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Abstract: 

Conditions are found for the median estimator of Cornish

Bowden and Eisenthal to be asymptotically normally distri

buted, and expressions are found for the asymptotic bias and 

variance. 

It is seen that the bias is in general of the order of the 

square root of the number of observation points times the 

standard deviation of a single measurement. The results are 

compared with published simulation results. 
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1. Introduction and summary. 

The purpose of this paper is to find the asymptotic proper-

ties of the median estimator of Cornish-Bowden and Eisen-

thal (1974), (1978) and Eisenthal and Cornish-Bowden (1974) 

for the Michaelis Menten parameters. 

The Michaelis Menten relation is given by 

v = 
v c 

max 
K + c m 

(1.1) 

and expresses the relation between the velocity (v) of an 

enzyme reaction and the concentration (c) of the substrate. 

The parameters are V ,the maximal reaction velocity, and max 

K the chemical affinity. m 

We shall consider a design given by concentrations 

c l <c 2 < ... <cn ' where at each concentration an independent mea

surement of the velocity is taken, giving the data vl, ... ,vne 

The purpose is to estimate the parameters Vmax and Km. 

In (1974) the following estimators were proposed by Eisen-

thal and Cornish-Bowden: 

For each pair of points (ci,vi ) and (cj,Vj ) we fit a curve 

of the form (1.1) and calculate 

v. - v. 
K .. = 

mlJ 
J 1 

v./c. v./c. 
1 1 J J 

and 

- c. 
V 

max ij 
J 

c ./v .. 
J J 
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Note that (1.1) is equivalent to 

1=_1_+ ~ 
v V V 

1 . -
c max max 

which gives a simple geometric interpretation of Vmax and Km" 

The estimates are then combined by taking the medians: 

'" K m = med K .. 
i<j ml] 

med V ..• 
i<j maXl] 

(1. 2) 

(1. 3) 

If v./c.<v./c. then v.>v. and the above construction yields l l ]] ] l 

negative values of ~ .. and a modified version was suggested ml] 

by Eisenthal and Cornish-Bowden (1978) as follows: 

and finally 

K* .. 
ml] 

{~ .. = ml] 
00 

if 

if 

V* .. maXl] 
{V ., if 

= maooXl] 
if 

K* m 
- med K* .. 

i<j ml] 

V* max * = med Vmaxij 
i<j 

v./c.<v./c. 
] ] l l 

V . / c . >v. / c . 
] ] l l 

v./c.<v./c. 
] ] 1 l 

v./c.>v./c. 
] ] l l 

(1.4) 

(1.5) 

It was also suggested that one could estimate K /V m max 

and l/V directly as follows: max 
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A A l/v· - l/v· 
K /V med 1 J = l/c. l/C. m max i<j 1 J 

A c./v. - C./v. 
l/Vmax med 1 1 J J = 

i<j 
c. - C. 

1 J 
(1.7) 

and then calculate 

K =(~ /~ fU/~ ) m m max max 

A 

The estimators (1.6) and (1.7) have been investigated by 

simulation methods by Cornish-Bowden (1981), whereas Currie 

(1982) and Atkins and Nimmo (1975) investigate the unmodified 

estimators(1.2) and (1.3). 

What we would like to do is to find the asymptotic distri-

bution of these estimators. This would make the comparison 

with other esti:m-at,orSeasier and supplement the simulation 

results. 

The methods we use is a simple application of the theory 

of U-statistics. This method has been applied before by Sen 

(1968) to the estimation of the slope in a linear regression, 

and it is straightfor,ward ~to apply the same technique to 

this more complicated situation. 

The asymptotic theory of U-statistics was developed by 

Hoeffding (1948) and his results can be applied directly to 

the present situation. 

The reason that the problems and results are somewhat more 

difficult in the non linear regression (1.1) is that different 

transformations of the data appear, depending on which para-

meter one wants to estimate, and these transformations of the 

data destroy the symmetry of the distributions, thus giving 

rise to a bias in the estimators. 
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We find that it is possible to put reasonable conditions 

on the design such that the estimators are asymptotically 

normally distributed, and we find expressions for the bias 

and the variance. It turns out that in general these esti~ 

mators are asymptotically biased with a relative bias of the 

order of III T , where T2 is the variance of a single 

measurement. 

It thus appears dangerous to use these estimates without 

making a careful investigation of the error distributions, 

and if one can do that, it would appear more reasonable to 

apply the model based maximum likelihood estimator which 

has a relative bias of the order T/I~ and a smaller va-

riance. 

Finally some comments on the literature. The estimators 

of the type considered were suggested by Theil (1950) for 

linear regression and investigated by Sen (1968) using the 

technique described here. 

Similar estimators have been investigated for linear re

gression by Johnstone and Velleman (1984) as well as by 

Bhattacharya, Chernoff and Yang (1983), who use a weighted 

U-statistic, in the case where the observations were truncat~ 

ed. In a paper by Scholz (1978) a weighted median regression 

estimator is investigated for linear regression. Finally 

Daniels (1954) used similar ideas to derive tests for the case 

of linear regression. 

The paper is now organised as follows: In section 2 we give 

the relation between the asymptotic distribution of a class of 

median estimators and the theory of U-statistics. 
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In the next sections we apply the results of section 2 to 

the situation where the statistics are derived from i.i.d. 

random variables (section 3) or independent symmetric but 

not necessarily identically distributed variables (section 4) . 

For the comparison with published results it is convenient to 

have a framework in which both Km and Vm can be discussed 

and the most convenient one is that of the random variables 

being transformed Gaussian variables with a small variance. 

Thus the asymptotics is formulated as n+co and 2 
T +0, where 

2 
T is the variance of single measurement. This is done in 

section 5 and finally the results are spelled out in section 6 
A A A 

for the estimators K* v* K /VljV m' max' m max' max and K and V . m max 

Section 7 contains a few numerical examples where the 

results are compared with some previously published results. 

2. Median estimators and U-statistics. 

The basic idea is that results about median estimators of the 

form discussed in section 1 can be derived from results about 

U-statistics. 

