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Abstract. 

Statistical models are considered for (partial) observation 

of independent, identically distributed failure times, subjected 

to censoring from the right. A number of conditions on the censo­

ring pattern are studied, which allows the use of for example the 

Kaplan -Meier estimator as estimator of the survivor function for 

the failure time distribution. All the concitions and results pre­

sented are based on the counting process description of survival 

data. 
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1. Introduction. 

When Kaplan and Meier [9] introduced the product limit estima­

tor for an unknown survivor function based on observation of a 

sample of failure times subjected to right censoring, they prima­

rily had in mind the situation where the censoring times are stocha,­

sticallyindependent of the failure times. They included however ([9], 

Section 3.2) a brief discussion of what may happen if this indepen­

dence is not valid, and in particular they stress the dangers of 

using the product limit estimator in such cases. 

Of course later a host of nonparametric models have been intro­

duced, with dependence between failures and censorings, where it is 

still natural to use the Kaplan - Meier estimator or its twin, the 

Nelson -Aalen estimator, when estimating the integrated hazard rather 

than the survivor function (Nelson [11], Aalen [1]). Discussions of 

these models may be found in Kalbfleisch and Prentice ([BJ, Chapters 

3 and 5) and Gill ([3], Chapter 3). The common structure pertaining 

to all these models is that the dependence between failures and cen­

sorings must be such that, phrased quite informally 

(S) "past observations do not affect the probabilities of future 

failures" 

where "observations" mean observed failures and observed censorings. 

A breakthrough in the conception of models for censored survi­

val data came with p,alen's [1] formulation in terms of counting pro­

cesses and his demonstration that the classical models had the multi-

plicative intensity structure introduced by him. Using counting pro­

cesses and their compensators (intensity processes), one is provided 

with an ideal tool for formulating rigorous vvhat is meant by the 

informal statement (S) above. Gill [3] in particular used this frame­

work for his study of censoring patterns, and it is also the backbone 

of the present paper. 
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Still, there is scope for numerous formulations of what must 

be the essential structure of the censoring mechanisms if one is 

to apply the Kaplan - Meier and Nelson - Aalen estimators. The main 

purpose of this paper is to present explicit conditions on the 

distributional properties of the censoring times themselves, assu­

ming always that the failure times are independent and identically 

distributed. By way of comparison, the condition introduced by Gill 

[3] is more implicit and in the vein of requiring censorings to 

occur in such a way that the lifetime distributions for the popula­

tion still at risk, are as they would be without any censoring. 

In Section 2 we introduce the counting process setup used 

throughout the paper and with reference to Aalen's work [1], intro­

duce the fundamental multiplicative intensity structure. Also here 

the questions concerning the structure of censoring patterns are 

posed, that are then answered in Section 3, which contains the main 

results of the paper. Naturally we are dealing with nonparametric 

models, with an arbitrary unknown failure time distribution. How­

ever, all results in Section 3 are really about the structure of 

each probability belonging to the model, rather than the model as a 

whole. In Section 4 we discuss models where not only for instance 

the Kaplan - Meier estimator can be used according to the criterion 

from Section 2, but where also this estimator exploits all essential 

information about the unknown failure time distribution. This discus­

sion in Section 4 is related to the concept of information versus 

noninformative censorings (see [8], p. 121) and also the recent work 

of Arjas and Haara [2] on innovation versus noninnovation. Finally, 

Section 5 reviews briefly the asymptotic theory for the Nelson -Aalen 

and Kaplan - Meier estimators. 
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2. The counting_process description of right censored data. 

Consider the usual setup for observing independent and identi-

cally distributed failure times (lifetimes) subject to censoring 

from the right. More precisely, let X1 I • •• 'Xn be i.i.d. and let 

U1 , . .. ,Un be the censoring times with all X. ,U. 
l l 

strictly posi-

tive. Then the observations consist of the pairs 

(T. ,8.) 
l l 

(i=1, ..• ,n) 

where T i = Xi !\ U i and 8 i = 1 (X. < U . ) 
l - l 

is an indicator showing 

whether T. is the failure time X. (8. = 1) or the censoring 
l l l 

time U . ( 8. = 0) • 
l l 

The statistical problem is to estimate the unknown distribution 

of the X. on the basis of the observations (T. ,8.) alone. 
l l l 

For all censoring patterns to be considered in this paper, it 

will be assumed that the distribution of the observations must be 

compatible with the assumption that the X. 
l 

are independent and 

identically distributed. In doing this we are making at least some 

assumptions about the distribution of the unobserved lifetimes. On 

the other hand, the unobserved censoring times (corresponding to i 

with 8. = 1 ), we shall consider irrelevant, and to avoid any confu­
l 

sion about what they might or might not have been, we shall hence-

forth make the following assumption, which we list together with 

the above condition on the X. 
l 

(D) The failure times X1 ' ••• 'Xn and censoring times U1 , ••• 'Un 

are strictly positive, possibly infinite, random variables 

such that U. = 00 
l 

stribution of all 

whenever 

X. 
l 

and 

U. > X. , and where the joint di­
l - l 

U. 
l 

satisfies that the X. 
l 

are 

independent and identically distributed. 
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Note that with assumption D in force, we may write 

(0. = 1) = (D. ==) 
1 1 

From now on we shall assume the unknown distribution of the 

X. to be absolutely continuous with unknown hazard ~ , i.e. 
1 

rt 
P (X. > t) = exp ( - J ~(s) ds) 

1 0, 

For simplicity we write G~ or just G for this survivor 

function and F = 1 - G for the distribution function. Also, for 
~ ~ 

s < t we write 

G (t) . t 
G (tls) = ~ = exp ( - f ~(u)du) G---rsT ~ 

~ s 

for the conditional survivor function P (X. > t I X. > s) 
1 1 

and denote 

by or Q the joint distribution of 

Q (B) = P((X 1 , ••• ,X) EB) 
~ n 

t 
It will be convenient for us to assume that f ~ (u) du < = for 

JO 
t rt 

t . (This is not essential, but if t = inf{t : J ]J = =} < = 
o 

all 

much of what is said below, will be valid only on the timeinterval 

t [O,t ) ). We shall however not assume that J= ~ = = , so the 
o 

X. are 
1 

allowed to take the conditions 0 < D. < X. or D. = = no .restrictions 
111 

whatever are placed upon the possible values for the censoring times, 

in particular two or ono of them may coinside or coinside also with 

one of the failure times. (Of course with a continuous distribution 

for the X., all finite X. are distinct). Notice that the model 
1 1 

with i.i.d. failure times and no censoring is obtained by defining 

D. = = for all i. 
1 

The statistical 

the integrated hazard 

problem to be discussed is that of estimating 

Jot 11 t'" or the survivor function G . More 
]J 
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specifically we shall discuss censoring patterns that allows one 

to use the Nelson-Aalen estimator as estimator of the integrated 

hazard and the Kaplan - Meier estimator as estimator of G 
fl 

Recall that with N the counting process 

n 
(2.1) L 1 _ 

'-1 (X.<t,o.-1) 
1- 1 - ·1 

and I R (t - ) I the number of individuals at risk immediately before 

t , 
n 

(2.2) IR(t-)1 = L 1(T. >t) 
i=1 1 -

the Nelson - Aalen estimator (Nelson [1.U, Aalen [1]) is given by 

the Stochastic integral 

( 2 .3) A J 1 S(t) - ~~~-
- (Oft] IR(s-) I 

N (ds) 

and the Kaplan - Meier estimator [9] by the product integral 

A A 
( 2 • 4) G (t) = IT (1 - S (ds» = IT (1 

O<s<t O<s<t 

N (ds) 
IR(s-) I ) 

The simplest situation where itis reasonable to use the estimators 

(2.3), (2.4), is the model for random censorship which is usually 

formulated as follows: the X. are i.i'.d. with hazard fl and the 
1 

Ui are mutually independent and independent of (X 1 ' .•• ,Xn ) 

With our basic assumption (D) we can of course not use this descrip-

tion. Our specification of the random censorship model appears in 

Example 3.30 below. 

On the other hand it is easy to construct formal censoring 

patterns, where it is absurd to use the estimators (2.3), (2.4): 

if U. < X. 
1 1 

for all i , (2.3), (2.4) degenerate since no failures 

are observed. As a concrete example, consider 1 
Ui = '2Xi ' in which 

case it is of course obvious which estimators should replace (2.3), 

(2.4). Also, the censorings in an explicit manner anticipate future 

failures, and this is precisely what must not happen if (2.3), (2.4) 
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are to make sense. 

We shall now describe how the observations (T 1 '01) , ... , (Tn,on) 

may be viewed as a multivariate counting process and how the distri-

but ion of the observations is given in terms of the corresponding 

intensity process (compensator). 

This counting process approach was initiated by Aalen's [1] 

definition of the multiplicative intensity model and his observation 

that some relevant models for right censoring appear as special 

cases. This in turn led to Gill's work [3], which is a main refe-

rence for counting processes and censoring and the main reference 

for this paper. 

Before describing in detail the counting process approach we 

remind the reader of the following simple facts. 

Suppose Pr is a probability on (0,=] with survivor function 

G(t) =Pr((t,=]) . Let tt =inf{t: G(t) =O} denote the termination 

point for G and write v for the hazard measure 

( 2 • 5) 1 
v(dt) = G(t-) Pr(dt) 

with G (t-) = lim G(s) . Then v is a measure on (O,tt] , well-
S-7t,s<t 

de fined if we put the ma s sat t t equa 1 to D. v (t t) = 0 if G (t t -) = 0 . 

(Here as elsewhere ~ if K is a measure, D.K(t) denotes the point 

mass K({t}), while if K is a function, rightcontinuous with left 

limits D. K (t) = K (t) - K (t-) . Further G (or Pr) is determined by 

tt and v , 

G(t) = IT (1 -v(ds)) 
o < s < t 

for t < tt, where the product integral on the right equals 

exp(-vc((O,t])) IT (1-D.v(s)) 
O<s<t 

with VC the continuous part of v and the product the contribution 

from the discrete part, so that the factor 1- D.v(s) is ~1 only if 
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s is one of the at most countably many atoms for v (or Pr). 

