
S0ren Johansen ,lain Johnstone 

Some Uses of Spherical Geometry 

in Simultaneous Inference 
and Data Analysis 

Preprint 
August 

1 5 

7 
Institute of Mathematical Statistics 
University of Copenhagen 



S~ren Johansen and lain Johnstone* 

SOME USES OF SPHERICAL GEOMETRY IN 

SIMULTANEOUS INFERENCE AND DATA ANALYSIS 

Preprint 1985 No. 7 

INSTITUTE OF MATHEMATICAL STATISTICS 

UNIVERSITY OF COPENHAGEN 

August 1985 



SO:ME USES OF SPHERICAL GEOMETRY IN 

SIl\I.IULTANEOUS INFERENCE AND DATA ANALYSIS. 

S(Jl'en Johansen 

laiD. Job.n.stone 

University of Copenhagen 

Stanford University 

April 1985 

Abstract 

We illustrate by contemporary examples the continued value of Hotelling's (1939) geo-­

metric approach to simultaneous probability calculations. Rotelling shows how to reduce the 

calculation of certain normal theory significance probabilities to finding the volume of a tube 

about a curve in a d-sphere and shows that this is often exactly given by length times cross 

sectional area. We illustrate this point of view by construction of confidence and prediction 

bands in curvilinear regression, Andrews plots in multivariate data analysis, inference prob­

lems for projection pursuit regression and Tukey-Kramer confidence intervals in the analysis 

of variance. 
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§1. Introduction 

The purpose of this largely theorem-free paper is to present some examples in simultaneous 

inference and data analysis for which the spherical geometric viewpoint of Hotelling (1939) 

continues to be ot use. In this now somewhat neglected article (although see Diaconis and 

Efron (1985)} Hotelling shows that the volume of a tube lying about a curve in a hypersphere 

is exactly its length multiplied by its cross-sectional area (ignoring overlap) and applies this 

to the computation of significance probabilities for tests based on the multivariate normal 

distribution. 

We consider principally four situations: simultaneous confidence and prediction bands in 

regression. Andrews' plots in multivariate data analysis, significance tests in projection pursuit 

regression, and Tukey-Kramer confidence intervals in pairwise comparisons of means. 

Firstly, it is shown that the problem of simultaneous confidence bands for the general 

linear model with Gaussian errors, and the problem of simultaneous prediction regions in 

Gaussian random coefficient models can be given a common formulation which allows one to 

apply Hotelling's result (via an important complement due to Naiman (1985» to get a consero 

vative solution and via a conditioning argument to give an exact solution for sufficiently wide 

bands. A stimulus for this paper was work of Olshen (1985) on the application of trigono­

metric regression to the analysis of gait in children (Sutherland et al,(1980», and for some 

trigonometric regression situations we investigate (in Section 4) the accuracy of the Hotelling 

prediction region solution. This approach may be used (though we do not do so here) to 

reproduce theoretically results derived empirically from bootstrap resampling by Olshen. 

Secondly, we study Andrews' (1912) device for representing points in high dimensional 

space Ri by trigonometric polynomials whose coefficients are the coordinates of the correo 

sponding original data points. Thought of as a projection pursuit method, the plot traces out 

a curve of projection directions on Sri-I. We compute the fraction of possible projections that 

are seen, assuming a given "squint angle" for the data analyst, and obtain serviceable bounds 

on the distance of the furthest (unseen) projection from the curve. 

Thirdly, an outline of an approach to significance tests in an idealized projection pursuit 

regression setting is given. A thorny issue with projection pursuit methods is to assess the 

magnitude of the selection effect implied by the search over many directions. (See, for ex­

ample, Miller's discussion to Huber (1985». In our idealized model of orthogonal polynomial 

regression, computation of a significance probability for the fitted terms of a given degree can 

be expressed (approximately) in terms of the closest direction from a curve (or surface) in a 

hypersphere to a Gaussian vector, so that the HoteHing's method applies. 

Finally, in an expository section, we consider the problem of assigning simultaneous con­

fidence intervals to all pairwise differences of means in an unbalanced one way analysis of 

variance. The long open conjecture of Takey (1953) and Kramer (1956), settled in a. difficult 

proof by Hayter (1984), asserted that intervals based on the studentized range for the balanced 
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case yield a conservative solution. The problem is fonnulated here in terms of a (constrained) 

. positioning of caps on the surface of a sphere so as to maximize the area of the union. This sug­

gests quite directly and intuitively the optimai configuration, and for illustration, we complete 

the proof in the relatively simple case of three popwations. 

