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THE HEAVY TRAFFIC LIMIT OF A CLASS OF 
MARKOVIAN QUEUEING MODELS* 

S0ren ASMUSSEN 
Institute of Mathematical Statistics, University of Copenhagen, Denmark 

Reflected Brownian motion is obtained as the heavy traffic limit of the level component {On} of 

a class of bivariate Markov chains {(In,On)} incorporating those having a matrix-geometric 

stationary distribution. Approximations for both transient and ergodic behaviour are obtained as 
a corollary. 

heavy traffic limit theorem * Markov chain * matrix-geometric stationary distributions * 
Markov-modulation 

1. Introduction and statement of results 

We are concerned with Markov chains {(In , an)} having transition 

matrices of the block form 

p = 

K(O) 
K(1 ) 
K(2) 
K(3) . .. . 

H(1) H(2) H(3) 
G(O) G(1) G(2) 
G(-1) G(O) G(1) 
G(-2) G(-1) G(O) 

(1 ) 

where the dimensions are G(n) : pxp, K(n) : pxm, n>O, K(O) : mxm and H(n) 

mxp. We write EO for the set of the m boundary states and E = {1, ... ,p}. Thus 

the state space is EOx{0}uEx{1,2, ... } (EO and E may be disjoint). 

In most examples, {an} is the process of main intrinsic interest 

(typically a queue length process) and I n a supplementary variable needed 

for the Markov property. As a special case ( G(n) = H(n) = 0, n>2, H(1) = 
G(1)) the setting incorporates Markov chains of the GI/M/1 type (Neuts [5]) 
having a matrix-geometric stationary distribution. Already this class of 
models is extremely versatile and has become a popular tool in 
applications, but also further examples like the M/G/1 type briefly 
discussed in [5] are included in (1). In fact, apart from the discrete nature 
of the variables, the only restriction inherent in (1) is the spatial 
homogeneity in levels '* O. These facts indicate that results on the 
*The present work was done while the author was visiting Stanford University. I gratefully 
acknowledge the hospitality of the Department of Operations Research and a grant from The Danish 
Natural Science Research Council. Thanks also to Mike Harrison for a conversation from which I learned 
a lot about diffusion approximations. 
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behaviour of processes like {(In,On)} are of very general nature. 

We are here concerned with one of the classical areas of queueing 
theory, viz. the heavy traffic limit theorem. That is, we are looking for the 
limiting behaviour of {On} under conditions corresponding to pi 1 in the 

traditional queueing setting (also the case p J, 1 has been considered, 
Iglehart and Whitt [3] or Whitt [6], but the stable case p<1 seems more 
interesting). We first need to introduce some notation. Define G = I:"G(k). 

If G is an irreducible transition matrix, as will typically be the case, an 
invariant probability (row) vector v exists and we let 

00 00 

M = 1 kG(k), 1.1 = vMe, cr2 = v 1 k2G(k)e - 31.12 + 2vM(I+ev-Gr1 Me 
k=-oo k=-oo 

where e is the (column) vector of ones. Further B~ = {B~ (t)}t~O denotes 

Brownian motion with unit variance and drift ~, and B~ R) the 
zero-reflected version 

B~R)(t) = B~(t) - min B~(S) (2) 
O~s<t 

and we let B'(t) = 11.110[tcr~/I.1'2.icr2 where [.] denotes integer part. Finally <I> 

denotes the standard normal distribution function and (J,O) a pair of 
random variables having the limiting stationary distribution of (In 'an)' In 

the heavy traffic situation we are thinking of the given transition matrix 
P as imbedded in a sequence {p(m)} with limit p(O), and limit theorems as 
m ~oo thus provide approximations for the given process. For notational 
convenience, we most often suppres indices m:;t:O and thus e.g. B' really 
depends on m, 1.1~0 means I.1m~O and so on. 

Theorem 1 Suppose that G(n)~G(O)(n), K(n)~K(O)(n), H(n)~H(O)(n) for al/ 

n in such a way that the elements of IlnI3G(n) and In2H(n) remain bounded, 
that 1.1<0 and that the limit matrices p(O), G(O)are irreducible with 1.10=0, 

cr~>O . Then B' converges weakly to Bi~) in D[O,oo). In particular 

P( 11.110[tcr~1.11/cr2 > x, J[tc?'/1.11=i)/vi ~ 
1- <I>(xt-1/2+t1/2) + e-2x<I>(_xt-1/2+t1/2) 

P(11.110/cr2 > x, J=i)/vi ~ 1- e-2x 
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2. Proofs 

