimation, t: E ~ 8. In this section we will discuss sufficiency of the pair 

E (t,n) : E~8 x G" Assume that (t,n) ~s sufficient. For a moment we will 

ignore problems with null-sets, continuity, measurability etc. According to 

Neymann's theorem fS(x) =as(t(x),n(x»b(x). Then 

(5.1) 
as(t(x),n(x» 

at(x)(t(x),n(x» ft(x)(x). 

Now, f ( ) (gx)m(t(gx» =f ()(gx)m(gt(x» = f ( ) (x)X(g)-lx(g)m(t(x» t gx gt x t x 

f t (x) (x)m (t (x) ) (according to (4.1» so f t (x) (x) is of the form 

g(n(x»/m(t(x» which inserted in (5.1) gives 

(5.2) 
ae(t(x),n(x» g(n(x» 

fS(x) = at(x)(t(x),n(x» m(t(x» 

showing that the density factorizes through (t,n). This fact together with 

the structure theorem in Section 4 should motivate the following definition. 

Definition 5.1 Let 
E 

be an equivariant mapping, n: E~G' 

projection. (t,n) ~s structural sufficient if - for each SE 8 

ping 
Ex8 

nS: E~G' , nS(x) ='IT(x,S), factorizes through (t,n). 

the orbit-

the map-

Remark If (t,n) ~s structural sufficient it ~s ~n fact a sufficient reduc-

tion in all transformation models. 

We can give a simple necessary and sufficient condition for structural 

sufficiency. 

Proposition 5.1 (t,n) ~s structurally sufficient if and only if 

(5.3) VS E 8 Vx E E : G ( ) C GSG 
t x = x 

Proof (t,n) ~s structurally sufficient if and only if 
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ve E 8 Vg E G Vx E E : t (gx) = t (x) '* 'IT e (x) = 'IT e (gx) 

ve E 8 Vg E G Vx E E : g E Gt (x) '* [3h E G : he = e ,hx = gx] 

** -1 
ve E 8 Vg E G Vx E E : g E Gt(x) '* [3h E Ge : h g E G) 

** 

which ~s exactly (5.3). 

Remark t ~s equivariant so G cG ( ). x = t x (5.3) says that even though Gt(x) 

larger than G 
x 

it should not be to large. 

Corollary 5.1 If the G 's e are normal subgroups of G then (t,rr) ~s 

structurally sufficient. 

Proof If the G 's e are normal then they are all equal so 

Corollary 5.2 If G acts freely on E, ~ . e . G = {e} Vx, 
x 

then (t,'IT) 

o 

is 

o 

o 

is 

structurally sufficient if and only if the G 's e are normal subgroups of G. 

Proof If Gx = {e} (5.3) reads Vx E E ve E 8 : Gt (x) ? Ge which ~s equivalent 

We will now introduce (see e.g. Barndorff-Nielsen [6],[7]) 

Definition 5.2 E and 8 are of the same orbittype if the G 's 
x 

are conjugates of one another i.e. 
-1 

Vx E E ve E 8 3g E G : Gx = gGeg 

and 

o 

G 's e 
o 

Remark If E ~s a TT-space and E2 ~s isomorphic to 8 then E and 8 

are of the same orbittype. o 

In the rest of this section we will assume that E and 8 are of the 

same orbittype. In this case the concept of structural sufficiency turns out 

to be rather trivial. 
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Proposition 5.2 (t,rr) 1S structurally sufficient if and only if (t,rr) 1S 

one-ta-one and onto. 

Proof Assume that (t,rr) 1S structurally sufficient. Let xEE then 

so G = G x t(x) 
showing that (t,rr) is one-ta-one. (t,rr) is obviously onto. 

The above proposition motivates the following definition. 

Definition 5.3 A subgroup HcG 1S reguZar if 

(5.4) Vg E G: 
-1 -1 

H~gHg ~H= gHg 

Remark If H 1S regular any conjugate group 

We then obtain 

-1 
gHg 1S regular. 

o 

o 

o 

Proposition 5.3 If the Gels are regular then (t,rr) 1S structurally suffi-

cient 1.e. one-ta-one and onto. 

Proof Let x E E and choose e E 8 with Gx = Ge . Now t(x) 1S of the form 

ge 
-1 

Ge = Gx ~ Gt(x) = gGeg which by the regularity of Ge implies Gx = Gt(x)' so 

o 
This suggests a study of the concept of regularity. The following proposi-

tion 1S easily proved. 

Proposition 5.4 

(5.5) A normal subgroup is regular. 

(5.6) A maximally compact subgroup is regular. 

Proof Omitted. o 

Example 5.1 Consider example 4.2. We then have + 
E = 8 = H (d) so E and 8 

are of the same orbittype. Now, GI = O(d) which is known to be maximally com

pact so by (5.6) it is regular and by Proposition 5.3 we see that t has to 
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be one-to-one and onto. This is ~n accordance with example 4.2 ~n which we 

showed that t(S) = AS for some A> O •. o 

We will now state a widely applicable result. 

Proposition 5.5 Every compact subgroup of a Lie group of non-zero dimension 

is regular. 0 

For the notion of Lie groups see e.g. Bourbaki [n] or Hochschild [17]. 