To illustrate the idea of the U-statistics, consider for 

instance the estimator (1.4). It is easily seen that if 

is ~he lower median then 

{K* 
m 

< x} = { L 
i<j 

l[in v. - In{V . c.j{c'.~x)} < 
J max J J-' 

K* 
m 

In V.-ln{V c.j(c.+x)}] > !(n)} (2.1) 
1 - max 1 1 . 2 2 

Thus statements about the median can be converted into 

statements about sums of binary variables which are dependent. 
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The U-statistics we shall consider here have the form 

U = 2: 
i<j 

n 
q,(X"X')/(2) 

1 J 

where xl, ... ,Xn are independent, CP(u,v):::;q,(v,u) and Eq,(x.X.)=O. 
J1 J 

The statistic on the right hand side of (2.1) is then a 

linear function of a U-statistic if we define 

and 

q,{(~), (~)} = sign(u-a-v+b)sign(a-b) 

where sign (x) = 21{x > O}-l. We use here the property of the 

design that if i<j then C.<c. and In{c ./(c.+K )} < 
1 J 1 1 m 

In{c./(c.+K )}. 
- J J m 

A linear function of a U-statistic will also be called a 

U-statistic. For later reference we give the relations for the 

other estimators as well; see (1.5), (1.6) and (1.7). 

{ V* max 

A A 

< x} = { 2: 
i<j 

l{c./V. - (c.+K )/x < 
1 1 1 m 

( )/} > 12(n2 )} c . /V . - c J' + Km x 
J J 

{Km!Vmax < x} = { 2: 
i<j 

l{l/V.-x/c.-l/V < 
1 1 max 

A 

{l/Vmax < x} = { 2: 
i<j 

l{c./V.-xc.-K /V > 
1 1 1 m max-

c./V.-xc.-K /V }~ -21 (n2 )} 
J J J m max 

(2.2) 

(2.3) 

(2.4) 
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Note that the relations (2.2) and (2.4) are equivalent. 

We shall throughout work with lower medians, and since only 

asymptotic results are considered, the same results will hold 

for the upper median. 

The statistics on the right hand side of (2.1)-(2.4) are 

U-statistics of the form 

U (x) = 
n 

L 
i<j 

l{U.-u.(x) > 
1. . 1. 

U . -u. (x) } 
J J 

(2. 5) 

where Ul' .•. 'Un are independent random variables and the func

tions u l (0) ' ••• f Un (·) are smooth functions, such that 

u. (x)-u. (x) is decreasing in x, and such that u. (x) is mono-
1. J 1. 

tone in i. 

Note that U. is a suitable transform of c. and V. and 
1. 1. 1. 

that u. (.) 
1. 

only depends on c. , thus 
1. 

(U 'AU. (.) ) 
I 1. 

are re-

lated to the i'th experiment only. Note also that different 

transformations are needed to bring the estimates for 

V into the standard form (2.5). max 

K and 
m 

Thus the results we obtain under the assumption of symmetry, 

say, of the distribution of U. = In V. (section 4) can be 
1. 1. 

applied to the estimator K* , but not to m V* , since then max 

c./V. would not have a symmetric distribution. 
1. 1. 

This is the reason for working in section 5 with the assump-

tion that U i is transformed Gaussian, since if ~n Vi is 

transformed Gaussian then so is c./V. , and the results ob-
1. 1. 

tained can be applied to both the estimator V* max and K* . 
m 

In this section, however, we shall first give a theorem 

which is a special case of a result of Hoeffding (1948) on 

the asymptotic distribution of U-statistics, and then we 

shall give conditions on the moments of U (x) 
n 

which will 
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guarantee that the median estimate KI 
n 

defined by 

will be asymptotically normally distributed. 

(2.6) 

Note that if u. (x) - u. (x) is decreasing in x, then 
1 J 

U (x) is right continuous and increasing and 
n 

(2. 7) 

Theorem 2.1 Let Xl' ... 'Xn be independent random variables, 

and let ~(u,v) be symmetric and bounded, then 

2: 
i<j 

~(X.,X.) 
1 J 

is asymptotically normally distributed with parameters 

{E(U) ,V(U)} provided 
n n 

lim v(un )/n3 = a > O. 
n+oo 

(2.8) 

Proof. The result is a corollary of Theorem 8.1 of Hoeffding 

(1948), since the variables 

= ~l L: E {~ (X . , X . ) I X . } - E{ cP (X. I X . ) } 
n- jfi 1 J 1 1 J 

are bounded uniformly in nand i and hence satisfy the Ljapunov 

condition. 

To apply the result to U (x) and KI we introduce ~ (x) -n n n 

E{U (x)} and a 2 (x) = V{U (x)}. n n n 

Note that ~ (x) is increasing, and we shall assume further, 
n 

2 that ~ (x) is continuously differentiable, that a (x) is 
n n 
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continuous, and that there exists a unique point K , such that 
n 

n fl (K ) = ~ (2). Further let fl' (K ) > 0 . n n n n 

Theorem 2.2. 

If the conditions 

2 3 o (K )/n +a>O, n+oo 
n n 

2 2 o (K +x6)/0 (K )+1, n+oo 
n n n n n 

( 2 .9) 

(2.10) 

(fl (K +x6 )-)J (K ))/x6 fl' (K )+1, n+oo (2.11) n n . n n n n n n 

are satisfied, with 6 =0 (K )/fl' (K ) then K' defined by (2.7) n n n n n n 
2 is asymptotically normal with parameters (K ,6 ). 

n n 

Proof. We find 

p{ (K'-K )/6 ~ x} = P{K'~K +x6 }= p{U (K +x6 )~ ~(n2)} 
n n n n n n n n n 

U (K +x6 )-fl (K +x6 ) 
= p{ n n n n n n 

o (K +x6 ) n n n 

fl (K )-fl (K +x6 ) 
> n n n n n} 

o (K +xo ) 
n n n 

We want to apply Theorem 2.1 to the left hand side, and 

define 

cp .. (u,v) = l{u-u. (x)~v-u. (x)}-p{U.-u. (x)~U.-u. (x)}. 
1J 1 J 1 . 1 J J 

Then Icp .. (u,v)l~l, E{cp .. (U.,U.)} = 0 and conditions (2.9) and 
1J 1J 1 J 

(2.10) ensures that the variance condition (2.8) is satisfied. 

