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Abstract: 

We consider the Cox regression model with one continuous covariate. 

Sometimes it is convenient to dichotomize the covariate. In this 

note we propose a likelihood based method of choosing a threshold 

for the continuous covariate. Furthermore we propose a natural test 

statistic for the hypothesis of no effect of the covariate in this 

framework and derive the large sample properties of this test sta-

tistic. The method is illustrated by an application to the influence 

of estrogen receptor level on breast cancer recurrence and mortality. 

1. Introduction. 

In this note we will consider the proportional hazards model (see 

e.g. Cox (1972)) for survival data. We thus specify the mortality 

A. (.) for individual l in the following way 
l 

( 1. 1 ) A. (t) 
l 

i where x is a covariate vector describing the characteristics of 

individual l and A (.) o is a common underlying intensity function. 

In general the components of l 
X can be both continuous and discrete, 

and sometimes it is convenient to discretize a covariate origin-

ally being continuous. This can be the case when the aim of 

the analysis is to use the covariate as a predictor i.e. to divide 

the individuals into two (or more) "risk" groups according to the 

value of the covariate or if the exact measurement of the covariate 

is unreli~le Finally, in some situations a "linear" dependence 

on the covariate is inappropriate and a threshold dependence in 

fact more natural. Sometimes a theoretically based threshold value 
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can be given and applied but one lS often forced to choose it after 

inspection of data. In this note we will consider the case with one 

covariate only and propose a likelihood based method of choosing a 

threshold y. We will thus specify the mortality as follows 

S,y varying 

We will consider the problem of testing the hypothesis H: S=O. 

Note that the parameter y is present only under the alternative 

hypothesis. Davies (1977) discusses hypothesis testing in statist-

ical models with this special feature. One of his proposals is to 

base the test on the normalized score test process (y being the 

'time-parameter'). We will show that the score test process con-

verges weakly to the tied-down Ornstein-Uhlenbeck process ( a 

Brownian bridge normalized to have a constant variance) as the 

number of individuals tends to infinity subject to some mild 

regularity conditions. The theory was developed in connection with 

a study of the effect of hormone receptor level on the recurrence/-

death intensity for primary breast cancer patients, and we include 

a numerical example from that study. For related problems and 

similar approaches see Miller & Siegmund (1982) and Matthews 

et. al (1985). 

2. Mathematical framework and notation. 

In this note we will use the counting process set-up for survival 

data (see e.g. Andersen & Gill (1982)). Let T 1 , ... ,Tn be independent 

lifetimes and c 1f ••• ,Cn the corresponding censoring times. We thus 

observe n independent univariate counting processes N1 , ... ,Nn , 

where N. (t) = I(T.<tAC.) i.e. N. J'umps when individual 1 is 
1 l= 1 1 
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observed to die, over the time interval [0,1]. For mathematical 

cOjfjlvenience in the asymptotic theory we will model the (one-

dimensional) covariates as i.i.d. random variables X1 , ••• ,Xn . 

Let Fn be the ~algebra spanned by X1 , ••• ,Xn and (F~)tE[O,l] a 

right-continuous non-decreasing family of a-algebras; F~ represent 

everything that happens up to time t for the n individuals. 

Introduce G~ = FnvF~. In our set-up, properties of stochastic 

processes such as being a martingale or a predictable process are 

n 
relative to the right continuous family of a-algebras (Gt )tE[O,l]" 

A generalization accomodating more complicated censoring patterns 

than right-censoring is obtained by introducing Y. (e), being pre-
1 

dictable processes taking values in {0,1} and indicating when 

individual 1 is under observation. In the case of right-censoring 

Y. (t) = I(t<C. ,t<T.). 
1 - 1 - 1 

Let 
n 
L N. (t) 

. 1 1 1= 

n 
, Y.(t) = 

n 
LY.(t). 

i=l 1 

For convenience we will drop the superscript n in the sequel. 

3. Statistical model. 

We will now specify a statistical model for the observations by 

modelling the intensity process for (Ni (S))SE[O,l] 

i=1. .. n 

in the following way 

( 3 • 1 ) A . (t) 
1 

Y. (t) A 0 ( t ) exp{ B • I ( X . <y )} 
1 1-

where Band y are unknown real parameters to be estimated and A 0 (. ) 

is an unknown intensity function to be estimated. The parameter y 
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1S thus the threshold, S the effect of having an X-value less 

than yand AO(.) is the intensity function for the underlying life 

time distribution. Note that the model specification (3.1) implies 

that conditionally on Xl = xl' X2 = x 2 ' ... 'Xn = xn and keeping y 

fixed we have a standard proportional hazards model with covariates 

z. = I{x.<y}. The statistical inference for Sand y will be based 
1 1-

on the partial likelihood function L (see Andersen & Gill (1982)). 