We let {J~} be a Markov chain on E governed by G and S~ = XO+ ... +X~ the 

corresponding Markov-modulated random walk. That is, {(J~ ,Xh)} is a 

Markov chain on Ex{0,±1,±2, ... } which goes from state is to jt with 
probability gij(t) (as initial condition we take X6=0 throughout). Define 

further the corresponding Markov-modulated Lindley process by Q~=O, 

Q~ = (Q~-1 +X~)+ = S~ - min S~ (5) 
O.s..k<n 

The following intuitive description provides the key for the proofs. The 
* Markov-modulated Lindley process has again a transition matrix P of the 

* * * 00 form (1) corresponding to G (k) = H (k) = G(k), K (n) = I - Ln+ 1 G(k). The 

transitions of {(J~,X~)} and {(In,Xn)} from levels s>O to levels s+t>O are 

governed by the same probabilities, viz. the elements of G(t), and also 

Pis(Q1=0) = 1 - L~=1-s Lj~1gij(n) = Lf=1 kU(S) = Pis(Qf=0). 

However, when {Qh) hits zero, then {(J~ ,X~)} just continues according to 

the Markov property, whereas at the hitting time 't (say) {In} is reset to a 

value in the set of boundary states EO' The exit from zero, i.e. the value of 

(J't+1 ,Q't+1)' is then chosen according to the atypical first row of P, and 

first when Q't+s>O (which may require more than s=1 steps), the G(k) take 

over to govern the transitions of {In} again. The idea is now first to obtain 

reflected Brownian motion B~~) as limit of {~} (this is the easy step), and 

next to show that {(J~,Q~)} and {(In,Qn)} asymptotically behave the same 

way. 
To carry out the details, one needs to extend a number of known 

estimates for random walks to the Markov-modulated case. It is. frequently 
convenient to do this by studying S~ = S,,-(n;i) where ,,-(n;i) is the time of 

the nth visit of {J~} to state i. If J6 =i, then {S~ is a usual random walk, 

and letting "-(1 )="-(1 ;i), we have Ei,,-(i) = 1/vi and: 

Lemma 1 (a) There exist TJ<1 and N such that Pi(,,-(i»n) < TJn for all m 

and all n>N; 
. . 'l.. . 3 

(b) ES~ = vill, and as m-700 , Var S~ -7 viO'O' lim sup EI~I < 00. 
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Proof (a) The condition JlO=O ensures that p(O) is recurrent (Asmussen [1] 

X.4) and hence there exists N such that Fj(O) (A(i»N/2) < 01 < 1 for all je E. 

Since G--7 G(O) implies Pj(A(i»N/2) --7 P (0) (A(i»N/2),we can choose 02< 1 

such that Pj (A(i»N/2) < 02 for all m. A geometric trial argument then 

shows that 11 =ol/N satisfies the requirements. In (b), the statements on 
the mean and variance follow by general results on regenerative processes 

([1] V.3). Further the conditions of Th. 1 ensure that E(IXfI31 J~=i, J1=j) is 

bounded, say by c. Hence by Minkowski's inequality 

i3 '* 31 . *' *-EI~I = E[E(ISA(i)1 A(I), JO' ... , JA(i))] 

A(i)-1 

oS. E[ L E(lX~13 IA(i), JO' ... , JA(i)) 1/3]3 < C EA(i)3 
n=O 

which remains bounded according to part (a). o 
Now let {cl = {c(m)} be any sequence of real numbers with c(m)--7 00 and 
define 

Proof The first statement is essentially well known. In fact, for a fixed 
Markov-modulated random walk the central limit theorem (and the 
expression for a2 stated in the Introduction) is contained in Keilson and 
Wishart [4], whereas the functional form is given, e.g., in Billingsley [2]. To 
obtain the present triangular array version one may, e.g. use the standard 
random walk result to obtain B(i)--7BO where 

B(i)(t) = (CViVars1ir1/2(Sfctv.] - [ctvi]Jl/vi) 
i -1/2 * I 

= (cviVarS1 ) (Sro([ctv<]) - [ctviJJl/vi)· 

Using ro([ctviJ == ct, one may then approximate ~(c) by B(i), the necessary 

bounds being provided by Lemma 1. The details are fairly standard and 
omitted. 