With Pr absolutely continuous with hazard ~ f of course 

v (dt) = ~ (t) dt , and if Pr is discrete I v is also discrete with 

point masses /::,v(s) =-/::,G(s)/G(s-) . In particular 

2.6. Example. The discrete distribution with survivor function 
/\ /\ /\ /\ 
G has hazard measure v given by v((O,tl) = S(t) , see (2.3) and 

(2.4). Hence the Kaplan - Meier and Nelson - Aalen estimators are equi-' 

valent in the sense that they describe two different characteristics 

of the same distribution. 

Consider now a collection of failure times X1 10 ."Xn and 

censoring times U1 , ... ,Un satisfying (D). To give the counting 

process description of the observations (T. ,0.) and their distri­
l- l-

bution, we shall use the method given e.g. in Chapter 2 of Jacobsen 

[5 ]. 

To observe (Ti , 0i) 1 < i < n is equivalent to observing the 

occurence in time of a sequence of events. The possible events con-

sist in either a failure simultaneously with a number of censorings 

or in the occurence of one or more censorings (but no failure). We 

shall give each event a name (mark) and collect the names in the 

type set (mark space) 

E = {(i,A) : 1 <i <n , A,= {1, .. .,n},(i}} 

U {(c,B) : 0 ~ B c {1, ... ,n}} 

with (i,A) the name of the event 'failure for i, all j EA 

censored' and (c ,B) the name of the event 'no failures, all j E B 

censored'. In particular, (i,0) is the name of the event 'failure 

for i, no censorings I. For each y E E we define K (y) , the set of 

individuals involved in y , by 

o 
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J {i} u A if y=(i,A) 
( 2. 7) K(y) = l B if y= (c ,B) 

In finite time a random number ~ n) and a random selection 

of events are observed. Let Tk be the time of occurence of the 

kith event and let Yk be the name of the event. If precisely m 

events, 0 ~ m ~ n , are observed on (0,=), we have 0 < T 1 < ••• < Tm < = 

and define Tm+1 = ... = Tn = = and leave Y 1' ... 'Y m+ n unspecified. 

Clearly, observing all (T.,o.) 
l l 

is equivalent to observing 

all Tk and the Yk corresponding to k with Tk < = • Thus the 

distribution of the observations is specified by giving the joint 

distribution of all (Tk,Yk ', and following Jacobsen [5], we shall 

do this by specifying for k > 0 the conditional probabilities 

Here 

with 

ITk c (t,y) =P(Yk +1 =y[F _) on (Tk +1 =t). 
, L,k Tk +1 

FTk is the o-algebra generated by E,k = (T 1 ,···,Tk ,Y1 ,···,Yk ) 

F = FO = {0,~} , and 
TO 

is the 0 - algebra spanned by 

(E,k,Tk + 1 ) • Note that Gk,E,k is a survivor function on and 

tha t L IT k C (t , y) = 1 . 
Y f L,k 

Letting be the hazard measure for the probability on 

with survivor function (cf. (2.5)), introduce for 

Y E E the random intensity measure. 

on (T k < t ~ Tk +1 ) and define the !ntensity_process (compensator) 

A = ( AY) Y E E by 

AY(t) = AY«O,t]). 
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Also let NY be the counting process which at time t equals 

1 if the event with name y has occurred in (O,t] and 0 other-

wise. Then is a multivariate counting process such 

that wi th Ft the 0 - algebra generated by (N (s) ) s < t ' the pre­

dictable compensator for NY with respect to the filtration 

( F ) . l\.Y . lS , l.e. t t > 0 
l\.Y is predictable and 

is an Ft - martingale for each Y , cf. Jacod [6] or, for the special 

case of absolutely continuous G , Jacobsen [5], Section 2.2. 
k, ';k 

Also the distribution of N is uniquely determined by the intensity 

process l\. as may be seen from the following expression (see [5], 

Proposition 2.5.13): introduce the total intensity 

and consider the infinitesimal event that on (O,t] precisely m 

jumps occur at times in dt1 , ... ,dtm ' the kith jump occurring in 

component Yk . Then 

(2.9) P(T 1 Edt1 'Y1 =Y1,···,Tm Edtm 'Ym = Ym,Tm+1 >t) = 

m Yk 
IT (1 -l\.(ds,w)) IT l\. (dtk,w) 

O<s<t k=1 
= 

s ;z: tk 

\A.'here w is any sample path for N which on [O,t] jumps at the 

timepoints t1 ' ... ,t in componen ts 
In 

Y1 , ••• ,Ym . (Because is 

predictable, the infinitesimal neighbourhoods dtk should be thought 

of as intervals (tk -dtk,tk ] to the left of t k ). 

Note. Adding up infinitesimal probabilities like (2.9) shows 

in particular that for any F E Ft ' P (F) is determined by the beha­

viour of l\. on F. 
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We shall call the counting process N recording the observa-

tions (T. ,0.) a failure - censoring_process 
1 1 

(FC - process) . 

Remark. When stating that a process Z = (Z (t) ) t > 0 is pre-

dictable (like each AY), we mean that for every t,Z(t) is 

measurable with F 0- = F 0 and for t > 0 , F t- the 0" - algebra 

F -t-

genera ted by (N (s) ) s < t ' cf. Jacobsen [5], Section 2.5. Any process 

which is measurable and predictable in this path - algebraic sense, is 

also predictable in the sense of the general theory of processes. 

As a multivariate counting process, N has a special structure. 

Not only does each component have at most one jump, but a jump in one 

component precludes jumps in a host of other components. More speci-

fically, recalling the definition (2.7) of K(y) , since the occur-

rence of the event y means that all individuals j E K (y) are re-

moved, if Y happens, no event y';t:.y involving a j EK(y) can 

ever occur. This special structure of N is reflected in a special 

structure of A, see (2.10) below. 

Some counting processes derived from N are of special inte-

rest. For i = 1 , ••• ,n introduce 

Ni = I N(i,A) 
A 

the sum extending over all A c {1, ..• ,n}'{i} . Then Ni registers 

the failure of i and 
n 

N = I Ni 
i=1 

registers the total number of failures, cf. (2.1). The compensators 

for are 

Ai = I A (i ,A) 

A 

It is also useful to introduce the observed lifetimes 

x.* = inf{t: Ni(t) = 1} , 
1 
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where we use the standard convention inf 0 = 00 • The corresponding 

description of the censoring times is that 

u. = inf{t:N(j,A)(t) =1 for some j;ti, A:3i 
l 

or N (c ,B) (t) =1 for some B :3 i} 

as is seen referring to (D). 

At each time point t , the collection {1, ... ,n} of indivi-

duals split into three disjoint sets, the risk set R(t-) , the 

censoring set C(t-) and the failure set D(t-) , where 

* R(t-) = {i u. > t , X. > t} 
J. - l -

C(t-) = {i U. < t} 
l 

D{t-) = {i * X. 
l 

< t} 

Each of these random sets is F t- - measurable, for instance R (t-) 

is the set of individuals at risk immediately before t. Occasio-

nally we shall use 

* R(t+) = {i u. > t , X. > t} 
l l 

and the analogues C(t+), D(t+) . For t =00 we define the set of 

individuals always at risk R(oo) , the set of censored individuals 

C(oo) and the set of failed individuals D(oo) , 

* R(oo) = {i U. = X. = 00 } , 
l l 

C (00) = {i U. < 00 } 
l 

* D(oo) = {i X. < 00 } 
l 

Observing N on [O,t) is equivalent to keeping track of R(S-) , 

C (s-) , D(s-) for ° < s < t . 

Recalling the special structure of the sample paths for N de-

scribed above, it should be clear that the intensity process A al-

ways satisfies the following condition: for every y E E and s < t , 
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(2.10) IIY (t) -AY(s) = 

i.e. the intensity measure on [s,oo) is > 0 only if all indivi-

duals involved in y are at risk immediately before s. 

From now on we shall consider the canonical version of the coun-

ting process N , i.e. we introduce W as the space of all possible 

paths for N and define N (t,w) = w (t) for any w E W • Thus from the 

description above, W consists of all functions w: [0 ,00) ~ {O, 1 }E 

such that each component wY : [0,00) -4 {O, 1 } is .rightcontinuous with 

wY (0) = 0 and either identically 0 or with 1 jump from 0 to 1 , 

and also the collection (wY) satisfies that no two components jump 

simultaneously and whenever wY jumps, all wY' with y';z:y and 

K (y I) n K (y) ;z: 0 are identically o. 
An observation is now a path wE W , and all observable objects 

such as ,D. ,A,R,C,D 
l 

are defined on W . The measur-

able structure is given by F = a (N (t) ) t > 0 with Ft ' F t- , F sub 
Lk 

* Lk ' X. , U. are 
l l 

a - algebras defined exactly as before. Note that 

all stopping times with respect to the filtration ( Ft) . 

2.11. Definition. A (canonical) failure -censoring_process is 

a probability on (W, F) • 
o 

Henceforth we reserve the letter P for denoting FC-proces~ 

sese A FC - process is given by its compensator A, and it is use-

ful to summarize the structure of those compensators that yield FC -

processes. 

2.12. Fact. Let A = (AY) be a collection of processes 
yEE 

AY . [0 ,00) ~ [0(00) defined on Wand consider the following condi-

tions: for all y E E 
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(i) AY is rightcontinuous and increasing with AY(O) = 0 , 

(ii) AY (t) is F t- - measurable for all t, 

( iii) ~ A(t) ~ 1 for all t, 

(iv) AY(t) - AY(s) = (AY(t) - AY(s)) 1 (K(y) 
<;:;R(s-)) 

for all s < t . 

Then 

(a) For any Fe - proces s P there is a vers ion of its compensator 

that satisfies (i) - (iv) i 

(b) Any predictable A satisfying (i) - (iv) is the compensator 

for a uniquely determined Fe - process P . 
o 

The first three conditions are satisfied by all compensators, 

while (iv) is (2.10) repeated. 

With the concept of canonical Fe - processes introduced we can 

define statistical models for the observation N by giving a family 

of compensators satisfying (i) - (iv). But at the same time the model 

should allow for the observed failure times to be interpreted as 

coming from an i.i.d. sample with some ha.zard lJ . Therefore we must 

discuss not only a model for the distribution of N, but a model 

for the joint distribution of X and N ,where X = (X 1 , ... ,Xn) is 

the vector of all failure times (observed or unobserved) . 

