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On Ruin Problems and Queues 
of Markoy-Modulated M/G/l Type 

By S:{jren ASmtlSS8n.. lliJiflersity of Copenhagen 

Abstract 

Exact solutions and approximations are derived for risk processes I queues 
where the arrival intensity and the distribution of claim sizes I service 
times at time t depend on the state Zt of a underlying finite Markov jump 

process. The main mathematical tool is random walks on Markov chains, 
and in parti cul ar Wi ener-Hopf f actori sati on problems and conjugate 
distributions (Esscher transforms) are involved. 

Contents 
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2. 'vIie-fIE'r-Hopf factorisaiion for the- 9e-ne-ral random 'walk oase-
3. 'vIie-ner-Hopf factorisation for the ,..1/G/1 case-
4. Mome-nts and conjugation 
5. The- oye-rshoot and the Cr am~k-Lundbe-r9 approxima*ion 
6. C(,rre-cte-d diffusion approximations 
7. QUE-ue-ing rE-formulations 
8. RE-marks on (;1/,..1/1 "rId t1/M/l modE-ls 

L Introduction 

Ruin probabilities in risk theory and waiting time distributions for queues 
reduce in some basi C cases to just the same random 'vva 1 k f1 rst passage 
time probabil it i es and are then conveni entl y studi ed wi thi n the same 
framework. In particular, this is so for compound Poisson risk processes 
wi U1 uni t premi urn rate and M/G/l queues where 

( 1.1) 

Here 'o/(u,T) is the probability of ruin before tirne T with initial risk 
reset-ve u, and Vt is the virtual waiting time at time t. Nevertheless, when 

formulating more realistic models or more specific questions, risk theory 
and queueing theory (even in the M/G/l setting) may of course lead to 
different problems. For example, premium rates whict1 depend on the 
current risk reserve are of main interest in risk theory but the ruin 
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probBbilities do not correspond to Bny reasonable queueing model. 
Similarly, the study of say other queue disciplines than the FIFO one comes 
up in El number of queueing applications but can hardly be given a risk 
theoret i c i nterpretat ion. 

The present paper is concerned wHh a particular type of generallsatlon 
which, however, seems equally well motivated from the point of view of 
r1 sk theory and queues. Thi s is t/arkcw-modll/at ion: the rate ~ of the 
Poisson arrival process {Nt}t.~O and the distribution B of the claim sizes I 

service times U1, U2, ... are not fixed in time but depend on the state of a 

underl yi ng Markov jump process {Zt} t20 such that ~ = ~i and B = Bi when Zt 

= 1. A sample path of the corresponding risk process 

( 1.2) 

Ztrl __ -=D __ -+,~U~I ____ D~ __ -rl ~U-+I __ =D __ ~U~~D~~IH~~ _____ D~ ______ __ 

Rt 

figure 1 

is depicted in Fig. 1, corresponding to two states U,D (Up and Down) such 
trlat the process has many but small claims and an upwards drift in the Up 
state, and rare but large claims and a downwards drift in the Down state 
(the overall average drift is negati ve correspondi ng to a posH i ve safety 
1 oadi ng). I n part i cuI ar, the arri va1 process is more bursty than the Poi sson 
process in the sense trlat peri ads wHh very fr-equent arr; va1 sand peri ods 
wHh very few arrivals alternate. In health insurance, sojourns of {Zt} in 

certain states could correspond to certain types of epidemics, and in 

t ... 
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automobile insurance, Zt could be the weather type at time t. The Markov 

property may admi tted! y be questi onnab 1 e in some cases, but at 1 east it 
should be noted that H does not require exponential distribution of say 
peri ods of cold weather: usi ng phase-type representat ions (see e.g. Sect ion 
111.6 of Asmussen !9L henceforth referred to as APQ) any given distribution 
may be approximated arbitrarily close. Anyway, the possibility of ol1owing 
the parameters of the process to vary in time seems a major step towards 
more realistic models and better motivated than many other extensions 
like renewal arrival processes. Furthermore it leads, as we shall see, to 
mathematical problems which are tractable or at least ameneable to 
numeri ca 1 computat ions. 

The relevance of Markov-modulation may have been noticed in risk 
theory, but to our knowledge no substantial mathematical results have 
been produced within the setting of compound Poisson risk processes. For 
general random walks some results on ruin problems can, however, be 
found in [251, [4], [161, and also for queues, the subject has received some 
recent attention, see Regterschot and de Smit [35], [40} and references 
there. Briefly speaking .. the state is that algorithms exist which provide 
numerical values of expected waiting times ~W «> and queue lengths ~O«>, of 

~IrW.», VIDIrQ«> and so on in the steady state (T = «} .Just as in the 

one-dimensional case it seems, however .. somewhat more difficult to 
obtain the waiting time probabilities !rJ(\.y'oc->u) themselves and also the 

time-dependent solutions can hardly be evaluated at all (this is a problem 
even in the standard MIMII case, cf. [36] .. [7L and Hie methods of these 
papers do certai n I y not apply in the present general ity). In ri sk theory, 
these quantities are, however, the ones of main importance in view of em 
extensi on of (1.1) to be gi ven in Secti on 7, and one mai n purpose of the 
present paper is to look into approximations (a main recent reference in 
ttlis area is Hoglund [16} which, however, does not seem to substantially 
overlap wi th the present paper). 

The paper is organi sed as follows. We start inSect ion 2 by a tlri ef look 
at Wiener-Hopf factorisation identities for general random walks on 
Markov chains. The literature on this SUbject is extensive ([33], [1 L [2], [3], 
[4], [6], (39]) but also somewhat bewildering, and the results are not 
always easy to compare neither mutually nor with the standard random 
walk case. The formulas presented here are close analogues of those of 
Feller [13] Ch. XII, formulating the results in tenns of measures rather 
than transforms or operators, and also even for the standard case the 
proof may be slighty easier than the usual ones ([ 13L APQ VI1.3). As 
example, some apparently new remarks on a Wiener-Hopf interpretation of 
the rate matrix in matrix-geometric models ([27]) are given as Itvell as 
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some apD 11 cat ions related to [34]. I n Sect! on 3, we speci a 11 se to the M/G/ 1 
setting. Parts of the material IS parallel to but also simpler than [61. [351 
though 8 direct comp8rison is not straightforw8rd. A main new idea here is 
the introduction of a uniformisation (randomisaUon) procedure which 
substantially simplifies the proofs as well as the form of the results. The 
material is of later relevance in connection with algorithmic solutions of 
the Queueing problems (Sections 7,8) as well as the constants in the 
approximations in Sections 5,6 involve the Wiener-Hopf factors. Section 4 
contains some auxiliary material on moments and conjugate distributions 
(Esscher transforms), extending and simplifying [181, [20] (see also [15]). 
In Section 5, we derive computable expressions for the constants of the 
Cramer-Lundberg approximation earlier obtained in [25], [4] as well as we 
show the finite horizon version (first derived by Segerdahl [37] in the 
standard case) and note some versions of Lundberg's inequality. Section 6 
then contains some of the main results of the paper, diffusion 
approximations with correction terms for the finite as well as the infinite 
horizon case. The approximations are of the same form as in Siegmund 
[38], Asmussen [71, and were documented in these papers to have an 
outstanding fit at least in the standard case. For example, the relative 
error is typically < 0.1% when Hie sf:lfety loading is > 18% (in queueing 

terms, when the traffic intensity p is > 0.85). In Section 7 we then give 

some of the relevant translation to queues, and finally Section 8 contains 
some remarks on GI/M/l and M/M/1 models. 

