
S0ren Johansen 

The Mathematical Structure of 

Error Correction Models 

Preprint 
June 

1985 

6 
Institute of Mathematical Statistics 
University of Copenhagen 



S~ren Johansen* ** 

THE MATHEMATICAL STRUCTURE OF 

ERROR CORRECTION MODELS 

Preprint 1985 No. 6 

INSTITUTE OF MATHEMATICAL STATISTICS 

UNIVERSITY OF COPENHAGEN 

June 1985 



* 

** 

Part of this work was done while the author was visiting Department of 
Mathematics, University of California, San Diego,and Mathematical Sciences 
Department, lohns Hopkins University. 

Research supported in part by U.S.Department of Navy under Office of Naval 
Research Contract No. N00014-79-C-080l, and in part by NIH Grant 
No. PHS-CA-26666, Reproduction in whole or in part is permitted for any 
purpose of the United States Government. 



o. Abstract. 

The error correction model for a vector valued time series has been 

proposed and applied in the economic literature with the papers by 

Sargan(1964),Davidson et al. (1978), Hendry and von Ungern-Sternberg(1981) and 

has been given a formal mathematical treatment by Granger(1983). He 

introduced the notion of cointegratedness of a vector process and showed the 

relation between cointegration and error correction models. 

This paper defines a general error correction model, that encompasses the 

usual error correction model as well as the integral correction model by 

allowing a finite number of error correction terms which correspond to linear 

combinations of the vector process that are integrated of different order. 

It is shown that this structure is inherent in the model if it is given 

in autoregressive form or moving average form by exploiting the singularity of 

the matrix function that defines the model. 

The theory is applied to some examples discussed by Davidson(l983) and 

Harvey(1982). 

Key words: Cointegration, error correction, non-stationary time series, 

ARMA models. 
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1. Introduction. 

Many of the current controversies concerning macroeconomic policy issues, 

particularly monetary questions, seem to derive from different views of the 

duration and importance of short-run and long-run behavior of economic agents. 

The fact that these controversies have to be resolved in the empirical arena, 

can clearly be demonstrated by a growing number of empirical applications in 

which the dynamics of short-run and long-run adjustment processes are being 

modelled. In particular, the idea of incorporating the dynamic adjustment to 

long-run steady-state targets in the form of error correcting mechanisms, in 

an autoregressive model for transitory short-run dynamic behavior, originally 

suggested by Sargan(1964) and further developed by Davidson et al. (1978), 

Hendry and von Ungern-Sternberg(1981), Davidson and Hendry(198l) ,etc. seems to 

have introduced a useful approach to modelling the dynamics of economic 

behavior. 

The error correction model is a model that combines the autoregressive 

form for the changes in Yt with eKisting economic theory as eKpressed in the 

long-term static relation 

(1.1) Ay + Bz =0 

or in the steady-state growth relation 

(1.2) Ay + B(z + ~z) = O. 

An eKample of an error correction model is given by 

(1.3) 

Applications of this type of models usually have proved very successful 

in terms of model fit, meaningful estimates of parameters of interest, 

encompassing,etc. However, for a long time a formal mathematical treatment 
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seemed to be lacking, Granger(1983) "Jas the first to provide such a basis 

introducing the concept of cointegratedness beh'ileen time series and relating 

that to the concept of error correcting models, The idea of Granger, see also 

Gn::l.nger and Weiss (1983) Granger' and Engle(l985), is to start '¥Jith Cl. 

( 1.4) 

and then showing that certain properties of the matrix function CeL) imply 

that the cO]!lponents of are cointegratect This is then used to derive an 

error correction model, The pu.rpose of this is to explain combinations of the 

~'s in terms of deviations in long-term relations between the non-stationary 

components of the vector process {Xt}' and to identify these long-term 

relations using the concept of cointegration. 

The purpose of this paper is to discuss the equations (1.1)-(1.4) and 

some related concepts from a mathematical point of view p find their 

interrelations, and provide a framework in which their formal analysis ca.. be 

Justified. 