Thus, formally the joint model for (X,N) should of course 

have the property that the marginal distribution of X makes the 

X. i.i.d. lJ with lJ arbitrary. In addition we shall now intro-
1 

duce a condition, first used by Gill [3], on the marginal distribu~ 

tionof N and which we consider the minimal requirement on a model 

for which the Nelson - Aalen estimator is· a sensible estimator of the 

integrated hazard, or, equivalently, the Kaplan - Meier estimator is 

a sensible estimator of GlJ . Define 
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Ii (t) = 1 (i E R(t-)) , I(t) = 1 (R(t-) ~0) 

and suppose that for i = 1 , ... ,n 

(2.13) Ai (dt) = ]J (t) 1. (t) dt . 
1 

Then with respect to P , the FC - process with compensator A, the 

processes are orthogonal martingales, and the Nelson -

Aalen estimator is a martingale estimator of the integrated hazard, 

i. e 0 

/\ rt 
S (t) - J ]J (s) I (s) ds 

o 
/\ 

is a P - martingale, where S is def ined by (2.3) . Condition (2.13) 

is crucial for all that follows. We shall refer to it as the martin-

gale condition. 

With (2.13) and the preceding remarks in mind, our main purpose 

is to discuss the following three problems: 

I With the X. i.i.d. ]J, what kind of structure must be 
1 

imposed on the censoring pattern for the marginal distri-

bution of N to satisfy (2.13) ? 

11. (The embedding problem). Supposing the distribution of N to 

satisfy (2.13) for some ]J, is it always possible to obtain 

this distribution as the N - marginal distribution of a pair 

(X,N) ,where the X. 
1 

are i.i.d. ]J ? 

Ill. What must be the structure of statistical models for the 

distribution of N, satisfying (2.13) for all ]J, in order 

that no essential information about ]J is los,t when using 

the Nelson - Aalen estimator? 

When answering I and 11 , it is enough tof ix an arbitrary ]J at 

a time, while III involves the structure of the complete model ob-

tained when ]J varies. 
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Gill [3] gave several examples of censoring patterns, where 

(2.13) is satisfied including type 11 progressive censorship, where 

at the time of the kIth observed failure, a given number r k of 

individuals selected at random from the i still at risk, are cen-

sored. 

Another example (Williams and Lagakos [12] and Kalbfleisch and 

MacKay [7]) treats the case where the pairs (X. ,D.) are i.i.d. 
l l 

(In those two papers our convention about the D. 
J. 

from (D) is not 

used, but that is immaterial for (2.14) below). In this example, be-

cause of the independence, (2.13) holds iff it holds separately for 

each i, and with our notation the constant sum condition from [12] 

as reformulated by Kalbfleisch and MacKay [7] then reads 

(2.14) P (T. E dt , o. = 1 IT. > t) = ]J (t) d t . 
l J. l -

In particular, this is a condition on the observations only, and 

since (T. > t) = (i E R(t-)) it is immediate that (2.14) is precisely 
l -

(2.13). 

As stressed above, it is necessary to. study the joint distribu-

tion of X and N , and we shall now introduce the notation and for-

mal apparatus needed to do this. 

Let L c (O,oo]n denote the space of vectors of possible failure 

times, i. e. vectors x = (x1 I· •• ,xn ) with 0 < x. < 00 and such that no 
l -

two finite xi are equal. Also write Xi(x) =xi ' define 

and let H - 0" (X 1 ) be the 0" - algebra 
t - i (X. < t) 1 < i < n 

l -

measuring all failure times < t , whether observed or not. Note that 

(Xi> t) E Ht . 

A realization of all failure times and the observations is a 

point w = (x ,w) E TI" : = L x W such that x and ware compatible, 

i.e. w belongs to st defined as the space of pairs (x,w) E TI" with 

* x. =x. (w) 
l l 

for iED{oo,w) , x. > U . (w) 
l l 

for i E C (oo,w) and x. = 00 
l 
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for ifR(=,w) . (Seep.11 for the definition of D(=) ,C(=) ,R(=». 

On D we use the er - algebra G = D n (H ~ F) with the fil tra-

tion G t = D n ( Ht @ Ft) . 

With this setup the joint distribution of (X,N) is a proba-

bility on W,G) , which we denote by JP. (Recall that P is 

the notation for the marginal distribution of N (X) ). 

* We shall say that x EL, wE Ware t - compatible if x. = X. (w) 
1 1 

for iED(t-,w), x.>U.(w) for iEC(t-,w) and x.>t if 
1 1 1 -

i ER (t- ,w) . Thus x and ware t - compatible simply if x is a 

vector of failure times consistent with the observation of w on 

[0, t) . 

Given x EL, denote by W x the space of w compatible with 

x:W ={wEW:(x,w)ED}. 
x 

Any function defined on W (or L) may be viewed as a function 

on D , e.g. define NY (t, (x,w» = NY(t,w) and X. (x, w) = x. . And a 
1 . 1 

set F E F may be viewed as the set F = { (x, w) E D : w E F} E G I a set 

HE H as the set H = {(x,w) E D : x EH} . Then also Ht,Ft may be con­

sidered sub er - algebras of G and then Gt = Ht v Ft ' the smallest 

er - algebra containing both Ht and Ft. 

We shall construct probabilities on by letting the X. 
1 

be 

Li.d. 11 (the distribution of X is Q = Q ), and then consider the 
11 

conditional distribution of the counting process N given X . 

So for every x EL, let P be a probability on x 
(W, F) with 

p (W ) = 1 and such that x ~ P (F) is measurable for all F E F • x x x 

Then 

( 2 . 1 5 ) JP = J P x Q (dx) 

defines a probability on D. By standard results about regular con-

ditional probabilities, any JP making the X. 
1 

i.Ld. with hazard 

11 has this structure. A useful variation of (2~15) is the following: 

if f > 0 defined on D is measurable, then 
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(2.16) f f d JP = f Q ( dx) f f (x ,w) P x (d w) . 

Each P is a FC - process, hence is specified by its intensity 
x 

process A ,formally defined on all of W. In order that x 

P (W ) = 1 , A must satisfy (i) - (iv) from Fact 2.12 plus some x x x 

extra conditions, that we now list: 

For all (2) 7:. B <.:: {1, 0 •• ,n} and all i 

(2.17) on (iER(x.-» 
l. 

and for all (i ,A) E E , the intensity measure A (i TA) 
x 

is concen-

trated at with 

(2.18) b. A (i,A) (x.) 
x l. 

Finally, 

(2.19) 

= b. Ax(i,A) (xl.') 1 ({l.'} u 

b.A i (x.) = 1 x l. on 

AcR(x.-» . 
- l. 

(i E R (x. -) ) 
l. 

because, with respect to P ., i must fail at time x. if still x l. 

at risk. 

of 

It is not necessary for A x to satisfy (2.17) - (2.19) on all 

W , it is enough that these conditions hold on yJ 
x 

2.20. Lemma. Let x ELand let A = (AY) be the inten-x x y,E E 

sity for some FC -process P • If (2.17) - (2.19) hold for the 
x 

restriction of A to W , then P (W ) = 1 . 
x x x x 

Sketch of proof. Fix x = (x 1 ' . . . ,xn ) E L and let = min x .. l. 

Consider the pathfragment Wo for N, which has no jumps on the 

interval [0,x(1» . From the definition of W , it is clear there 
x 

exists WEWx with this behaviour on [0,x(1» ,hence (2.17)-(2.19) 

apply when evaluating Ax(t,wO) for 0 ~ t ~x(1) . Since by (2.19), 

b.Ax (x(1) ,wO) = 1 , we have Px (T 1 ~x(1» = 1 , and then because each 
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Ai is concentrated at x. , it follows that P - a.s. on x 1 x 

(T 1 <x(1)) , Y1 is of the form (c,B) , while because of (2.19), 

P - a.s. on (T 1 =x(1)) , Y1 is of the form (j ,A) with j de-x 

termined by x (1) = x. . Thus the first jump time T1 and the type 
J 

of the first jump Y1 generated by P x are compatible with x . 

Proceeding by induction one shows similarly that if (T 1 ,Y 1) ,ee., 

are compatible with x , generates 

compatible with x , and that only the restriction of Ax 

is needed to determine the conditional probability. 

to W 
x 

o 
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3. Main results - problems I and 11. 

We shall begin by quoting Gill's [3] answer to question I. 

With our notation Gill's basic condition, which is a condition on 

the joint distribution W of (X,N) may be phrased as follows: 

(G) For any t ~ 0 , given the X. 
l 

i.i.d. on (t,=] with hazard ~ . 

for iER(t+) are 

3. 1 

3.1. Theorem. (Gill [3], Theorem 3.1). If the joint distribu-

tion of (X,N) is such that (G) is satisfied, then the martingale 

condition (2.13) holds. 

o 

If (G) is true, taking t=O shows all X. to be i.i.d. with 
l 

hazard ~ . Also, given Ft with t>O , in particular the risk set 

R(t+) is known and for each iER(t+) 

dition states that given Ft ' the X. 
l 

each following the same distribution as 

we have X. > t . So the con­
l 

for 

X. 
l 

i E R(t+) are i. i. d. , 

given the event (X. >t) . 
l 

We shall present a new condition (C) below. To formulate it we 

use the construction of a probability W on ~ described in the 

previous section: Start with the X. 
l 

LLd. ~ , then use P , the 
x 

conditional distribution of N given X = x . (C) will be phrased 

as a condition on the intensity process 

trary. 

A 
x 

for P I X EL 
x 

arbi-

From a probabilistic point of view, using conditional probabili-

ties is certainly the most natural way of constructing the joint law 

W, when the marginal distribution of X is prescribed. But from a 

statistical point of view the idea of conditioning on all failure 

times, whether observed or not, appears quite unnatural. However, if 

the conditional distribution of N given X depends on the failure 
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times only through what is observed about them, not only does this 

make sense statistically, but as we shall see, it also captures the 

structure we are looking for. This then is the essence of condition 

(C) • 

This condition is explicitly a condition on the censoring pat-

tern, where (G) is more implicit, stating that in a suitable sense, 

the censorings should leave the failure time distributions unchanged. 

(C) For any t > 0 and w E W , A (t, w) x is the same for all x E L 

which are t - compatible with wand satisfy x. > t 
1 

for 

i E R(t-,w) . 