The right hand side converges to -x by condition (2.10), 

(2.11) and the definition of 0 . This shows that 
n 
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P{(KI-K )/6 ::x} -+ p{W>-x} =l-rf,(-x) = rf,(x), n-+oo n n n - ~ ~ 

where W is normally distributed, and cp is its distribution 

function. This completes the proof of Theorem 2.2 and the next 

sections describe some situations, where the conditions of 

Theorem 2.2 can be verified. 

3. The asymptotic properties of the median estimators for 

independent ident~cally distributed variables. 

We shall consider the estimates K' given by (2.7) where 
n 

U (x) is given by (2.5). Now assume that there exists a K, 
n 

such that the distribution function of U.-U. (K) is given by F, 
1 1 

which has density f with continuous derivative' f',where both f 

and flare bounded. We shall call such an F smooth. 

In order to prove the results in this and the following sec-

tions we need the quantities: 

'IT •. (x) 
1J 

'IT. 'k (x) 1J 

> = p{U.-u. (x)- U.-U. (x)} 
1 1 J J 

= JF (u+a .. (x) ) F (du) 
1J 

> > 
= p{U. -u. (x) -U . -u. (x) -uk-uk (x) } 

1 1 J J 

= J [l-F{ u-a .. (x)lJ F{ u-ak · (x) }F (du) 
1J J 

where a .. (x) = u. (x)-u. (K)-U. (x)+u. (K). 
1J J J 1 1 

It then follows that 

]J (x) 
n 

- E{ U (x)}= . n L: 
i<j 

'IT •• (x) 
1J 

(3.1 ) 

(3 .2) 

(3.3) 
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2 o (X) = v{u (X)} = n n E rr .. (x)(1-rr .. (x))+4 E rr"k(x)+ 
i<j 1J 1J i<j<k 1J 

2 E {rr.k(x)-rr .. (x)rr.k(x)-rr,,(x)rr.k(x)-rr'k(x)rr'k(x)} (3.4) 
i<j<k 1 1J J 1J 1 1 J 

and further 

fl' (x) = 
n 

i I 

E 
i<j 

fln (x)= E 
i<j 

ff{u+a, , (x) }f(u)du a~, (x) . 1J ) 1J 

f ftu+a. ,(x)}f (u)du (a'., (x)) 2 
1J 1J 

+ E ff{u+a .. (X)}f(U)dU a!~(x) 
i<j 1J 1J 

rr'. 'k(x) = Jf{u-a .. (x) }F{u-ak · (x) }F(du) a' .. (x) 
1J 1J J 1J 

-f[l-F{u-a .. (x) }]f{u-ak , (x) }F(du)ak" (x). 
1J J J 

(3.5) 

(3.6) 

(3.7) 

Notice, that the assumption, that u. (x)-u. (x) is decrea-
1 J 

sing in x implies, that a .. (x) is increasing in x. 
1J 

With these results we can now formulate and prove the main 

result of this section: 

Theorem 3.1. 

If 

1 2 
E{u'. (x) +! u'.' (x)!} < a l (3.8) 

n, 1 1 
1 

uniformly in x a neighbourhood of K and uniformly in n, and 

if 
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> 2 
L:u~(K)(n+1-2i) -a2n >0 
. 1 

1 

K' is asymptotically normal with parameters 
n 

(3 • 9) 

(3.10) 

Proof. Note that for x = K we get from (3.1) that n .. (K)=~, 
1J 

hence} see 

].1' (K) = 
n 

f f(U)2 dU L: 
i<j 

a~ . (K) 
1J 

= ~(n2)' and since a .. (K) = 0, we have 
1J 

= ff(U)2 dU L: 
i<j 

(U '. (K) -u ~. (K) ) 
J 1 

= f f2 (u)du~Ui (K) (2i-l-n) ::n 2a 2>0. 
1 

Similarly we find from (3.2) that n. 'k(K) = 1/6 and hence that 
1J 

02(K) = !(n) + !(n) which gives the result for 0 stated in 
n 6 3 4 2 n 

(3.10) • 

We now have to verify the conditions of Theorem 2.2. The con

dition (2.9) follows directly from the explicit form for 02(K). 
n 

To check (2.11) note that 

"If ={V (K+XO )-xo ].1'(K)-']J (K)}/XO ].1'(K) In - n n n n n n n 

~ ~ 

=~XO].1I'(K+XO )/V'(K) for SOme Ixl < Ixl. n- n n n 

From (3.6) it follows that ].1~' (x) is bounded by 

If I L: (a!.(x))2+ lfl L: la~!(x)l . 
. < . 1J . < . 1J 
1 J 1 J 
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2 
In a neighbourhood of K this is of the order of n by assump-

tion (3.8). Since ~'(K) is also of the order of n 2 , and since 
n 

o +0, we have verified condition (2.11). 
n 

To check condition (2.10) let 

CPn 
2 I ru 2 = xo a (K+XO )/a (K) n n n n 

for some I~I < Ixl. Now a 2 (K) is of the order of n 3 and from 
n 

2 ' (3.4), (3.7) and (3.8) we find that la (x) I is of the order of 
n 

3 n and again 0 takes cP to zero, which proves condition (2.10) 
n n 

and hence Theorem 3.1. 

Note that in the variance we clearly could do without the 

1 n 
term 4(2)' but the term is retained because it is simple to cal-

culate and improves the approximation of the asymptotic distri-

bution to the exact distribution as given by the simulation re-

suIts. This also holds for the results below. 

As an application of Theorem 3.1 let us consider the original 

problem of estimating K in the Michaelis Menten relation. That m 

is, we consider a design cl< ... <cn ' the function 

u. (x) = In{c.V /(c.+x)}, and assume that 
1 1 max 1 

InV. = In{c.V /(c.+K)} +Zl" where Zl'.'.'Zn are i.i.d. with 
1 1 max 1 m 

a smooth distribution. 

Corollary 3.2. 