In doing so the concepts are clarified and generalised. We thus end up 

~"ith a very general type of model for a class of non-stationary stochastic 

processes. Not all these models correspond to interesting economic models but 

their structure permits a simple analysis and thus helps the understanding of 

the interesting examples which are discussed in the economic literature. 

The paper is no\';/ organised as follows : 

Section 2 discusses the basic properties of some non-stationary 

processes, In particular the role of the starting values and their influence 

on the process is discussed. 

Following Granger(l983) Section 3 discusses the problelll of' determining 
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the long-range relations in a system given by the moving average 

representation 

where d is the order of the process.We derive a general form of the error 

correction model, that allows error correction terms of different order. The 

usual error correction models, see Davidson et al. (1978), as well as the 

integral correction models, see Hendry and von Ungern Sternberg(l98l) and 

Davidson (1983) , can be seen as special cases of the general model. Section 4 

discusses formally the same problem, but now based on the autoregressive 

representation 

where p is usually zero. 

Conditions for this model to be interpreted as an error correction model 

are formulated, and the order of the process is found. In section 5 we 

discuss the special situation where xt is decomposed into endogeneous and 

exogeneous variables and derive an error correction model for the targetting 

error. 

In section 6 we show how some examples from the economic literature can 

be treated by the general methods developed in the previous chapters, and 

Section 7 contains the mathematical results which consist of finding a 

representation of the determinant of a matrix valued function in terms of 

certain indices defined by the null spaces of succesive derivatives of the 

function at L = 1 

2. The basic properties of a class of non-stationary processes. 

It is customary to consider non-stationary processes {xt } given by the 

equation 
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(2.1) 

m where xt and ~t eR, and C(z) is an mxm matrix valued holomorphic function 

given by its power series with radius of convergence 1 + p, p > 0, and d is an 

integer. Here {~t} is a sequence of independent identically distributed 

random variables with mean 0 and variance matrix r. Note that the 

coefficients of C(z) decrease exponentially fast, which shows that C(L)~t is a 

stationary process. It is easy to construct xt recursively starting with t = 

0, say. This is done as follows: We sum (2.1) from t = 0 to t = T and find 

~l ~l T 
d xT = d x_I + C(L)Z ~t' 

t=O 

Summing again gives 

dd-2Xt = (t+l)dd-lx_l + dd-2x_l + C(L) Z ~. 
O~uSs~tU 

It is seen that the process xt will be composed of two parts. The first is a 

polynomial of degree d-l with coefficients depending on the past values of xt ' 

i.e. for t < O. The second term is a repeated sum of the ~'s. We can write 

-d 
xt = C(L)d ~t + Pd-l(t). 

-d 
We call Pd-l(t) the completely deterministic part of xt and C(L)d ~t the 

random part of xt • Note that d- l is defined as a finite sum from 0 to t. The 

completely deterministic part can be considered a trend in the system showing 

the influence of the past, whereas the random part contains the cumulative 

effect of the shocks to the system. As a simple example consider the equation 

2 
d xt = ~t' t ~ O. 

The solution is 

t 
xt = x_I + (t+l)dx_l + Z ~ 

O~s~uStS 

Note that the trend part is just a straight line through points {-2,x_2} and 

{-I. x_I} and that conditionally on these values xt fluctuates around this 
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trend with a variance given by 

t 2 
V( Xt lx_l ,x_2) = Z (t-s+l) V(~l)' 

s=O 

Hence the variance increases to infinity with t. This is often expressed by 

saying that the process has infinite variance. A stationary process can be 

started at "minus infinity" but a non-stationary process must be started at a 

finite time point, and the whole process has to be considered conditionally on 

the values before this time, otherwise the process is simply not defined by 

the equation (2.1). One can subtract Pd-l(t) from xt ' since the difference 

also satisfies the differential equation, but now with the starting values 

zero. 