Recall that the definition of t - compatibility between x and 

w only involves the behaviour of w on [O,t) , which, since A x 

is predictable, also determines A (t,w) . Because of (2.19) it is x 

essential that in (C) a x t - compatible with w is required to 

satisfy x. > t 
1 

for ifR(t-,w) rather than x. > t 
1 -

(See also 

Lemma 3.5 below). 

Because each A (t,w) x is rightcontinuous in t, (C) is equi-

valent to the following, seemingly stronger condition. 

(C I) For any t > 0 and w E W , the function s ~ A (s, w) or. [ 0 , t ] 
x 

is the same for all x EL which are t - compatible with w 

and satisfy x. > t 
1 

for i E R(t-,w) . 

Indeed, given t, w let x, x I EL satisfy the requirements in 

(C') or (C). Using (C) (with t replaced by an arbitrary s ~ t ), 

it is seen that A (s ,w) = A I (s ,w) for all s < t except possibly 
x x 

I 
S = x. or s = x .. Now use right continuity to complete the argu-

J J 

ment that (C) implies (Cl). 

It may now also be seen that (C) implies the following: 

(C" ) For any t>O , w E vJ and i(R(t-,w) , A (t,w) is the same 
x 

for all xEL which are t - compatible with w and satisfy 

that '7 =t and x. >t for all j E R(t- ,w) , j :j: i .,. . 
1 J 
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To argue this, fix t,w,i and let x,x' EL satisfy the requi-

rements in (C"). Because w is piecewise constant and all x.,x'. 
J J 

for j 7i are ~t , condition (C') applies with t replaced by 

t + cS for cS > 0 sufficiently small. 

In the sequel, when referring to (C), we mean either of (C), 

(Cl), (C"). 

Note. Of course, since (C) is a condition on conditional pro-

babilities, it may be relaxed, allowing for exceptional sets of wls 

and x's. For instance one may always ignore x belonging to some 

given setA with JP (X EA) =0 .Also, it must be remembered that A x 

as a function on W (or 

~tinguishability. 

W ), is determined only up to x P - indi­
x 

Apart from conditions (G) and (C) we shall introduce a third 

condition on the structure of JP. Recall that 

Ht = 0 (X i 1 (X. < t) )) 1 < i < n 
1- --

and introduce Ht = 0 (Xi 1 (X. > t) ) 1 < i < n ' 
1 

the 0 - algebra spanned by those X. 
1 

greater than t . 

(M) For any t ~ 0 , the 0 - algebras Ft and Ht are conditionally 

independent given 

If (M) holds, then for t. > t , 
1 -

(3.2) JP (X. > t. , i E SI Gt ) = 
1 1 

IT 
iES 

G (t.lt) 
1-1 1 

on the set ({i: Xi > t} = S) E Ht : by the conditional independence, 

JP (HIGt ) =JP (HIHt ) for HEHt, and (3.2) follows because the Xi 

are i.i.d. 1-1. (3.2) should be compared to (G). (The notation 

G (. I·) used in (3.2) was introduced early in Section 2). 
1-1 

Writing the conditional independence as 

(3.3) JP (FIH) = JP (FIHt ) 1 
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we can give yet another version of (M). It is standard terminology 

to call a random time T a rando.mized stopping time for the filtra-

tion (Ht) , if for any t, JP(T>tIH) = JP(T>tIHt ) . Taking T = U. 
1 

(3.3) shows that each censoring time is a randondzed stopping time 

for the filtration induced by the failure times. Furthermore, condi-

tioning on H (i.e. X ) leaves only the U. as random and hence 
1 

(3.3) holds for all F E Ft iff it holds for all 

FE Ut : = 0(Ui 1 (U. < t)) 1 < i < n' Thus (M) is equivalent to the state-
1-

ment that (U1 ' ... ,Un ) is a multivariate randomized stopping time 

if by this (non-standard) statement, we mean that (3.3) holds for 

all t and all F E Ut • Finally, note that since 

(X = x) , (3.3) is a condition on the P 
x 

JP (. I H) = P on 
x 

3.4. Proposition. (C) ~ (M) ~ (G) and neither implication can 

be reversed. 

Proof. Suppose (C) holds, let t > 0 and let x ,x I E L satisfy 

that for each i either x. =x'. or x. >t , Xl. > t. In particular, 
1 1 1 1 

any w t - compatible with x is also t - compatible with x I and 

from (C) it follows via (Cl), (C") that for all such w ,A (s, w) = 
x 

A (s, w) 
Xl 

and P 
Xl 

for s < t . In other words, the intensity processes for 

agree on [0, t] and hence P == P x Xl 
when restricted to 

P 
x 

Ft . But conditioning on Ht amounts precisely to specifying for 

each i the value of X. if X. < t and the event (X. > t) other-
1 1 - 1 

wise. Thus we have shown that (3.3) and hence (M) hold. 

of 

That (M) implies (G) is easy to see. For an arbitrary subset R 

{1, ..• ,n} we must show that for t. > t , i ER 
1 -

JP (X. > t. , i E R I Ft) = 
1 1 

IT G (t.lt) 
iER )l 1 

on the set F = (R(t+) = R) E Ft . Conditioning first on Gt and 
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noting that on F , Rc {i :X. >t} ,this follows from (3.2). 
- l 

That the implications cannot be reversed will be shown in 

Example 3.31 below. 
o 

We shall later use the following consequence of (M). 

3.5. Lemma. Let t > 0 and let x,x I EL satisfy that for all 

i either x. = X I. 
l 1: 

I 
or x.,x. > t. If (M) holds, then P - P I on 

l l - X X 

Proof. Because for any 
, 

s<t,x.=x. 
l l 

or x., X '. > s , condi­
l l 

tion (M) tells us that P - P I 
X X 

on F • Since s is the a - al-

gebra spanned by (F ) the lemma follows. 
s s < t ' o 

Our main result gives the structure of the intensity process ~ 

for N , when (C) is satisfied, and in particular, it follows that 

the martingale condition (2.13) holds. Of course this fact alone fol-

lows directly from Gill's theorem and Proposition 3.4. Part of the 

justification for introducing the restrictive condition (C) lies in 

the more detailed information provided by Theorem 3.6 and the solu-

tion to the embedding problem given in Theorem 3.21 below. 

In the sequel, if x EL, t > 0 , we write x J i,t for the vector 

(x 1 ' ... ,x. 1 ' t , x. 1' ... ' x ) . Note that l- l+ n x1i,t EL except if t =x. 
J 

for some j;it i . 

3.6. Theorem. Let JP be a probability on D such that the X. 
l 

are i.i.d. with hazard y and the intensities ~ for the conditio­
x 

nal probabilities P 
x 

satisfy (C). The compensator for the counting 

process N is then indistinguishable from ~ = (AY) Y E E ' where 
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(3 .7) A (i,A) (dt) 

(3.8) A (c,B) 
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= lJ(t) ~ A (i~A) (t) 1. (dt) , 
Xll,t l . 

= A(C,B) 
x 

for i=1, ... ,n, A::: {1, ... ,n}'{i} , (2) 7! B <:: {1, ... ,n} .In particu-

lar A as given by (3.7) and (3.8) and viewed as a function of 

(x,w) E S1 depends on w alone, each MY = NY - AY is a (P,Ft )­

martingale and (2.13) holds, 

(3. 9) Ai(dt) = jJ(t) I. (t) dt . 
l 

Remarks. The reader is reminded that two processes V1 and V 2 

are indistinguishable if almost surely V1 (t) = V2 (t) simultaneously 

for all t. The qualification indistinguishable is required because, 

as we shall see A(C,B) (t) 
X 

is not predictable in the strict algebra-

ic sense we are using here (cf. the remark following (2.9) above). 

Equation (3.7) is best understood recalling that the measure A (i ,A) 
x 

is concentrated at x .. Also note that because of (2.18), the fac­
l 

tor I. (t) may be omitted from (3.7). 
l 

Proof. We begin by showing that A, which formally depends on 

both x and w, is determined by w alone, i. e. that whenever 

(x,w) E S1, (x' ,w) E SI, the paths for A evaluated at (x,w) and (x', w) agree. 

But x and x I are both compatible with w, therefore x I i, t and 

X I I i, tare t - compatible with w for all t such that 

and from (C) it then follows easily that 

~ A (i ,A) ( ) ( ) = xli,t t,w Ii t,w 

A (c,B) (t,w) = 
x 

~A(i,A) ( ) ( ) xii i,t t,w Ii t,w 

A (~,B) (t,w) 
x 

1. (t, w) = 1 f 
l 

I 

for all t not equal to some Xj or x j . Clearly then the Lebesgue 

integrals defining A(i,A) agree, when evaluated for (x,w) and 
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(xl,w) . That the censoring components A(C,B) agree, even at the 

exceptional time points t = x. 
J 

I 
or x~ , follows most easily by 

J 

rightcontinuity, but is also a consequence of some of the basic 

properties of the A , viz. Fact 2.12 (iv) and (2.17). x 

Thus we may write A(t,w) = A(t, (x,w)) , and shall now proceed 

to show that the process A(i,A) is predictable. Following Jacob-

sen [5], we do this by showing that for all t, if w,w' E W satisfy 

w t- w' ,i.e. w(s) = w' (s) for all s E: [0 ,t) , then A (i,A) (t,w) = 

A (i,A) (t,w') . But 

A (i,A) (t) = Itf.dS)!J. A (ll' ~A) (s) I. (s)ds 
o Xl,S l 

and it follows from the fact that any A x is predictable that the 

integrands evaluated for w,w' are the same, except possibly at 

fini tely many timepoints s. Thus A (i ,A) is predictable. 

The next step consists in showing that a modified version of 

A (.o,B) is predictable. Fix some 8 > 0 and define 

(3.10) A (c ,B) = A (c ,E) + L !J. A (c ,B) (X. ) e 
X i E D (00) X I i, Xi +8 l Xi 

so the measure X(c,B) differs from A(c,B) only by point masses 

a t the observed failure times X., i E D (00) • First, using (C) it is 
l 

easy to see that each term in the sum evaluated at (x,w)E g de-

pends on w only. Next, let W rv w' 
t- and choose arbitrary x,x' EL 

such that (x,w)E g , (Xl ,w')E g , in particular x,x' are t -com-

pa tible with both wand w'. 

If for all i E R(t-,w) = R(t-,w') = R 

I 
x. ,x . > tit is immediate from (e") that 

l l 

I 
we have x. = x. or 

l l 

A (c,B) (t,w) = A (c,B) (t,w l ) . 