§2. Simultaneous confidence and prediction bands 

Let X be distributed as Nd( e, r) and let Kc Rtl denote a set of vectors specifying linear 

combinations of interest to us. We want to make simultaneous confidence statements about 

{/Ve, >. E K} and form prediction sets for the random variables {>.'X, >. E K}. 

In either case we start from the random variable 

(2.1) 

If we can find the Pet' distribution of T we can construct a 1- e confidence set Ox as follows: 

where Zl-e- is the 1 - e quantile in the distribution of T. 

It is easily seen that the random set ex covers the point P' eheK with Pe,r probability 

1 - e. Similarly we can construct a 1- e prediction set Re, by 

and it follows easily that the random point P' XheK is contained in the set Re with Pe,f' 
probability (1 - t). 

We shall now show how the result of HoteHing (1939) provides a way to discuss the 

distribution of T. 

The variable T given by (2.1) can be decomposed as foHows: 

T=W8 

where 8 2 = (X - e),r-!(X - e) and 

>.'(X - e)· w = sup -:-----:-c:-:-;-::-:-::--'--:--"-':-::---~:_;:_ 
"'EK ();'r>.p/2«X - e),r-1(X - e)p/2 

(rl/2~yr-l/2(X - e) 
= ~~k Ir1/ 2);lIr-1/ 2(X - e),· 

If we define 

and 
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then U is uniformly distributed on asd, the surl'ace of the sphere of radius 1 in d dimeWlions. 

Thus T is decomposed as a product of two independent variables, and we only have to 

find the distribution of W, since that of S2 is juSt a X2 distribution with d degrees of freedom. 

Now 

w = sup 7(A)'U = sup 7°U 
).EK "(E,,(K 

and the distance dh, U) satisfies 

which shows that 

in! db, U)2 == 2(1 - W). 
;E"(K) 

Thus W measures the cosine of the angle between U and the point;' E 7(K) which is 

closest to U. On the other hand the set {W ~ w} is the set of points on a Sd which are within a 

distance (2(1- 'ID ))1/2 of 7(K). This set is called the tube around 7(K) of radius (2(1- w»)1/2 
or angular radius 8 where cos( 8) = w. 

\ 

U 
FigurE 2.1. musiratioD of the relation 

between I, w aDd dei', U). 

We can then state the main result of this section 

THEOREM 2.1 (Hotelling). Let 7(K) be a twice continuously differentiable and dosed curve 

in asd with length h(K)/. Then 

(2.2) P{W 2:: to} = h~~)I(l_ w2)(d-l)/2 

if there is no local self overlap of the tube, i.e. if sin( 0) = (1 - '102)1/2 < p, where p is the 

minimal radius of curvature of 7(K) considered as a subset of Rd, and if there is no global 
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overlap of the tube. 

Proof Hotelling proved that under the conditions stated the volume of the tube around ')'(K) 
ofradius (2(1 - 10))1/2 is given by 

corresponding to the length of the curve times the volume of a sphere of dimension d - 2 

and radius (1 - 102)1/2 = sin(O). If we divide by Vol(8Sd(1)) we obtain (2.2). Note that 

Vol(Sd(r)) = 1(d/2rdjf{1 + 0,/2) and Vol(oSd(r)) = 2rrd/ 2rd- 1/r(d/2). Note also that the 

expression (2.2) is exact for an w if I'(K) is a great circle. 

For the applications that we are interested in it is clear that one Caml.ot in general avoid 

local and global overlap of the tube, since we want w to range from 1 to 0, thereby expanding 

the tube to cover all of 8Srl • Thus the right hand side can be used as an approximation to 

the required probability, and more detailed numerical or analytic studies are required to check 

the quality of the approximation. Since the curve "f corresponding to trigonometric regression 

is relevant to Olshen's example (discussed below) and to the discussion of Andrews' plots, we 

analyse the quality of the approximation for this case in Section 4. 

If the curve is not closed the tube will contain a half sphere of dimension d -1 and radius 

(2(1 - w2»1/2 at each end and the right hand side needs an extra term 

(2.3) 

Naiman (1985) proved that with this extra term added the right hand side of (2.2) is an 

upper bound on the probability. 

The above general formulation dearly also covers the case ofmultivariate regression, but in 

this case "f(K) is not a curve but a surface with dimension equal to the nwnber of regressors. 