This problem has implications for some of the formal calculations often 

applied to time series. Consider for instance the equation 

d 
d xt = b 

C(L)d ~t ' t ~ O. 

If we sum b times we obtain 

d-b 
d xt = C(L)~t + Pb-l(t), 

where Pb-l(t) has coefficients depending on the values of {Xt'~t} with t < 
b O.Thus one can cancel d , at the expense of adding a trend of order b-l. One 

can also justify the cancellation of db as an operation on the random part of 

the process. In the following we shall in some examples be explicit about the 

trend, but the later examples only the random part will be dealt with in 

detail. 

Next we turn to the notion of cointegration, see Granger(1983). 

Definition. 2. 1. We shall call xt integrated of order d if xt has the 

representation 

d d xt = C(L)~t + Pb(t) 

where Pb(t) is a completely deterministic polynomial of degree b, and C(l) * 
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O. In other \vords :Kt is integrated of order cl if is stationary apart 

from El. complet.~ly deterministic component. Notice that CC 1) f.: 0 implies that 

d-I 
od :Kt is not stationary. 

Definition 2.2. Let x t be integrated of order d. We shall call :x L 

L 

co integrated with cointegration vector Cl. e ~ of order s if ajxt is integrated 

of order d-s. 

Thus the order of' x. is reduced by :El if the combination a'x t is 
1: 

considered, 

It is mathematically convenient to allow any vector et. in the definition 

of cointegration. Thus if Cl. = (1,0,0)' say, then a'xt = Xlt' We thus express 

the fact that some cO~liponents of xt is in fact integrated of lower order than 

the whole vector process; by saying that a certain w1it vector is a 

cointegration factor. This is clearly a slight abuse of the idea behind 

cointegration but it makes the formulation simpler. 
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3. The error correction model derived from the moving average 

representation. 

We shall consider the equation 

(3.1) 

and assume that C(z) is holomorphic for Izl < l+p , and is non-singular for 

Izl ~ l+p except for z = 1, where we assume that C(l) is singular but ~ 0, 

since if C(l) were 0 then a similar model would hold with d replaced by d-l. 

Note that we do not assume that each af the components of xt are integrated of 

the same order. Such an assumption is not necessary for the results developed 

below, but in connection with the examples this point will be discussed in 

more detail. We want to derive an error correction model for Xt' following 

the ideas of Granger(l983). We shall first give a general definition of an 

error correction model and then give some examples before we prove the main 

result. 

The ultimate goal of this investigation is to be able to find the 

properties of a vector process xt from the defining equation in the 

autoregressive form 

The equation, which defines the process uniquely, must therefore contain 

information on the order of the process and of which components are 

cointegrated. The problem is how to extract this information. If we can find 

out, that the order of integration is 2, say, then we can write the equation 

in the form 

and we want to interpret AOxt and dAlxt as stationary error correction terms. 

Thus in order to interpret this as an error correction model we must make sure 
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that all terms represent stationary terms and that they have not been 

differenced too much. This is made precise in 

Definition 3.1 A model of the form 

k-l i .k d 
,Z & Dixt + A(L)a-xt = f(L)d ~t ,t ~ 0 
l=-S 

is called a general error correction model of order k if 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

A(z) is holomorphic for Izl < l+p and A(l) F 0 

i & Dixt is stationary, i = -s, ••• ,k-l 

xt is integrated of order k 

f (z) F 0 , I z I < 1 +p. 