Though the paper does not contain numerical illustrations, tt-le point of 
view is nevertheless largely algorithmical. The aim is to present the 
results (exact solutions and approximations) in a form 'vvhich is ready for 
numerical implementation on a computer. From a computational point of 
view .. some of the main ingredients are 

a) eva 1 uati on of complex moment generating functi ons 6(8) = I e8x6(,jx), 

8ete, and their (real) derivatives 6(k)(8) = fxke8x6(dX), 8eWZ. 

b) rootfinding in the complex plane, i.e. the solution of equations of the 
form g(8) = 0, BeC. 
c) matri x mani pulat ion: deterrni nants, i nverses, 8i genvalues, eigenvectors. 

Here standard routines are available for c), and in presumably most 
examples closed expressions can be found in a). Thus the main difficulties 
seem to be inherent in step b). One should note here, however, that some 
relevant software has been developed by Regterschot and de Srnit in 
connection with [35], and that (private communication) the rootfinding is 
not consi dered a major obstac 1 e. 

I1 
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2. Wjener-Hopf factorisation for the general random walk: cose 

Consi der a random wa] k {Sn} on a Markov chai n {In} (or f1arkov-modul ated 

random walk, cf. APQ X.4). Assuming that (In} has Cl finite state space E 

(say with p elements) and letting Xn = Sn-Sn-l' this means that {(In)(n)} 

is a Markov chain on ExI with transltion function depending only on the 
first coordinate . Thus the process is completely specified by the 
measures F(i,j) = F(i,j;') = F(i,J;dx) given by 

and by the initial conditions (we consider only the case So = Xo = 0 and let 

~i correspond to ""0 = O. We use notation like F for the matrix which has 

the measure F(i,j) as its ij III element, F*6 for the matrix wlth ij III 

element LkeE F(i,k)*G(k,j) and F*n for the n IIJ convolution power of F (we 

identify F*O with the identity matrix I). The total mass of a measure H is 

denoted by IIHIL and IIFI/ stands for ttie matri x (l1F( i ,j )In i ,j e E.TtiUS IIFII 

reduces to the transi t ion matri x P = (Pi j) for {In} whi ch we assume 

i rreduci b I e. I n part i Gular-, 8 stet i onery di stri but ion 11. = (n(O) i E E exi sts. 

Also ~ refers to the time-reversed (or 0'1/5,? process HJn,'X;,)} given by the 

tran~;j t ion function 

Note that thi s corresponds to the usual ti me-reversed transition 
probabilities Pij = n(j)Pji/n(i) when looking at {1n} alone whereas 

rV A/ ~ r-- rv 
F(i,j)!IIF(i,j)IL the conditional distribution of Xl given JO=i, J 1=L is the 

same as F(j,i)/IIF(j,i)I/.. the conditional distribution of Xl given ""o=L J1=i. 

Let finally 

Our goal is to obtain analogues of the formula F = G+ +G_-G_ *G+ used as the 

basic Wiener-Hopf identity in [13J ctl XII (this point of view is also 
followed in APQ). 
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To trlis end, define 
1'+ -1 

R+(i,j;A) = ~i I I(Jn = L Sn EA), 
n=O 

"" 
Ge(i,j) = n(OCL(j,i)/n(O, Ue = I G~n, 

n=O 

"'" 
U+ = I s:n. 

n=O 
Thus R+ is the pre~+ -occupation measure and Ue is the renewal measure 

corresponding to 6e. 

Proposition 2.1 R+ = Ue 

r'ToO! Let n be fixed and write i =10' j=in. Then 

lr'i(1'+ > n, I n = j, Sn E A) = 

. + PiOi1.··· Pin-1.i l"\.- W'(Sk i 0, km, Sn E A I JO=iO .. J Fi 1, .... , In=in) = 
11···1n-l 

.r'V rJ rvr "'"' rv rv 
I Pi i··· Pi i n(in) Ir'{Sni Sk, kin, Sn E A I JO=iwJl=in-lr···,Jn=iO)/n(io) = 

1· 1· V\: R~1- 1. 0 
1··· n-1 

rv rv f'J 

n(j) W'j(Jn = 1, Sn E A; Fn)/1t(i) 

where Fn is the event that n is a descending ladder epoch for {Sn}. 

Summi ng over n, we get 

«' 

= n(j) I G~k(j, i ;A) I n( i) 
n=O 

and since it easily follows by induction that G;k(i"O = n(j) ~k(jJ) / n(O, 
tile proof is camp 1 ete. 0 

Froo! This is just a special case of Prop. 3.2 of Pitman [31 L but for the 
sake of completeness we reproduce the proof. Integrating the identity 

1(\..'1: = L S1; E A) = 
=+- + 

1'+ -1 
+ I I(Jn+ 1 = L Sn+ 1 E A) 

n=O 
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w.r.t. W';J the first three terms become R+(i,j), G+(i,j), I(i,j), and an easy 

conditioning argument shows that the Wli-expectation of the last term is 

(R+ *F)(i,j;A). 0 

Theorem 2.1 F = ~ + 6+ - 6e*6+. Eqiliv(llelltlj/. 

Proof By Prop.2.1 end Lemma 2.1, 
Ue+G+ = I + Ue*F. 

Convolving with 6e to the left we get 

Ue- 1+1%>*6+ = Ge+ 4s>*F - F, 

and subtracting, the result follows. 

Now define 

Then: 

<» 

j.l = jgnXl =.~ n(i) I x F(i,j;dx) 
1,JeE -«0 

lemma 2_2 (a) Sn/n ~ J.l a.s.; 

(2.1) 

o 

(b) If j.l<O thell 116+11 is SllPStoch8Stic (spr(1/6+1D < 1) J·vilBre8s spr-( IISdD = 

1 8nd n IIGeJl = n; 

(c) If j.l>O thell sprOl6e)1) < 1 J·vher88s 116+11 is stochostic (spr(1I6+ID = 1) 

Joj·'ftll n+ = nO - !lGell) 8S posit iVB lefl 8(q8IlVBCloC 

(d) If J.l=O //1811 spr(IIG+ID = spr(1I6dl) = 1. 

