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Abstract

Exact solutions and approximations are derived for risk processes / queues
where the arrival intensity and the distribution of claim sizes / service
times at time t depend on the state Z; of & underlying finite Markov jump

process. The main mathematical tool is random walks on Markaov chains,
and in particular Wiener-Hopf factorisation problems and conjugate
distributions (Esscher transforms) are involved.
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{. Introduction

Ruin probabilities in risk theory and waiting time distributions for queues
reduce in some basic cases to just the same random walk first passage
time probabilities and sre then cohveniently studied within the same
framework. In particular, this is so for compound Poisson risk processes
with unit premium rate and M/G/1 queues where

\{I‘(U,T) = P("\'}t > u I "'."0 = 0) (.1])

Here y(u,T) is the probability of ruin before time T with initial risk
reserve u, and vy is the virtual waiting time at time t. Nevertheless, when

formulating mare realistic models or more specific questions, risk theory
gnd queueing theory (even in the M/G/1 setting) may of course lead to
different problems. For example, premium rates which depend an the
current risk reserve are of main interest in risk theory but the ruin



probabilities do not correspond to any reasonable queueing model.
Similarly, the study of say other queue disciplines than the FIFO one comes
up in & number of queueing applications but can hardly be given a risk

theoretic interpretation.

The present paper is concerned with a particular type of generalisation
which, however, seems equally well motivated from the point of view of
risk theory and queues. This is AMardoy-moauielion - the rate B of the
Poisson arrivel process {Ny}y o and the distribution B of the claim sizes /

service times Uy, Uy, .. are not fixed in time but depend on the state of a
underlying Markov jump process {Z;}y,q such that p=f; and B = B; when Z,
= 1. A sample path of the corresponding risk process

N
Ry = 211Ut -t (1.2)
=

Figure 1

is depicted in Fig. 1, corresponding to two states U,D (Up and Dawn) such
that the process has many but small claims and an upwards drift in the Up
state, and rare but large claims and a dawnwards drift in the Dawn state
(the oversll average drift is negative corresponding to & positive safety
laading). In particular, the arrival process is more bursty than the Poissaon
process in the sense that periods with very frequent arrivals and periods
with very few arrivals alternate. In health insurance, sojourns of {Z4} in

certain states could correspond to certain types of epidemics, and in
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automobile insurance, zt could be the weather type at time t. The Markov

property may admittedly be questionnable in some cases, but at least it
should be noted that it does not require exponential distribution of say
periods of cold weather: using phase-type representations (see e.g. Section
[11.6 of Asmussen [9], henceforth referred to as APQ) any given distribution
may be approximated arbitrarily close. Anyway, the possibility of allowing
the parameters of the process to vary in time seems a major step towards
more realistic models and better motivated than many other extensions
like renewal arrival processes. Furthermore it leads, as we shall see, to
mathematical problems which are tractable or at least ameneable to
numerical computations.

The relevance of Markov-modulation may have been noticed in risk
theory, but to our knowledge no substantial mathematical results have
been produced within the setting of compound Poisson risk processes. For
general random walks some results on ruin problems can, however, be
found in [25], [4], [16], and also for queues, the subject has received some
recent attention, see Regterschot and de Smit [35], [40] and references
there. Briefly speaking, the state is that algorithms exist which provide
numerical values of expected waiting times Ew,, and queue lengths EQ,,, of

Yarw., YerQ., and so on in the steady state (T = «). Just as in the

one-dimensional case it seems, however, somewhat more difficult to
obtain the waiting time probabilities P{W_>u) themselves and also the

time-dependent solutions can hardly be evaluated at all (this is a problem
even in the standard M/M/1 case, cf. [36], [7], and the methods of these
papers da certainly not apply in the present generality). In risk theory,
these quantities are, however, the ones of main impartance in view of an
extension of (1.1) to be given in Section 7, and one main purpose of the
present paper is to look into spproximations (& main recent reference in
this ares is Haglund [16] which, however, does not seem to substantially
overisp with the present paper).

The paper is organised as follows. We start in Section 2 by a brief look
at ‘Wwiener-Hopf factorisation identities for general random walks on
Markov chains. The literature on this subject is extensive ([33], [1], [2], [3],
[4], (6], [39]) but also somewhat bewildering, and the results are not
always easy to compare neither mutually nor with the standard random
walk case. The formulas presented here are close snalogues of those of
Feller [13] Ch. XII, farmulating the results in terms of measures rather
than transforms or operators, and also even for the standard case the
proof may be slighty easier than the usual ones ([13], APQ VIIL.3). As
example, some apparently new remarks on & Wiener-Hopf interpretation of
the rate matrix in matrikx-geometric models ([27]) are given as well as



some applications related to [34]. In Section 3, we specialise to the M/G/1
setting. Parts of the material is parallel to but also simpler than (6], [35]
though a direct comparison is not straightforward. A main new idea here is
the introduction of a uniformisation (randomisation) procedure which
substantially simplifies the proofs as well as the form of the results. The
material is of later relevance in connection with algorithmic solutions of
the queueing problems (Sections 7,8) as well as the constants in the
approximations in Sections 5,6 involve the Wiener-Hopf factars. Section 4
contains some auxiliary material on moments and conjugate distributions
(Esscher transforms), extending and simplifying [18], [20] (see also [15]).
In Section 5, we derive computable expressions for the constants of the
Cramér-Lundberg approximation earlier obtained in [25], [4] as well as we
show the finite horizon version (first derived by Segerdahl [37] in the
standard case) and note some versions of Lundberg's inequatlity. Section 6
then contains some of the main results of the paper, diffusion
approximations with correction terms for the finite as well as the infinite
horizon case. The approximations are of the same form as in Siegmund
[38], Asmussen [7], and were documented in these papers to have an
outstanding fit at least in the standard case. For example, the relative
error is typically < 0.1% when the safety loading is > 18% (in queueing
terms, when the traffic intensity p is > 0.863). In Section 7 we then give
some of the relevant translation to queues, and finally Section 8 contains
some remarks on GI/M/ 1 and M/M/ 1 models.

Thaough the paper does not contain numerical illustrations, the point of
view is nevertheless largely algorithmicsl. The aim is to present the
results {(exact salutions and approximations) in a form which is ready for
numerical implementation on & computer. From a computational point of
view, some of the main ingredients are

a) evaluation of complex moment generating functions B(8) = Ieaxﬁidx),
8eC, and their (real) derivatives B(k)(ﬁ) = kaegxﬁ(dx), BelR.
b) rootfinding in the complex plane, i.e. the solution of equations of the

form g(8) =0, BB,
c) matrix manipulstion: determinants, inverses, eigenvalues, eigenvectors.