The Cornish-Bowden Eisenthal median estimate K*given by (1.4) m 

is asymptotically normally distributed with parameters K and 
m 

[L(n+1-2i)/(c.+K )ff 2 (U)dU]2 
. 1 m 

1 
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provided n+oo, and the design measure converges to a nonde-

generate measure. 

Proof. It is easy to check condition (3.8) with u. (x) 
1 

= In{V c./(c.+x)}. Now since c. is increasing and l/(c.+K ) max 1 1 1 1 m 

is decreasing we have 

~(n+1-2i)/(c.+K ) = ~ (n+1-2i) {l/(c.+K )-l/(c +1 .+K )} 
i 1 m i<n/2 1 m n -1 m 

~ ~ (n+1-2i){1/(c[ ]+K )-l/(c[ ]+K)} 
i<[np] np m nq m 

2 
~n pq{l/(c[ ]+K )-l/(c[ ]+K)} np m nq m 

where p+q=l and O<p<~. 

If the design measure for cl, ... ,cn does not converge to a 

one point measure, then one can choose a value of 

pE]O,~[,such that l!(c- ]+K )-l/(c[ ]+K)t 0, and this verifies Lnp m nq m 

condition (3.9). 

4. The asymptotic distribution of the median estimators for 

symmetric distributions. 

We still consider the estimator K' given by (2.7) but now 
n 

we let D.-u. (K) have distribution function F., which is 
111 

assumed to be smooth with a symmetric density f. (u) = f. (-u). 
1 1 

We define w .. = f f. (u)f. (u)du and TI" k = f{l-F. (U)}Fk(U)F. (du). 
1J 1 J 1J 1 J 

Theorem 4.1. 

If 

1: ~ {I u: (xf I + I u '.' (x) I } 
nil 1 

(4.1) 
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is bounded uniformly in n and in x in a neighbourhood of K 

and 

max If. I 2al 
. 1 

1 

lim! E (IT. 'k-l/S) = a 2>0 
3 . 1J n-7-00 n i<J<k 

2 
E w .. {U'.(K)-U! (K)}> a 3n >0 

i<j 1J J 1 -

(4.2) 

(4. 3) 

(4. 4 ) 

then KI will be asymptotically normally distributed with 
n 

parameters K and 8 2 defined by 
n 

n 
4 E (IT "k- l/S ) + 1/4 (2') 
i<j<k 1J / , 

[E w .. (U!(K)-U!(K))]2 
i<j 1J J 1 

proof. We shall first calculate Vn(x) and cr~(X) in this case 

and therefore evaluate IT .. (x) and IT. 'k(x) given by expressions, 
1J 1J 

similar to (3.1) and (3.2). 

We find 

1T .. (x) = !F.{u+a .. (x)}F.(du) 
1J J 1J 1 

which shows that the symmetry of F. implies that 'IT •• (K) 1 1J 

= !F.(u)F.(du) =~, since a .. (K) = 0, hence Vn(K) = ~(n2). Sim,i-J 1 1J 

larly IT. 'k(X) = IT. 'k for x = K, and hence 1J 1J 

2 cr (K) = 
n 

1/4 (n2 ) + 4 E (IT. 'k-l/S) 
i<j<k 1J 

This shows that condition (4.3) implies condition (2.9) 

of Theorem 2.2. 
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To check the other conditions of Theorem 2.2, we first 

evaluate, see (3.5), 

11 I (K) = E J f . (u) f. (u) du a! . (K) 
n i<j J l lJ 

I 

= E w. . { u ~ (K) -u. (K) } , 
. <' lJ J l . 
l J 

which by condition (4.4) is of the order of at least 
I 

hence ° = a (K)/l1 (K)~O. n n n 

As in the proof of Theorem 3.1 we define 

" 
Y =~ xo jJ n n n 

~ I ~ 
(K+XO )/11 (K) for some Ixl < Ixl. n n 

11 

One finds}see (3.6), that 11n (x) is bounded by 

I 2 
max If. I E {a. . (x) + I a !'. (x) I } 

i l i<j lJ lJ 

2 
n , and 

2 which by condition (4.2) and (4.1) is of the order of n • 

Thus on makes Yn tend to zero which verifies condition 

(2.11) of Theorem 2.2. 

In a similar way one can check condition (2.10) which$hows 

that the result of Theorem 2.2. implies that of Theorem 4.1. 

We shall now apply this result to the case of a Gaussian 

distribution where a more explicit expression can be derived. 

Corollary 4.2. 

2 If Ui is Gaussian with mean Ui(K) and variance ai' and if 

O<b<oi..::. •.. "::'O~<B<oo then conditions (4.1), (4.3), and (4.4) 
, 

suffice to ensure that Kn is asymptotically normal with 
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parameters K and 

4 L [{(Arccos p, 'k)/21f}-1/SJ + 1/4 (n2 ) 
2 i<J'<k 1J o = --~~~----~---=~----------------~--n -~ 2 2 ... 1: 2 [(2rr) L (G. + G,)2(U!(K) U!(K))] 

i<j 1 J J 1 

where 

Proof. 

We have to calculate 

where 

U . -u, (K) 
J J 

= p{U.-u. (K) - U.+u. (K) > 0 and 
1 1 J J 

Now the correlation between X and Y is just -Pijk and then 

it is known that 

I p. 'k' 1J 

P(X~O, Y~O) =(Arccos Pijk)/2rr. Note that 

2 2 2 2 2 -1: < G./{(bO./B+G.) ().+0.)} 2 
J J J J J 

-1: -1: 
= {~B/(B+b)} 2 < 2 2 

and hence that 
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n 
L: (rr. 'k-l/8) > rrE:(3)/8 

i<j<k 1J 

which shows that in condition (4.3) the boundedness of the va-

riances imply that a > O. 
2 

If further 22' 0l= ... =on one could have obtained this result from 

Theorem 3.1 since then the errors would have had the same distri-

bution. Thus vle have: 