Fnlol (a) is well-known and easily proved (APQ X.4). Similarly in (b) it 

follows from Sn -7 00 just as in tt-le one-dimensional case that spr(IIG+ID < 

1 = spr(lIiLII). The way (L is constructed from G_ then ensures that also 

spr(IIGelD = 1, and n 11 Gel I = ft f 0 11 ows from 

.I n.(0Ge(i ,j) = n.(j) r G-(Li)) = n(j). 
leE ieE 

Also (d) and Hie first part of (c) is similar as (b). For the last c1airn in (c), 
note that spr(llGeJI) < 1 i rnp lies that n+ ~ O. Also Theorem 2.1 yi e 1 ds 

I - IIFII = (I - 11%")( I - IIG+II) 
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and multiplying by ft = n.IIFII to the left we get ft+O - 116+/1) = O. 0 

An interesting interpretation of the Wiener-Hopf factorisation can be 
given for Markovs chains of the GI/M/l type having El matrix-geometric 
stationary distribution ([27J or APQ )(.4-5). Here one is interested in the 
occupation measure R_ (defined the obvious way) in the case of a 

Markov-modulated right-continuous random walk given by matrices Fe 1), 

F(O), f(-l), ... with elements F(i,j;l) = ~i(X 1 = 1, J 1 = j) (the stflte le~ of Sn 

is denoted as the If:WBI and the state jeE of ... In 8S the ph8S"'. It is 

well-known and easy to see that R_ has matrix-geometric form, i.e. the 

restriction of R_ to level k> 1 is Rk where R is the restriction of R_ to 

level k= 1. To interpret R, we need the variant 

(2.2) 

of (2.1) which follows by simply interchanging the role of 1:"+ and 1:"_ in the 

proof. The similar variant of Prop. 2.1 states that U~ R_. Taking the 

restri cti on to 1 eve 1 1 and noting that G® is concentrated at 1 eve 1 1 J we get 

%> = R. Trll3t is: 

Coronary 2.1 Toe rete Inetrl~' R in t/erkov c/Jeins lJevillg .5 

me t n~~'-.ge(fme t ric s t e I iont"f(lI dis t ribtlt ion is re/e I ed tot lJe oscendill.~ 

/tJo'de:r lJel~qlJl distriblllion B+ of tlJe lime-Feversed tlorkov-lllodtllt"fle[ 
rv 

nmdom joJo'olk bll mB8l1S of R = ~. TIJ8t .is:, R(Cj) = n.(j)G+(j.,i)/l1.(D 8l1d (by 

the generat i ng funct ion versi on of (2.2)) 

To see that the Wiener-Hopf interpretation of R is more than a 
curiosity, we shall give a short and transparent proof of the results of 
Ramasvv'ami and Latoucl1e [341, covering the known cases where the rate 
matrix R can be found explicitly. Here F(k) = 0, k=-2,-3, ... , and equating 
coefficients in (2.3) we get 6_(-1) = F(-1)J 

1- F(O) = 1- 6_(0) + RG_(-l) = I - 6_(0) + RF(-l), 

F(l) = RO - G_(O)) = RO - F(O) - RF(-l» (2.4) 
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Cose JD f( 1) = w~ J'J·'/Jere w is· a COItI!i1/l !lector 8/ld ~ 8 rm'jo' !lector 
StdJ~t;if ... l/Jl7...q ~e = 1 (here e 1S the column vector with all components equal to 
one). Thi s means that an upwards jump from phase i occurs w.p. wen and 
that the new phase then is chosen according to ~. The occupation measure 
interpretation of R therefore shows that R(i,j) = w(i~'(j) for some row 
vector S'. Normalising such that S· = 11S where 11>0 is the spectral radius of 
Rand Sw = 1, we get R2 = 11R and hence by (2.4) 

R = F(1)(I - f(O) -l1F(-1»-l (2.5) 

which is the desired explicit formula for R (given tl1at fJ has been 
computed which is possible without knowing R, cf. [27] or [34J). 

C 6se:;P F( - 1) = W:Iv J'Jo'nere v is a co Itlmn vector and IX a ro JoJo' vector 
selislying lXe = 1. This means that the phase after a downwards jump 
always has distribution (lI,. Let 

'c-l 
N( 1,2) = ! I (Sn = 1, Sn+ 1 = 2) 

n=O 
be the number of upcrossi ngs from 1 to 2 before ·c and N(2,1) the si milar 

number of downcrossings. Then Ne 1,2) = N(2., 1 ) and hence 

(2.6) 

Recalling that RJ(i,k) is the expected number of sojourns in phase k and 
1 eve 1 1 before 1:"_ g1 yen J O = i, (2.6) can be rewri Hen as 

I R( i ,k)F(k,k'; 1)(lI,(j) = I R2( i ,k)F(k,k' ;-1)(lI,( D. 
k..k'eE k.,k'eE . 

I.e., RF( 1)elX = R2F(-1)eO/, = R2F(-1) and hence by (2.4) 

R = F( 1)(1 - nO) - F( 1)eO/,)-l (2.7) 

giving an explicit formula of similar forrn as (2.5) for R. 
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3. Wlener-Hopf factorisation for the M/6/1 case 

Recalling the basic set-up and notation in Section 1 J and in particular the 
definition (1.2) of the risk process {RtL we let 

MT = sup Rt; M = sup Rt; 'C(u) = inf {t~.o : Rt ) uL 

O~t~T O~t<~ 

Then LJ 'fij(u,T) is the probability of ruin before time T which may 

alternatively be expressed as ~i(MT > u', and Lj 'fij(u) = ~i(M > u) = ~/'t(u) 

< 00) is the probability of ultimate ruin. Further we assume that the state 
space E of {Zt} is finite, say with p elements, and that {Zt} is ergodic 

(irreducibility suffices for this). Then a limitlng stationary distributlon ft 
exists and tl1e average drift of {R t } is 

Rt 
~ - = p - 1 where p =.L ft(i)~irn:iU. 

ft t lEE 

In queueing terms, p is the traffic intensity, cf. [35] and in risk tt-Ieory, 
p -1_ 1 is nle safety loading. We assume throughout that p < 1. 

For tecnical purposes, it nov,,' turns out to be convenient to introduce 
uniformisation, cf. e.g. [17]. To this end, let A = O\iJ) be the intensity 

matrix for {Zt} and choose an \I satisfying \I > ~i-}.ii for all i and a Poisson 

process {Nt} with intensity \I. We then construct {Zt}, {Nt } the following 

way: if H..ft} tias an arri val at a gi ven ti me t where Zt = i, then a cOl n is 

tossed to 9i ve 8n arrivel for {Nt } w.p. ~i/fJ, a jump of Zt to state j w.p. 

Ai/fJ and El dummy event w.p. (fJ+}.ii-~i)/fJ. We let (.T(n) be the t/"arrival 

epoch for {NP and (.T(O) = 0, Sn = Rcr(n), Xn = Sn - Sn-l' I n = Z(.T(n). By general 

results on uniformisation, the stationary distribution for- {In} and {Zt} are 

the s8me, viz. ft, and we have a Markov-modulated random wall( as in 
Section 2 with 

<><> 

J.l = Lft· (~·/fJ I x B·(dx) - 1/11) = (p-1)lrt < o. . Ell 1 le -<0<> 
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Note that the traditional way of imbedding a random walk {S1;} in the risk 

process corresponds to observing {Rt } at the times of claims (loosely 

speaking, we have added some dummy claims of size zero). However, since 
{Rt } can increase only at the times of claims, {RtL {Sn} and {Sn} have the 

same maximum and the same ascending ladder height distribution G+·. 