The terms diDiXt , -s ~ i < k represent error correction terms with 

cointegration factors Ei of order (~) k-i, and the term A(L)J<Xt gives the 

autoregressive model for the stationary process &kXt • In general d = 0 but in 

some cases we need a different value. i Note that if i < 0 then the term & Dixt 

is an integral correction term, i.e. the lil fold summation from 0 to t of 

Some examples will be given below 

Example 3.1. Consider the process (ct'Yt) given by the equations 

&ct = ~Yt + 7(Yt-l-Ct-l) + ~lt 

&Yt = ~2t 
This example has been adapted from example 6.1 and is treated in more detail 

in Section 6. It is easily seen that from the second equation it follows, 

that Yt is integrated of order 1. Now the first equation only makes sense if 

ct is integrated of order 1 as well, in such a way that Yt-Ct is integrated of 

order 0, since if for instance c t were integrated of order 2, then the left 

hand side would be of order 1 and the right hand side of order 2. Thus Yt and 

ct are co integrated with cointegration vector a' = (1,-1) of order 1, and the 
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for .aCt is given in part the i ve tenD j3tJ.y t and in part by 

the stationary error correction term yt-1-ct - I ' 

Thus one ca.'1 in a simple fashion ident the order of the vector process 

example. 2 , Note that if the second equation is replaced by od Yt = >i.2t ' 'Chen the 

analysis changes and ct and Yt become integrated of order 2 and (Yt-Ct ) 

becomes integrated of order 1. In this case the first equation should be 

mul tiplied by cd before one can identify the autoregressive part and the error 

correction part, and then the error correction part is not 8. linear 

combination of the components of the process; but a linear combination of the 

components of the differenced process. 

equation 

-1 
where LI <\ 

t 
- :E z . 

s=O s 

A modified version of the previous example is given by the 

dv = G . t ~2t 

A full treatement of a similar example is given in 

Section 6, At this point t'l1e shall use it to indica.te that it may not be so 

obvious to find the order of the process (Ct~Yt) and find out in what sense 

these equations determine an integral correction model. We shall only note 

that in general the error correction terms are stationary terms which are 

linear combinations of the vector process differenced a suitable number of 

tiules, Finally one can cOJllbine the two examples and consider an equation where 

both the en~or correction term as well as the integral correction term appear. 

Thus in general one can have many error correction terms in an error 

correction model corresponding to linear combinations t1hich are integrated of 

different orders. 
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In order to state the main result about the error correction model we 

have to define three indices determined by the function C(z). The necessary 

mathematical results are given in Section 7, but here we shall briefly 

recapitulate the definitions and results. From the assumptions on C(z) it 

00 • 

follows that we can expand it around z = 1 in a power series C(z) = Z (l-z)JC. 
j=O J 

which is convergent for Iz-ll < p. The results of this section are formulated 

in terms of the coefficients {C.}. We now let N. = {x E ~I x'c. = 0 }, i.e. 
J J J 

the null space for C .. We then define the spaces M. = NO n ... n N. of vectors 
J J J 

which are null vectors for all matrices C., i = O, ... ,j. Let m. denote the 
1 J 

dimension of M.. Clearly the spaces M. are decreasing and since C(z) is 
J J 

assumed to be regular for z ~ 1 there is no vector x which is contained in 

all N.. Hence there exists a k such that 
J 

m > mO ~ ••• ~ mk- l > mk = mk+l = .•• = O. 

k 00 

Now define n = Z m. 
j=O J 

where fez) ~ O. 

= Z m. and let r be defined by det C(z) = 
j=O J 

r (l-z) fez), 

Thus we associate with C(z) the three numbers (k,n,r) which will be used 

repeatedly in the following. We define C (z) by the relation 
n 

n-l . 
C(z) = Z (l-z)JC. + (l-z)nC (z), Izl < l+p, 

j=O J n 

and the adjoint C(z) by 

C (z). . = (-1) i + j det Cj i (z) 
1J 

where Cji(z) is found by deleting row j and column i from C(z). Let 

n-l . 
C(z) = Z (l-z)JC. +(l-z)nC (z) , Izl < l+p. 

j=O J n 

We can then formulate 

Theorem 3.1. The process xt given by (3.1) satisfies an autoregressive 
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model of the form 

k d-j- - d r-n 
Z ~ C ,xt + C (L)~ xt = f(L)~ Et' t ~ O. 

j=l n-J n 
(3.5) 

- -
If either C = C (1) ~ 0 or if r = n this is a general error correction model 

n n 

of order d. 