Here standard routines are available for c), and in presumably mast
examples closed expressions can be found in a). Thus the main difficulties
seem to be inherent in step b). One should note here, however, that some
relevant softwere has been developed by Regterschot and de Smit in
connection with [35], and that (private communication) the rootfinding is

not considered & major obstacle.




2. Wiener-Hopf factorisation for the general random walk case

Consider a random walk {Sn} on a Markoy chain {Jn} (or Markov-modulated
random walk, cf. APQ X.4). Assuming that {J,} has & finite state space E
(say with p elements) and Tetting ¥, = S-S,_y, this means that {40

is & Markov chain on EX@® with transition function depending only on the
first coordinate . Thus the process is completely specified by the
measures F(i,j} = F(i,j;+} = F(i,j;dx) given by

F(i,j;A) = P]'(J1 =], Ky e A)

and by the initial conditions (we consider only the case S = ¥4 = 0 and let
Pi correspond to “'0 = i). We use notation like F for the matrix which has

the measure F(i,j} as its ij o element, F*G for the matrix with ij 4

elernent IkEE F(i,k)*G(k,j) and F*N for the n ™ convalution power of F (we

identify F O with the identity matrix [). The total mass of a measure H is
denoted by [IHll, and [IFll stands for the matrix (IIF{i,j)ll)i jeE.Thus lIFIl

reduces to the transition matrix P = (p”) for {Jn} which we assume
irreducible. In particular, a stationary distribution n = ((j)); g exists.
Also ~ refers to the time-reversed {(or gv&) process {ijn,"fr,}} given by the

transition function

Fli,j:8) = Bldg = 1. ¥y = ALy =1) = () FOjLiA) / nli),

Note that this corresponds to the wusual time-reversed transition
pmbabmtleq Pij = ﬂ,(])pllfn(l) when looking at {Jn: alone whereas

Fi ])/IIF(I juI, the conditional distribution of ><1 given Jo_l J1 j, is the
same as F(j,1)/lIF(j,i)ll, the conditional distribution of ¥, given Jy=j, Jy=i.
Let finally

= inflny1: 5,5 0, G014 =Py(S = A, J =], 14 ¢ ),
+ +
= inflnyt: S, <0), G{i,jA) =By(S = A, J =], < =)

Our gosl is to obtain analogues of the formula F = G,+G_-G_*G, used as the

basic Wiener-Hopf identity in [13] Ch. XIl (this point of view is also
followed in APQ).



To this end, define 1
Ta-
R.(i,j;A) = Ej +zo =], 5p = A,
N=

Goli,j) = n(j)B_(j,i)/ali), Ug = TGN, U, =36
n=0 n=0
Thus R, is the pre—t, -occupation measure and U@ is the renewal measure

correspanding to Gg.

Proposition 2.1 R, =Ug
Fraar Let nbe fixed and write i :io, j:in. Then

Pilt,>n, Jy=1,5,=4) =

b) pioii"' p]-MimP(Sks 0, ken, S e A IJozio, Ji=iy, o dp=ip) =

2 Pii D]'i]'on(in) B{Sn¢ Sk, ken, Sy e Al dg=ind1=in-1.dp=ig)/nlig) =

n(j) P]‘(I..\Iln = i,%/n e A; Fp)/ nli)

where Fo is the event that n is a descending ladder epoch for {S.}

summing over n, we get
Ro(0,5:4) = nfj) zo”e’fk(j,i;m / afi)
N=

and since it easily follows by induction that G;k(i,j) = n(j} Eék(j,i) ! nli),
the proof is complete. O
Lemma 2.1 R, + 6, = |+ R, *F
Fraarl This is just a special case of Prop. 3.2 of Pitman [31], but for the
sake of completeness we reproduce the proof. Integrating the identity

T+_] ) . A)

2 Wdp=1,5 *+ I{dp=],5.€4) =
nzl,)(nln‘E 'wr_‘-lrf)

T 1
IJg=j,SpeA) + +20“:Jn+l =], Spey e A)
N=



w.rt. [y, the first three terms become R,(i,j), G,.(i,j), I(i,]}, and an easy
conditioning argument shows that the P;-expectation of the last term is

(Ry*F)LJA). O
Theorem 2.1 F = 65+ 6, - 6g*6,. fquivelently,

| -F = (1 - 6)*(I - 6,) (2.1)
Fraal By Prop.2.1 and Lemma 2.1,

Ugtb, = 1+ U*F.
Convolving with Gg to the left we get
Up- | + BB, = Bg* Ug'F - F,
and subtracting, the result follows. 0
Maw define
p=BoXy = T a(i) [ % F(ijdx)
i,jef -=

Then:

Lemma 2.2 (a) S,/n—pas;

(b) /7 p<O tham 16l is subsiochsstic (sprillG ) < 1) wwaress sprliGgll =
1 and nllbgl =n;

(c) /7 w0 ren sprillegl) < 1 wieress |16, 7s stachestic (spriliG,l) = 1)
wids ny, = nll - Ilﬁdl} as pasitive Jeri eigenvectar,

(d) /7 p=0 ke sprillG,ll) = spriliGgl) = 1.

Fraar (a) is well-known and easily proved (APQ X.4). Similarly in (b) it
follows from S, > e just as in the one-dimensional case that spr(liG,II} <

1 = spr(l&_ll). The way 6_ is constructed from G_ then ensures that also

spriliGglly = 1, and n 16|l = n follows from
Zali)Ge(i,j) = n(j) T G-(j,10) = n(j).
iek ieE

Also (d) and the first part of (c) is similar as (b). For the last claim in (c),
note that spriliGgll} < 1 iraplies that n, 2 0. Also Theorem 2.1 yields

b= 1IFI= (1 - lGgDC 1 - 6, 1D



and multiplying by n = allFll to the left we get o, (1 - 16,1 = ©. d

An interesting interpretation of the Wiener-Hopf factorisation can be
given far Markovs chains of the GI/M/1 type having a matrix-geometric
stationary distribution ([27] or APQ X.4-5). Here one is interested in the
occupation measure R_ (defined the obvious way) in the case of &