Since these quantities are what is important for the ruin problem, and {S~} 
is an auxi11ary quantity rather than of intrinsic interest, one may 
therefore as well work with {Snl. The gain is that the descending ladder 

tleight distribution has a particular simple form. 

To see this, the baSic observation is that the Xn (and hence also the Xn) 

eJre of the form Un-T n where the T n 8re exponenti81 with intensity 11. This 

property being preserved by time-revers8l, it follows that G_(i,j)/I/Gji,j)1I 

is the same distribution as that of the -T n (no matter i,j) so that for G_ it 

only rernains to evaluate the matrix a = !lSdI with elements Qij = IiGe(i,j)11. 
Let'F(8) be the matrix with elements 

F(i,j;8) = 1 e8x F(i,j,;dx) = rn:ie-8T ~i[e8U; Jl=jl 
<:<> 

(3.1) 

Note that (2.1) implies 

(3.2) 

and hence 

(3.3) 

for 0 1 Re 8 > - l"j (the truth of (3.3) for all 8 with Re 8 i 0 then follows by 
analytic continuation, using the explicit forms of H_,H given in (3.1) and 

Lemma 3.1 below). We shall need: 

Condit j on 3.1 There exist p-l distinct soltlt/ons A2' ... Ap J·vith Re Ai < 

o to lhe e£1l18l ion det H(8) = o. 
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Note that when p= 1, then H(8) :: 0 is simply the usual Lundberg equation 
(however, the sol ut ion 't occuri ng in the Cramer-Lundberg approxi mat ion 
and Lundberg's inequallty has y>O). We discuss Condition 3.1 somewhat 
further be low and proceed to state and prove the mai n resul t. 

Theorem 3,1 StlfJPose tlN}t Condition J~ / holds and that Pi 1, and let !t(n 

be 8 nOIl-zero row vector Joj''itll n(i)H()\i) = 0, 1=2, ... p, n( 1) = !t, A 1 =0. Tllell 

Q = I + 00111 j'vhere 

1.1 n( 1) 
A2 n(2) 

Ap n(p) 

n= 

Proof We first note that the elements of G+(Aj) are effectively smaller 

U'lan those of 116+11 when Re Ai < o. Since this last matrix 1s substocMstic 

when P< 1 and stochastic when P= 1, '(to'i) must be substochastic which 

implies that I - £+(Ai) is non-Singular. Hence by (3.3) rr.(i)H(Aj) = 0 implies 

n(i)H_(Ai) = 0 whicrl in terms of a means that n(i)a = win(i) where ooi = 

1 +1./11. Hence we have found p different eigenvalues (I) l' ... 'wp for a and the 

corresponding eigenvectors ft( 1 ), ... ,ft(p) which immediately implies that 
n- 1 exi sts and that nO is the matri x wi th rows (01 ft( 1) r .. ' (I)pft(p). Thi s is 

equi veil ent to the assert i on of the Theorern. o 

Remark: As the proof of Th. 3.1 shows, Uien Condition 3.1 implies that a 
cen tIe written on diegonel form (the eigenvfllues of the proof are different 
but all thflt really is required is the existence of lineflrly independent 
ei genvectors). Reversi on of the proof stwv'lS i mmedi ate 1 y that t.he converse 
is also tt-ue. Thet is, the set -up is equi vfll ent to the metri x a to be of e 
spectral form which one intuitively feels is the t.ypical case. When P< 1, it 
is shown in [35] that det H(8) = 0 has exact 1 y p- 1 roots with Re Pi < 0, zero 

as simple root and all other roots have Re p ) O. Some examples seem t.o 
indicate that. when P= 1, then typically det H(8) = 0 has exactly p-1 roots 
with Re Pi < 0, zero as double root and ell other roots have Re P ) o. 
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M(k)(i J') - TxkG (i J' 'dx) - ~(k)(i J' '0) + ,- + 'I - + 'J , 
-* 

lemma 3.1 H(8) = 81 - 5(8) - A JoJo'llera 5(8) is'llla di{}gono/ molrix Joj''itll 

Ilia ~i(Si(8)-1) in Ilia diogonol. FlIrlllarmora Ilia M(k) ore detarminBd by 

5'(0) = I + ,A/11 + 11N( 1), 5(k)(0) = kM(k-l) + 11M(k) I k = 2,3, .. ' 

Proof ObVl ous 1 Y ~i e -ST = 11/(11+8) and e8U = 1 unless an arri va1 occurs, 

Hence 

I.. .. /rl 
1 J 

from wrlich the asserted expression for H(8) follows, Differentiating, we 
get 

" (by induction), Let 8=0 and note that F(O) = I +A./11' 

Havi ng found the fundarnenta 1 matri ces It 00 and thereby 6_, the next 

step is to derive expressions for Hie relevant functionals of 6+ 1 in 

parti cul ar 116+1/ and the M~k), 

Theorem 3.2 nO - 1/6+11) is Illa motn~~' JoJ·'it1l rOJ'VS fl,( 1 \1 - S'(O», 

fl,(2),A/1..2' .. ' ,fl,(p),A/l..p' Simi/er/y, Ilia rm'vS' ol nNit) era ft,( 1 )5"(0)/2, 

n(i)(I - 5'(0) - A/I..i )/I..i ' i = 2, .. , ,p, 

ono'tl1osB of nM(2) tJrB n( 1 )5"'(0)/3 + I 

2n(i)U - 5'(0) - l..i 5 "(0) - A/I..i)/}.i ' 

/,'r .. t"!o/ It follows from (3,2) that 
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I - IIFII - 8M( 1) - 82M(2) /2 - 83M(3) /3! - ... = 

(I - 11 Gel 1 - 8M~) - 82~) /2 - ... ) ( I - /16+11 - 8M~) - 82M~) 12 - ... ) . 

Equating coefficients find recalling that I - IIFII = -A/Tj, IIGell= tt M~k) = 
k! (-Ok Q/Tjk, we get 

-A/Tj = (I - Q) (I - 116+11) 

M( 1) = -Tj -1 Q( I - 116+11) + (I - Q) M~l ) 

M(2) = 2n -2Q( I - 116+11) + 2Tj -1 aM~l) + (I - Q)M~2) 

(3.4) 

(3.5) 

(3.6) 

The idea is now simply to solve recursively for trle matrices 116+11. MCO, 
MU) by (in a similflr mflnner as in the proof of Th.3. t) determining the 
action on the basis vectors n( 1 )/" .. ,n(p). For i=2,. .. ,p it follows from (3.4) 

that 

whereas for i = 1 (3.5) find Lemmfl 3. 1 yi e 1 d 

This shows the assertion concerning 116+11 (note also that since n is 

invertible, I - 116+11 can be computed once nO - 116+11) is known. Similarly, 

(3.5) and (3.7) yield 

n(OMi1) = n(OM(1)! (1-001) + Tj-l wi r/O (i-i1G+II)!(1-wi) 
(') ') C' = n,l (I + A/Tj - 5'(0))/Ai - (),i"- + 1 /TjAi)n l'A 

= n(i)O - 5'(0»)/Ai - fl.(O A/AT 

whereas from (3.6), (3.8) and Lemma 3. 1 

n( 1 )M~) = -Tj -In( 1)(1 - 116+11) + n( 1 )TjM(2) 12 

= fl.( 1 )M( 1) + n( 1 \5"(0) - 2M( 1 »)/2 = ft( 1 )5"(0)/2. 