Corollary 4.3 

If U, 
1 

is Gaussian with mean u, (K) and variance 
1 

2 ° ,then 

condition, (3.8) and (3.9) imply that KI 
n 

is asymptotically 

normal with parameters K and 

0 2 
1:.(n) + 1:.(n) 
6 3 4 2 = n 

[_1_ 2 L: {u! (K) -U!(K)}] 
o/4rr i<j J 1 

It is tempting at this point to compare with the maximum like-

lihood estimator which, under similar conditions on the design, 

see Jennrich (1969), is asymptotically normal with parameters K 

and 

2 
°ML ~ 

where u' (K) = 1:. L: u! (K) . n. 1 
1 

From the inequality 

- 2 2 - 2 {L:(n+1-2i) (U!(K)-u'(K))} < L:(n+1-2i) L:{U!(K)-U'(K)} 
. 1 l' , 1 

1 1 

it follows that lim O~L/O~ < 3/rr = 0.95. 
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Thus the efficiency of the median estimator is at most 

95 % if the underlying distribution is Gaussian. How large 

the efficiency is depends on the inner product of the vec-

tors {n+1-2i} and {u~ (K)}. 
1 

5. The asymptotic distribution of the median estimators 

when the distribution is a transformed Gaussian variable 

with a small variance. 

In order to derive properties of the median estimates of 

the Michaelis Menten parameters K and V , it will be ap~ m max 

parent from (2.1)-(2.4) that different transformations of the 

observations are needed. The assumptions made in section 3 

and 4 are not invariant under transformation. Thus for in-

stance if we assume, as in section 4, that' 

InV.-ln{c.V /(c.+K)} has a symmetric distribution, then 
1 1 max 1 m 

l/V.-(c.+K )/c.V will not have a symmetric distribution. 
1 1 m1 1 max 

Hence Theor.em 4.1 can be applied to K* but not to V* m max 

In order to find a framework in which the asymptotic 

properties of both estimators can be found, we shall assume 

that the measurements are smooth transformations of some 

Gaussian variables with a small variance. This class of mo-

dels is clearly invariant under smooth transformations of 

the ohservations and thus allows both estimators to be in-

vestigated. 

Unfortunately the analysis shows that a bias may appear, 

and this will be discussed further below. 

Hence let us again consider the est.imate K' given by 
n 

(2.7), and let us assume that W. are independent Gaussian 
1 

2 2 
variables with mean w. (K) and variance T./~ , and that 

1 1 n 
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U. = h(W.), and u. (x) = h{w. (x)}, where h is twice conti-
1 1 1 . 1 

nuously differentiable in a neighbourhood of w. (K) for all i. 
1 

We introduce the shorthand notation h. = h{w. (K)}, 
1 1 

h! = h I {w. (K)} , and h! I = hi' {w. (K) } • 
1 1 1· 1 

For large A we have that U. is approximately normally n 1 

2 2 2_ 2 I 2 distributed with parameters h. and a./A , where a.-~. (h.) . 
1 1 n 111 

rv 
Hence 11 .. (K) given by (3.1) will be only approximately equal 

1J 

to ~, and in the following we shall apply an Edgeworth ex-

pansion to show that this may introduce an asymptotic bias 

in the median estimators. 

We can then formulate the main result: 

Theorem 5.1. 

k -2 
Assume that A +00 such that n 2 A +0 and that 

n n 
2 2 O<b<al< ... <a <B<oo and u. (.) satisfy conditions (4.1), 

- - n 1 

2 2 -k 
(4.3), and (4.4), with w .. = {2'TT(a.+a.)} 2.Further we want 

1J 1 J 

hi and hi' to be bounded and [hi[~a>O 

Then K' is asymptotically normally distributed with para
n 

meters 

and 

K -

L; 

i<j 

h i hi' 3 
( i j 2 2 2 2 - 2 
--=2 --2) a . a . (a . +a . ) 
(h!) (h ~ ) 1 J 1 J 

1 J 
2 2-~ 

L; (U~(K)-U!(K))(a.+a.) 
i<j J 1 1 J 

-1, . 2 2 -=1,. 2 
[A (2'TT) 2L; {U~(K)-U!(K)} (a.+a.) 2] 

n i<j J 1 1 J 

2 2 2 2 2 -~ 
where p. 'k =a ·/{ (a. +a.) (a .+ak )}. 1J J 1 J. J 

(5.1 ) 

(5. 2) 
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Thus the same results hold as for the Gaussian distribution, 

as given in Corollary 4.2, but for the bias term in (5.1). 

Proof. The technique for proving this result is the same as 

before except for the bias. Let us consider 

7f •• (K) = P {U. -u. (K) > U . -u. (K) } 
1J 1 1 ~ J J 

= P {h(W.)-h(w. (K))>h(W.)-h(w; (K))} 
1 1 - J J. 

An Edgeworth expansion, see for instance Bhattacharya and 

Ghosh (1978) shows that 

h.' , h' , 
j 2 2 2 2 -3/2 -2 

7f •• (K) 
1J 

1 _ __ 1 __ ( l. = "2+ 
212TI:\ (h!)2 

n 1 

--=<-=2)0.0.(0.+0.) +0(:\) 
(h.) 1 J 1 J n 

J 

Thus 

where c n ' given by 

C = 
n 

h! ' 
1 L ( 1 

212TIn2 i<j (h~)2 
1 

is bounded in n. 

h i I 

j 2 2 2 2 -3/2 
-~=2)0.0. (0.+0.) 
(h. ) 1 J 1 J J 

J 

Similarly we can expand the expression for ~'(x) ~" (x) 
n ' n ' 

2 .. 2' o (x), and 0 (x) and keep the term corresponding to the 
n n 

Gaussian approximation. 

We find,that ~'(K) 
n 

2' 3 
o (K) E 0 (:\ n ). Now 

n n 

223 
and ~"( K ) E 0 (:\ n ), 0 ( K ) E 0 (n ) and n nn 

K is defined by 
n 
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which gives the bias 

K -K 
n 

2 -3 -cn/;\]J'(K)+O(;\ ). 
n n n n 

2 2 2 -1 An expansion of 8 (K ) shows that 8 (K ) =8 (K) (1+0 (;\ )) 
n n n n n n 

which shows that K can be used in the expression for the 

asymptotic variance. 

The actual proof follows the same lines as the proofs for 

Theorem 3.1 and 4.1. 