Thus the volume we need to find is the volume of all points within a certain distance of a 

submanifold of a8 tl• An expression for this has been given by Weyl (1939), and this allows 

one to derive similar but more complicated results for multivariate regression. 

If the tube is sufficiently narrow, i.e. W ~ Wo say, then the result (2.2) holds exactly. The 

problem of simultaneous confidence or prediction bands require the distribution of T = WS. 
Thus we cannot in general find exact expressions for the distribution of T. What can be done, 

however, is to change the procedure slightly as follows: Instead of just predicting {)/ XheK let 

us first predict the length of X, as measured by 8 2 = (X - eyr-1 (X - e) and then conditionally 

on this outcome let us construct the prediction set for {A'XhEK using T. For fixed S, the 

distribution of T is just that of a scale transform of W. Thus we need the tail probabilities of 

W, which are precisely those that can be found from the result {2.2}. 
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Remark~ The ex, R€ can also be considered in parameter space and observation space ~ as 

follows: For each ..\ E K define the half space HJ.. C R" by 

..\'z 
z E HA +-+ ( .. Vf..\)1/2 ~ Z1-1: 

and let 

M= n HA· 
leK 

Then M is a convex and dosed set, and 

, ,,\'(X-e) 
..\ ehEK E ex +-+ (,vr,\)1/2 ~ Z!-e, V,\ E K 

-eeX-M. 

Similarly 

{)..'X}AEK E Ht +-+ Xe e+M. 

The convex region M dearly contains the ellipsoid 

E = n HJ.. = {zlir-1z ~ Zl-e} 

J..ERd 

which is proportional to the set one would get by considering all linear combinations in Rd. 

It is certainly possible for the convex region M to be substantially larger than the ellipsoid 

E. Thus, for example, the confidence band for a simple linear regression line over a small 

interval in R will contain lines whose coefficients are substantially different from those of the 

estimated line and which would certainly be rejected on the basis of, say, a Hotelling T2 test on 

the coefficients. If we are interested in diagnosing departure from a given model via the use of 

prediction bands, it may be reasonable to first conduct a comparison on the coefficients, using 

the T2~like statistic S, before examining whether the observed curve lies within the prediction 

band. This leads to the procedure suggested above. 

We shall illustrate the above results with a random coefficient regression model where the 

purpose is to compare a new individual with the prediction region derived from a. population 

of control individuals. 

Thus let us consider the following trigonometric regression model as suggested by Olshen 

(1985). 

Let the observations Yl, ... ,Yn be independent and distributed as the vector with corn· 
ponents 

k 

Yi = Aa + L[Aj cosUth) + Bj sin(iOdJ + Vi, i = 1, ... ,m 
i=1 

where 88 = 2,,-(i - l)/m, and Vi are independent and distributed as N(O, 0'2), whereas the 

vector (Ao, AI' ... ' All, BI,.,., BTr:) is distributed as N2Hl(e, r) with e' = (0:0, al, ... , ak, 

{h, ... ,Ph). 
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IT for each individual we fit the trigonometric regression curve by least squares, we get 

estimates Xi = (Aab AI';' ... Aleb Bib' .. ,Bki)' with distribution N2Hl (e, r + 0'2 M-I) where 
M is a diagonal matrix. 

The prediction region for the estimated coefficients for a new individual will be derived 

from 

and if we are interested in the values of the curve 

le 

Ao + L[Ai cos(jO) + Bj sin(jO)] 
i=1 

then we define the set of combination vectors 

and 

K=KoU(-Ko). 

Then: the statistic 
A'(X - e) 

T(X, e) = !~k (A'(r + 0'2M-l )A)l/2 

Ao - ao + l::=l[(Aj - ail cos(je) + (Bi - Pi) sin(jS)] 
sup/ /. 
e {Var (Numerator»1/2 

becomes 

In practice we shall have to estimate (e, r, 0'2) from the control population, and insert the 

estimates into /} and T, but we shall not pursue this point here. Rather, we emphasize that if 

each new individual is characterised by its Founer coefficients (Ao, AI"'" Ak, 
BI , ... ,Bi), it seems reasonable to include in the diagnostic of the new individual a comparison 

of these coefficients with those of the control group, as well as a comparison of the estimated 

curve with a prediction band for this curve, as derived from the control group. The conditional 

approach proposed above provides one convenient and distributionally tractable way to handle 

this. 