This shows the assertion on nM~1) and the calculation in the case of 

nM~) is similar though more lengthy. 0 
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4. Moments and conjugation 

We 1 et 'f t (O'v) be the matri x with elements 

Then simple calculations along the lines of the proof of Lemma 3.1 yield 

(d/dt) 'i\(o:,) = '1\ (0:,)(5(0:,) + A -0:,1) 

'Ft (0:,) = et[5(0(.) + A -0(.1] 

and hence 

(4. 1) 

Further e1(o:,) denotes the spectral rfidius (Perron-Frobenius root) of F 1 (O'v) 

and /-O'v) = (/-o:,>CO)ieE the corresponding positive left (row) eigenvector 

normalised by /-o:,)e = 1 (het-e 8S before e is the column vector with 811 

components equal to one). In particular, /-0) = n. 

Remark 4. t It follows by general spectral theory that 1( can alternatively 
be characterised as (log spr(FS»)/S or even simply spr(S(o:,) + A - Ct..i).The 

reason that we have given the definition in terms of F 1 is to facilitate 

comparison with and translation to discrete time t1arkov-modulated 
random wa J ks J where the basi c governi ng parameter F of Secti ons 2-3 
pI ays the roJ e of F l' I n the same manner say the proof of Prop. 4.1 below 

has a sI i ghtl Y more di rect cont i nuous time versi on as we 11 as si mi I ar 
remarks apply at a number of other places. 

Proposi t j on 4. 1 Tlte ftlnet iOIl 1((x,) is strie11...t; cOllvex J'v/tlt 

K' (0) = 1 i m rn: R t .I t = itS' e - 1 
t-'7oo 

1("(0) = 1 irn ~Ir Rt/t = nS"e + 2rr.s'DS'e 
t-'700 

1('''(0) = nS'''e + 3nS'DS"e + 3itS"DS'e + 6itS'DS'DS'e 

(4.2) 

(4.3) 

(4.4) 

Here D = (OO-A) -1 - 00 c!!ld S(k) = S(k)(O) /s //"Ie di8§Ol18ll'll8tri~' J,vlth tlte 

~i[giUk = ~i~ik\O) ill the di8§OIl8/. 

Proof The stri ct convexity is proved in [21 Land di screte ti me versi ons of 
(4.2), (4.3) ar-e in ! 181. [20] (see also [7} p. 140). However., it is not apparent 
how to generalise to K'" and even 018 formula for K" comes out in Cl t-ather 



i ndi rect way. We shall therefore gi "le Hie proof in 

Differentiating eKv = v'F 1 w.r.t. 0(. we get 

full detail. 

(4.5) 

(4.6) 

Noting that 'le = 1 implies 0 =v'e = v"e = '00, letting ex. = 0 in (4.5) and using 

f 1 (O)e = e we get 

K'(O) = nM1e (4.7) 

where M~ = F~k\O). Using the same method for (4.6) the v" terms vanish on 

both sides, but the v' term on the r.h.s. not. However, from (4.5) we have 

n.(M ~ - K'(O)l) = '1'(0)0 - F 1 (0» = '1'(0)(1 +en - f 1 (0», 

'1'(0) = ft(Mj - K'(O)I)O 1 where Do = (I +en. - ~0(0))-1 

(that the inverse exists follows since~o(O) = rJA is an ergodic transition 

matrix with stationary distribution ft). Letting 0(. = 0 and multiplying by e 

to the right in (4.6) we get 

K"(O) + K'(0)2 = nM~e + 2n(Ml-K'(OH)01M1e, 

K"(O) = nM~e - 3K'(0)2 + 2nM1D1M1e (4.8) 

(usingnol =n), and (4.8) is indeed the expression of [20]. Similarly, (4.6) 

yi e 1 ds 

'1"(0) = [2'1'(0) (M1 - K'(O)I) + n(Mf - K'(0)2 1 - K"'O)l)]O 11 

K"'(O) + 3K'(0)2K,,(0) + K'(0)3 = nMye + 3v'(0)nMfe + 3v"(0)M1e (4.9) 

which can be solved for K"'(O). To arrive at the continuous time versions, 

note that eOK(O(.) is the spectral radius of ?s(O(.) so that (4.7) yields OK'(O) = 

nrfse. Since M~ = 0(5' - n + 0(02), (4.2) follows and (4.3), (4.4) are derived 

by similar methods, using M~ = SS" + 0(S2), k = 2,3, 00', Oe =n.O = 0 and 

o 
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Let now h(CI,) be the positive right eigenvector of I\(CI,), l\(CI,)h{CtJ:: 

eK(cx,)h(cx,) J and defl ne f{8) by 

h(8-80)(j) 
F(8)(tj;dX) = e(8-80)X - tK(8-80) Ft(i,j;dX) (4.10) 
t h(8-80)(1) 

where 80 is some arbitrary location parameter. Following [381. [71 we 

assume that a YO with K'(yO) :: 0 exi sts I and 1 et 80 = - yO. Also the 

existence of ay> 0 with K(Y) :: 0, K"{y) < 00 is needed (the discussion of 
such condit ions is muct1 8S in the one-di mensi anal C8se 8nd can be found in 
[18] ). 

It follows immediately from (4.10) that 

1\ h(8-80\ D A 
F(8)(i ,j ;cd = . e -tK(8-80) Ft (i ,j;cx,+ 8-80) 
t h(8-80)(i) 

That is, if .6. 8 is the diagonal matrix with the h(8-80)(0 in the diagonal} 

then 

(4. 11) 

From this it follows by Simple calculations that the rows of IIIt(8)11 :: 

f~S)(O) sum to one and that ~~l = F~S)~lS). Thus we have 8 new 
Markov-modulated continuous time random walk, which for the present 
case can even be interpreted as a ri sk process. The changed parameters 
correspond to arrival intensities and claim size distributions given by 

, b .. b., -B-i ( 0:.+ 8-80) 
P8·i :: ~i Bi ~S-80)' B8·i (0:.) :: Do. J 

I 'tii (8-80) 

and Ule intensfty matrix 4S with ij III off-diagonal element 

h(S-SO)(j) 
).. .. 

1 J h(S-80)( 1) 

The basis for this interpretation is (4.1) and the formula 

(4.12) 
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(here S8(/)(.) = S(8+(X.) - S(8) is the di agonal matri x with the P8'1 (B8(/)(.)-1) 1 n 
J 

the diagonal) which can be obtained from (4.11) after some rather tedlous 
calculations using the formula 

-1 
A8 = 48 AAa + S(8-80) -(K(8-80) + (8-80) I). 