-2 Note that the bias is of the ordI3:::- of;\ , i. e. the order 
n 

of the variance of a single measurement, and that the rela-

tive bias is 

(K -K)/8 n n 
k 

~ (nV(U)) 2 

which in general will be large. Thus an appreciable bias can 

be expected in the median estimators, even under the usual 

assumption of Gaussian errors. 

-2 k 
The assumption;\ n2~0 ensures that the remainder term in 

n 

the expansion of K can be neglected, since 
n 

;\-3/8 EO(;\-2n~)Eo(1). 
n n n 

6. Application of the asymptotic results to the median 

estimators of Cornish-Bowden and Eisenthal. 

We shall now return to the estimators given in section 1. 

and find the asymptotic distribution under the assumption 

that is usually assumed in the simulation results: 
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2 2 V.'VN{V c./(c.+K ),T./A } 
l S max l l m l n 

where A +00 
n 

-2 k 
such that A n 2+0 and where N denotes the normal n s 

distribution censored at s>O, so as to give strictly positive 

values of V .. Note that the function x+max(x,s) is a smooth 
l 

transformation of x in the interval ]s,oo[ and so is 

-1 In(max(x,s)) and max(x,s) 

The relations (2.1)-(2.4) express the statistics 

* * /\ /\ /\ 
K ,V ,K /V and l/V in the form (2.6) for suitable m max m max max 

choices of U. and u. (.). In all cases we can apply the re-
l l 

sults of section 5, since we have a smooth transformation of 

the underlying Gaussian variables with a small variance. 

Theorem 6.1. Let V.'VN {V c./(c.+K) ,T~/A2} where 
l s· max l l m l n 

2 2 
O<b:::T 1 < ... :T n <B<oo and o<a<c l :5.. e' ;::cn <A<oo are chosen such that the 

limiting design measure is not equal to a one point measure, 

* then if (4.3) holds, K is asymptotically normal with parame-
m 

ters K and 
m 

1 n 
4 L: {~rccos p .. k) /2Tr-l/8}+ -4 (2) 

8 2 = i<j<k lJ 

n [A (2Tr)-~ L: {l/c.+K )-l/(c.+K )}(0~+0~)-~)2 

2 where 0. 
l 

and 

n '<' l m J m l J 
l J 

= T~(l+K /c.)2/v 2 
l m l max 

p. 'k lJ 
222 2 2 ~ = 0. / { (0. +0 .) (0. +0k ) } 
J l J J 

(6.1 ) 

Proof. The result follows directly from Theorem 5.1 by the 

choice h(x) = In{max(x,s)} which gives u. (x)=ln{V c./(c.+x)} 
l max l l 

which is seen to satisfy the conditions (4.1) and (4.4). The 

bias term disappears in this case, since h~ '/(h!)2 = -1 for 
l l 

all i. 
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Theorem 6.2. Under the same assumptions as in Theorem 6.1 it 

* holds that V is asymptotically normally distributed with max 

parameters 

and 

v -max 

V4 

<[12 \' ( )( 2 2)-~ (, {.., C . -c . 0 . +0 . 
n i< j 1 J 1 J 

[4 

0 2 
max 

= 
n 

-~ A (2'lT) 
n 

2 2 -~ 2 t:: (c. -c .) (0. +0 . ) ] 
i<j J 1 1 J 

where now 0~ = (T~/C~){(c.+K )/V }4 
1 1 1 1 m max 

Proof. In this case 

2 2 V./c. 'V N {V /(c.+K), T./(C.A ) } 
1 1 E max 1 m 1 1 n 

( 6.2) 

6.3) 

-1 
and we then take h(x) = {max(x,E)} and hence u. (x)=(c.+K )/x. 

1 1 m 

It is easily seen that u. (.) satisfies conditions (4.1) and 
1 

(4.4), and since 

h! '/(h!)2 = 2V /(c.+K) 
1 1 max 1 m 

we find the expression for the bias and variance. 

Thus one would expect to find a relative bias in the di-

stribution of V which is not negligible. max 

For the usual assumption that V. is (censored) Gaussian 
1 

one finds a bias for V but not for K . This is not due to 
max m 

the censoring but to the lack of symmetry in the distribution 

of l/V .. 
1 
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If instead we assume that lnV. is Gaussian then again 
1 

* * K will have no bias, but V will be biased. If, however, m max 

* we assume that l/V. is Gaussian, then both K 
1 m 

* and V 
max will 

be asymptotically unbiased. Thus the bias properties depend 

crucially on the underlying distribution. 
A 

For later use we give the results for K /V and m max 

A 

V max 

Theorem 6.3. Under the assumptions of Theorem 6.1 it holds 
A A 

that Km/Vmax is asymptotically normally distributed with 

parameters 

and 

K 
m 

V max 

where o~ 
_1 

4 

V max 
{ 2 2 2 2 -3/2 

L: c./(c.+K )-c./(c.+K )}o.o.(o.+o.) 
i<j 1 1 m J J m 1 J 1 J 

,2 ~ 2 2-~ 
I\. ~ (1/ c . -1/ c . ) (0. +0 . ) 

n ., J 1 1 J 
l<J 

} 1 n 
L: {(Arccos P1· J· k )/2n-l/8 + 4(2) 

i<j<k 

2 4 = T . { (K +c.) / (c. V )}. 
1 m 1 1 max 

Theorem 6.4. Under the assumptions of Theorem 6.1 it holds 

that l/V is asymptotically normally distributed with pa-max 

rameters 

and 

1 
V max 

2 2 2 2 -3/2 V L: {l/(c.+K )-l/(c.+K )}o.o. (0.+0.) 
max i < j 1 m J m 1 J 1 J 

2 2 2-~ A L: (c. -c . ) (0. +0 . ) 
n '<' J 1 1 J 

1 J 

82 
n 

4 L: {(Arccos p .. k) /2n-l/8}+ 1:. (n) 
i<j<k 1J 4 2 

= 
[A (2n)-~ L: (c.-c.)(0~+0~)-~]2 

n i<j J 1 1 J 
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where 0~ = T~C~{(K +c.)/(c.V )}4. 
1 1 1 m 1 1 max 

This last result can of course be derived from Theorem 6.2, 

but is given here because of the numerical illustrations in 

section 7. 