n 1 n 
( 3 • 2 ) log L(S,y)=S L N.(l)I(X.~y) - flog ( L Y. (u)exp{SI(X.~y)})N. (du) 

i=l 1 1- 0 i=l 1 1-

In section 4 we will briefly discuss the estimation of S,y and 

AO(·) and devote the rest of the paper to testing the hypothesis 

4. Estimation. 

For fixed y the log likelihood (3.2) 1S known to have nice proper-

ties (see Andersen & Gill (1982)). We can find the maximum likelihood 

. {5 est1mate fJ y for S and the asymptotic distribution of & 
y 

is 

well known, subject to some regularity assumptions. The partially 

maximized likelihood - which is also denoted L -

( 4 • 1 ) L(y) supL(S,y) 
S 

1S piecewise constant between the values of x1 , ••. Xn " Therefore a 

maximum likelihood estimator y for y exists but it is not unique. 

When Sand y have been estimated we can estimate the integrated 

intensity 

t 
AO(t) =£AO(U)dU 
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f 
[ 0, t] 

(See e.g. Breslow (1972)). 

5. Testing HO: B = O. 

We will consider the hypothesis HO: B = O. Standard maximum likeli

hood theory - though based on the partial likelihood function -

suggests that the test of the null-hypothesis should be based on 

the.likelihood ratio test statistic 

GLI 0) J ( LID)) ( 5 . 1 ) -210gQ = -210g = sup -210g f'.. 

L(S,y) y L(By'Y) 

= s~p [-2109 Qy ] 

where Qy = L~O) which is the usual likelihood ratio when y is 
L(By'Y) 

fixed. We can lnterpret -210gQy as the distance between the hypo-

thesis HO: B = 0 and the hypothesis Hy: BER,y fixed. So -210gQ is 

the supremum of such distances. Instead of considering -210gQ one 
y 

could use as a distance IS I normalized by its variance, where S 
y Y 

is the score test statistic for fixed y: 

( 5 • 2 ) s = ~ 109L(B'Y)1 
y aB B=o 

n 
2: 

i=l 
N. (1 )I(X.<y) 

1 1= 

n 
1 2: Y. (u)I(X.s.y 

-f'=11 1-
o n 

2:y. (u) 
i=11 

A natural test statistic for HO: B = 0 based on the score. tests is 

.(du) 

then suplS I (see also Davies (1977)). In order to derive large sample 
y y 

properties of suplsyl we have to make some regularity assumptions 
y 

to be further interpreted below. First we introduce some notation. 

If Ic[O,l] is an interval, tEI, we define 
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B. (€,t;I) = {3sEln]t-€,t] 
l 

Y.(s) t Y.(t)} 
l l 

1 n 
sup lim sup - ~ PB. (€,t;I) 
tEI n~oo ni=l l 

Condition A. There exists a function ~ defined on [0,1] so that 

n P 
(A. 1 ) \:it E [ 0 , 1 ]: u i ~ 1 Y i (t) ~ ~ ( t) • 

and 

(A. 2) dt o 

Condition B. There exists a partition O=t O<t l < .. <tK=l so that 

( B. 1 ) \:ii=l, .. ,K: p(€,]t. 1ft.]) ~ 0 as € ~ O. 
l- l 0 

Condition C. The X. 's are i.i.d. with a common continuous distri
l 

bution function F. 0 

Theorem 5.1 Under conditions A, Band C the process 

( ~l'----'-~SF -1 ( s) 
,I N. ( 1 ) ~ sE [ 0, 1 ] 

converges weakly to the Brownian bridge, 

WO, l' n D [0 1] , . 

Proof F(X l ), ... ,F(Xn ) are i.i.d. and uniformly distributed. 

Having observed this, the theorem is a consequence of Theorem 7.1 0 

1 
Now, Var(S )=F(y) (l-F(y)) (EN.(l) - fAO(u)du) (see Lemma 7.7), 

y 0 
therefore a natural test statistic for the hypothesis H:S=O would 

1 

be based on the process T = (N.(1)F(y)(1-F(y)))~2 S 
Y Y 
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We will discuss two test statistic. The likelihood considerations 

in the beginning of this section lead to suplT I. However, the 
y y 

supremum of the tied-down Ornstein-Uhlenbeck process is +00 

with probability 1. Therefore we must confine ourselves to com-

pact subintervals when taking supremums. For fixed E>O we thus 

introduce 

( 5 . 3 ) 

( 5 • 4 ) 

/\ 

T = 
E IT I y 

(F (0) denotes the empirical distribution function for the X. IS). n 1 

We thus only take supremum over some prespecified fraction of 

Fls support. 