Markov-modulated right-continuous random walk given by matrices F(1),
F(0), F(-1), .. with elements F(i,j;1) =B;(X; =1, J; = j) (the state 1=& of S,

is denoted as the /Jeve/ and the state jeE of J, as the phesd. It is
well-known and easy to see that R_ has matrix-geometric form, i.e. the
restriction of R_ to level k»1 is RK where R is the restriction of R_ to
level k=1. To interpret R, we need the variant

| -F =(I-Gg*(I - 6.) (22)

of (2.1} which follows by simply interchanging the role of t, andt_in the
proof. The similar variant of Prop. 2.1 states that U®: R_. Taking the
restriction to level 1 and noting that bg, is concentrated at level 1, we get

G®: R. That is:

Corollary 2.1 The rate mstriy R in HMerkay cheins heving &
HELTN-Gaemelric SIelionsry qistrituiion 75 relsled la lhe sscending
jeager keight distritution B, of the lime-reversed Merkoy-modulais:

rendon welk tiy meens af R = Bgy. That is.R(,J) = w§)5,(j,iM/nlj) and (by
the generating function version of (2.2))

[ -sF(1) - F{O) - s TF(-1)- .. = (1 -sR)(1 - 6_(0) - " 16_(-1) - ..) (2.3)
where G_(K) /s the msltris with ij i alement G_(i,j;1k}).

To see that the Wiener-Hopf interpretation of R is more than a
curiosity, we shall give a short and transparent proof of the results of
Ramaswami and Latouche [34], covering the known cases where the rate
matrix R can be found explicitly. Here F{k) = 0, k=-2,-3, ..., and equating
coefficients in (2.3) we get 6_(-1) = F(-1),

I-F(0) = 1 -6_(0)+RG_(-1) = | - G_(0) + RF(-1),
F(1) = R(I - 6_(0)) = R(l - F(0) - RF(-1)) (2.4)



Lase /7 F(1) = wB wherew Js & column vaclor end [ & row vector
s&tisfying pe =1 (here e is the column vector with all components equal to
one). This means that an upwards jump from phase i occurs w.p. w(i) and
that the new phase then is chosen according to fi. The occupation measure
interpretation of R therefore shows that R(i,j) = w(iX'(j) for some row
vector ¢ Normalising such that €' = nt where n»0 is the spectral radius of
Randtw = 1, we get RZ = R and hence by (2.4)

R = F(1)(1 - F(0) - qF(-1))"! (2.5)

which is the desired explicit formula for R (given that n has been
computed which is possible without knowing R, cf. [27] or [34]).

fase 2% F(-1) = w wherev /s & column veclor and o & raw vecior
setisiying oe =1. This means thet the phase after a downwards jump
always has distribution . Let

-1

N{1,2): Z I(Sn:1,8n+‘l:2)
n=0

be the number of upcrossings from 1 to 2 before v_ and N(2,1} the similar
humber of downcrossings. Then N(1,2) = N{(2,1) and hence

By(N(1,2); d, = ) = B(N(2,10;d, = ) (2.6)

Recalling that R](i,k) is the expected number of sojourns in phase k and
level 1 before ©_ givenJy = 1, (2.6) can be rewritten as

T ROLKIF(K K el i) = T R2(HKF(K K- (i),
kk'eE kk'eE

l.e., RF(1)ex = RZF(-1)ex = RZF(-1) and hence by (2.4)
R = FUI)I - F(0) - F(1)ea)! (2.7)

giving an explicit formula of similar farm as (2.5) far R.
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3. Wiener-Hopf factorisation for the M/G/1 case

Recalling the basic set-up and notation in Section 1, and in particular the
definition (1.2) of the risk process {Ry}, we let

Mr=supRy, M=supRy, «{uj=inf {t20:Ry>u},
OtT O¢tee

Wjj(u,T) =BiW < T, gy = ), ‘l’ij(u) = Pile(u) <=, Jegyy = 1),

Then % qr]-j(u,T) is the probability of ruin before time T which may

alternatively be expressed as P, (My > u), and Ej ‘Vij(“) = P;(M > u) = P (Ul

¢ oo) is the probability of ultimate ruin. Further we assume that the state
space E of {2} is finite, say with p elements, and that {Z,} is ergodic

(irreducibility suffices for this). Then a limiting stationary distributionn
exists and the average drift of {R} is
| Ry ‘
E— =p- 1 where p = Z n(i)p;E;U.
t iekE
In queueing terms, p is the traffic intensity, cf. [35] and in risk theory,

p'1-l is the safety loading. We assume throughout thatp < 1.

For tecnical purposes, it now turng out to be convenient to introduce
uniformisation, cf. e.g. [17]. To this end, let & = (A”) be the intensity

matrix for {Z;} and choose an v satisfying n > f;-A;; for all i and a Poisson
process {N’f'_‘} with intensity n. We then construct {Zy1, {Ny} the Tallowing
way: if {N‘f} has an arrival at a given time t where Z, = i, then & coin is
tossed to give an arrival for {Ny} w.p. fi/n, & jump of Z; to state j w.p.
Aijl’n and & dumrmy event w.p. (n+A;;-f;)/n. We let o(n) be the n % grrival
epoch for {Nﬁ and a(0) = 0, Sy, = Ratn) %n = Sp = Sp-1- JIn = Zs(n)- BY general
results on uniformisation, the stationary distribution for {J.} and {Z;} are

the same, viz. n, and we have a Markov-modulated random walk as in
Section 2 with

L4

p= EEﬂ,i (Bi/n | x Bildx) - 1/m) = {p-1)/m < 0.
ie -
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Note that the traditional way of imbedding a random walk {Sﬁ} in the risk
process corresponds to observing {Ri} at the times of claims (loosely

speaking, we have added some dummy claims of size zero). However, since
{Ry} can increase only at the times of claims, {R}, {S,} and {5} have the

same maximum and the same ascending ladder height distribution G,
Since these quantities are what is important for the ruin problem, and {S:f}

is an auxiliary quantity rather than of intrinsic interest, one may
therefore as well work with {S.}. The gain is that the descending ladder

height distribution has & particular simple farm.

Ta see this, the basic observation is that the X, (and hence also the X))
are of the form U.-T, where the T, are exponential with intensity n. This
property being preserved by time-reversal, it follows that G_(i,j)/IIG_(i,{)ll
is the same distribution as that of the -T, (no matter i,j) so that for G_ it
only remains to evaluate the matrix @ = IGgl with elements %j = IG(3, .