Proof. Theorem 7.3 shows that we have the following representation 

(3.6) - ~-k- ~-k k-l j- + AkC- (L)] C(L) = a C k(L) = a [Z ~ C k+' U n- . 0 n- J n J= 

and 

(3.7) C . C ( L) = ~jc . C . ( L) j = 1,..., k 
n-J n-J J ' 

where C.(z) and C (z) are holomorphic in Izl < l+p. Now the equation (3.1) 
J n 

d - d defines ~ xt as a stationary process, hence C(L)~ xt is well defined and 

stationary and 

- d r 
C(L)~ xt = C(L)C(L)et = f(L)~ Et 

where, by Theorem 7.1, fez) ~ 0, Izl < l+p. Now use the representation (3.6) 

and we get 

which implies that 

(3.8) 

r 
f(L)~ et 

k d-j- - d r-n 
Z ~ C ,xt + C (L)~ xt = f(L)~ Et' 

j=l n-J n 

For this equation to be an error correction model we have to check the 

conditions (3.2)-(3.5). We know, since C(l) ~ 0, that xt is integrated of 

order d which shows (3.4). By multiplying (3.1) by C . and using (3.7) we 
n-J 

get 

(3.9) - d-j 
C .~ xt=C .C.(L)Et j=l, ••• ,k, n-J n-J J 
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d-j-
which shows that ~ C .xt is stationary and hence that (3.3) is satisfied. n-J 

Since C (z) is holomorphic and fez) ~ 0, Izl < l+p we only have to check that 
n 

-
C (1) ~ o. 

n 
Thus if C = C (1) ~ 0 , then (3.8) is an error correction model, n n 

and if instead we assume that r = n, then it follows from Theorem 7.4 

k _ 
that Z C .C. has rank m • 

. 0 n-J J 

1 
Now since Co = CC 1) ~ 0 we have MO ~ {O}, and 

J= 

- -1 hence there exists A ~ 0, A e MO . Since the matrices {C 1'···'C k} span n- n-

MO we find that_ 

-

k _ 
o ~ A'Z C .c. = 

. 0 n-J J 
J= 

A'C C 
n 0 

which implies that C ~ 0 and the Theorem is proved. 
n 

The first term in the error correction model is 

d-k-
~ Cn-kxt 

which will represent an integral correction term if d < k. 

It is seen that if r > n, then a difference ~r-n remains at the ~'s. 

This has the effect that when solving for xt ' one has to sum the error 

r-n correction terms as well as the term ~ ~t. The last one will contribute 

less to the variance of the process than the first one, and in this sense the 

main contribution to the variance of the process comes from the error 

correction terms. Thus one has in fact succeded in explaining the major part 

of the ~'s in terms of interpretable error correction terms. If r = n there 

is a balance between the two kinds of errors, and we therefore call this the 

balanced case. We shall see in the examples that both situations can occur 

even in the examples that have been taken from the econometric literature. We 

shall also see that one can always reduce the unbalanced case to the balanced 

case by introducing new variables. This will be discussed in detail in 
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Section 7, and in connection with the examples 3.4, 6.1 and 6.2. 

Example 3.3. Consider the system 

,t ~ 0 

If we express C(L) as a function of d, we get 

rI 0 01 fO 10 1 
ro 0 1 1 

C(L) =\1 + d2 10 
2 0 01 + d 10 -1 0 I 0 2 I = Co + dCI + d C2. 