Theorem 5.2 Under conditions A, Band C TE will converge in 

distribution to 

T = sup 
E<s<l-E Is(l-s) 

If, ln addition, the support of F is an interval T will have 
E 

the same limiting distribution. Finally, an approximation to this 

distribution is given by 

( 5 . 5 ) P ( T 2 >t ) '" 4 cp ( t / t + 2 cp ( t) (t - 1 / t )l og ( ( 1 - E / E ) ) 

_1 1 2 
where cp(t) is the standard normal density (2n) 2 exp (-zt ). 

Proof 

Rewrite TE = sup 
E<s<l-E Is(l-s) 

Is -1 I 
F (s) Then the first statement is a 
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consequence of Theorem 5.1. The second statement follows from 

standard probabilis1:ic arguments. Finally, the approximation 

(5.5) is derived in Miller & Siegmund (1982). 0 

For practical purposes T is preferable to T because the common 
E E 

distribution function F is usually unknown. One has to decide 

what E to choose. Should it be 0.05, 0.025? For a discussion on 

this matter see Miller & Siegmund (1982). A simple way of cir-
1 

cumventing this problem is to use IN. (1) sUPlsyl as a test stati
y 

stic. Obviously, this test statistic is less sensitive to signifi-

cance of y's in the tail of F. Finally, the asymptotic distri-

bution of the test statistic is the same as that of the 

Kolmogorov-Smirnov test statistic (a consequence of Theorem 5.1). 

6. Regularity conditions and right censoring. 

In this section we will comment on the regularity conditions A 
1 

and B. Notice that 
1 

~t: ~(t)il so (A.2) implies fAO(t)dt<+oo. Con
o 

versely if fAo(t)dt<oo and ~ 
o 

holds. Interpreting ~(t) as 

is bounded away from zero then (A.2) 

the fraction of individuals under 

study at time t (A.2) roughly says that if the fraction ofindi-

viduals under study is small then the mortality should not be to 

large - in other words if the mortality is high at a specific tirne-

point we have to be sure that we have many individuals under risk 

at that time. 

Roughly speaking Conditon B ensures that the censoring does not 

cluster to heavily such as would be the case if clustering could 

only take place at fixed tirnepoints. In the rest of this section 
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we will discuss the conditions A and B in the case of right-cen-

soring. We will consider two types of censoring, namely fixed 

censoring and type I censoring i.e. the censoring times are i.i.d. 

and independent of the survival times. 

Proposition 6.1. (Fixed censoring) 

Let C. = c. be a fixed censoring time for individual 1. If there 
1 1 

exists a strictly positive function ~ : [0,1] ~ R+ which is con-

tinuous from the left with right limits and a finite number of dis-

continuities so that 

(6 . 1 ) tJ tE [ 0, 1 ] 
n 

1 E I(c.>t) ~ ~(t) 
n. 1 1= 

1= 

and if 

( 6 . 2 ) 

then conditions A and B hold true. 

Proof. Note that 

Y. (t) 
1 

I(T.>t,C.>t) = I(T.>t) I(c.>t) so 
1 1 1 1 

np t 
1 E Y.(t) ~ cp(t)exp{-f)L(s)ds} showing that (A.l) is fulfilled. 
ni=l 1 0 'U 
(A.2) follows from (6.2) and the fact that ~ and thus 

t 
~(t) = ~(t) exp{-f~O(ti)du} is bounded away from zero. Let t 1 , ... ,tk _ 1 

o 
be the jump times for ~ and set to = O,tk = 1. Now 
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B.(E:,ti]t. 1ft.]) = {sE]t. 1,t.]n]t-E:,t]:Y.(S) ± Y.(t)} 
l J- J J- J l T l 

c {t-E:<T.<t}U{t-E:<C.<t} = l= l= 

so 

P ( E: , ] t. l' t . j'< sup P ( t - t < T 1 ~ t ) J- J~ -
1 n 

+ sup lim sup- 2: I(t-E:<c.<t) n. = l 
tE ] t. l' t . ] 

J- J 
tE]t. 1,t.] n~oo l=l 

J- J 

= sup P(t-E:<T l <t) + sup (~(t-E:) - ~(t)) 

tE]t· l ,t.] tE]t· l ,t.] 
J- J J- J 

Since ~ is uniformly continuous on ]t. 1ft.] and Tl has a contin
J- J 

uous distr ibution function we see that p (E:, ] t. l' t . ]) ~ 0 as E: ~ 0 
J- J 

and conditon B holds true 0 

This proposition has its counterpart for type I censoring which 

can be formulated as follows. 