Therefore suppose that e.g. for some i ER, t = x. < x '. I tha t is x . 
l l l 

is the observed failure time for i based on the path w, while for 

w' , the failure time I >t Th ,;\,(c,B)( ) _ "(((C,B) ( ') x . . en it s ,w - it S , W 
l 

for 
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s<t and it remains to show that 

b,. A (c,B) (t,w) = b,.J\(c,B) (t,w') 

By (2. 1 7) , b,. A (c ,B) (t w) = 0 , so the left hand side equals 
x ' 

(3.11) b,. A (c,B) (t,w). 
xli,t+o 

To evaluate the right hand side (RS) ,we must distinguish between 

two cases and shall use that for all j ER with j ~ i we have 

x. > t . The first case is that for all such 
J 

• I 

J , x . > t. Then 
J 

(RS) 

equals b,.A (~,B) (t,w') and (C) shows this to be the same as (3.11). 
x 

For the second caseI assume 

becomes b,.A (c,B) (t w') 
x'lj,t+ o ' 

X I. = t for some 
J 

j ER, j ~ i • Then 

and again by (C) this equals (3.11). 

The last assertion (3.9) in the theorem follows immediately 

from (3.7) and (2.19) ~ So the remainder of the proof is concerned 

with showing that each MY is a martingale and that 'A(c,B) and 

A (c,B) are indistinguishable. 

(RS) 

We shall show that each MY is a (JP , Gt ) - martingale, which 

certainly renders MY a (P , Ft) - martingale. Recalling that 

G = ft) n (Ht~Ft) the martingale property amounts to 

for all y E E , s ~ t , G = ft) n (H x F) with H EH, F E F • But b ec a use s s 

(3.13) JP(NY(t) -NY(s) iG) = 1 P (NY (t) - NY (s) iF) Q ( dx ) 
H x 

= 1 P ( AY ( t) - AY (s) iF) Q ( dx ) 
H x x x 

= JP (AYx (t) - A~ (s) iG) • 

Considering the censoring intensities first, let Y = (c,B) . That 

A(c,B) is the compensator for N(c,B) will follow from (3.13) if 
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we show that A(c,B) is indistinguishable from A(~,B) , i.e. 

looking at (3.10) it is enough to show that for all i, 

(3.14) JP(~ A (c,B) (X.) i X. <co) = 0 . 
Xli,Xi+ O 1 1 

For every x EL, the function 

w ~ ~ A (c,B) (x. ,w) 
xli,x.+o 1 

1 

3.9 

is F -measurable. Hence by Lemma 3.17 below the integral from 
X.-

1 

( 3 . 1 4) equa I s x. 
]p(Jr llJ(t) ~A(C,B) (t)dt). 

o X 11, t+o 

By (C), ~ A (c ,B) (t) = ~A (c ,B) (t) for t < X .. Since the measure 
Xli,t+o X 1 

A (c,B) has at most countably many atoms, the Lebesgue integral is 
X 

o and (3.14) follows. 

To prove the martingale property (3.12) for y of the form 

(i,A) , note that 

w ~ ~A~,A) (xi,w) 1G(x,w) 1 (s,t] (xi) 

is F - measurable. So by Lemma 3.17 
X.-

1 

]P(~A(iIA) (X.) i G,s <X. <t) 
. X 1 1 -

X. 

=]p(Jr llJ(u) ~A(i,A) (u) 1G (Xli,u ;N) 1(s,t] (u)du) . 
o Xli,u 

Now 

1G (Xli,u iN) = 1H (Xli,u) 1F (N) 

and since the Lebesgue integral extends over u E (Sft] only and 

H EH, it is seen that this indicator is constant inu , and hence s 

the Lebesgue integral may be written 

t /\ X. 
1 

J lJ(U) 
s 

(3.15) ~A(i,A) (u)du) 1 
Xli,u (Xi>s,G)· 
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Here we may throw in for free the factor I. (u) 
l 

in the integrand, 

and since I.(u) =1 
l 

implies X. > u , it is clear that (3.15) redu­
l -

ces to 

(A (i,A) (t) - A (i,A) (s) 1G ' 

and we have shown that 

(3.16) 

But because 

JP (llA(i,A) (X.) ;G,s <X. <t) 
X l l -

= JP( A (i,A) (t) - A (i,A) (s) ; G) 

A(i,A) is concentrated at 
X 

X. 
l 

llA(i,A) (X.)1- A(i,A) (t) 
X l (s < X. < t) X 

l -

A (i,A) (s) 
X 

Inserting this in (3.16) and comparing with (3.13), (3.12) follows. 

In the proof the following observation was used. 

3.17. Lemma. Suppose that JP satisfies (M) and let 

f. =f. (X,N) : ~ ~ ID. be JP-integrable. If for every x EL , 
l l 

w~f.(x,w) 
l 

is F - measurable on W , then x x.-
l X. 

JP(f. i X. <00) 
l l 

= JP( Jr \.t{t)f.(Xli,t iN)dt) 
o l 

o 

Note. In understanding the lemma and the applications already 

given, the following point should be made: if (x,w) E ~ it need not 

of course be true that (xli,t iW) E~ and hence, at first sight, it 

is not clear whether and how f (x I i, t ; w) is defined for the all 

but finitely many t with xli,tEL . But since x and ware t-

compatible, also xli,t 

particular for each t a 

and w 

w 
( t) 

are t - compatible for t < x. , in 
- l 

may be found with w(t) ~ wand 
t-

such that (x I i, t ; w (t» E ~ . The measurability assumption on f. 
l 

then shows that f. (x li,t i w(t» does not depend on the choice of 
l 
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wet) and the common value is the one to be used as the value of 

f.(xli,tiW) . 
1 

Proof. By (2.16) 

JP(f. i X. <00) = I 
1 1 

x. < 00 
1 

P f. (x, N) Q ( dx) . 
X ·1 

Because f (x, . ) is F x. _ - measurable, Lemma 3.5 implies that 
1 

P I' f.(x,N) = P f.(x,N) x l,t 1 x 1 

for all t > x .. Hence 
- 1 

JP (f. ; X. < 00) 
1 1 

= I Q(dx) 
-1 r 

G (x.) J PI' t f. (x ,N) F (dt) . 
1 Xl, 1 

x. < 00 
1 

[x.,oo] 
1 

(Recall that F=F =1-G 
]J 

is the distribution function for X. ). 
1 

Relabelling X. 
1 

into t , t into x. , using that 
1 

and Fubini, reduces this to 

x. 

I Q(dx) f01]J(t) Pxfi(xli,t iN)dt 

x. 
= JP (Io 1 ]J ( t) f i (X 1 i , tiN) d t ) 

by another applicat~on of (2.16) and Fubini. 

Q is a product 

Viewing probabilities on ~ as the joint distribution of the 

random elements X and N , we have so far determined these probabi-

lities from the distribution of X and the conditional distribution 

of N given X . The next result, which provides the basis for our 

solution to the embedding problem, goes the other way, yielding in 

particular in part (b) the structure of the conditional distribution 

of X given N for probabilities satisfying (C). Proposition 3.18 

should also be compared to (G) and (3.2). 

o 
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3.18. Proposition. 

that JP satisfies (C). 

- 30 -

Suppose that the X. 
1 

are i. i .d . ]J .and 

(a) For any t , given Ft' the failure times (Xi) i E C (t+) U R(t+) 

are independent such that for i E C (t+) , X. has hazard ]1 on 
1 

(D. ,00] 
1 

and for i E R(t+) , X. 
1 

has hazard ]J on (t,oo] • 

(b) Given F, the failure times (Xi) i E C (00) are independent such 

that X. has hazard ]J on (0. ,00] • 
1 1 

Proof. Since (b) is a consequence of (a) for t -700 ,we only 

prove (a). Let C,R be disjoint subsets of {1 I • •• ,n} . We must show 

that for all such C ,R and all F E Ft n (C (t+) = C , R(t+) = R) 

x. > 0 for i E C , x. > t for i ER, 
1 1 

(3.19) JP(X. >x. ,iECUR,F) =JP( IT G(D. vx.ID.) IT G(x.lt) iF). 
1 1 iEC 1 1 1 iER 1 

On F, D(t+) = D = {1, ... ,n}'(C U R) . Defining 

A={x'EL:X'.>x. ,iECUR, x'.<t , iED} 
1 1 1-

and writing 

the left hand side becomes, when approximating the values of the 

for i E C , 

1 im I JP ( a k 1 < D. < a k liE C , X EA, F) , 
k ,-,P 1- .,p 

P-7OO. 1 1 
1 

the sum extending over indices k. = 1 , .•• ,2P for 
1 

i E C. Because 

D. < 00 forces X. > D. we can in the limit add the condition 
111 

X. > a k · and using (2.16) the expression then- becomes 
1 i'P 

D. 
1 

(3.20) 1 im I J P ( a k 1 < D. < a k ' i ( C,F) Q (dx I ) • 

k A ' > 'ECX' l'-'P 1- l"P P -700 • I x. a k ' 1 
1 1 i ,p 

On the domain of integration, 
, 

x . > x. v ak 1 1 . ,p 
1 

I 
x.>X.>t 

1 1 
for i ER. The integrand is the 

for i E C and 

P I -probability of a 
x 

set B E F , hence, by the note following (2.9), it is determined 
t 
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from the behaviour of A I on this set B. But the constraints 
x 

imposed on U, 
1 

for i E C on the set B and the fact that 

B::: (R(t+) =R) together with (C) shows A :; A 
Xl Z 

on B for any 

z E L such that z. > a k for i E C , z, > t for i E Rand 
1 i'P 1 

Z, = X " for i E D • Hence we may replace the integrand P i (B) by 
1 1 X 

f P (B) IT F(dz,) 
z iECUR 1 

Z, > a k ' i E C 
1 i'P 

z, > t , iER 
1 

where z, =x', for i ED . Inserting this in (3.20), relabelling 
1 1 

, 
x, 

1 
into z, and 

1 
Z, 

1 
into I x, 

1 
for i E CUR , using Fubini and 

the product structure of Q, we arrive at a new expression for 

(3.20), 

1 im l J P I (B) IT G ( a k· v x, I a k ) IT G (x, It) Q (dx I ) 

k x , E C ' ,p 1 .,p, ER 1 P , All 1 1 
1 0 

where Ao ={x I EL: x', > a k ' i E C , Xl, > t, i ER, x', < t, i E D} • 
1 i'P 1 1 -

Because of (2.16) this becomes 

Since 

1 im kL P (ak , -1 , p < U i ~ a k , ,p , i E C , X E A 0 ' F) 
p, 1 1 

lim 
p 

1 

IT G (ak v x, I a k ) IT G (x, It) . 
iEC i'P 1 i'P iER 1 

L 1 (a < U, < a k ' i Fe, X E ]l.-o' F) k, k,-1,p 1- "p 
1 1 1 

IT G (ak v x, I a k ) IT G (x, It) 
iEC i'P 1 i'P iER 1 

= 1 F IT 
i E C 

G(U, vx,IU,) IT G(x,lt) 
1 1 1 iER 1 

dominated convergence provides the last step towards (3.19). 
o 
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The solution to the embedding problem is provided by the next 

result. 