Let/l}(ell be the matrix with elements

FG,i8 = TeBXFGjdw) = Bie 8T E;leBY; Jy=j)
let H(B) = (n+a)(I-F(8)), H, = I-B, and

H_(8) = (+0)(1 - Bo(8)) = (n+8)1 - 10 (3.1)

Note that {2.1) implies

1F = (15616, (3.2)

and hence

H(B) = H_{8) H,(B) (3.3)

for 0 2 Re 8 > - n (the truth of (3.3) for all Bwith Re 8 < 0 then follows by
analytic continuation, using the explicit forms of H_,H given in (3.1) and

Lerntna 3.1 below). We shall need:

Condition 3.1 7here avisi p-1 disiinct saiutions Ay, .. ‘]‘D with Re A <
QO I the equstiar det HIB) = 0.
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Note that when p=1, then H{(8) = 0 is simply the usual Lundberg equation
(however, the solution y occuring in the Cramer-Lundberg approximation
and Lundberg's inequality has y»0). We discuss Condition 3.1 somewhat
further below and proceed to state and prove the main result.

Theorem 3.1 Sugpose thet Candition 3/ holds ond thet p<l, end Jet o)
he & non-sere o veclar with n(‘)H(Ai) =0, i=2,..p, nm =n,A=0. Then

Q=1+0y/n nhere

(1) (1)

N i; T2 . 52)
0= ; =

Ap atp) alp)

Fraaf We first note that the elements of 6,(A;) are effectively smaller
than those of IIG,ll when Re A; < 0. Since this last matrix is substochastic
when p<1 and stochastic when p=1, @+(?\1) must be substochastic which
implies that | —ﬁ+(ﬁi) is non-singular. Hence by (3.3} an(l,-} = 0 implies
an_(Iki) = 0 which in terms of O means that n(”u = min(i) where w; =
1+A;/m. Hence we have found p different eigenvalues my,..op for @ and the

corresponding eigenvectors n(‘),...,ﬁ,(p) which immediately implies that
II"1 exists and that IIQ is the matrix with rows a\1n.m,,.., copn(p). This is

equivalent to the assertion of the Theorem. 0

Remark As the proof of Th. 3.1 shows, then Condition 3.1 implies that Q
can be written on diagonal form (the eigenvalues of the proof are different
but all that really is required is the existence of linearly independent
eigenvectors). Reversion of the proof shows immediately that the converse
is also true. That is, the set-up is equivalent to the matrix Q to be of a
spectral form which one intuitively feels is the typical case. When p<1, it

is shown in [35] that det H(8) = 0 has exactly p-1 roots with Re p; < 0, zero

as simple root and all other roots have Re p> 0. Some examples seem to
indicate that when p=1, then typically det H(8) = O has exactly p-1 roots
with Re p; < 0, zero as double root and &1l other roots have Rep > 0.

We define the mament matrices n(k), nﬂf), l*l(ek]I by
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MK 3 = Txkedjads = PG 300,

Mk, :_Zka+(i,j;dx) - 649, 5,0,

131, 5) = T xkGef, 0 =Bk, j:00 = (- 1)KKimk

Lemma 3.1 H(B) =81 - S(B) - & where S(8) is the diagons! malriy with
the Bi(gi(e)— 1) in the disgansl Furihermore the MK are getarmined by

50y = 1 + a/n + it g0y kD oy k) k23,

Fraaf Obviously Eie'gT = n/(n+8) and gbll = 1 unless an arrival occurs.

Hence
ﬁ‘B](B)-‘"ﬂ + (ﬁ"’lﬁ"ﬁi)af’ﬂ i=]

E;lefY; 0 =) =

(1+8)F(8) = n{SE)/ + | +A/m)

from which the asserted expression for H(8) follows. Differentiating, we
get

A N
1-5(8) =1-F(8)-(n+a) F(8),
sigy = kKPR Tigy + (e FRNB), k=23,

A
{(by induction). Let 8=0 and note that F(O) = | +&/y,

Having found the fundamentsl matrices @, Q4 and thereby G_, the next
step is to derive expressions for the relevant functionals of G,, in

particular [IG,]l and the Hik:'.

Theorem 3.2 1l - |G} 7s e metrix wilh rows D0 - g0,
nm)ﬁ/lg, ...,n(p)ﬁflp. Simileriy, the raws af nni” & rr,“)S“(O)fQ,
A0 - 500 - AR WAL 122, 0,

and thase ar Hﬂf) sre af 1‘:'5'"(0):"3,
201 - 5(0) - 1,87(0) - A4/

Froa? 1t follows from (3.2) that
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-1l - am¢ D) - a2m(2 s - 3Bz - 2
(1 - lieg - 8m7 - 8222 -y (1 - 6,1 - o) -62m P2 -y

Equating coefficients and recalling that | - IIFll = -A/m, lIGgll= Q, H(ek) =
ki (- 1)K Q/qk, we get

-afn= (-0 (1 - 16,1) (3.4)
MY = on T - s, + (1 - @) mdl) (3.5)
mt2) = 2072001 - 16,10 + 207 'amdM « (1 - ol (3.6)

The idea is now simply to solve recursively for the matrices |G, n(”,

(2 by {(in a similar manner as in the proof of Th.3.1) determining the
action on the basis vectors n(”,...,n':p). For i=2,..,p it follows from (3.4)

that

Al (- 18,10 = - Y a/n(1-u) = oV 4y (3.7)

whereas for i=1 (3.3) and Lemma 3.1 yield
a0 - 16,00 = -qal P < ol - son (3.8)
This shows the assertion concerning [IG,]l (note also that since I is

invertible, I - [IG,]l can be computed once 1( - [IG, I} is known. Similarly,

(3.5) and (3.7} yield

nmﬂin = aliiplhly (1-wy) + 1 lw]- A - 16,10/ (1-wy)
= ol + a/m - SON/A; - 72 +1mapna
= ol - son/a; - nllasns

whereas from (3.6}, (3.8} and Lemma 3.1
alUn(D = -~ TalDa - e, + nl (272
= a4 Um0y - 2mU 2 = Mg (0)/2.