The proposition is an easy corollary of the following result. 

Lemma 5.1 Let H be a compact Lie group of non-zero dimension. If ~: H ~ H 

is a continuous, injective homomorphism then ~ is onto. 

Proof Let H denote the connected component containing e. H is a closed, 
e e 

normal subgroup of H. Since ~s a continuous homomorphism ~ (H ) cH • 
e = e 

Let L(He ) denote the Lie algebra associated with He' Then ~ ~n a canon~-

cal way induces.an algebra homomorphism L (et» : L (H ) ~ L (H ). 
e e 

being one-to-

one implies that L(~) is one-to-one (see Bourbaki [11], Ch.III,§9J. L(H ) 
e 

~s finite dimensional so L(~) is onto i.e. L(et»(L(H » =L(H). According 
e e 

to Bourbaki [11], Ch.lll, §6 we then have H = et> (H ). 
e e 

Since H is locally 

connected H 
e 

~s open so H being compact implies that H/H 
e 

is finite. 

defines ~n a canonical way a mapping by 1)(hH) = ~ (h)H . 
e e 

~s easily seen to be one-to-one so the finiteness of H/H then imply 
e 

that et> is onto as well. Let hE H, choose hE H wi th 1) (hH ) = hH J; •. e .. 
e e 

et> (fi) H = hH. Choo s e now k E H~-~ with et> (h') = hk and e e e 
k E H wi th ~ (k) = k -1 • 

e 

Then ~(hk) = hkk -1 = h showing that et> is onto. o 

Proof of Proposition 5.5 Assume that H ~s a compact subgroup of G with 

-1 
gHg ~H. Define et> : H~ H by 

-1 
et>(k) = ghg . Now, is a continuous, injec-

tive homomorphism and H is a compact Lie group so by the lemma we indeed 

have that et> ~s onto ~.e. 
-1 

gHg = HH) = H. o 
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Remark It is not true that every closed subgroup of a Lie group of non-zero 

dimension is regular. o 

We will finally state a result for TT-space. 

Proposition 5.6 Let E be a TT-space. (t,rr) lS structurally sufficient for 

all equivariant mappings t:E~8 if and only if the G 's 
8 

are regular. 0 

We will close this section with an example of a transformation model which 

admits unique maximum likelihood estimation t with (t,rr) non-sufficient. 

Example 5.2 Introduce M={((Xk)~=N+l;N)/NEU:',xkE{0,l},k=N+l,N+2, ... }. 

:IN 00 
We equip M with the topology making 1: {O,l} x&'~M, 1 ((~\=l;N) = 

00 &' . 
((Xk-N\=N+l;N), a homeomorphism. Let G={[<jJ,aJ/<jJE{O,l} ,aEZ'}, G lS the 

semiproduct of {O,l}n and &, with composition rule 

(5.7) 

where (a1jJ) (k) = 1jJ(k - a) and (<jJ1jJ) (k) = <P(k)1jJ(k), where the unit lS (Q,O) 

and the lnverse lS glven by 

(5.8) -1 
[<jJ,aJ =[(-a)<p,-a] 

G acts on M by 

G xM ~ M 
(5.9) 

er <jJ, a] , ((Xk)~=N+ 1 ;N» ~ ((<jJ (k)~-a)~=a+N+ l;a + N) 

(5.9) lS transitive and proper. The invariant measure on M lS given by 
= 

]1= ( ® ]1.) ®T 
i=l l 

where 
1 

]1 • ( {O}) =]1. ( {l} ) = -2 and 
l l 

is counting measure on z. 

Notice that G lS an LCD group, M is an LCD space and the isotropic group for 

(Q,O) lS G(Q,O) = K = {[<jJ, oJ / <jJ (k) = ° Vk> O} which is homeomorphic to {o, 1}:IN 

and hence compact but it lS non-regular. Define E = 8 = M. We will introduce a 

00 

transformation model on E with parameterset 8. Let (Pk\=l' Pk E ]O,l[ be 

00 

known reals. For 8 = ((8k )k=M+l ;M) E 8 we define the conditional distribution of 
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00 

(Xk)k=N+l given N as follows 

(5.10) ~+1'~+2"" are independent 

If M ~ N then 

(5.11) 
if { Bin(1, Pk) 

Bin(l,l-Pk ) if 

If M;;: N then 

The marginal distribution of N has density q (M - • ) w. r. t. counting measure 

on Z. 

If 

(5.12) 

00 

(5.13) 

and, say, 

(5.14 ) Vk> 1 : q (k) = 0 

(5.15) 2 
< ... < q( - 1) < q(O) <3"q(l) 

then the above probability distributions on E give rise to a transformation 

model with an unique maximum likelihood estimator t :E~8,t(:(Xk)~=N+l;N) = 
00 

«Xk \=N+2;N + 1) which la non-sufficient (details are left to the reader). 

This is thus an example of a transformation model where E and 8 are of the 

same orbittype, the maximum likelihood estimator exists uniquely but (t,n) 
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lS non-sufficient. As pointed out above this relies on the fact that the lSO

tropic groups of M are non-regular. 
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