Proposition 6.2. (Type I censoring) 

Let C. be i.i.d. and independent of the T. IS. Assume that the dis-
l l 

tribution function F for C. has at most a finite number of discon
l 

tinuities. If 

( 6 . 3 ) 

and 

( 6 • 4 ) 

1 
fAO(t)dt < + 00 

o 

F(l) < 1 

then conditions A and B hold true. 

Proof. Translate the proof of Proposition 6.1 0 

Finally we will give an example h were one actually needs a part-

ition in Condition B. 
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Example 6.1. 

We will consider the following kind of censoring mechanism: at a 

given time to one tosses a coin to decide whether or not an in-

dividual should be excluded from the study. Formally, let R. 
1 

be 

i.i.d P(R.=1) = 1 - P(R.=O) = aE]O,l[ and define the rightcensor-
1 1 

ing as follows 

2 if R. = 0 
( 6 . 5 ) C. 1 = 

1 
to if R. = 

1 

Let F be the distribution function for C. then 
1 

F(t) = t o< t < 2 

t > 2 

so F as has only one discontinuity and F ( 1) = a < 1 so the ac-

cording to Proposition 6.2 conditions A and B hold true, but it is 

not true that p ( E, [ 0, 1 ]) -+ 0 as E -+ O. 

7. Large sample properties of the score test process. 

Let F be the common, continous distribution function for the X. IS. 
1 

Unless otherwise stated we will throughout this section assume 

that F is uniform. Let N. (s) = I(X.<s). Then the score test Scan 
1 1 

be rewritten 

(7 . 1 ) S 
Y 

= 
n 
L: N.(1)N.(y) 

. 1 1 1 1= 

1 
- J 

o 

n 
L: Y.(u)N.(y) 

. 1 1 1 
1= 

n 
L: Y. (u) 

. 1 1 1= 

N. (du) 
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n 
L: N. (t)N. (s) 

i=1 l l 

n 
L: Y.(u)N.(s) 

t . 1 l l f l= 
o n 

L: Y. (u) 
. 1 l l= 

N. (du) 

Then S = U (Y,l). Let A. (0) denote the compensator for N. (0) i.e. y n l l 

A. (0) is the unique 
l 

M. ( • ) : = N. ( • ) -A. ( • ) 
l l l 

adapted increasing process so that 
t 

is a martingale. A. (t) = fy. (u)AO(u)du. 
l 0 l 

M1 + ... + M , A.= !I. 1 + ... + A . Define ~. n n l,n 
furthermore M.= 

the following way 

Let 

in 

( 7. 3 ) ~. (t) = l,n N. (t) -
l 

t Y.(u) 

J n l 

°L:Y.(u) 

N. (du) = M. (t) -
l 

t Y. (u) 

J n l 

o L: Y.(u) 
i=l l i=l l 

Rewrite (7.2) as follows 

n 

( 7. 4 ) 
n 
L: N.(t)N.(s) 

. 1 l l l= 

L: Y. (u)N. (s) 
t. 1 l l 
Jl= 
o n 

L: Y.(u) 
i=l l 

N. (du) 

n t Y. (u) 
L: N. (t) - f l N. (du) N. ( s) = 

i=l l 
0 

n l 
L: Y. (u) 

i=l l 

n 
= L:~. (t)N.(s) 

. 1 l,n l l= 

n 
Note that L:~. (t)=O. In Lemma 7.2 and Lemma 7.3 below we will 

. 1 l, n l= 
deduce some consequences of conditions A and B. But first we will 

state a lemma for easy reference. 

M. (du) 
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Lemma 7.1 Let Zl,Z2' ... be independent random variables with uni-

formly bounded variances i.e. sup Var(Z ) < + 00. Then 
n n 

1 n 
- 2: (Z.-EZ. ) 
ni=l 1 1 

a.s. 
o 

Proof. See Chung [4] o 

Lemma 7.2 (A.l) and (B.l) imply that ~ is uniformly continuous 

on the intervals ] t. l' t.] i = 1, ..• f K 
1- 1 

Proof. Set I = ]t. 1,t.]- Let tEI,o>O with t-oEI then 
1- 1 

1 n 1 n 1 n 
1~(t-o)-~(t)I<I~(t)-- 2: Y.(t)I+I~(t-o)--2: Y.(t-o)I+- 2: I(Y.(t):l=Y.(t-o )) 

n j =l J n j =l J n j =l J J 

1 n 1 n 1 n 
<I~(t)-- 2: Y.(t)I+I~(t-o)-- 2: Y.(t-o)I+I- 2: IB 120 t 1'- PB J.(20,t;I)1 