It follows from the above analysis that this two stage procedure can be solved by the result 

of HoteIIing. The calculations performed in Section 3 for the Andrews' plot are relevant here 
too, since the curve is the same. However, when the inner product, as given by (r+0'2M-l)-1, 
is not a multiple of the identity matrix (as in Olshen's application), a separa.te analysis of when 

the formula. (2.2) is exact is needed. 
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§3. Andrews' plots 

Andrews (1912) proposed and discussed an interesting method of plotting high dimen­

sional data. Each data point x = (XII"" Xli) is mapped into a trigonometric polynomial 

containing d terms, and this polynomial is then plotted for 0 E C = [0,2:1"). The mapping is 

an isometry of Rd onto a subspace of L2[O, 2:1") spanned by {O - 0' e - sin 0, 8 - cos 0, .. . }, 
and so preserves means and interpoint distances if the squared distance between two points X 

and 11 on the plot is measured by 

For a fixed fJ, Andrews notes that the collection of values {f3(0)} as X l'UD.8 through the 

data is a projection of the original data onto the unit vector 7(0) = wd(O)/1 Wd(O) I, where 

Wd(O) = (~,sin 8, cos 8,·," sinkS) if d = 2k is even 

= (~,Sin 0, cos fJ, •• " sin kO, cos /:8) , if d = 2k + 1 is odd. 

The Andrews' plot can be seen therefore as a projection pursuit method {e.g, Friedman and 

Tukey, (1974); Huber (1985)) as it is used to look for multivariate structure by searching 

amongst a (subset) of one-dimensional projections. 

Projections of data onto unit vectors u and fJ that are dose will produce similar results 

- thus it is not necessary (or possible) to look at all projections. Suppose that we deem it 

unnecessary to use projection directions v which make an angle less than IP with a chosen 

direction u (Huber (1985) terms this the "squint angle"). If we employ an Andrews' plot, 

the percentage of possible projections that we see for a squint angle 'P is just the ratio of the 

volume of the tubes of radius y'2(1 - cos~) about ±'Y(C) to the volume of asfl , (Both +u 

and -u are counted since a projection in direction -u is just a. reflection of that in direction 

u). 

In this section we study the curves 7(0) (or a slight modification given in (3,2) for the 

case of d even) and the overlap properties of tubes slUTounding them. Particular questions 

addressed include 

(i) the tube radii at which global and local self-overlap occurs 

(ii) the radii at which overlap with the antipodal tube about -'Y(C) occurs, and bounds for 

the overlap, and 

(iii) determining bounds on the distance of the furthest projection from the curve correspond. 

ing to the Andrews' plot, 
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In addition to the information gained about Andrews' plots, the results are relevant to 

the trigonometric regression situation discussed in Section 2 in the case that r = M = I. Some 

of the methods can be extended to cover other curves, such as the correlated trigonometric 

regression case considered by Olshen. 

Consider, for example, the curves 1(1)(0) = ~(cos 0, sin 0, ... , cos kO,sinkO) in S21:-1 and 

1(2)(8) = J2k~1(~,cosO,sinfJ, ... ,C08kfJ,sink8) in 8 21:. (Our reasons for using 1(1) rather 

than Wd(O)/ I Wd(O) I for d = 2k are discussed below.) Ignoring overlap (which we may for the 

angles listed, as is shown below) the percentage of projections seen for a given squint angle t.p 

is given by 

respectively for 1(1) and ,(2). 

2P(W~eosf) SI .024 .0002 

(for ~(I) ) 
1()G .095 .0039 
1Sl .2118 .0tH 
200 J699 .0591 

2P{W ~ cos.,) SiJ .0019 

(for ?f.2) ) 
tOO .01048 .0006 
J50 .0490 .0046 
2rfl .1132 .0181 

Table 3.1 Percentage of projections 'seen' using 

an Andrews' plot for the curves ,(I) (0),1(2) (0) in 
8 21:-1,S21: respectively for squint angles 5"(5)20". 

5 

0 
.0002 
.0016 .000t 
.0088 .0012 .0002 

0 

.0004 
.0028 .OO(M .0001 

Remark: In even dimensions, the Andrews' plot based on ,(8) = Wd(O)/ I Wd(O) I suffers from 

the slight quirk that /1(0) 1,17(0) / and hence the curvature of the curve all depend somewhat 

on O. An alternative and computational!y simpler curve which we sha.ll use when d = 21: is 

(3.2) Wd( 8) = (cos 0, sin 8, ... , cos kO, sm kO) 

which has constant length, speed, curvature, etc. A13 Andrews illustrates (with a more extreme 

example), use of projection directions based on higher frequency sinusoids allows the curve to 
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fill out more of the unit sphere, but also forces the picture to become more oscillatory and hard 

to interpret. For the ease le = 2 we rem a crude simulation and found that as expected, S is 
storoastieaUy larger than S, with the Kolmogorov-Smimov distance between the two empirical 

c.d.Cs being as high as .26. 