This shows the assertion an rmi” agnd the calculation in the case of
HHE) is similar though more lengthy. 0
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4. Moments and conjugation

We let/l}t(oc) be the matrix with elements
N .
Flijm) = Eile®Rt; 2, = jl
Then simple calculations along the lines of the proof of Lemma 3.1 yield

(/00 F () =Fy(a)(Slo) + & -xl)  and hence
il = ol[S() + & -] (4.1)

Further eK(“) denotes the spectral radius (Perron-Frobenius root) of F1(oc)
and v - (v(“:'(i))iEE the corresponding positive left (row) eigenvector

hormalised by NI (here as before e is the column vector with all
components equal ta one). In particular, \,(0) = 1l

Remark 4.1 It follows by general spectral theory that x can alternatively
te characterised as (log spr(Fg)}/é or even simply spr(S{e) + & - «l).The
regson that we have given the definition in terms of Fy is to facilitate

comparison with and translation to discrete time Markov-modulated
randem walks, where the basic governing parameter F of Sections 2-3
plays the role of Fy. In the same manner say the proof of Prop. 4.1 below

has & slightly more direct continuous time version as well as similar
remarks apply at a number of ather places.

Proposition 4.1 7he funciion x(o) is siricily canvey wilh

k' (0} =1lim ERt."'t = n5'e -1 (4.2)
1=

x"(0) =lim Yer Ri/t = nS’e + 215'DS'e (43)
t—2e0 |

k"'(0)=a5"e + 3nS5'DS"e + In5"DS'e + 6a5'DS'DS'e (4.4)

Here D = (en-a)"" - en ang S0 = 500y se 2o di&ganst mairiy with the
ﬁiEiUk = ﬁiﬁgk)(O} i1 the disgonsy .

Fraa/ The strict convexity is proved in [21], and discrete time versions of
(4.2}, (4.3) are in [18], [20] (see also [7] p. 140). However, it is not apparent
how to generalise tox™ and even the formula for x” cames out in a rather
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indirect way. We shall therefore give the proof in full detail.
Differentisting eXv = v?, w.rt oo we get

e lcvv) = vll}a +v/l}1 (4.5)
R0 v (k) 2y + 2Ky = v/lé'; +2v'f:\'] * v'f/F\i | (4.6)

Noting that ve = 1 implies 0 =v'e =v"e = .., lettingo = 0 in (4.5) and using
(0% = e we get

(0) = aMle (4.7)

where H?: ng)(o). Using the same method for (4.6) the v" terms vanish an

both sides, but the ¥ tertn on the rh.s. not. However, from (4.5) we have

nM -0 = v(O)I - F((0)) = vi(0)I +en - F((0)),
¥(0) = n,(rﬂ -k (0)D, where Dg = (1 +en -f}é-(O)]'_1

N SA : s
(that the inverse exists follows since Fg(0) = &4 jg an ergadic transition

matrix with stationary distribution n). Letting o = 0 and multiplying by e
to the right in (4.6) we get

ﬂﬂq{e + 2u(l1/% -K'(O)I)Dm?e,
aMie - 3x(0)2 + 2aM}D Me (4.8)

K(0) + x'(0)2
k'(0)

(usingnD =n), and (4.8) is indeed the expression af [20]. Similarly, (4.6)
yields

vi(0) = [2v(0) (M) -x(O)1) + (M7 - x(0)21 - x"(OIID
k(0 + 3x(0)2c7(0) + x(0)F = aMFe + Iv(OnMTe + I (OMe  (49)

which can be solved for x''(0). To arrive at the continuous time versions,
note that e®(%) is the spectral radius of ?S(oc) so that (4.7) yields 6x'(0) =

aMge. Since Hg =6(6" - 1)+ 0(82), (4.2) follows and (4.3}, (4.4) are derived
by similar methods, using H§= 85" + 0(82), k=23,.,De=nD=0snd

Ds = (1+en-e3)"1 - 57D+ o(1). o
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Let now h®) be the pasitive right eigenvector of ’F\t(oc,), /I}t(oc)h(“) =
exln @) ang define F,C(B) by
h(8-80)(j)

— Ta(B-8p)x% - tx(B-8p) . (i -
n(B-BoX) 077 7 FRETRO/F (i j;dx)  (4.10)

F,EB)(i,j;dx) -
where B84 is some arbitrary location parameter. Following [38], [7] we

assume that a yq with x'{yg) = O exists, and let 8y = - yo. Also the

existence of 8 y > 0 withx{y) = 0, x"(y) < o is needed (the discussion of
such conditions is much as in the one-dimensional case and can be found in

[18]).
It follows immediately from (4.10) that
h(B'BO)(])

A

RO, jio0) = e~ tx(B8-80) (1, ot 8-8)
t h(8-Bo)(i) t 0
That is, if Ag is the diagonal matrix with the HE-BaXi) in the disgoner,

then

N _ _ _AA .
RO = e K880) LF ok 8-8) A (4.11)
= e WB-Bo) aunitiSiat 6-6.) + A AAg - (oot B-8.)1).
1] a8 A 1]

From this it follows by simple calculations that the rows of IIF(B)II
F(E‘)(O} sum to one and that ?(8‘ f(e"?(B‘. Thus we have & new
Markcw modulated cantinuous tlme random walk which for the present
case can even be interpreted as a risk process. The changed parameters
correspand to arrival intensities and claim size distributions given by

6\1{ ot B-6)
B (8-85)
and the intensity matrix Ag with ij ¥ aff-diagonal element

h(8-Bok(j)
N T

’

Pa.i = B /B\i'te‘eg), Eia,-]"loc):

The basis for this interpretation is (4.1) and the formula

£9,) - ol Sgle) + &g ] (4.12)
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(here Sgl) = S(B+w) - 5(8) is the diagonal matrix with the fg.;(Bgle-1) in

the diagonal) which can be obtained from (4.11) after some rather tedious
calculations using the formula

Ay = Kg Akg+5(8-8y) -(x(8-8;) + (8-8,)1).

we write Pg.; instead of P, when the process is governed by {F(E)}tzo

rather than {Fi},q and 28 denotes the corresponding stationary
distribution for {Z;} or equivalently the positive left eigenvector for

FEL 1t is immediately checked from (4.11) that «®() = nB-Bo))
8-80)(1). special notation like ht, ol B ; etc. are used for the Lundberg

case 8 = 8y +y. Note that moments for the [Pg.;-process can easily be

obtained in terms of the given x-function in the same way as for a
standard exponential family. In fact, by (4.11)

Spr‘(ﬁfm(m)) - ¢ ¥(8-8¢) spr(l} (ot B-B,)).