lO 0 OJ lO -2 0 J lO 0 o J 

It easily follows that 

r 11 r01 r 11 
NO = sp{ 1-11; 101} j NO n NI = sp 1-11 j NO n Nln N2 = {O} 

l OJ llJ l IJ 

and hence mO = 2, ml = 1, m2 = .•. = O. Thus k=2,n=3 and since det C(d) = 2d3 

we have r = n = 3. The adjoint matrix becomes 

r 4d3 

C(d) = I 0 
L -2d 

rO 0 01 ro 
=d[IO 0 OI+dIO 

l-2 2 -2J lO 

The equation now becomes 

o 01 r4-2 
o -11 +d2 10 0 
o OJ lO 0 

3 - - 2- 3 
d [ Cl + dC2 + d C3]xt = 2d et' 

31 
01] 
OJ 

Now cancel dn = d3 and find the term corresponding to d = 2 which gives the 

autoregressive part of the model. Then 

2- - - 2 
d C3xt = -Clxt - dC2xt + 2et +a + bt + ct 

where a,b,and c are determined by the values before time t = O. 

Now insert the three matrices C. and we get 
1 
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r 0 1 
:= 21 0 I 

,"xl t -xZt +x3t J 

or equivalently 

(3,10) 

(:3,12) 

r 0 1 
+ LlI X'3t I + 

l 0 j 

Ct) 

+ PoCt) ;::: 

Note that the equations (3,11) and (3.12) are special cases of (3.9) 

which express that certain linear combinations are integrated of lower ordei~ 

than 2. From (3.11) we see that xU-XZt+x3t is stationary apart from the 

trend. Note also that Xlt and X2t are integrated of order 2 and X1t-X2t is 

integrated of order 1, but the variable that makes xlt -~{2t integrated of order 

1 is the same as that in -x3t ' hence -XZt+X3t is reduced to stationarity, 

Thus (3.11) is an example of a cointegration relation where all the components 

are not necessari integrated of the same order, Note that the example has 

n :: r = 3 and in this case the rows of Cl span MI ~'Ilhereas the ro~'lS of Cl and 

C2 span MO , see Theorem 7,4. 

Exm!!l21e_ 3,4, Let xt be given by the equations 

rx 0' r 1 + t::i -t::i 1 re It 1 .dl It, ::: 

x2t- l .cl 0 J lE. 2tJ 
r I 01 r 1 -11 r 0 01 r 0 11 

C(L) ::: I I + a I i e(L)=1 I + al I 
l 0 OJ l 1 OJ l 0 1J l-l IJ 

and det C(L) 2 We find NO ::: rOl 8l11d N, rOl hence MO NO and Ml ::: .a . sp LIJ = sp lOJ 
:::: 

J.. 

::: NI ' giving the indices l{ ::: 1, IDO ::: I IDl ::: 0 and hence n = Ij whereas r ::: 

- -
2, Thus vJe are in the unbalanced case but Cn ::: Cl t. 0 and we can apply Theorem 

3,1. In the equation 

n 
He can cancel.d :::.d and the resulting equation is a general error correction 
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modeL The 8.utoregressi ve part is then 

then get 

r 0 
l-l 

by the terms in'!Jol ving dxt . \'le 

which shot\ls that is stationary and hence that (0; 1) is a co integration 

vector of order L The last equation is 

vJnere the left hand side is the autoregressi ve part of the equation and on the 

rigth hand side xZt represents the error correct 

If vie solve this for X2t -xIt then the ma,jor contribution to the variance tvill 

t t 
be the term %2t' since VC Z x2 ) increases. whereas V( I ~~2 ) is constant in 

5=0 s 8=0 S 

t. Thus the case r > n can be interpreted as the case where the major 

contribution to the variance is given the error corection terms, whereas 

the shod{s only play a minor role, Another way of expressing this is that we 

have combined the major part of the shocks into an expression which we can 

give an interpretation, muaely the error correction term, The case r > n, 

however, can be reduced to r = n by transfOl:'IDing the variables into new 

variables which are linear combinations of variables of the same order of 

integration, namely 

Y2t = -.dxlt + X2t' 

The choice of these new variables is based on an analysis of the matrices {C.} 
1 

such that the variables are linear combinations of suitably differenced 

components of Xt' This is discussed in more detail in Section 7. 