Letting c = a2 /Jl2 we get 

{IJlIS7ta?iJl'1la2h>0 --7 {B_1 (t)}t>O· 

Therefore B* --7 B~~) follows immediately by (2), (5) and the continuous 
mapping theorem. 0 
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- -1- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___ 1_ - _ - 1- _ _ 
1:(0) w(o) 1:(1) w(1) / w{k) .. ···n - -------1:(k+1) 

/ '1 1/ .. ' / / 
, , 1 1 /... / 

'1 1/.' /;' 
, , 1 1/" / / 
, , 1 1 / •• ' / // 

,L - ---ll(o)------{ IL- ------ -/ r"-----..... -:- --ll(k)--------/ / 
/ ' 1 1 // ,.' / // 
, /1 1/" // 
, 'I 1/'" // 
, / 1 1 / .,' // // 
/ /1 1/ " // 
/ / 1 1 // / / 

/ 1/ // // 
/ ~ // 

1/ __ L::.~_______ _ __ /;," 
w*(1) w*(k) ~(n) w*(k+l) 

Figure 1 

* We next recursively define random times 't(k), co (k), ~ (k), co (k) by 

't(O)=co*(O)=O, 

co(k) = inf{n>'t(k): Qn>O, I n = J~*(k)}' 't(k+1) = inf{n>'t(k): Qn = O}, 

* * .1.(k) = 't(k+ 1 )-'t(k), co (k+ 1) = co (k) = .1.(k), cf, Fig. 1, We may assume that 
~ * J co(k)+r = Jrol«k)+r' Qco(k)+r+ 1 - Qco(k)+r = Xco:t«k)+r> r < .1.(k)-1 , 

It is basic to observe that Qn = ° if and only if n is a descending ladder 

point for {Sn}' Letting n = co*(k), it follows by induction that Qco (k) = ° for 

all k, Therefore, since q-7(q+x)+ is a contraction, 

Now define 

Nt = sup{k: co*(k) < t}, Mk = sup{Qn: 't(k) < n < co(k)}, 

{
CO*(k) 

<p(n) = 
co*(k) + n - w(k) 

't(k) < n ~ co(k) 

co(k) < n ~ 't(k+ 1 ) 
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Then 
sup IB"(s) - B'(s)1 < IJlI max Mk/a2 (7) 

(if <p(sa2/Jl2) is in [co(k),"C(k+1)) this follows from (6), on ["C(k),co (k)] it is 
obvious from the definition of Mk). Hence the proof of B' ~ B~f) will be 

complete if we can show that subject to the heavy traffic limit m~ 00 it 
holds for any fixed t that 

IJlI max Mk --E, 0 

k<c/IJlI 

Jl2 sup l<p(s)-sl ~ 0 
0<s<ta2/Jl2 

(8) 

(9) 

(10) 

Indeed, (10) and B*~BJf) imply B"~B~f), and (7)-(9) then yields B'~B~~). 

Proof of (8). Let KJi) be the first descending ladder epoch of {S~ and t{ 
the number of descending ladder epochs before time t. Then Lemma 1 (b) is 
well-known to imply EKJi) = O(IJlr1), EKJi)2 = O(IJlI-3). Hence by Lorden's 

inequality for the renewal function ([1] VI.4), 
. 
I 

ENtiftJl'2.. < L ENta4/Jl'2.. 

ieE 

Proof of (9), (10). Let 8(k) = co (k) - "C(k). We first note that since 8(k) is 
the exit time from a finite set of states, it follows exactly as in the proof 
of Lemma 1 (a) that the tail of 8(k) is geometrically small uniformly in m. 
Hence 
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112 sup l<p(s)-sl = 112 El <p(tcr2/1l2)- tcr2/1l21 ~ 
0~s<tcr2/1l2 

N tc?-IIl'2.. 

112 E l: 8(k) = 0(1l2ENtcr~Il'2} = 0(11l1), 

k=1 

proving (10). For (9), it is enough to show that EMk<c for all k. But 

8(0) 00 

EMO < E l: Qn ~ l: [P(8(0»n)EQ~1/2 
n=O n=O 

and we only have to obtain some rough bound on EQ~ For example, the 

conditions of Th.1 imply E(Qn+ 1-Qn)k = 0(1), k=1,2, which yields EQn = 

O(n), EQn =0(n2). Hence EMO<c and by the Markov property, EMk<c for all k. 0 

It only remains to prove (3), (4). It is well-known that the r.h.s. of (3) is 
the limit P(B~~)(t) > x) of P(IIlIQ[tcr'2/Il'2.icr2 > x) and all that needs to be 

shown is asymptotic independence of J[tcfill'4 which can be obtained along 

the lines of a standard lemma due to Stam ([1] XI1.5). Also the proof of (4) 
follows the one-dimensional case (e.g. [1] V11.6) closely, a main step being 
an application of Kolmogorov's inequality to {~. We omit the details. 

Note that for the matrix-geometric case the I.h.s. of (4) can be computed 
numerically. Thus for this case, the time-dependent version (3) is the 
more interesting from the point of practical approximations. Nevertheless, 
(4) reflects a general tendency of the model in heavy traffic. 
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