To begin the study of questions (i)-(iii), consider ~t a general smooth dosed curve 

r == '1( C) curve lying in SI1-1. In order to determine the range of squint angles for which 

Hotelling's result is exact, we wish to find the size of the tube about r for which global 

overlap first occurs. We say that global overlap occurs at a point e in the tube section about 

'10 = '1(00 ) if there exists another value 0 E [0,2",) for which '1(8ye > '1(OoYe or equivalently, 

1'1(8) - e 1<1 '1(00 ) - e I· To determine when this occurs, write e = W'1o + ../1- w2v for the 
generic point in the (d - 3) dimensional tube section about '10 whose inner product .with '10 is 

tu = cos; (see Fig. 3.1 below). Note that v satisfies the constraints 

I v /= 1 V''1o = 0 V'7o = 0 

where 70 = 7{80}. Denote by PM the projection onto M = span {7o, 7o} : since '1..L70, PMU, == 
(u'')'oho + (u'-rohoI170 FZ. 

Figure S.l Parametrization of a point e 
in the tube section about ')'0. 

Consider a, fixed point')' = '1(8): the point f' of the above form which is closest to '1 
corresponds to 
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Now from the definition of M, "I'U! =/ u· F2= 1 - "I' PM7, so that 

Thus the condition for overlap at 00 with a tube of angle cp reduces to the existence of some 

"I = "I ( 0) for which 

w{l - "1'''10) < ";1- w2";1- "I'PM"I. 

Suppose that "1'70 and "I' PM1 are functions of () - 80, then the angle cp at which global overlap 

first occurs is obtained from the solution w = cos cp, of 

(3.3) 
w2 1 - "I' PM"I 

1 '2 = sup (1 ')2 = sup Ve = V, 
- w , - "I "10 e 

Let us now consider two examples relevant to Andrews' plots. For S21c-l , let "I = "1(1) (0) = 

.,fi(cosO,sinO, .. o,coskO,sinkO). The derivatives -rUJ) and 7(0) have constant length, namely 

I -rUJ) 12= (le + 1)(2k + 1)/6 and I 7(0) 12= (le + 1)(2A: + 1)(3k2 + ale - 1)/30. The tube with 

centra.! angle 'P does not have any local self overlap if sin 'P < p = I -r /2 / I 7 I. This leads to 

the critical values 'PL listed in Table 3.2 below. By using a grid on [0,211') with 30k points, the 

values for V, w and 'PG = cos-1 win (3.3) were obtained numerically. The values of IPG hover 

" close to 45": This is not unexpected since "1'''10 = I Lcosfi(O - 00 )1 is close to zero for most 
i=1 

values of 0 and hence the half-angle between "1(0) and 7( eo) is about 45". Since global overlap 

first occurs before local overlap (as 'P increases), we calculated the volume of the largest tube 

for which HoteHing's formula (2.2) is exact: This is listed as Po(W ~ wG). 

For S2k, let "1 = "1(2) (0) = J 2k~1 (~, cos e, sin 0, . .. , cos !cO, sin !cO). Again i'( 0) and :r( e) 
have constant length and the condition for absence of local self-overlap and the rest of Table 

3.3 is easily computed as for Table 3.2. 

Let us return to the question of the percentage of possible projections that are 'seen' with 

an Andrews' plot and a squint angle tp. Consider now the maximum tube radius that can 

occur before the tubes about r and -r overlap. By tracing through the preceding argument, 

it is evident that this angle tpB = cos-1 WB is found from the solution of 

W'2 1 - "1' PM7 
-sup 

1 - w2 - (j (1 + "1'70)2 , 

that is, by cha.l.lging the sign of 1'''10 in (3.3). Use of the same SOle point grid as above led to 

the numerical estimates of 'PB tabulated in Tables 3.2 and 3.3. Numerical methods may be 

used to obtain lower bounds on the total volume covered by tubes about r and -f in the case 

of overlap. These are constructed using the shift invariant relationship between rand -r, but 

we omit further details. 
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k ~L V w ~G PO(W~WG) ~B 