3.21. Theorem. Let A be the intensity for a FC-process P 

and suppose that for 

(3.22) 

i = 1 , ••• ,n , t > 0 

Ai (dt) = P(t) I. (dt) dt 
1 

with V some hazard function,. Then there is exactly one probability 

JP on ~ which satisfies (C) and is such that the X. 
1 

are i. i. d. V 

and N has intensity A . 

Proof. Proposition 3.18 shows that there can be at most one P 

meeting the requirements, and part (b) even tells us what it must 

look like. It does not appear to be easy to show that this candidate 

makes the X. i.i.d. V and satisfies (C), so we shall use a diffe~ 
1 

rent approach. Given A satisfying (3.22) we shall solve (3.7) ,(~.8) 

for the conditional intensities A , show that they satisfy (C) and x 

then define JP by assuming the X. 
1 

to be i. i.d. V with A 
x 

the 

intensity for the conditional distribution of N given X = x . From 

Theorem 3.6 it will follow that N has intensity A, and the proof 

will be complete. 

With A given such that (3.22) holds, solving (3.7) ,(3.8) for 

the A suggests that 
x 

(3.23) 

and that the point mass for 

A (c,B) = A(c,B) 
x 

A (i ,A) 
x ought to be 

(3.24) L. A (i ,A) (x.) = 
X 1 

dA(i,A) 
. (x.)I.(x.) 

d 1\.1 1 1 1 

where 
dl\.(i,A) 

dA i 
is the (pathwise) Radon - Nikodym derivative of 

A (i,A) with respect to Ai 
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The A must satisfy (2.17)-(2.19). Defining A(c,B) by 
x x 

(3.23) gives a problem with (2.17), while of course (3.24) as it 

stands is useless, since globally the derivative is uniquely deter~ 

mined only Ai almost everywhere, with Ai absolutely continuous, 

and we are interested in its value at one particular point. 

To solve the first of these problems, modify A(c,B) and define 

i\(c,B) = A (c,B) - L 
i E D (=) 

b.A{c,B) (X*,) 
1 EX*, 

1 

i.e. the discontinuities at the observed failure times are removed. 

We claim that if P is the Fe - process with intensity A, then 

i\(c,B) is P - indistinguishable from A (c ,B) , i. e. the i\ (c, B) are 

also censoring intensities for P. This assertion amounts to sho-

wing that 

(3.25) 

for all i . But if finite, * X, 
1 

is a jump time T 
n 

for N and 

the jump is of the form (i,A) . And 

P ( b. A (c ,B) (X*,) T = X*, < = 
1 n 1 

Y = (i,A» 
n 

=P(b.A(c,B)(T),-T <oo,iER(T-),Y = (i,A» 
n n n n 

= ( (('A»AA(C,B)(Tn ) "ER(» P'TT 1 t" T, 1, LJ.H ;1' <=,1 T-n- , S 1 n n n n-

as is seen conditioning on F • Now 
T -

so that 

n 

b.v 1 t" (T) 
n- IS ·1 n n-

( ( ' A» AA(c,B)(T) 'TT 1 t" T, 1, Ll n- , S _, n n 
n-

<'TT 1 t- (T ,(i,A»b.v 1 t" (T) 
n- IS n -1 n n- ,sn-1 n 

which is 0 since Ai is absolutely continuous by assumption, 

and (3.25) follows. 
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As the final definition of A (c,B) 
x 

we now use 

(3.26) A (c,B) = 'A(c,B) 0 

x 

To pick out the correct value of the derivative in (3.24) we pro-

ceed as follows: by assumption, for any w E W the measures 

A(i,A)(o,W) and i A (o,w) are absolutely continuous. Hence 

t ~ A (i,A) (t,w) t Ai(t ) ~ H , ~ Jl ,W are differentiable almost everywhere 

(with respect to Lebesgue measure f) l and defining for any x EL, 

(3.27) b:. A (i,A) (x. ,w) = 
x 1 

lim inf 
k~oo 

A(i,A)( )_A(i,A)( _1 ) 
Jl X.,W Jl x.k,w 

1 1 

i i 1 A (x.,w)-A (x.-k-,w) 
1 1 

if A7!0 , with the limit 0 if the denominator is 0 for k large, 

and 

(3.28) A A (i,el) ( ) = 
L:.Jl X.,W 

X 1 
(1- L b:.A(i,A) (x.,w»I. (x.,w) 

A7!0 x 1 1 1 

it is clear that with w,i fixed, for f- almost all 

holds for all A. 

x. , (3.24) 
1 

Adding the requirement that A (i ,A) 
x 

be concentrated at x. f 
1 

(3.26)-(3.28) provides an explicit definition of A on all of W. 
x 

It is immediate that each A is predictable and satisfies (i) - (iv) 
x 

of Fact 2.12, and also (2.17)-(2.19), so that each Ax is the inten-

sity for a FC - process with paths in W • Since A (c,B) does not 
x x 

depend on x, the censoring intensities obviously satisfy (C). To 

check that (C) holds for A(i,A) f' 
Jl ,1X 

X 
t,w and consider x,x I EL 

, 
both t - compatible with w , and such that x.,x. > t for all 

J J 
j E R(t-,w) 0 Then A (i,A) (. ,w) and A (i.'A) (. ,w) are both 0 on 

x x 

[ 0 , t ] ,un 1 e ss, say, x. < t and i E R(x. -,w) . Here x. = t is impos-
1 - 1 1 

sible by assumption, and then x,x I t - compatible with w forces 

Xl. =x .. Since A(i,A) (A(i,A» depends on x through x. (Xl.) on-
1 1 X Xl 1 1 

ly (see (3.27) (3.28» A (i,A) (t w) = A (i,A) (t,w) follows. 
x ' x I 
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Now consider the FC - process N constructed from X. which 
1 

are i.i.d. fl and with the intensity for N given X = x equal 

to Ax. The intensity for N is given by Theorem 3.6, and we must 

show that the A(c,B) in (3.8) equals j\(c,B) which is just (3.26), 

and that the A(i,A) from (3.7) equal the A(i,A) for the P we 

started off with. Here we give the proof if A;z: (0 , the case A = (0 

being an easy consequence. But by (3.27) 

bA(i,A)(t) = 
Xli,t 

lim inf 
k -"7= 

A(i,A)(t) _A(i,A)(t_ 1 ) 
k 

i 1 -A (t--) 
k 

1. (t) • 
1 

Fixing a value X = x and a path w, as was noted above, for 

i A (. ,w) almost all t 

dA(i,A) 

d Ai 
(t,w) I. (t,w) 

1 

Using the assumption (3.22), then 

Is fl (t) b A (i,A) (t) I. (t) dt 
o Xli,t 1 

= rS d A (i,A) (t) Ai(dt) = A (i,A) (t) 
JO d Ai 

o 

For the sake of completeness, we include a proof of Theorem 3.1, 

different from Gill's original argument. 

Proof of Theorem 3.1. We must show that if JP satisfies (G), 

and P as usual is the marginal distribution of N , then for 

s < t , F E F s ' i = 1 , ••• ,n 

i i It P(N (t)-N (s) iF) =P( ]J(u) Ii(U)du; F). 
s 

The integrand on the left is 0 unless 

to use discrete approximations to the value of 

k 
ak,p = s+ (t - s)- we find 

2P 

s < X*. < t. The idea is 
1-

X*. = X. . Introducing 
1 1 
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2P 
P(Ni(t) -Ni(S) iF) = lim L JP(ak 1 <x. <ak ' F, u. ==) 

p ~ = k= 1 - , P 1 - I P 1 

= 1 im I JP (ak -1 , P < X i ~ a k , p' F, i E R ( a k -1 ,p +)) , 

and conditioning on F and using (b), this becomes a k-1,p 

a k,p 

1 im I P ( J ]J (u) G ( u I a k -1 , P ) I i (ak -1 , p + ) dUi F) • 

ak - 1 ,p 

Taking the summation inside P, the integrand becomes 

rt 
J \' 1 ( ( u) ]J (u) G (u I a k 1 ) I. (ak 1 + ) du, 

L a a - ,'P 1 - ,p s k-1,p' k,p] 

which by dominated convergence tends to 

as p~=. Another application of dominated convergence completes 

the proof. o 

The basis for all results in this section is the crucial condi-

tion (C). In view of its importance, we shall now indicate how an 

equivalent version of (C) may be obtained, which also shows how to 

simulate FC - processes with the martingale property (2.13). 