It is seen that both K Iv and l/Vmax are biased, and m max 

a multivariate version of this theory, which we shall not 

go into details with, shows, that for K the bias still 
m 

remains. Thus from the point of view of asymptotic bias the 

* estimator K is to be preferred to K in the case of an un-m m 

derlying Gaussian distribution. See also the comment by 

Currie (1982) p. 915. This property still depends on the error 

distribution, and if l/V. has a Gaussian distribution then 
1 

all the estimates will be unbiased. A comparison of the va-

A * 
riances of K and K was too complicated to give a simple m m 

answer and will not be reported here. 

'U 'U 
We shall finally turn to the estimates K and V pro-m max 

posed by Cornish-Bowden and Eisenthal in (1974). These 

estimators were later given up because it was felt that their 

bias was too big. The simulations of Currie (1982) indicate 

that this is sometimes the case, depending on the design. 

We shall give here the asymptotic properties of the two 

unmodified estimators. 

Theorem 6.5. Under the conditions of Theorem 6.1 and the fol-

lowing extra condition on the design: 

c . +l-c. > aln, i=l, ... , n, 
1 1-

( 6 • 4) 
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it holds that K is asymptotically normal with parameters m 

K 
m 

2 2 2 2-k 
L: ( 1-cP [A V {I / ( c . + K ) -1 / ( c . + K )} { T . / c . +r: . / c .} 2 ] ) 

i < j n max 1 m J m 1 1 J J 

-k 2 2-k A ( 2 TT) 2 L: {l/ (c . + K ) -1/ (c . + K )} (0 . +0 .) 2 

n '<' 1 m J m 1 J 
1 J 

and a 02 given by (6.1) and 0~ = T~(l+K /c.)2/v 2 n 1 1 m 1 max 

Similarly ~ is asymptotically normal with parameters (6.2) max 

and (6.3) except that an extra bias term appears, which is 

equal to 

2 2 2 2-k 
L: (1- cp EA V {I / (c i + K ) -1 / (c . + K )}{ T . / c . +;t . / c .} 2 ] ) 

. < . n max m. J m 1 1 J J 
1 J 

-lz A (2TT) . n 
L: 

i<j 

2 2-lz (c . -c . ) (0. +0 . ) 
1 J 1 J 

2 2 2 4 here 0, = T.c.{(c.+K )/c.V } 
1 1 1 1 m 1 max 

Proof. 
'V 

The estimate K = med(V.-V.)/(V./c.-V./c,) is investi-
m i<j 1 J J J 1 1 

gated as follows: 

'V 
{K <x} = 

m 
{ L: 1 { (V. -V. )/(V ./c . -V. /c,) 

1 J J J 1 1 

where 

and 

i<j 

'V 
U (x) 

n 

cp{ (:), (~)}= sign(v/a-u/b)sign{v(l+x/a)-u(l+x/b)}. 

Thus ~ (x) is a U-statistic and its moments will determine 
n 

'V 
the asymptotic properties of K . We want to compare these 

ID 

* moments to those of U (x) = 
n 

gated in Theorem 6.1. 

L: 
i<j 

* l{K .. <x} which were investi-
mlJ-
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We now find 

'U 
l{K .. <x} = l{V.-V.<x(V./c.-V./c.) and V./c.>V./c.} 

m1J- 1 J- J J 1 1 J J 1 1 

+ l{V.-V.>x(V./c.-V./c.) and V./c.<V./c.} 
1 J- J J 1 1 J J 1 1 

= 1 {V. (c. +x) / c . <V . (c . +x) / c. and V. / c . > V . / c . } 
1 1 1- J J J J J 1 1 

+ l{V. (c.+x)/c.>V. (c.+x)/c. and V./c.<V./c.} 
1 1 1- J J J J J 1 1 

Now 

V./c.<V./c. =>V. (c.+x)/c.<V. (c.+x)/c. 
1 1 J J 1 1 1 J J J 

hence the first indicator function equals 

l{V./c.<V./c.} = Z .. say 
1 1 J J 1J 

and the second becomes 

* l{V. (c.+x)/c.>V. (c.+x)/c.} 
1 1 1- J J J 

= l{K .. <x} m1J-

'U 
Thus U (x) 

n 

Hence 

* = u (x)+Z , where Z = n n n L: Z ... . . 1J 
1<] 

?J 2 (x) = a * 2 (x) + V ( Z ) + 2V ( Z , tf (x)). 
n n n n n 
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2 Now we shall prove below that E(Z )EO(n I~ ) and 
n n 

V(Z )EO(n3/~2) which shows that V(Z ) and V(Z ,~ (x)) are 
n n n n n 
*2 

0(0 (x)). Thus for the calculation of the asymptotic va
n 

* riance we can use the result for K given in (6.1), since 
m 

'V * ~I (K) = ~ '(K). The term E(Z ) induces a bias however. The 
n n n 

bias term due to the transformation h(x) = In(x) becomes zero, 

since h~ '/(h!)2 = -1 for all i, hence 
1 1 

= ~ (KI) +E (Z ) n n n 

giving, as in section 5, 

i. e. 

as the leading term in the bias. 