2 59.0 to .701 4iO .N 2tW 
3 54.1 lO48 .714 .w.48 .s2 32,1 
4 52.9 toe .no 49 30 DB 
5 318 1,11 .725 .w5 .161 )5.0 
6 5U tl4 :130 f6.1 .0868 3fi.6 
1 SQ.1 1.15 :i'!I 60 .04&1 36.0 e 50.4 1.11 .~ 4U .0223 16.4 
9 50.1 lI8 .136 42.6 .ono 36.7 
10 49.9 U9 :151 42.& .0054 36,9 
11 <49.1 1.30 .752 412 .0016 37.1 
12 49,6 121 .740 42.3 .0012 J1.2 
13 49.5 Ut .140 42.3 .0006 31.3 
14 49.4 l22 .741 42.2 .0003 37.4 
15 49.3 1.22 ,741 42.2 .0001 31~ 
16 4U 123 .143 42.0 .0001 D.6 

Table 3.2 For curve r = '1(I)(C) in S2k-l"'L = angle (0) of first 

loeal overlap, V = maximal value of (3.3), to = cos 'PG defines 

angle of first global overlap. Po(W ~ wG) = percentage of S21-1 

in largest noneself overlapping tube, 'Ps = angle of first intersection 
of tubes about rand -r, 2Po(W ~ ws) = percentage of S21c-l in 

largest non-intersecting tubes. 

2PO(W~wB) 

IIl7 
Jai4 
.IS 
.017 
.0346 
.0154 .0_ 
.0030 
.008 
.0006 
.0002 
.aOCH 

.,,0 
""0 
.,,0 

Another question of interest is "what projection of the data lies furthest from the Andrews' 

plot and how closely does the plot approach it?". If the curve on 8 d- 1 traced out by the 

projection vectors is '1(C), then we wish to find 

Of, since the projection on '1(8) is equivalent to that on -'1(0), 

and, if possible, the minimax value(s) of c. 

To begin with, consider the curve '1(0) = ~(cosO,sinO, ... ,coskO,sink8) in. S21:-1 , 

fJ E (0,2n'1. It is easy to establish that M2 E [vh, ~]. The upper bound follows from 

the choice c = (1,0,'.0,0). For the lower bound, consider (c''')'(0))2/ le 12 and note that if 
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k ~L V W ~G Po (W;wG) ~B 2PO(W~wB) 

2 50.1 l5 .716 39.2 .358 31.8 .653 
3 49.1 l38 .761 "0.4 .230 38.3 361 
c4 41 1.34 .751 40.8 .132 38.5 .186 

5 48.5 t32 .754 41.0 .071 !8.6 .091 
6 48.4 l31 .754 ,41 .0'9 38.6 .042 
l' 48.4 t31 .753 412 .O.teg ,38.6 .0189 
8 41.3 UI .i53 ~12 ,~O~ 3li.1 .0084 
9 ~ 1.30 .152 .. 1.2 .00«5 38.1 .0031 
10 48.3 l30 .752 41.2 ..0022 38.1 .0016 
11 48.3 1.40 .764 40.2 .COO1 38.1 .0001 
12 48.3 1.30 .752 41.3 ,0005 38.1 .0003 
13 4U t.3O .738 41.3 .0002 38.1 .0001 
14 048.2 1.30 .752 41.3 .0001 3&1 .0001 
6 G.2 1.30 .15' <41.3 .0001 38.1 ~ 

16 48.2 l30 .751 41.3 ,,0 38.7 "!9() 

Table 3.3 As for Table 3.2, but refers to r = ,(2)(C) in 8 21:. 

7 

la .942 .943 .932 .m .930 .930 .928 

.929 .928 .g28 .971 .GV .927 ,QV 

.891 .900 .902 ,904 .906 .901 .908 

Table 3.4 Upper bound for M-z is k~1/2xindicated value 

in table. The two bounds correspond to 111 and A defined 

in (3.4) and (3.5) respectively. 
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Equality would occur m the last expression if le( 0) = c'7( fJ) were constant in absolute value. Of 

course, this is not possible since le is a degree k trigonometric polynomial, which in particular 

integrates to O. The simplest function 1(0) with I f( 0) 1= 1 and J f( O)dO = 0, seems to be 

f(fJ) = sign. (0) on [-11",1/"). Thus a naive attempt to improve the upper bound for M'}, would 

be to use for le the (normalized) le term Fourier series approximation to I({}) = sign (9) on 

[-11",11")], namely 

(3.4) h(8) = L sm.iD I L l/:p. 
l'5.i$1# 1 1'5.J'5.! 
i odd j odd 

Another possibility would be to emply the approximation used by la.ckson to study degree of 

approximation of continuous functions by trigonometric polynomials (see Davis (1963) §13.3, 

especially Lemma 13.3.5). In our present case, this sets 

(3.5) - '\:""" sin i 0 
1,,(0) = LJ Pi,j-. I 

1'5.1'5.& :J 
j odd 

where 
i~J i 

PkJ = E asa,+J / L a~ 
11=0 ,=0 

and 

aB = sin[(s + l)1f,/{k + 2)J. 