We write 1rJ8;i instead of lrJ i when the process 1S governed by {F(8)}tl0 

rather than {Ft }tl0' and 11.(8) denotes the corresponding stationary 

di stri buU on for {Zt} or equi va 1 entl y the posit 1 ve 1 eft ei genvector for 

l~i8)11. It is immediately checked from (4.11) that 11.(8)(0 = h(B-BO)(i) 

,.,(8-80)(0. Special notation like hL I nL I ~l'1 etc. are used for the lundberg 
I 

case 8l = 80 + y. Note that moments for the 1rJ8'j -process can easil y be , 
obtained in terms of the given le-function in the same way as for a 
standard exponential family. In fact, by (4.11) 

Spr(F~8)(/)(.») = e -K(8-80) sprtF t «(:(.+ 8-80)), 

Thus K8«(:(.) = K(a+8-80) - K(8-80), 

K8(0) = I i m ~8Rt /t = K'(8-80) = n(8)58e - 1 
t~oo 

(4.13) 

and similarly for the analogues of (4.3), (4.4). Note that for 8 = 0 (4.13) 

becomes K'(-80) = 0 while (by convexity) the expression is ) 0 for 8 ) 0 (in 

particular 8 = 8l ) and < 0 for 8 < O' 

lemma 4.1 1[4 T be o' s-Iopplng Illne N':r. t. thB flltrellon Fn = 

cr('-'k,Sk:k.s:n) 8.IlLi Fe Fn ell Bvellt s-etls-fylll...t7 F£{T <~}. T08/; for 8.lly i .. 8 

IrJ iF = 1rJ%;l 

= h(8-80)(i) ~8'i[ h(8-80\.JT)-1 exp{(Bo-8)RT + TK(8-80 )} ; F] , 
( = hl(D ~l) hL('-'Tf 1 exp{-yRT } ; F] when 8 = 8l ). , 

This likelihood ratio identity plays a cr-uciaJ role in Sections 5-6 (for a 
proof.. see [11 L [41 L [22]). We mention at trli s pal tit one further 
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application which will, however, not be spelled out in the present paper. 
This is importance sampling in the simulation evaluation of ruin 
probabil it i es, cf. [81, where T = 1:(u). For example J one may si mulate from 

IPlL;i, obtain Li.d replicates of (J-r(u),R-r(u)) and give estimates of thevij(U) 

based on Lemma 4.1. The details follow [8] in a father straightforward 
manner, and we would feel that the set-up of the present paper adds El 

further main example to [81 of models which are non-trivial to handle 
analytically but can be simulated with great advantage using this 
particular technique. 
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5. The overshoot and the Cramer-lundberg approximation 

If in lemma 4.1 we let T = '(u), 8 = 8l , F = '(u) and define B(u) = Rr(u) - U 8S 

the overshoot, we get 'f"ij(U) = e-)fuC(i,j;u) where 

hL(i) 
C(i,j;u) = -L-· ~l'i[e-¥B(U);J-c(u) = jJ (5.1) 

h (j) J 

Therefore the study of the distribution of B(u) (or rather of the joint 
di stri but i on of J-c(u),B(u» becomes of basi c importance. 

PropoSl ti on 5. 1 SlIppose 8 2 O. Tlten 0 limit (J'(( «-),B( «-» 0/ (J-c(u),B(U» 

os U~oo e~~'fsts in t!le sense 0/ convergence 0/ distributions. T!l6 
distrilmtion 0/ tile lirllit isgive/,lty tile density 

bk(x) = m(8t 1 .2: ft~)(j) G~8\Lk;(X/oo» (5.2) 
JeE 

Ol} tile set {J-c(*) = k}. Here n(8) is tlte sttt/ionory distribt/tion tor 116+11 

ond m(8) =ft~)M~l )(8)e. 

r"rOO/ Obviously (J'(u),B(u» is a semi-regenerative process (APQ X.3) with 

first semi-regeneration point (J'(O),B(O» = (J.'"-t,S-c), and a closer study 

st"lOWS that the given formuiae are simpiy a transiation of standard resuiis 
fot- that setting (trle non-lattice proper-ty being obvious). 0 

F~ro(tf By Prop. 5.1 and general results on weak convergence, the assertion 
holds with 

and it only remains to check that C has the fonTI (5.3). By Prop. 5.1, 

00 
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m(Sl)-l r n,l(l)-( 1 J (1- e-YX) GlO,Ldx) = 
leE+ 0 

(ym(8L ))-1 r ft~1){IIG~(1 ,j)1I - 'G~(1 ,j;-y)} 
leE 

In matrix formulation, this means that C = AL edAL1 where 

(5.5) 

To reduce this expression further, we need to involve also descending 
ladder heights, and here some caution is needed since trlese involve the 
unif ormi sati on parameter 11, whereas the ascendi ng ones and the 
exponential famny construction do not. One way to overcome this 
difficulty is to first fix the uniformisation parameter fl for the given 
process, consider the discrete time Markov-modulated random walk with 
transform F(~) given by Lemma 3.1, and form the corresponding 

exponential family {F(8\ A rather tedious calculation (which we omit) 
then shows that the Lundberg conjugate is given by 

where SL' AL are the sarne as for the continuous-time exponential family 

and 11L = 11 + ''{- That is, Fl can be related to Hie ~L - distribution of {Rt } in 

the same way as F to the ~-distribution of {Rt } (this is not in general the 

case for 8 7. 8l !). In particular, relating the means by an obvious 

Urne-average consideration) we get 11LTt.lM(1)(8L)e = K'(Y), cf. (4.13), and by 

lemma 2.2(c) we may take 

nL = fI.~ 1- IIG~/I) = vl & L( 1- IIG~Il) 

(si nce IIGLlle = e). Then by (3.5) 

m(8L) = ft~M~ )(8l )e = fI.LM( 1)(SL)e = Tie K'(Y) = (l1+Y) -1 K'(Y). 

A 1 so it f 0 11 ows easil y from Lemma 4.1 that 

and hence 
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= ~ hLvL(I- 'fi ('1)) (1- 116 ID 
~'K ('1) €I + 

which is the same as the asserted expression. Cl 

Except for some of the last constant manipulations, et result of the same 
form as Corollary 5.1 can be found in [25L [4L but no algorithms like those 
of Section 3 (and (4.2) for K(Y» were given for the numerical evaluation of 
C. The present approach 1s somewrH3t different and leads also to certain 
related results, for example Segerdahls [37] time-dependent version of the 
Cramer-L undberg approxi mat 1 on: 

( 
T - U/K'(Y) 1 

Coronary 5.2 If'"ij(u,T):: C(i,j)e-YU '*" 3 '" JU-7<». 
(uK"(y)/K'(y) )1/:LJ 

Proof By Lemma 4. 1 , 

hL(j) 
lifl'J'(U,T) = -- e-Yu ~L··[e-yB(u); J ( ) = j, 'feu) ~ TJ . hL(i) ,1 "T U 

It is not di Hi cuI t to see (the detail s are in [10 J) that 'feu) is asymptot i call y 
normal with mean U/K'(Y) and variance uK"(y)/K'(y)3 (c1. Prop. 4.0 and that 

"T(u) is asymptotically independent of ('-''(u),B(u». From this the Corollary 

follows immediately. o 

We finally remark that also various versions of Lundberg's inequality 
easily cor-ne out from (5.1) by obtaining suitable bounds on C(i,j;u). For 
example, obviously L 

h (0 hL(i) 
)1(' ·(u) ~ -- e-Yu ~·('(u) / 00) = "\" w, ,(,u) i --- e-Yu. 
Tl] hL{J') ,(11' ..., ],;t;"eET1J L \ minj h (j) 



- 23 -

6. Corrected di ffusj on approxi ma11 ons 

We now think of the ~O'f 8S fixed and consider a limit where 80 to, u~oo in , 

such a way that ~ = uBO < 0 remains fixed, and shall derive an inverse 

Gaussian approximation with correction terms (of order u- 1) for the 
'ij(u,T). The treatment is an extension of [36], [71 and for the steps whicrl 

are essentially the same those papers may be consulted for more detail. 