Any observation of N starts with a number of censorings pre-

ceding the first observed failure. As long as only censorings occur, 

by (C) the specific values of all the failure times are immaterial 

except of course that they are known to exceed the corresponding 

observed censorings or the right endpolnt of this initial interval 

of observation. This means that to begin with, the censorings are 

independent of the failure times, and we arrive at the following 

simulation procedure, which is updated at each observed failure: 

Step O. Generate X. which are i.i.d. 
1 

]J • 
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step 1. Generate a vector 
(1) ,(1) 

(U 1 ',···,U n ) of possible 

censoring times, 

Find the smallest 

is to be the first 

U. U (.1) those j = 
J J 

o < U (.1) < = , stochastically independent of 
1 -

X. ,X. say, such that X. < u~1) . This 
1 11 11 - 11 

x . 

observed failure time. On [O,X. ) at times 1 

censored for which 
( 1 ) 1 

Call C1 are U. < X. . 
J 11 

the set of these j . All i equal to a j E C1 and i1 have now 

been removed, leaving a set R1 

j E: i1 U R1 are discarded. 

of individuals. The unused 
( 1 ) 

U. I 

J 

Step 2. Generate a vector , ( 2) ) 
tU. . eR 

1 1 c 1 
of possible censoring 

times, X. < U(?' <= , using a distribution depending on i1 ' x. , 
11 1 - 11 

C1 , (U .) . E C , but independent of (X.). ER . Find the smallest Xi 
J J 1 111 

for i E R1 , X. say, such that X. < U(?' . This x. 
12 

is to be 
12 12 

the second observed failure time. On 

- 12 

[X· ,X., at times 
11 12 

those j E R1 are censored for which , ( 2) 11 U. < X. . Ca C2 the set 
J 12 

of these j . All i equal to a j fC 2 and i2 have now been re-

moved from R1 ' leaving a set 

j E i2 U R2 are discarded. 

of individuals. The unused 
, (2) u. , 

J 

It should be clear how the simulation procedes. The kith vector 

of possible censoring times (u(~)). are chosen from a distri-
1 1 E Rk - 1 

bution depending on i 1 ,···,ik - 1 'Xi1'···'Xik_1 ,C1 ,.,.,Ck _1 ' 

(U .) . C C L' U C ' i. e. everything observed on 
J J c 1 '... k-1 

[0 IX. ) 
1 k - 1 

and 

i k - 1 ' X. , but independent of 
1 k - 1 

(X.) . E R 
1 1 k-1 
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3.29. Example. Consider the scheme for progressive type 11 

censorship (mentioned in Section 2 following problems I - 111) , where 

at the time of the kith observed failure a fixed number r k of indi­

viduals are chosen at random from those still at risk and censored 

concurrently with the failure. Thus X (1) ,= min Xi is the first ob­

served failure time, IR11 =IR(X(1)+)1 =n-1-r1 and the size of 

the risk set just after the k'th observed failure is I Rk I = n ~ k -

(r 1 + ••• + r k ) . 

Choosing X. LLd. 
1 

~ , the conditional intensities A x are 

specified by A(c,B) =0 
x 

and 

for 

and 

(C) . 

nA(i,A) (x.) = 
x 1 

1 

all subsets A of {1, ... ,n}'{i} 

= 0 otherwise. It is immediate to 

1 (i UAcR(x.-)) 
- 1 

of cardinality 

verify that the 

r 
N (x. -) + 1 

1 

A satisfy 
x 

Alternatively, going through the first two steps of the simula-

tion procedure, it is also clear that all , while given that 

the first failure occurs for at x. of the are 
11 

selected at random and for these j , =00 for the 

remaining j. 

3.30. Example. Suppose n = 1 . It is easy to characterize all 

pairs X=X 
1 

of one failure time, one censoring time, for 

which the derived FC - process satisfies the martingale condition 

o 

(2.13), even without using our convention (D) that U = 00 when X < U • 

Equivalently, see the discussion in connection with (2.14), this 

characterizes all pairs (X I U) satisfying Lagakos' constant sum 

condition. 
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On some probability space, set up the random variable X to-
, 

gether with two other random variables U , V > 0 such that X has 

hazard ]J , X is independent of U l and V > X • Defining 

u l 

U = { 
V 

if u ' < X 

if U ' > X , 

the FC - process 

N (1 ,O) (t) 1 , N(c,1 )(t) 1 
= (X~t,x~U) = (U~t,U<X) 

determined from (X,U) satisfies (2.13). 

Having (D) satisfied corresponds to taking V == = . 

Condition (C) is egui valent to the following , writing x = x 1 ' 

b,.A ~ ,0) (x) = 1 (1 E R(x:-))' A(XC/1) (dt) = \)(dt)1(1 ER(t- )) 

with \) the hazard measure for the distribution of U I • 

We shall conclude this section with tbe counterexamples sho-

wing that the two implications in Proposition 3.4 cannot be rever-

sed. 

3.31. Example. Suppose n = 2 with X 1 ' X 2 Li.d. ]J and 

consider A wi th only the components A (i ,O) for i = 1 ,2 and 
x x 

A (c, i) for i = 1 ,2 not identically 0 and of the form, with 
x 

(3.32) 

(3.33) 

A ~,0) (dt) = Ex. (dt) 1 (i E R(t-)) 
1 

A(c,1)(dt) = 
x dt 1 

(1 E R(t-) ,x1 > t) 

i = 1 ,2 

o 

(3.34) A(c,2) (dt) = 
x 

E (dt) 1 
x 1 +a (N(c,1) (t-)=1,2 ER(t-) ,x2 >t) 

Here (3.32) comes from (2.19) f while (3.33) shows that individual 1 
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is censored at an exponential time, independent of everything else, 

provided this time is < x 1 . Finally (3.34) shows that individual 2 

can only be censored at time x 1 +a (provided of course that 

x 1 + a > 0 ), and then only if the failure time x 1 is not observed. 

This dependence on an unobserved x 1 shows that the A do 
x 

not satisfy (C). We shall now argue that for all a;z! 0 , (G) holds, 

while (M) holds if a > 0 but not when a < 0 . 

As already used previously, (M) essentially amounts to the fol-

lowing : for any t > 0 , if x, x I EL are such that either 
, 

x. = x . 
l l 

or x. ,x'. > t ,then A ;: A on [Oft] . By inspection it is clear 
l l x Xl 

that (3.32)-(3.34) implies this and (M) if a >0 , but not if a <0, 

not even when allowing for a Q -null set of exceptional x,x 
f.l 

Now suppose that a <.0 . To show that (G) is satisfied, consider 

the following condition on the conditional intensities: 

(G') For any t > 0 and any wE W , A (t,w) = A (t,w) whenever x Xl 

x,x' are t - compatible with wand satisfy that for all i 

either 
, 

x. = x . 
l l 

or iER(t+,W) and x.,x'.>t. 
l l 

Trivially (3.32)-(3.34) implies (G'): the only problem is the (c,2) -

intensity, where the dependence on x 1 is ruled out since the inten­

sity vanishes if 1 E R(t+) . 

The proof that (3.32)-(3.34) implies (G) is completed by obser-

ving that (G') ~ (G). This may be argued along the lines of the proof 

of Proposition 3.18. We omit the details. 

Tedious but straightforward calculations yield the following 

expression for the marginal intensity A for N 

A (i,Qj) (dt) f.l (t) I. (t).dt 
l 

A (c, 1) (dt) = 1 1 (t) dt , 

i = 1 ,2 
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(3.35) 11 (c,2) (dt) 

=!~(t-a)I2(t)1 (D1 <t_a)dt if a > 0 

l G(t-a) 
11 (t-a) C;(t-a) +G(tJ1) -G(u1 -a) 12 (t) 1 (U < t)dt 

1 

if a < 0 . 

By Theorem 3.21 there is a unique embedding of this FC - process 

such that (C) holds for the joint distribution of X and N . Per-

forming this embedding leads to conditional intensities given by 

(3.32), (3.33) and replacing (3.34) by letting 

the right hand side of (3.35), cf. (3.8). 

l1(c,2) 
x 

be given by 

o 
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4. Statistical models - problem Ill. 

We shall discuss models of FC - processes obtained as families 

of marginal distributions of N from families of joint distribu-

tions of (X,N) ,where each such distribution renders the 

i.i.d. with some hazard ~ and satisfies condition (C). 

X. 
1 

The model is specified by allowing ~ to be arbitrary, and 

for each ~ coFisidering for all x (L a family of conditional 

intensities A ,all of which obey (C). The marginal models for x 

N constructed this way, we shall call FC(C) -models. 

With the models built in this manner, it is g"ua.ranteedthat 

(2.13) holds for all ~ ,but as stressed earlier, that is only a 

minimal requirement for the classical estimators to apply and a 

property of each distribution in the model rather than a property 

of the model as a whole. 

Our purpose now is to solve problem Ill, i.e. to discuss mo-

dels where no essential information about ~ is lost when using 

e.g. the Nelson -Aalen estimator. 

We shall first consider the structure of the likelihood func-

tion. Suppose N is observed on [O,t] , and that the likelihood 

L (t) has the form 

( 4 • 1 ) 
t 

L(t) a: exp( - f ~(s) IR(s-)lds) IT ~(X*.) 
o i:x*.<t 1 

1-

apart from factors that do not depend on the unknown hazard ~ . 

This form of L certainly arises if there are no censorings, and 

is also known to be valid in other cases, see (5.2) of Kalbfleisch 

and Prentice [8], Lagakos [10]. 

The second ingredient we shall need is the concept of non-

innovation introduced by Arjas and Haara [2], condition (A). Here 

we shall consider all failures as innovative and all censorings as 

non - innovative. 
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From our point of view, a quite natural condition on FC(C) -

models is that the family of conditional intensities should not 

depend on ~. With this and the precedinq remarks in mind, we 

shall show the following result. 

4.2. Theorem. For a FC(C) -model the following three conditi-

ons are equivalent: 

( i) For all x, the family of conditional intensities 

be chosen not to depend on ~. 

11. may 
x 

(ii) For all t, the likelihood function for observation of N 

on [Oft] is proportional to 

( 4 .3) exp( -Jt~(S) IR(S-)Ids) IT ~(x*.) ° i:x*.<t 1 
1-

(iii) All censorings are non -innovative in the sense of Arjas 

and Haara. 

Remark. The qualification 'may be chosen' in (i), is the 

necessary safeguard against ~ - dependent choices of 

exceptional set of x - values. 

11. 
x 

for an 

Proof. The likelihood function for observation of N on 

[Oft] is (cf. (2.9)) 

N (t) 
( 4 • 4 ) IT (1 - K (ds)) IT 

O<s<t k=1 
s :;t:. Tk 

with dTk an infinitesimal neighbourhood to the left of and. including 

Since we are dealing with a FC(C) -model, Theorem 3.6 applies 

and yields an expression for the likelihood in terms of the 11. x 
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A(ds) = ]J(s) IR(s~)lds + L A ~,B) (ds) 
B 

with the first term absolutely continuous. Recalling the description 

in Section 2 of the product integral, it emerges that 

(4. 5) 
t 

IT (1 - A ( d s » = exp ( - J 1-1 ( s) I R ( s -) I d s ) IT ( 1 - L A ~,B) (d s ) ) . 
o < S < t 0 O<s<t B 
s ;z: Tk 

By (3.8) and (3.7), the contribution to the likelihood from the 

observed events take the form 

(4 .6) 

for pure censorings and, with T = x*. 
k 1 

( 4 .7) 1-1 (x*. ) t:, A (i ,A) (x*. ) d x*. 
1 xli,X* 1 1 

i 

for the observation of a failure. 