n j =l J n j =l J n j =l j\ , j I 

1 n 
+ - 2: PB. ( 20 , t; I) 

n j =l J 

Taking limsup on both sides we see that almost surely - using 
n-+ oo 

Lemma 7. 1 - 1 ~ ( t -0 ) ~ (t) 1 <p (20,1) showing that ~ is uni formly 

continuous on I 0 

Lemma 7.3 Let Zl,Z2' ... be i.i.d. random variables which are in-

2 
dependent of Y1 (. ),Y2 (o ), •••• Assume that EZ l < + 00 and let 

a = EZ 1 . If Conditions A and B hold true then 

( 7 . 5 ) 
1 n 

sup 1- 2: Y.(t)Z. - ~(t) al-+ 0 almost surely 
tE[O,l] n j =l J J 
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Proof Let E > 0 and I = ]t. 1ft.]. Since ~ is uniformly continuous 
l- 1 

on I (see Lemma 7.2) we can choose t i _ l =u O<u l < ... <uN = ti so that 

SUtPE] ] 1~(s)-~(t)I<E;j=O, .. ,n-l and, lettin':J o:=maxlu·+l-u·l, 
s, u j , u j + 1 j J J 
p(O,I)<E. Since the Y.(t)Z.'s have uniformly bounded variances 

J J 1 n a.s. 
- .L: Y. (t) z. -+ ~ (t) ex according to Lemma 7 . 1. We can now choose 
nj= 1 J J 
nO (which is stochastic) so that for n ~ nO 

(7 • 6 ) 
1 n 

1- .L: Y.(uk)z.-~(uk)exl<E; k = O, ... ,N 
nj= 1 J J 

(7 .7) 
1 n 

1- .L: (I z . I .IB (.s: • I ) - El z . I PB . ( 0 , u k ; I ) ) I < E; k = 0, ••. , N 
n j =l J j u,uk , J J 

1 n 1 n 1 n 
I-.L: Y.(t)z.-ex~(t)I<I-.L: (y.(t)-y.(uk + l »z·I+I-.L: Y.(uk+l)z.-ex~(uk+l)1 
n j =l J J Dj=l J J J n j =l J J 

+ I ex ~ (uk + 1) - ex ~ ( t) I 

1 n 
<I-.L: (lz·IIB (.s: .I)-Elz·lpB.(o,uk + l ;I»1 

n j = 1 J j u, uk + 1 ' J J 

1 n 
+ nj:1PBj(O,uk+l;I)EIZl I 

1 n 
+ I nj:l Yj (uk + l ) Zj-ex~(uk+l) I + I ex 1·1 ~(t)-~(uk+l) I 

1 n 
< E + E I z 1 I n j : 1 P B j ( 0 , uk + 1 ; I) + E + I ex I E 

This implies that 

n 
limsup sup 11.L: Y.(t)Z.-ex~(t) 1«2+lexl+Elz I)E 

E nJ'--l J J n n-+ oo t I 

almost surely. 

Letting E -+ 0 through rationals we obtain (7.5)·0 
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Remark. Simple examples show that it is not possible to replace 

Condition C with, say continuity of ~. 

Now we are able to show the following fundamental result. 

Lemma 7.4. Assume that Conditions A and B hold true. For fixed 
1 

tE[O,l], the finite-dimensional distributions of in U (·pt) converge 
n 

t 1. 0 0 
weakly to those of the process (f~(U)AO(u)du)2 W , where W is the 

o 
Brownian bridge on D[O,l]. 

Proof. The basic idea is to apply the standard limit theorems for 

the proportional hazard model (see Andersen & Gill (1982)). If 

Sl, .. ,sm E [0,1] we define Zi,k = I(Xi~sk)' i = 1, .. n; k = l' .. f m 

and Z. = (Z. l' ... 'Z' ). Applying Lemma 7.3 to appropriate sequen--1 1, 1,m 

ces of random variables yields 

n P 
(7 .8) sup 11 L: Y.(t) - ~ (t) 1 -+ 0 

t n. 1 1 1= 

1 n P 
(7 . 9 ) sup 1- L: Y. (t)Z. - ~(t)E!l 1 -+ 0 

t n. 1 1 -1 1= 

n 
~(t)Ez®21 

P 
(7.10) sup 11 L: Y. (t)Z~2 - -+ 0 

t n. 1 1 -1 -1 1= 

(here Z~2 denotes the m x m matrix with (j,k) 'th element Z .. Z. k). 
-1 1,J 1, 

Arguing as in Andersen & Gill (1982), Theorem 3.2 we get that 

1 n 1 
C L: ~. ( • ) z. = cn (U (s.o,.), .. , u (s ,.)) converges in distr ibution 

vni=l 1,n -1 vu n I n m 

to a Gaussian process with independent increments and variance 

f . t ft () () d (E!®l 2 - (E!l) ®2 ) . unct10n -+ ~ u AOU u 
o 
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02 ( ) 02 - ( /\ ) h' h' h Now, E~l - E~l - Sj sk - SjSk j,k w lC lS t e covariance 

000 
matrix for (W (sl))' .. 'W (sk))' W denoting standard Brownian 

bridge. 0 

1 In order to prove the weak convergence of the process/Dun ( oft) 

we need two more lemmas. 