Numerical maximization of Ik and A over a mesh of SOle points in [-1I",:lrJ gave the results 

in Table 3.4. 

Although Ik consistently has smaller supremum than fi , it seems tha.t at least for larger 

le, a further substantial reduction (from 1.0 in the direction of .5) ought to be possible. 

§4. Significance tests in projection pursuit regression 

We indicate briefly how the tubes method can be used to derive approxima.te tests of 

significance appropriate for projection pursuit regression in an idealized setting. It is hoped 

that a more complete discussion will be given separa.tely in Donoho and Johnstone (1985). 
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Consider a model in which the data consists of n i.i.d. observations (Xi, Yi) E Rd x R from 

the regression 

(4.1) Yj = !(Xi) + &j 

in which Xi has a standard Gaussian distribution on RII, E(ei I Xi) = 0 and E(ej I Xj} = 1. 

Suppose that a significance test of the null hypothesis that f = 0 is desired. To motivate 

the test, consider the problem of fitting the model Y = g(u'X) + &, where I u 1= 1 and 

9 : R -+ R is a one dimensional "ridge" function of the linear combination ,lx. It is, there­

fore, necessary to fit both u and g( .). For fixed u, we fit an orthogonal (with respect to 

Gaussian measure) polynomial of degree m using normalized Hermite polynomials. Specif­
ically, if Hm(t) = et2 / 2( _d/dt)me-fJ /2 is the m,1a univariate Hermite polynomial, then set 

em(t) = Hm(t)jVt!. A method of moments (or bootstrap) estimator of !I given u would be 

m 

(4.2) gu(u'x) = M(u'x) = L c,,(u)e,,(u'x), 
,,=1 

where 

(4.3) 8,(u) = .!. tYie,{u'Xi). 
n 1 

Note that p.d(u'X) = E(f I u'X) and that c,(u) -+ E !(X)e,(u'X) = E p.d(u'X)e,(u'X) 
as n -+ 00 if (Xi, Yi) are i.i.d. from the model (4.1). The regression function I(x) could be of 

the form g(u~x) for some tio, but need not be. It will, therefore, be seen that P:i is measuring 

the best degree m approximation to Pili, which in turn is the best L2 approximation to I 
amongst ridge functions in direction u. 

To choose u, simply find the direction 11 for which P:J has maximum variance (i.e. "ex~ 
plains" the data best ), namely, E[pJrz, which we shall write as 11 P:J 112. The fitted model 

at this point would be Y = (p;;j)(u'X) + e. The algorithm of Friedman and Stuetzle (1981) 
would now iterate, applying analogs of the above steps to the residuals e to obtain a new 

ridge function in direction U2, and so on till no substantial improvement in fit results. For our 

purposes here, it seems convenient and tractable to consider only the first iteration. 

To derive a significance test of the null hypothesis that the regression function (namely 

f) is zero, we consider, in view of the preceding discussion. 

To approximate the null distribution of T, we need to isolate the effects of u as much as 
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possible. This is done via the Hermite polynomial identity. 

e,(u'z) = E J (;)u'e.(z), 
1.1:1=1' 

(4.4) 

where le = (k1 , ... , kp) and '11/= = u!:! ... u;1' are multi-indices and ek(x) = IT eldxi). Substio 

tuting (4.4) into (4.3), we may write 

',(u) = E J (~)""" 
/k/=I' 

where c" = ~E~Yiek(Xs). Now set ik = {fJui , ,(r) = bid k 1= r), and z(r) 

= (Ck; I k /= r): we have. 

T = sup L: her)' z(r)r.l S .E supbCry Z(I') = .E TI' 

'Y ,Sm I"$m "I rSm 

where 1,(1') 1= 1 for each r. 

Each C1= is a normalized sum of Li.d. random variables, has mean zero, variance ~ and 

is uncorrelated with all other Cl:. We, therefore, approximate yriZ(r) by a standard normal 

vector of the appropriate dimension. 