Thus kgler) = x(a+8-8) - x(B-8y),

KR = lim BgRi/t = x'(8-8p) = n{®5ge - 1 (4.13)
t=o0

and similarly for the analogues of (4.3), (4.4). Note that for 8 = 0 {4.13)
becomes x'(-8,J) = 0 while {(by convexity) the expression is > 0 for 8 » 0 {in

particular 8=8 ) and <0 forg<o.

Lemma 4.1 f&!/ T 4e & slagping time wrl the Tilirsiion ko=
ol Sieken) smd Fe £ a7 evant satisiying FEATe}. Then for &y 1 8

P]‘F = PBUH‘F

h(880)(i) By i ¥ B0y~ expl(Bg-B)Ry + Tx(8-80 )} ; F]
(= hh) Bl ) explRy 5 F) when 8 = 6,).

This likelihood ratio identity plays & crucial role in Sections 5-6 (for &
proof, see [11], [41], [22]). We mention at this point one further
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application which will, however, not be spelled out in the present paper.
This is importance sampling in the simulation evaluation of ruin
probabilities, cf. [8], where T = «(u). For example, ane may simulate from

PL;i: obtain i.i.d replicates of (Jr(u):Rr(u)) and give estimates of the \yij(u)

based on Lemma 4.1. The details follow [8] in a rather straightforward
manner, and we would feel that the set-up of the present paper adds a
further main example to [8] of models which are non-trivial to handle
analytically but can be simulated with great advantage using this
particular technique.



5. The overshoot and the Cramér-Lundberg approximation

If in Lemma 4.1 we let T = <(u), 8 = 8, F = «{u) and define B(u) = Rey) = U 88

the avershoat, we get ‘*‘ij(“) = e YUC{i,j;u) where

h-(i)
CG,jou) = h—L(]—)- EL;i[e‘VB(U);JT(u) = jl (5.1)

Therefore the study of the distribution of B{u) (or rather of the joint
distribution of JT(U),B(U)) becomes of basic importance.

Proposition 5.1 Suppase 82 0. Then & 7imit (U Bl=Nar () B

&8 U axisls in the sense ail canvergence af gistritwilions. The
agistrituiion af ihe 7imil 1s given by the aensriy

by (%) = m(8)"! _EEn@(j) B8] k;(x,00)) (5.2)
]&
arr the sel {Jy.y = Kb Here ol® e tpe ststianery gistritwtion 16 |G,
&g mi8) :n'f)ri&”(aje.
Froal Obviously (e B(u)) is 8 semi-regenerative procass (APQ X.3) with

first semi-regeneration point (JT(Os,,B(O)) = {J; ,S; ), and a closer study
s + +

shows that the given formulae are simply a transiation of standard resuits
for that setting {the non-lattice property being obvious). O

Corellary 5.1 ‘Vijm = Cli,jie ™M, u=, whare the matriy C is given by

C = xt~ ! nbvb gt - gpa-s,n (9.3

Fraal By Prop. 5.1 and general results on weak convergence, the assertion
halds with

G = Tim Ol ht(i) ~yB{c0). | :
C(,j) = LI_T“ (i,j;u) = -—HL—G)EL;,'[E (oo} = 11

and it only remains to check that C has the form (5.3). By Prop. 5.1,
~yB{) i - %
BLile R ity 2 31 = | €7 () dx s

cQ
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m(8 )1 Zaky ! [(1- e 6LO,judx) =
Uges g )
-1 5L Let iyt = ALey io- N
Gm(e)”! 2 IsE DI BLa g (5.5)
In matrix farmulation, this means that C = ALedAf where
i} 1 Leneli - ALrooyy - pmrm =1 oLep oL
d = (@) " abUBH - BL-) = mee)™" nk(t - By

To reduce this expression further, we need to involve also descending
ladder heights, and here some caution is needed since these involve the
uniformisation parameter n, whereas the ascending ones and the
exponential family construction do not. One way to overcome this
difficulty is to first fix the uniformisation parameter n for the given
process, consider the discrete time Markov-modulated random walk with
transform F{x) given by Lemmsa 3.1, and form the corresponding
exponential family F®). A rather tedious calculation (which we omit)

then shows that the Lundberg conjugate is given by
Flod = ol - S| () - & Min + o)

where 5|, & are the same as for the continuous-time exponential family
andn =n +y That is, FL can be relsted to the [P, - distribution of {Ry} in
the same way as F to the P-distribution of {Ry} (this is not in genersal the
case faor 8 2z EiL!). In particular, relating the means by an obvious
time-average consideration, we get an.LH“){BL)e =x'{y), cf. {4.13), and by

Lemma 2.2{c) we may take
Lo cLero el - obaler- el
. _n4_{l B} = v-a=(1- lI6glh
(since lIGL]le = e). Then by {3.5)
m(gy) = e de = nthl (e Je = ) = eIy
Also it follows easily fraom Lemma 4.1 that

TA A -
I6LY = &' Bty A, Bhi-y) = & 16,11 &

and hence



L2 A evbay (- 15D 0- BLe-yag

(
N
-IL(L) hbvl(1- Gofy)) (1- 16,1
which is the same as the asserted expression. 0

~ Except for some of the last constant manipulations, a result of the same

form as Corollary 5.1 can be found in [25], [4], but no algorithms like those
of Section 3 (and (4.2) for x(y)) were given for the numerical evaluation of
C. The present approach is somewhat different and leads also to certain
related results, for example Segerdahls [37] time-dependent version of the
Crameér-Lundberg approximation:

T - u/x'(y)
Corollary 5.2 ‘h‘j(U,T) = Cfi,je™vu '@'{ !

(U () ()31 72)

JU=e
Froel By Lemma 4.1,
hk(j)

Blu). - ¢
o e U E| eV dryy = 1, du) < T1

¥ijuT) =

It is nat difficult to see (the details are in [10]) that «(u) is asymptotically
normal with mean u/x'(y) and variance UK"(y)f'}c'(y)s (cf. Prop. 4.1) and that
w(u} is asymptotically independent of (JT(U),B('U)). From this the Corollary

follows immediately. O

We finally remark that also various versions of Lundberg's inequality
easily come out from (S.1) by obtaining suitable bounds on C(i,ju). For

example, obviously
(uj il TR ((u) <o) = T ygilud < il R
yiilu) < g, w{u) ¢ o) = u —s
1] hL(j) g’” mm hb(j)



6. Corrected diffusion approximations

We naw think of the ; as fixed and consider a limit where 801‘0, U=oo in
such a way that € = uby < O remains fixed, and shall derive an inverse

Gaussian approximation with correction terms (of arder u‘l) for the
urij(u,T). The treatment is an extension of [38], [7] and far the steps which

are essentially the same those papers may be consulted for more detail.