We then find 

E(Z ) = L P(V./c.<V./c.) 
n i<j 1 1 J J 

o:! L (l-~ [~ {V 
. <' n max 
1 J 

l(c,+K )-V 
1 m max 

2 2 2 2-k I (c . + K )}{:r. I c . +T. I c .} 2 ]) 
J m . 1 . 1 J J 

where only the leading term corresponding to neglecting s 

has been kept. Combining these results we get the bias for 

'V 'V 
K . To complete the proof for K we have to prove that E(Z )E m m n 

2 2 O(n lA ). Under the assumption that T. and c. are bounded away 
n 1 1 

from 0 and 00 we find that 



-30-

2 2 2 2-~ {V I(K +c.) (K +c.) }{T ./C.+T ./c.} 
max m l m J ~ l J J 

is bounded below by d>O, and from (6.4) we get that 

c.-c.>(j-i)a/n. Thus 
J l-

E(Z)< E [l-~{A d(c.-c.)}] 
n - ., n J l 

l<J 

< E [l-~{A da(j-i)/n}] 
., n 
l<J 

Now let m = A da/n, then we get 
n 

~ E [~{m(k+l)}-~(mk)]. 
i < j j -i;;;k<n 

n 2 
The first term is bounded by (2)/nmEO(n IAn) for large va-

lues of A . 
n 

The second term equal$ 

~(n-s) ~ [~{m(k+l)} 
s s<k<n 

< n 
m k<n 

-m (k+l) 
f u~ (u) du 

mk 

- ~(mk)] ~ n ~ k[~{m(k+l}} - ~(mk)J 
k<n 

This that E(Z ) 2 The result about V (Z ) proves E O(n lA ). n n n 

can be proved via a relation similar to (3.4), and we have to 

evaluate terms like p(V·/c. < 
l l Vj/c j < Vk/ck ) . Now let 

x = V./c. - v./c. 
J J l l 

and x and Y are 

jointly Gaussian with a negative correlation p. It is then 

easily seen that p(X>O, Y>O) is increasing in p and hence 

that P(X>O, Y>O) < P(X>O) p(Y>O). Thus with m = A da/n, we have 
n 



-31-

p(V./c. < V./c. < Vk/Ck ) 
1 1 J J 

< L [l-~{m(j-i)}][l-~{m(k-j)}] 
i<j<k 

...... 
This completes that part of Theorem 6.4 which concerns K . 

m 

As for V = med(c.-c.)/(c./V.-c./V.) we find by an argument 
max '<' 1 J 1 1 J J 

1 J 
similar to that for K , that 

m 

cv . * 
1 {V .. <x}=l {V .. , <x}+l{V. /c. <v . /c .} 

max;bJ'- m.aX1J""·· 1 1· J J 

Thus the analysis proceeds as before, giving exactly the same 

cv 
extra contribution to the bias as for K . 

m 

7. Numerical examples. 

We shall give a few examples to show that some of the simulation 

results obtained by others are in accordance with the formulation 

given here. 

Cornish-Bowden (1981) considers the following situation. 

Let 

T. = 
1 

c. = 0.2i, i=l, ..• ,lO 
1 

0.025. Then, with V. 
1 

and take K = V = 1, and m max 
2 distributed as N{c./~.+l), T,}, 

1 1 1 

the following values are reported 
A A EO: 3 

V(K /V ) = 11.06xlOm max 
A -3 

and V (l/Vmax ) = 5.62xlO . 

From Theorem 6.3 we find the values for the bias and vari-

ance for K /V to be .96xlO-3 and 10.64xlO-3 in accordance m max 
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with the simulation results. From Theorem 6.4 we find 

V(l/~ ) = 5.7XlO-3 with a bias of -1.67xlO-3 • Note that in 
max 

both cases the bias is insignificant. The relative bias, how

k 
ever, increases with n 2 , thus taking more observations will 

make the estimator worse.' 

Currie (1982) considers among other situations the 

following design: c. = ai, i=1, ... ,7, T~ = 0.01, K = .75, 
1 1 m 

ru 
V = 1 and finds the asymptotic variance to be V(K) = .24 max ' m 

(Fig. 5D, a=l) and the bias of K =-.04 (Fig. 5C, a=l). 
m 

Using the results of Theorem 6.5 we find the bias to be 

-.09 and the variance .2059 giving a relative bias of~l%. 

Tabulating these functions for various values of a 

we obtain a bias curve corresponding to Fig. 5C of Currie 

(1982). The curve for the variance looks different, however, 

especially for small values of a 

Table 6.1 

a .2 .4 .6 

V(K ) .408 .210 .186 
m 

Bias(K ) -.750 -.238 -.141 m 

ReI. bias - 118 ~ 52 - 33 

(K ) 
m 

(% ) 

Asymptotic parameters for K m for 

and c. = ai, 
1 

2 i=1, ... ,7, T. = 0.01. 
1 

.8 1.0 

.190 .206 

-.109 -.095 

- 25 - 21 

n=7, K = .75, V = 1 m max 

If n is increa~~d by a factor of 4 to 28 then we get 
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Table 6.2 

a .2 .4 . 6 .8 1.0 

V(K ) .040 .044 .051 .068 .084 rn 

Bias (K ) -.215 .161 -.163 -.174 -.189 m 

ReI. bias - 108 - 77 - 70 - 67 - 65 

(K ) 
m 

(%) 

Asymptotic parameters for '" K 
m 

for n=28, K = 0.75, V = 1 m max 
2 and c. = ai, i=1, ... ,28, T. = .01. 

1 1 

Note that by increasing n we decrease V(K) 
m 

and bias (K ), 
m 

but the relative bias is increased in most Cases. 

If we calculate the results for 

Table 6.3 

a .2 .4 .6 

V (Vrnax ) .145 .040 .024 

Bias (Vmax ) .529 .144 .078 

ReI. bias 139 72 51 

(Vrnax ) (% ) 

Asymptotic parameters for V max 

and c. = ai, 
1 

2 i=l, ... ,7, T. = 0.01. 
1 

V we find max 

.8 1.0 

.018 .015 

.055 .044 

41 35 

for n=7, K = 0.75, V = 1 m max 

The bias is here due to two facts. Firstly that a median esti-

mator is used, and secondly that the unmodified version is used. 

If the modified version is used we find the bias of K* to be 
m 

zero whereas V* still has a bias: max 
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Table 6.4 

a .2 .4 .6 .8 1.0 

V(V* ) .145 .040 .024 .018 .015 max 

Bias (V* ) .066 .036 .026 .021 .018 max 

ReI. bias 17 18 17 15 14 
(Vri;ax) (%) 

Finally Atkins and Nimmo (1975) choose among other situations 

2 the following c. = 0.25i, i=1, •.. ,7, K = V = 1, and T. = 
1 m max 1 

2 .01(C.AC.+l)) corresponding to a relative variance of 0.01. They 
1 1 

report a value for K of 0.94±0.29 (Table 1). If we apply Theorem 
m 

6.5 we find a bias of -.12 and a variance .0898 corresponding to 

a standard deviation of .30, and a relative bias of -40%. 
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