Combining (4.4)-(4.7) it is seen that the likelihood may be 

written as (4.3) times a factor determined exclusively by the A x 

and that this factor does not depend on 1-1 iff (i) holds. Thus (i) 

and (ii) are equivalent. 

In [2] the type set (mark space) E is split into two parts 

E' and E" . In our case 

E' = {( i, A) 1 < i < n A c {1, ... ,n}'{i}} , 

E" = {(c ,B) 0;z: Bc {1, •.• ,n}}. 

Recognizing that because the intensities A(i,A) are absolutely 

continuous the Pt defined on p.198 of [2] vanishes, it is easy 

to see that condition (A) of [2] for the censorings to be non - in-

novative amounts to the condition that for all probabilities in the 

model, the following is true: for all i,A, dA (i,A) Id Ai and for 
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11 A(c,B) aB, 11 must not depend on ~ . But by (3.7) and (3.8) 

d It (i,A) 
(s) = A A (i,A) (s) I ( ) 

t..:; 11 • S , 
Xli,s 1 

lI.(c,B) = It (c ,B) 
X 

and it should be clear that (i) and (iii) are equivalent. 

o 
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_5_. ____ A_sy~ptotic theory~ 

In the preceding sections, n f the number of individuals has 

been fixed. We shall now review the asymptotic distribution results 

available as n -? = • For this we shall rely on the martingale pro-

perty (2.13), but need not specifically work with FC(C) -models. 

As always we assume the unknown hazard function y to satisfy 

It y < = for all t. For each value of n , there is a FC - process 
o 

N involving n individuals such that for i = 1 , ••• ,n I the com­
n 

pensator for is 

t 
1\ in (t) = JoY ( s) In, i (s) ds , 

with I . (s) the indicator that i is at risk just before s. n,l 

Then 

( 5. 1 ) 

with 

n 
N 

n = I has compensator 

p (s) 
n 

i=1 

1\ (t) 
n 

= I R (s-) I = 
n 

= Jr t y(s) p (s)ds 
o n 

n 
L 

i=1 
I . (s) 
n,l the size of the risk set just 

before s. 

Thus, based on data from n individuals, 

1 "-' 
p (s) Nn (ds) 

n 

is the Nelson - Aalen estimator of t--' Jot 11 and 

A 
G (t) = n 

IT (1 
o < s < t 

Nn (ds) 

p (s) 
n 

is the corresponding Kaplan - Meier estimator. 

and 

( 5 • 2 ) 

A 
In particular Sn - Sn is a martingale, where 

B n (t) = I: ~ ( s) 1 (p n (s) > 0) ds 

A 
< S - S > (t) n n 
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Also, if we define 

~2 (t) = 
n I 

(0, t] 

A2 A 
W -n<S -S > n n n is a martingale. 

n 
2 P (s) n 

'" N (ds) 
n 

5.2 

Because of (5.1) we are dealing with a multiplicative inten-

sity model for observation of Nn . But the model has a particularly 

simple structure because the process Pn is decreasing and integer 

valued, which makes it possible to obtain asymptotic results under 

much less restrictive conditions than are required for the general 

multiplicative intensity models. 

All processes we encounter have sample paths in the Shorokhod 

space D[O,=). So below, convergence in distribution of a sequence 

of processes means weak convergence of the distributions, when u-

sing the Shorokhod D[O,=) topology on the space of sample paths. 

5.3. Theorem. Suppose that with ~ the true value of the 

hazard for the distribution of the failure times, it holds that for 

F - almost all t E [0 ,=) there is a constant 8 (t) > 0 such that 
~ 

(5.4) H (t) 
n = ~ Pn(t) n~=) 8(t) 

in probability. Suppose also that for every t there is a constant 

K (t) > 0 such that 

(5.5) P(H (t) > K(t)) ) 1 • 
n n ~= 

Then the following statements are valid: 

( i) The sequence of processes 
A (rn (S - S )) converges in distri-

n n 

but ion to the mean zero, continuous Gaussian process which 

has independent increments and variance function 

2 rt 
0' (t) = J 1 8TST ~(s)ds 

° 
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- /\ 
(ii) The sequence of processes (In (G - G )) 

n ]J 
converges in 

distribution to the mean zero, continuous Gaussian pro-

cess with covariance function 

r (s, t) = 0 2 (S)G (s)G (t) 
]J ]J 

(s ~ t) . 

/\ 

(iii) The sequence ($ ) 
n is a uniformly consistent estimator of 

(5.6) 

J~]J in the sense that for all t 

P( sup (S (s) -s (s))2) 
s < t n n 

If in addition it holds that 

--~) 0 • 
n-,)= 

Jrto]J(S) pr 3112 >0))' \Pn(S) 1(Pn (s) dSn~O, 

then also 

( iv) The sequence (~2 ) 
n 

is a uniformly consistent estimator of 

2 o in the sense that for all t 

/\2 2 
sup /w (s) - 0 (s) / 

s < t n 

in probability. 

Remarks. The main condition is (5.4). It automatically implies 

(5.5) except in the rather special case, where 

t 
r ]J < = for all 

F (( t ,=)) = 0 for some 
]J 

t . In that case ~ because JO 
t, F 

]J 
necessarily has 

an atom at =. Instead of (5.4), (5.5) as they stand, one may of 

course assume that the convergence (5.4) obtains for all rather than 

just F - almost all 
]J 

restrictive. 

t . But as Example 5.13 will show, that is too 

Notation. For each n, there is a probability P relating to 
n 

the n I th FC - process. In the statement of the theorem, we have writ-

ten P = P n ' and shown the dependence on n by indexing the random 
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5.4 

variables involved. 

Proof. The methods used for proving results like (i) - (iv) 

are by now standard. Thus, by inspecting e.g. the relevant parts 

of Chapter 5 of Jacobsen [5], the reader should recognize that (i) 

follows if it is shown that for all t and all £ >0 , 

(5.7) 

in probability, and that for all t 
A 

(s) ds ---? 0 n -? 00 

( 5 . 8 ) n < S - S > (t) ~ 0 2 (t) n n n-?oo 

in probability. (iii) follows if it is shown in addition that for 

all t 

(5. 9 ) 

while (ii) apart from (5.7)-(5.9) also requires that 

(5.10) 

in probability, where T * = inf {t : p (t) = O} . n n 

Finally, (iv) is a direct application of Proposition 5.2.24 

and Exercise 5.E.1 in [5]. 

So we must show that (5.4) and (5.5) implies (5.7)-(5.10). 

Because (T* < t) c (H (t) =0) (5.10) is immediate from (5.5). 
n - n ' 

To show (5.7), it is because of (5.5) enough to consider the beha-

viour of the integral on the set H (t) > K(t) . But then, for all 
n 

s<t, p (s) >p (t»nK(t) 
- n - n 

and the integral in (5.7) vanishes for 

n so large that n K (t) > Iii/ £ • 

The most important step is to verify (5.8). Referring to (5.2) 

it is seen that (5.8) follows from showing that for all t > 0 
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t 
r -1 
J I Hn ( s) 1 (p ( s) 
o n 

> 0) - y (s) IlJ( s) ds -+ 0 
n-+ oo 

in probability, where -1 
Y = 8 • Essentially this amounts to inter-

changing the order of integration and taking the limit in probabili-

ty. A most useful tool for doing this is Gill's [4] concept of con-

vergence, boundedly in probability. 

Let D denote the set of timepoints t for which the conver-

gence (5.4) holds. Thus, introducing 

v (s) 
n 

-1 
I Hn (s) 1 (p ( s) > 0) - y ( s) IID ( s) jJ (s) 

n 

for every Sf 

(5.11) v (s) --+ 0 
n 

in probability. Since D has full F - measure , it suffices to show 
jJ 

that for all t 

(5.12) 

in probability. But for this, according to [4] it is enough that the 

sequence (V ) of processes converges to 0, boundedly in probability, 
n 

i.e. apart from the pointwise convergence (5.11), for all t,n > 0 there 
t 

exists a function ko,t: [O,t] -+ [0,(0) with f ko,t(s)ds < 00 such that 

o 

lim inf P(Vn(s) ~ko,t(s) for all sE [Oft]).::: 1- 0. 
n-+ oo 

But the function y is defined and finite on D and for t E D, 

-1 
y(t) ~ K (t). Since both H-l(S) 

n 

clear from (5.5), that we may use 

-1 
ko,t(s) =K (t)lJ(s) 

and the proof is complete. 

and y(s) are increasing, it is 

5.13. Example. We shall determine the limit 8 from (5.14) in 

o 

a case involving progressive type 11 censorship. To simplify we shall 

only allow censorings at one timepoint. 
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F h let n r b e integers such that as n ~ 00 or eac n, 0' 1 

~ p , 
n -n 

o < P , Tr < 1 , P + Tr < 1 • With X 1 I ••• 'Xn the failure times'l 

let denote the order statistics. Then all 

, •• e ,X(no) are observed and at time X ( )' r 1 nO 
individuals 

among those still at risk are selected at random and censored, and 

the remaining n - n - r o 1 among X (nO +1) , ••• , X (n) are all obser-

ved. 

Let + [x , x J be the interval of p - fractiles for F jJ i.e. 
p p 

- + } [x p ' xpJ = {x: FjJ(X) =p 

if F (x) = p 
jJ for some x, and = {oo} in the case of a defective 

wi th F (x) < p 
jJ for all x. Then, for any - + + a<x ,a>x , p p 

- + 
P(X(no) E (a ,a » -n-~-oo-4) 1. 

Using this, and the fact that given which X. 
1 

correspond to 

X(1) , ... 'X(no) and given X = x , the remaining X. 
1 

are 
(nO) 

i.i.d. with hazard jJ on [x,oo) , the reader can readily verify 

tha t e is determined F - almost everywhere by 
jJ 

e (t) = { 

G (t) 
jJ 

Tr 
(1 - 1 _ P ) GjJ (t) 

t<x 
P 

+ , t > x 
P 

o 

F 
jJ 
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