We let
B(T; &,0) = 1 - o(cT 12 - ¢71/2) 4 g20C g(-cT- 112 - 17172

denote the inverse Gaussian distribution corresponding to the first
passage time of a Brownian motion with drift & to level c, and let h(A,) =

(2)&&,2)”2{. Then the Laplace transform of G{«f,c) is e'Ch(‘]‘ﬁ:’, and a
suitable version of the functional central limit theorem for
continuous-time Markov-modulated random walks yields easily the
existence of a standard Brownian limit for

{(uZe o)™ 1 2(R(102) - (0D 40

and thereby as in [38], [7] that

W, 20 ,
Eg .]-[E‘_B‘WO’!U I e-h()\,f,) (6.1}
0)

Here and in the following 1 = w(u) and k) means x"(0) = x"(-B;) etc. The ides

is naw to invoke also the O(W™ ) terms in (6.1) and to perform a formal
inversion. Thus in the fallowing £ means up to olu™!) terms. Define ¥ =
(22+£ 431727y = (h(2 £)+£)/u. Then Lemma 4.1 yields
h(ﬁ—ﬂg)(j)

o Philde=]) =
B0l e

o
)
—

Eg lexplh( £)B(u)/u - w(E-80)); J, = J, w<oa] (6.3)

In (6.2) it is easily seen that Pyl = 1) 2 Pyl = 1) = 1!8)) where

""(E) is as in Prop. 5.1 (in fact, inspection of the standard proof of the
exponential ergodicity af finite Markay chains, APQ XI.1 or V1.2, shows
that the remainder term is even exponentially small because of 8->0). If
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€y,C, denote the derivatives of n_(rm(j), resp. hBy/ h(m(j), at =0, we
therefore have up to an ofu™') term that (6.2) is

e ML) @Q5) + ¢ Wk + £)/u) (1 + o WA EW) =
g h(A5) (na?)(j) +Cz/u+ cyqhR L) ) (6.4)

where ¢z = c48, Cy=Cy + czniO)(j). Taylor expansion next gives

c880) = ko - xo(B) = B2-80K"72+ B3-83)5/6 + o(u™S)
= M/ul + h,(l,ﬁ)xgx’6u3 +o{u™)

where hy(A,£) =(h(A £) + §)3 - E,:”. Hence up to an o(u™ 1) term (6.3) is
Ead,-[e'lm‘c‘wf’ WTH + hOLBIBC - c/2u hy (L 2oyl J, <]

where Cg = xg/3xkg Using (6.1) and similar asymptotic independence
arguments as in [38], [7] and Section 5 shows that this can be written as

SAmp /U™ s - h(AE) e . )¢
Bg_ile ™0V =gl cgiue W hi ) - es/2u nt0) hy3.8) (6.5)

where ¢g = BglBloe) ; Jyeyqy =]] and
hotdty = - h (8 (a/an)e” NAL) - o= ML) 120 22 - 350204t 2)172)

Before equating (6.4} and (6.5) we perform one more manipulation. Taylor
expansion of xy(85) = xgl8 ) shows easily that —~yu/2 = ¢ +c5t2x’2u where

Cg 1s the same as above. In terms of order u”! we can therefore replace €

by = -yu/2, and the only 0(1) term comes from (6.4),

e Nz o hAE) + cghaREY/2u & - hAE)( 4 cahg(h£)/2u)

where

ha(h8) =22 (a/a8) (A 2) = £3/(20ae M2 - 12 2 e WAR) o),

Cambining, we get
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7. Queueing reformulations

For the Markov-modulated M/G/1 queue, it will be convenient to assume
that the underlying Markov jump process is the time-reversed (dual)
version {'f{} of {Z;} rather than {Z;} itself (this is no restriction since {Z;}

and {Z} are in one-one correspondance). That is, the intensities of {'th} are
li,ij = n(j)).ji/n(i). We let ,‘Fn be the state of {/?:(} at the n " arrival and
denote by W, the waiting time of the né customer, by ¥y the virtual

waiting time at time t and let w,v,'?r',fz’ etc. refer to the steady state (which
is well-defined by standard regenerationNarg%nents). As in Sections 2-3,
My is the maximum of {Ry} over [0,T] and My, {Ry} etc. refers to the process

~
governed by {Z;}.

Theorem 7.1 Define nf = Z; ¢ nli)p;. Ther

(PB4

B> 0Tz 1) =~y u) (7.0
nf

BV 4,7 =) = nli) By(M > ) (7.2)

Froeal Just the same sample path argument as in the standard case (APQ
I11.7-8) shows that (taking V5 = 0 for simplicity)

~
Vi = max (P:t - Rgh
Ozset

Therefore by a time reversion argument,
PVioUZg=],Zy=1) = PM>uZg=1,2=1), ie
n(j) Pj('se’t >u, 2y =1) = alidPy(My > u, 24 = 0. {7.3)

Since My = M eventually, it is obvious that My and Z; are asymptotically

independent. Hence in the limit (7.3) becomes

A BV u, 7= 1) = nli) By(M > w) al)

and (7.2) follows. For (7.1}, it suffices according to Th. X.4.3 of AP0 to
show that P(Y = 1) = a(i)f;/nf. This follows for example by a standard

time-average consideration, identifying [P(Y = i) by the asymptotic
proportion of arrivals in state i and noting that in g period of length T the



present paper certainly substantiates this belief even though a direct
comparison is not straightforward.