Lemma 7 .5 Assume that Conditions A and B hold true. Then 

(7 • 11 ) 

where 

Proof. 

1 n 2 
P(-L~' (t) >M)~ 0 as n ~ 00 

ni::z:l1 ,n 

1 n 2 '1 n t Y i 2 t y, 
-n L ~ , ( t) = - L {N , (t) + (f ~Y N.) - 2N, (t) f "Y ldN. } 
'11,n D.'11 0'-" 1 0 '-'1' 1= 1= 1 

< ~ N. (t) 
n 

l{'Y.i>O} 
Y. 

(7.11) will follow if we can show 

IN. (t) 
P t 

(7.12) ~ f1jJ(u) AOdu n 0 

t 1{y. >0 } P t 
(7.13) f Y. dN. ~ fAO(u)du 

0 0 

In order to show (7.12) we note that 

It 
= -fEY. (u)AO(u)du no 

t 1 t 
= f E ( - Y . (U))A 0 ( u ) d u ~ f 1jJ ( u ) A 0 ( u ) d u 
OnO 

by dominated convergence and Var (IN.(t) = 
n 

1 n 1 
-2 L Var N, (t) < -
n '1 1 = n 1= 

- E N.(t) -+ 0 .. 
n 
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So (7.12) follows by Cheby~heff's inequality. 

Write f 1{Yy)O} dN. = 
o . 

A +B n n where A 
n 

t t 
B = J HY.)O} dl\. =J HY.(U)O}AO(u)du. 

n 0 Y. 0 

t 
Again, using dominated convergence EB ~ JAO(u)du and Var B ~ 0 

nOn 
B p 0 S" , 1 E 0 N so ~. lnce M. lS a mean zero martlnga e A = . ow n n 

Var(A ) 
n 

t 
= EA2 = Ef 1{Y.)O} n y2 dA. = o . 

t 
EJHY.(u)O} () o Y. (u) A 0 u du 

= fEr, {Ye (U)O}} 
o t Y.(u) 

AO(u)du. By dominated convergence 

E .~ {y . (u) ) 0 }} 
\: Y.(u) = * E{'{tY.(U)Ol} + O. 

flY'(u) 

Again, by dominated convergence, Var(An)~ O. 0 

Lemma 7.6 Let ~"i=1, ... ,n, be random variables with ~~,=O. Let 
1 i=1 1 

Xi"'.'Xn be i.i.d. uniformly distributed and independent of the 
~ ~ 

~ , 's. Let N, (s) I ( X , < s ), N, (s, t) = N, (t) N , ( s ). Then 
1 1 l= 1 1 1 

(7.14) , n ~ ,2, n ~ ,2 ~7.E(~~2,)2 2 'ds 1<s<s2= E ~CN, (s1 ,s) ~~,N, (s,s2) '-'L, (s2-s1) 
'1ll '1ll - '1l l= l= l= 

Proof. The left hand side of (7.14) equals. 

(7.15) 

~ ~ 

Since Ni (s1,s)Ni (s,s2)=O we only have to sum over terms where k*i*l 

and k*j*l. Introduce the convention that ~ means that the summation 

only includes terms with all indices different for instance 

~ = ~ With this convention we can rewrite (7.15) in 
i,j,k i*j,j*k,i*k" 

the following way 
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(7.16) ~ + ~ + ~ + ~ 
i,j,k,l i,i,k,l i,j,k,k i,i,j,j 

where the term corresponding to (i,j,k,l) is 

(7.17) 

(7.18) 

(7.19) 

and 

(7.20) 

Finally 

(7 • 2 1 ) 

2 2 .[ n 2 2 n 4J ~ =(S-S1)(5 2-S) L: E~.~.=(s-sl)(52-s) E(L:~.) -L:E~. 
. . . . . ..... 1 J '-1 1 1 1 
1, 1 , J, J 1 T J 1-

2 2 
~ =(s-s1)(s2- s ) ~ E~'~'~k 

. 'kl "k 1J 1,1, , 1,J, 

~ 
i,j,k,l 

~ L: 
i,j,j i,i,i 

2 
6 ~ E~.~ '~k . . k 1 J 
1, J, 

Collecting terms (7.17) - (7. 21) gives 

o 
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Theorem 7 . 1 

Assume that Conditions A,B and C hold true. Then for each fixed 

1 t 1 0 ° tE[O,l], ~U (~,t) converges weakly to (f~(u)AO(u)du)2W where W 
yn n 0 

is a Brownian bridge on D[O,l]. 