Vole Jet 

denote the inverse GaUSSlan distribution corresponding to tt1e first 
passage time of a Brown1an motion with drift ~ to 1 eve 1 e,and 1 et h(~,~) = 
(2)" +s 2) 1 /2_~. Then the Lap lace transform of G( .. h,c) is e -ch()",~) J and a 
suitable version of the functional central limit U1eorem for 
cant i nuous-ti me Markov-modul ated random walks yi el ds easily the 
exi stence of a standard Browni an 1 i mit for 

and thereby as in [36], [7] that 

1\/ 'L. ( .) 
rn:8 'i[e-),\1(o u ;'1:<00] -1- e-h ),,~ 

0 1 

(6.1) 

Here and in the following 1; = 't(u) and K~ means K"(O) = K"(-80) etc. The idea 

is now to invoke also the O(u- 1) terms in (6.1) and to perform a formal 
i nversi on. Thus in the fa 11 owi ng = means up to o(u -1) terms. Den ne 11 = 
(2},+~.2) 1/2/u = (h(),,~)+t)/u. Then Lemma 4.1 yields 

IV 

.• h(8-80\i) 
e-h(.A.,~) f(. !¥J.0." .. (J = D = (6.2) 

h( -80\0 tI;l '( . 

(6.3) 

rv 

In (6.2) it is easily seen that l?-'B;i('..J"( = j) = l?-'8;i(J1(oo) = j) = ni8)(j) where 

n~) is as in Prop. 5.1 (in fact, inspection of the standard proof of the 
exponential ergodicity of finite Markov chains, APQ Xl.l or V1.2, srlows 
that the remainder term is even exponential1y small because of 8-70). If 



- ::14 -

cl,c2 denote the deri veti ves of f[.~)(j), resp. h(~\ 01 h(P)(j), at ~=o., we 

therefore have up to an o(u- 1) term that (6.2) is 

e-h(A/~) (f[.~)(j) + C 1 (h(A,~) + S)/u) (1 + c2 h(A,S)/u) = 

e-h(A,S) (f[.~)(j) + c3/u + c4h(),,~)/u) (6.4) 

where c3 = cl S, c 4 = Cl + C2fl.~O)0). Taylor exp8ns1on next g1 ves 

K(s-80) = KO(S) - KO(SO) = (S2_a'bK"12"," (\V-8~)KO/6 + o(u-3) 

= A~u2 + h 1 (A/sh~o/6u3 + o(u - 3) 

where h 1 (A,~) =(h(A,~) + s)3 - S3. Hence up to an o(u- 1) term (6.3) is 

~8 '1 [e -kt"Ko/Ull + h()"S)B(u)/u - c5 /2u h 1 (A,S)-tq'U2} ~ J'l" = j] 
(j 

where c5 = K~/3KQ. Using (6.1) and similar asymptotic independence 

arguments as in [38L [7} and Sect ion 5 shows that thi s can be wri Hen as 

rn:8cYi[e-A"tKo/U~ J\ =jJ + c6/u e- h(A,O h(A,O - c5/2u fl.~\j) ti2(A.,~) (6.5) 

'yvtiere c6 = rn:O[B(oo) ; J\(oo) =j] and 

Before equating (6.4) and (6.5) we perform one more manipulation. Taylor 
expansion of KO(80) = Ko(8L) shows easily that -yu/2 :: C, +c5~2/2u where 

c5 is the same as above. In terms of order u- 1 we can therefore replace S 
byt = -),u/2, and the only D( 1) term comes from (6.4), 

where 

Combining, we get 
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1. Oueueing reformulations 

For the Markov-modulated M/G/l queue, it will be convenient to assume 
that the underlying Markov jump process is the time-reversed (dual) 
version at} of {Zt} rather than {Zt} itself (this is no restriction since {Zt} 

rJ IV' 

and {Zt} are in one-one correspondance). That 1S, the intensities of {Zt} are 
N ~ ~ M 
Aij = n(j)Ajt!n(i). We let Vn be the state of {Zt} at the n arrival and 

denote by Wn the waiting time of the n III customer, by Vt the virtual 
(V IV 

waiting time at time t and let W,V,V,Z etc. refer to the steady state (which 
is well-defined by standard regeneration arguments). As in Sections 2-3, 

r-/ t"V 

MT is the maximum of {Rt } over [O,T] and MT, {Rt } etc. refers to the process ,...., 
governed by {Zt}. 

Theorem 7.1 Deline n~ = ~ieE n(i)~i' Then 

,....,. n(Ol3i . 
~(W > u, V = 1) = n~ ~i (M > u) (7.1) 

(7.2) 

Proof Just the same sample path argument as in the standard case (APQ 
111.7-8) shows that (taking Vo = 0 for simplicity) 

Vt = max (Rt - ~}. 
Oisit 

Therefore by a ti me reversi on argument, 

~ ,......, 
~n(Vt > u, Zo = j, Zt = i) = Ir'n(Mt> u, Zo = 1, Zt = .D, i.e. 

n(j) ~/Vt > u .. Zt = 1) = nO) lr'i(Mt > U, Zt = j). (7.3) 

Si nee Mt = M eventuall y, it is obvi ous that Mt and Zt are asymptot i call y 

independent. Hence in the 1 i mit (7.3) becomes 

and (7.2) follows. For (7.1), it suffices according to Th. X.4.3 of APQ to 
show trlat j?)(V = i) = n(O~i/n~. This follows for example by a standard 

time-average consideration, identifying ~(V = i) by the asymptotiC 
proportion of arrivals in state i and noting that in a period of length T the 
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present paper certainly substantiates this belief even though fj direct 
comparlson is not straightforward. 

Relations (7.1), (7.2) can be rewritten 8S 

(7.6) 

(7.7) 

Inserting the Cramer-Lundberg approximation (Corollary 5.0 we therefore 
immediately get an approximation for the tails of the waiting times, and 
inserting the corrected diffusion approximation (6.8) yields heavy trflfic 
approxi mat ions. A 1 so the ti me-dependent case can be hand! ed: 

Corollary 1.1 Sl/o/eet to tile limiting proeedl/re of Section 6 (u~*J u80 

= SI TQu2 = TO) 

(7.S) 

Proof This follows by an extension of the proof of (7.2). Let l' = T - T1/4. 
Tt-,en 

jp)i(~1T' ~ u, MT > u) = jp)j(1' < "t(U) ~ T) = 

K~(T - r)/u2 G'(T 0 + c5/u;Z 1 + cs/u) + o(u- 1) = o(u- 1), 

using a formal inversion of (6.6) in the third step. Combining with (7.3) and 
uniform geometrical ergodicity, cf. the remarks following (6.2), we get 

,....; 

n(j) jp)j(VT > u, ZT = i) = n(i) jp)i(MT > u, ZT = j) = 
n(Ojp)i(MTI> U, ZT = j) + o(u- 1) =n.(i)n(j)jp)j(MT'> u) + o(u- 1) = 
n( i)n(j) I~\ (MT > u) + o(u -1 ). 