Relations (7.1), (7.2) can be rewritten as

n{i)f;

P(w>u ¥=1i)= p: j;L‘Eqr,-j(u) (7.6)
B(V>u,Z=1)= n(i),quri ) (7.7)
_]E

Inserting the Crameér-Lundberg approximation (Corollary 5.1) we therefore
immediately get an approximation for the tails of the waiting times, and
inserting the corrected diffusion approximation (6.8) yields heavy trafic
approximations. Also the time-dependent case can be handled:

Corollary 7.1 Swutyject la the limiting procegure af Sectian & (U=, UBg

= f,, TK(")/IJ2 = To)
Py(vy>u, 27 = 1) = i) By(My > ud + ofu™!y (7.8)

Fragf This follows by an extension of the proof of (7.2). Let T' =T - T'/4,
Then

Pi(Mycu, My u) = Py(T <du)<T)=
k(T - T2 6T + cg/uT, 1 + cg/ul + olu™) = otu™),

using a formal inversion of (6.6) in the third step. Combining with (7.3) and
uniform geometrical ergodicity, cf. the remarks following (6.2), we get

11,(]) PJ(VT » u}lz\} = 1:' = ﬂ(]:’ P](MT > u, ZT = ]) =
ali) By(Mpt> u, 27 = j) + olu” ly = aind) B (M u) + o(u™ 1) =
alidn(i) By (Mp > u) + o(u™ 1),

An approximation of similar form as (6.7) now follows by replacing
B;(My > u) by Zj ﬁ?ij(u,T) where ﬁr\”(u,T) is the approximation (6.7) for

qri]-(u,T). The case of the Cramér-Lundberg-Segerdah] approximation (u—>co)
is similar but easier, and Corollary 5.2 yields
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(7.10)

T - u/x'(y)
Bi(vr>u, Zr = i) = ali) C(,jle™U &
T T " L8 [:(UK"(y)/K'(y)S)”ZJ

Also the analogous expression for the PJ-(WN > u,% = i) can be given but

some calculations are necessary for identifying the constants. In
particular, one needs to replace the continuous time Markov-modulated
exponential family by the discrete time one generated by the random walk
with generic increments U*-T* where U® is a service time and T* an
interarrival time. The details are a matter of routine and therefore
omitted.
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8. Remarks on M/M/1 and GI/M/1 type models

From the standard one-dimensional case (see e.g. APQ Ch. IX) one expects
that the GI/M/1 and M/M/1 cases where all B; are exponential, By(dx) =

Sie"gi"dx, are not only simpler but also that descending ladder heights (G@)
form a detour and that the approach via ascending ones (G,) is more direct.

We shall not here give all details but only indicate some main steps.
The crux is to determine the distribution of the maximum M¥* of &
Markov-modulated random walk {?ﬁ} where the increments are of the form

xﬁ: Un—Tn where given J6K= i, J?‘: j the distribution of U, is exponential
with rate Sj (not 8]-!) , Aij(t) = Pi(Tlst, JTéj) is arbitrary, and Uy, T are

independent. Again, we suggest to use an uniformisation procedure to
relate M* to the maximum M of a Markov-modulated random walk {(Jn,Sn)}

with & simpler 6,. To this end, we choose > maxjaj and given Jy = 1, we
toss a coin w.p. §;/n for heads. If heads come up, (dy,-¥;) are chosen
according to Aijf and if tails come up, we let ._l1 = i and }(I be exponential
with rate v. This means simply that the Un are split up into geometric

sums of exponential variables with rate n, but adds also the complication
that {(4,.S5,)} starts differently from {(J,?',‘,S‘g)} if the first coin tossing

yields & tail. That is, M* is distributed as M given the event F of an initial
head. with G(i,j;A) = Pi(Seh, Jy = ] | F}, it can then be seen in analogy

with Prop. 7.1 that

Proposition 8.1 74e P]- - grsisitilicn af M¥* 18 ihe 1 G campoanent af

the veciar

(- 670+ 6f=u,* (1 - I, Ie. (8.1)

Obviously, G,(,1)/1G,G,ill and G’i’f(i,j)x’!lﬁ*fﬁ,j)ll are both exponential with
rate n, and we thus have to determine Q = [|G, [l and l'.f*: IIG‘{'H. First lin'can

easily be determined in terms of O since removing FC corresponds to
removing mass 1 - &;/n from G,(i,i). That is,

¢
qﬁ = qij',PiF = Gjj n/8i, 1=, ajj = (g5 - 1+ &/ n/é;.

Finally to get @, the Wiener-Hopf identity (3.2) yields



| - Fle) = (1 - Befo1 - 1@/ tn-o0)

and if p < 1 so that 0 is substochastic (and | -/l';‘@(cx,) non-singular for Re o
> 0), arguments of just the same type as in Section 3 yield

Theorem 8.1 H(B} = (n-8)(I -/F\(B)) is given by

H(i,i;8) = -8;A;;(-8) + §; -8, H(i,];8) = —rSiAiJ-(-E), iz].
Furthermare the mstrix O #es disgans? Farm 17 and aniy 7rdet H(B) = O Aas
p mﬂ/f;ﬁf?sﬁ],...,ﬁp with Re By > O and correspanding linesr ingependent
right ergenveciars ey, ., ey Thep else ey 15 eigenvector of

COrTespenaing la the eigenysive p; = 1 - B /v, énd
L ' Pi i‘n

Q= G, = (pyey .. Ppep) (e - ep)"’.

Kemear# &/ The above results are related to [40] in much the same way as
Sections 2,3,7 to [35], cf. the remarks following the proof of Prop. 7.1. In
particular we refind the observation of [40] that the density of M* on (0,e)
is g linear combination of exponential terms. This may be seen, eg., by

noting that

(i) =

Mg

o /-8 (pyey .. ppep) (e ... ep)'1

= (@) ((C=pydn - 87 ey (C=pphn - 837 Tep D ey ey,

648) = nﬁ%—e), so that the mgf. of (8.1) is & linear combination of

terms of the form ((1-p;ly - gl

A different example is g Markov-modulated storage process {Vt}tzo

considered for an interesting special case in Gaver and Lehoczky [14]. Here
¥y maves linearly at rate A(i) when Z; =i and 0 acts as reflecting barrier,

cf. Fig. 2. Letting Ry = It AM(Z.)ds and taking Vo = O for simplicity, it is
‘easy to see along the lines of Section 7 that

y e =R
= max {Ry - Ryl,
T ger 7Y



N

[= 2L SN

Figure 2

that a limit ¥ exists if and only if £ ali)A{i) < 0 and that then

B(Y>u,Z=1) =nli) Bi(M* > u) where M* = max Ry
Dst<oo

{with the usual notational conventions for time-reversion). Letting {Jn*} be
the imbedded jump chain of {Z} (the transition matrix and stationary

distribution can be abtained in a standard manner fram A, n), we have M*
= max {0, 1% e L} where X¥ = AUY Y, with ¥ ¥, Loidd
expanential with unit rate. Thus this model leads to & random walk
problem of M/M/1 type. A minar variant of the uniformisation procedure
discussed above far the GI/M/1 case applies here as well: choose > max
A1 AG»OY and eplit ';C'f,fup into a geometric sum of exponential

variables with rate n whenever .lliul?f_ﬂ > 0.
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