Proof According to Lemma 7.5 we can find M<ro so that 

n 
P (1 I:S. (t)2>M) -+ 0 as n -+ ro Define 

n. 1 1, n 1= 

n 
~. (t)=S. (t)·l{ lI:s, (t)2 < M} and 
1, n 1 , n n. 11" n 1= 

n 
U (s,t) = I:~. (t)N. (s). Notice that 

n i=11,n 1 

n 
(7.22) P (U (., t H' U (., t) ) <P ( ~ I: s . ( t ) 2 > M) -+ 0 

n n = ni=l 1, n 

so Lemma 7.4 implies that the finite-dimensional distributions of 
1 

rn U (.,t) converge weakly to those of the limiting distribution 
n 

indicated in the theorem. Now, Lemma 7.6 shows that 

1~ 1~ 2 1~ 1~ 12 2 
(7.23) El ~U (s,t)-~U (s.,t)1 I;::-U (s2,t)-;::-U (s,t) <7 oM o(s2- s 1) 

y n n v n nl y n n y n n = 

so by Theorem 15.6 in Billingsley (1968) we obtain weak convergence of 

~u (·,t) to the limit stated. But by (7.22) this implies that 
y n n 

1 rnUn(o,t) converges weakly to the same limit. 0 

Remark 1. Let 

that for each 

t 
~(t) = f~(u)AO(u)du. As a matter of fact we have shown 

o 1 
fixed tE[O,l] the process ;::-U (·,t) converges weakly 

y n n 

to a Gaussian process with cOVariallce function (sl,s2) -+ (sl!\S2-s1s2)~(t) 

and for each fixed sE[O,l] the process ~Un(s,.) converges weakly 

to a Gaussian process with covariance function (t1,t2)-+s(l-s)~(t1!\t2)' 
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Furthermore, there exists a Gaussian two-parameter process with 

covariance function ((sl,t 1 ),(s2,t2 )) ~ (slAs2-s1s2)~(t1At2)' namely 

a Kiefer-process where the t-parameter is transformed with the con-

tinuous function ~ (for the notion of Kiefer-processes see e.g. 

Csorgo & Revesz (1968)). Therefore, it seems plausible that, with a 

little bit more effort and perhaps further regularity conditions, 

it is possible to show weak convergence of ~U (of·) in a suitable 
-v n n 

space D[0,1]2 (see e.g. Bickel & Wichura (1971) or Straf (1972» to 

the modified Kiefer-process. o 

. P 
Remark 2. Since 1 N.(t) ~ 

n 

t 
J\jJ(u)AO(u)du 
o 

we can conclude that for fixed tE[O,l] 

verges weakly to a Brownian bridge. 

(see the proof of Lemma 7.5) 

1 
the process ~N)t)Un(·,t) con-

In Lemma 7.7 below we will drop the assumption that the X. 's are 
l 

uniformly distributed but will allow for a general common distri-

bution function F. 

Lemma 7.7 The variance of the U (.,.) is given by 
n 

(7.24 ) 

Proof 

Var U (Sft) 
n 

Var U (s,t) 
n 

t 
F(s) (l-F(s)) (E N. (t) - JAO(u)du) 

o 

n 
Var 2:: ~. ( t ) N. (s) 

i=l l,n l 

n 
= Var(E( 2:: 

i=l 
~. (t)N.(s)I~. (t), i=l, ... ,n)) l,n l l,n 

n 
+ E(Var( 2::~. (t)~. (s) I~. (t), i=l, ... ,n)) 

i=l l,n l l,n 

n 
= 0+ E 2:: ~. (t) 2varN . ( s ) 

i=l l,n l 

n 
F ( s ) ( 1 - F ( s) 2:: E~. ( t ) 2 . 

i=l l,n 



Now, 

so 

- 21 -

~, (t)2 
l,n 

2 ty, 2 
M, (t) + ( fy l i dM. ) 

l 0 . 

E t", (t)2 =' ft [Yi(U)]2 
sl,n ENi(t) + EO Y.(u) 

EN, (t) 
l 

Adding these terms yields (7.24). 0 

ty, 
2M, (t) fyl dM. 

l O. 
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8. An example. 