An approximation of simllar form as (6.7) now follows by replacing 

jp)i(MT > u) by !j 'Wij{U,T) where ~ij(UIT) is the approximation (6.7) for 

~(ij(u,T). The case of the Cramer-Lundberg-Segerdahl approximation (u~oo) 

is similer but easier, and Corollary 5.2 yields 
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(7.10) 

rv 
Also the analogous expression for the ~j(WN > u, VN = i) can be given but 

some calculations are necessary for identifying the constants. In 
particular, one needs to replace the continuous time Markov-modulated 
exponential family by the discrete time one generated by the random walk 
with generic increments U*-T* where U* is a service time and T* an 
interarrival time. The detalls are a matter of routine and therefore 
omHted. 
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8_ Remarks on M/NIl and SI/NIl type models 

From the standard one-dimensional case (see e.g. APQ Ch. IX) one expects 
that the G I IMI 1 and MIMI 1 cases where all Bi are exponent i a I, Bi (dx) = 
0ie-oixdx, are not only simpler but also that descending 1adder heights (~ 
form a detour and that the approach vla ascendlng ones (6+) is more direct. 

We shall not here give all details but only indicate some main steps. 
The crux 1S to determine the distribution of the maximum M* of a 
Markov-modulated random walk {~} where the increments are of the form 

x~ = Un-T n where given Jt= 1, Ji= j the distribution of U1 is exponential 

with rate OJ (not 01!) I A1j(t) = !fli(T lit, Jt~j) is arbitrary, and U1; T 1 are 

independent. Again, we suggest to use an uniformisation procedure to 
relate M* to the maximum M of 8 Markov-modulated random walk {(In,SnH 

with a simpler 6+. To this end, we choose Y') > maXjoj and given ""0 = i, we 

toss a coin w.p. S/Y') for heads. If heads come up, (J 1,-X 1) are chosen 

according to Aij , and if tails come up, we let J 1 = i and X 1 be exponential 

with rate Y'). This means simply that the Un are split up into geometric 

sums of exponential variables with rate TI, but adds also the complication 
that {(In,sn)} starts differently from {(J~~)} if the ffrst coin tossing 

yields a tElll. ThElt is, M* is distributed EIS M given the event F of an initial 

head. With rJl(i,j;A) = !flj(S,(E;A, J1 = j I F), it can then be seen in analogy 
+ 

with Prop. 7.1 th6t 

Proposition 6_ 1 The!fli - distriot/lion of 11* l~'i' tile i tl'J component of 

tllB vBctor 

(8.1 ) 

Obviously, G+(i,j)!IIG+(i,j)1I and d.t(i,j)/IIG1Ci,J)1I are bott, exponential with 

rate Y'), and we thus have to determine Q = 116+11 and If= Ildfll. First otcan 

easily be determined in terms of Q since removing Fe corresponds to 
removing mass 1 - o/Y') from G+(i,1). That is, 

Finally to get Q, the Wiener-Hopf identity (3.2) yields 
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and if P < 1 so that a is substochastic (and I -1ie'od non-singular for Re et.. 

> 0), arguments of just the same type 8S inSect ion 3 yi e 1 d 

Theorem 8. 1 H(8) = (r,-8)(I - 'F\S» is given by 

H(i ,i;8) = -oiAii( -S) + oi -8, H(i ,J;8) = -ojAiJ(-S), 1;t j. 

Ftlrthermore the m(.'1trir Q htJs ditJgontJl form if tlnd only ildet H(S) = 0 htJs 

D SO/tit iOlls ~ 1 " .. '~p J'vitlJ Re ~i > 0 and correspondill§ lillear iIldepe!JdelJt 

light e/ge!JYectors ell .... , ep' Then olso ei is eige/lVec/[ir of Q 

correspo.lldill...f1 to the eige.fn.'8ltli9· Pi = 1 - ~i If/, 8110' 

l(emorJ: li. J The 8bove results are re18ted to [40J in much the same way as 
Sections 2/3J to [35L cf. the remarks following the proof of Prop. 7.1. In 
part i cul ar we refi nd the observat i on of [40] that the density of t1* on (0/00) 
is a linear combi nat i on of exponenti a 1 terms. Thi s may be seen, e.g., by 
not ing that 

~(s) = f/c1fCr,-S) I so ttlat t~le m.g.f. of (8. 1) is a 1 i near combi nati on of 

terms of the form ( l-Pi )rl - 8)-1. 

A di ff erent e>~amp le is a t-larkov-modul ated storage process {V t) tlO 

considered for an interesting special case in Gaver and Letloczky [14]. Here 
Vt moves linearly at rate MD wtlen Zt = i and 0 acts as reflecting barrier, 

cf. Fig. 2. Letting Rt = Jt A(Zs)ds and taking Vo = 0 for simplicity., it is 

easy to see along the lines of Section 7 that 
fV rv 

VT = max {RT - Rt}, 
O~tn 



Figure 2 

th5t a limit V exists if and onl!.l if I rr/i),,(i) < 0 5nd tl1at then 
'-

IV 
I¥'( V > u, Z = i) = n( i) I¥'j (M* > u) where t1* = max Rt 

Oit<oo 

(with the usufll notational conventions for time-reversion). Letting {J~ be 

the imbedded .lump chain of {Zt} (the tr-ansition matrix and stationary 

distribution can tie otltained in a standard manner from A, n), we have f1* 

= max {O .. xt. X'f+~, ... } where x~ = },(Jf-l)Vn with V1,V2, ... Li.d. 

exponential witr, unit rate. Thus this model leads to a random walk 
problem of M/M/1 type. A minor variant of the uniformisation procedure 
di scussed atlove for the G I/M/1 case app J i es tlere as we 11: c~loose fl > rnax 
{),(O-l: A(i»O} and split ~ up into a geometric sum of exponential 

vari at!] es wi th rate fj whenever },LI~-l) > O. 

Ac knovl edge me ot The p rese nt 'Wo r k 'vias do ne mai n J I) 'vi hi 1 e the 8 ut ho r 'vIas vi siti n9 Sta nfo rd 
UniversitlJ. I gratefulllJ ac:kno'v/ledge the hospitalitlJ of the Department of Operations Research 
and a grant from the [Janish .Natural Science Research Council. Thanks also to Ida ... !8rgensen and 
the Department of Computer Science at the University of Copenhagen, to AB Consult in 
Fredericia, to Niels Bach Pedersen and A/S Regnecentralen, and to Mrs. Mac. All 'Were most 
hel pful in the production of the manusct"i pt. 
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