Thus, if we consider only the component at degree,., TI' = sUPl1h(r)Pz Cl')fZ, we are in the 

situation described in Section 2. If d = 2, then ,1")(0) = COli Osinf'-i 0, so that (J - "1(1')(9) is 

a curve on sr+!, so that the methods of Section 2 and 3 can be applied to give approximately 

conservative P-values for Tf" 

The null distribution of T cannot be immediately obtained by the same method since it 

does not have the form of a single inner product. A simple alternative approach if n is not 

too large would be just to combine the independent P values associated with the individual 

components Tr • 

§5. Pah'wise comparisons of means 

Let Xi, i = 1, ... , cl be the average of ni independent N(j,li, (12) random variables. Cone 

sideI' the problem of providing confidence intervals for an paimise differences of means {Pi­

IJ.j,i =1= i} with simultaneous coverage probability 100(1 ~ a)%. Tukey (1953) and Kramer 

(1956) proposed the intervals 

1 1 1 -(- + -), 
:». ni nj 
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where qd,N-d is the upper IOOa percentile of the studentized range distribution and would 

yield an exact coverage probability 1- Cl if all Y4 = N/d (Miller (1981». Here, of course, 8 2 

is the usual pooled unbiased estimate of variance and is independent of all {Xs-}o It was long 

conjectured that these intervals were conservative, but Hayter (1984), building on the work of 

Brown (1919) was the first to give a general proof. The geometric approach; also discllllsed by 

Brown (1984), offers a useful perspective on this result, and we use it to give, as an example, 

a proof in the relatively simple case d = 3. 

AB a preliminary reduction, we condition on 8 and write Zi = .fiii{Xi - Pi)/U, and 

O'i = u/.;ni. It then suffices to show that if Z = (El, ... , Zd) IV N(O, I), then 

(5.1) p( I O'iZi - UjZj I ) 
max > c 
i:f.i _IO'~ + O'~ 

V • j 

is maximized when a.ll 0'; are equal. 

Now write Z = RU, where U is uniformly distributed on Sd-l and R2 '" XlII)' Define 

also O'ii_=_ (Uieti - Ujejll Ju; -f- uJ and (ii! == -Uij' Conditioning now on R, we have to show 

for 0 < I() < 'if/'}. that 

(5.2) 

is maximized when all 0'1 are equal. In other words, we consider the total surface area of the 

union of the spherical caps C;i(l() and Oij(l()) of angle I() centered on E = {Uti} U {(ii;} and 

have to show that this is maximized when 

(5.3) all i ~.1. 

Two caps O'i(l() and Okl(~) will intersect if and only if the angle between Uti and 0'1:1 is 

less than 21(). Thus to reduce the amount of intersection amongst the caps and thus maximize 

(5.2), it seems that we must push their centers apart so as to maximize the minimum angle 

between the elements of E. It is a simple matter to show that this maximum angle is 60° and 

is uniquely attained by the configuration (5.3). Of course, this heuristic completely solves the 

problem associated with (5.2) only for r.p :::; 30", but it simultaneously helps in understanding 

Hayter's result and, by the link to sphere packing problems, may indicate why his results 

appear to lie deep. 

A complete proof in this vein for d = :3 is immediate, however, and we sketch this We 
formally. (It appears from Brown (1984) that a proof for cl = 3 along these lines was given 

by Kurtz (1956).) Note that the vectors (l'ii are all coplanar, lying in the subspace M = Mu 

perpendicular to (1/(1'1,1/(72, l/(3)' For fixed (7 = (0'1, U2, 0'3)' decompose Z into its projections 

W = PMZ and Wl.. Clearly W '" N2 (O,PM) and from the independence of Wand W-'-, 
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Decomposing W = flu, with fl2 IV X(2) and U independently uniformly distributed on the 

copy of Si lying in M, we consider 

P(~..,L~ I O'~/J I> cos ~). 
'rl 

This reduces to considering the total measure (=!ength) of the union of six circular arcs 

centered on O'ii, each arc being of equal length. Over all possible configurations of six points 

on the circle, this total length is maximized when the six points are spaced at angles of 60" 

around the circle. But this occurs when the O'si have the configuration (5.3)! 
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Figu.re 5.1 Configuration of spherical 

caps of common radius centered about (fij when cl = 3. 

Centers of caps are constrained to lie OD a. great circle. 

I 
I 
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