The present investigation was motivated by a study of the role of 

estrogen receptors as a possible risk factor for low-risk primary 

breast cancer patients; full medical details were discussed by 

Thorpe et al. (1986). Usually the estrogen receptor measurements 

tER.for3shott) aEead~obobm~i~ed~,u~~gg a threshold of 9.10- 15mol/mg 

p~otein i.e. patients with ER < 9 are said to be ER~ and patients 

with ER > 9 are said to be ER+ (though thresholds of 1,2,6 and 19 

have also been proposed in the literature). ER+ patients are ex-

pected to have a better survival than ER7 patients. Since the estro-

gen content in the tumor is strongly related to the menopausal 

state we have performed a Cox regression analysis for both pre-

and postmenopausal patients. For premenopausal patients (n = 193) 

it turned out that the only significant covariate was the ER-status 

('standard' covariates such as tumor size, age, malignancy grading 

etc. being non-significant). To shed some light on the relevance 

in the present data of the conventional threshold of 9, we derived 

the profile log likelihood (for each y, we have maximized over 6), 

c.L fig. a. 

It is seen that there is a peak at y=7 corresponding to 7.10- 15 

mol/mg as the 'best' threshold. We are now interested in the 

hypothesis HO: 6=0. We find ~'t 3.4 (s=1 /20) and sup I Sy I /IN. (1 ) =1 .6 
Y 

corresponding to p-values of 2.3% and 1.6% respectively, indicating 

the significance of ER. For postmenopausal patients (n=498), 

using again the conventional threshold y=9, there were no signi-

ficant prognostic factors. Performing the same analysis as above, 

fig. b shows the profile log likelihood. There is no peak corre

sponding to the insignificance of ER. We find T =0.7 (s=1/20) and 
s 

supISyl/IN.(1)=0.3 corresponding to p-values of 55% and 99% 
y 

respectively both being insignificant. 
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-185 

-190 

GAMMA 

fig. a. Profile log partial likelihood for premenopausal women 

(n=193) 

-525 

-530 

-535L-~~~~~~~~~~~~~~~~~~~~~~ 

o 5 10 15 20 25 
GAMMA 

fig. b. Profile log partial likelihood for postmenopausal women 

(n=498) 
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9. Miscellaneous. 

In this section we will briefly relate the results in this paper 

to two other recent papers. 

Miller & Siegmund (1982) consider the following situation. Let 

x be a quantitative variable being potentially predictive of an 

event E. Values of this variable are available for all individuals. 

For each x we form the 2x2 table 

X<x X>x 

E a b 

c d 

and use max X2 x2=N(ad-bc)[(a+b)(a+c)(b+d)(c+d)]-1, N=a+b+c+d, x' x 
x 

as a test statistic for the hypothesis of no predictive effect 

of X. Miller & Siegmund show, roughly speaking, that (X2) , as 
x x 

a stochastic process, converges in distribution to 

2 
N tends to infinity. Noting that Xx in fact 

is a score test statistic normalised with its (conditional) 

variance we see that this result is similar to ours. 

Wei (1984) considers the proportional hazards model with one co-

variate X i.e. the hazard for a patient with covariate X=x is of 

the form A(t;X)=AO(t)exp{ax},aER, AO(·) is an (arbitrary) intens

ity function. He introduces a goodness-of-fit test statistic for 

this proportional hazards assumption as follows. At each timepoint 

t we calculate the derivative of the log partial likelihood 
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function and insert the proportional hazards estimate of a i.e. 

St=;a log L(a;t) la=Q. Wei suggests that T=S~P S~ could be used 

as goodnes-of-fit test statistic. Wei's argument for using this 

a 
statistic is that aa log L(a;t) has a nice interpretation as a 

difference between the observed and expected number of deaths 

(if X is binary at least) and since a is unknown we replace it 

A 
with the proportional hazards estimate a. He shows that (St)t' 

properly normalised, converges in distribution to a time transformed 

Brownian bridge. Now, consider the extension of the proportional 

hazards model given by A(t;x)=A O(t)exp{(a+Sl{t<T})X} a,S,TER, 

AO(·) on (arbitraty) intensity function. The porportional hazards 

model corresponds to HO:S=O. Note that T vanishes under HO so 

following Davies (1977) we should base a test for HO on the 

process (ST)T where ST=;SlOgL(a,Sr T ) la=~ , L(a,S,T) is the partial 
A S=O 

likelihood function and a is the proportional hazards estimate. 

A little calculus shows that S =S so Wei's goodnes-of-fit test 
T T 

is a natural test for HO:S=O in this model. This suggests that 

the goodnes-of-fit test is good against alternatives with a 

change in the regression coefficient at an unknown timepoint as 

indicated above. 
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