The equation for the new variables is found by multiplying by the matrix 

r 1 01 
l-.d IJ 



and ~Je find 

drYlt~1 r 1 
:: 

L,cl 
lY2tJ t 

The relevant :matrix funct 

G(L) :: 

GeL) 

16 

0 H l+d -.d"' It 1 
1 H ,d 

are 

f 1 
l 0 

::: r 0 
I. 0 

01 
0,1 

now 

+l..I f 
l 

oJ leryJ 
':;"J\.-

given 

1 
0 

-11 

11 
IJ 

::: r 
I 
l. 

+a2 

1+,1 

-1..1 

r 0 
l-l 

r 1 
l 1 

2 ~)J l It] 
,cl"" €-2t 

01 
IJ 

01 

fmd det CCl,) ::: tJ.2• In this case NO ::: sp [~J . NI :: Sp r~J ' N2 ::: sp [~J ' and 

hence MO :: NO; Ml :: MO ::: NO n NI but M2 ::: {O}. Thus IDo :::: I, m1 ::: 1, Iil2 :: 0 

~'Jhich shows that k :: 2 and n ::: r ::: 2. The error correction model lOOKS like 

r 0 01 -l_~ r 0 l~l n 01 7 

lO IJ.d Yt + to IJYt + II OJI..lYt::: ~t, 

The first two terms represent error corrections and ShO~l that ,a-lY2t and 

are stationary, whereas Ylt satisfies the autoregressive model 

Th.ese equations are clearly equivalent in Vie<d of the representation of YZt as 

a function of The first analysis of this example showed that ~{2t is in 

fact stationary. A fact which is obvious from the defining equation, since 

one caJl cancel a .:::i in the equation for X2t" It is probably a good idea to 

start out with variables t\fliich are integrated of the same order. The second 

analysis offers a more interesting point, since t'Je find that not only is Y2t = 

x2t -l..Ix1 t stationary, but in fact integrated of order -I, IPJhich shows that 

Xlt-Ll-1x2t is stationary. We have thus found a cointegration relation between 

-1 
two variables of the same order ~ Xlt and d X2t' 
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4. The error correction model derived from the autoregressive 

representation 

Let the process {xt,t ~ O} be given by the equation 

(4.1) A(L)xt = dP~t ' t ~ 0, 

where A(z) is holomorphic for Izl < l+p and non-singular for z ~ 1 , but A(l) 

~ O. We define the coefficients {A.} by expanding A(z) around z = 1, A(z) 
1 

00 i 
= Z (l-z) A. , /zl < p. We want to interpret the equation (4.1) as an error 

i=O 1 

correction model, see Definition 3.1. For this it turns out that we need to 

calculate the numbers (k',r',n') for the transposed matrix function A(z)'. 

Theorem 4.1. The process xt given by (4.1) is integrated of order less 

than or equal to r'-n'+k'-p and in the expansion 

, , k'-l , , . , , k' " 
(4.2) dr -n -PA(L)Xt = Z dr -n +J-PA'Xt + Ak,(L)dr -n + -Px =dr -n ~ 

j=O J t t 

-
all terms are stationary. If either A , k' ~ 0 or r' = n' then (4.2) is an n -

error correction model of order r'-n'+k'-p. 

Proof. It follows easily from the definition of the adjoint matrix, that 

(A'(z» = (A(z»' and hence that we have from (7.4) 

A(L) = ~'-k'A , k,(L) 
n -

and from (7.6) 

(4.3) k'-j -
A.A, k,(L) = d A.A, .(L) 

J n - J n -J 
j = l, ... ,k. 

Now multiply (4.1) by ACL), then we get 

which shows that 

(4.4) 
, , +k' 

f(L) Ar -n -P~t = A (L) 
~ .n. n'-k' ~t 
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is stationary. If An'_k,(l) ~ 0 then xt is integrated of order r'-n'+k'-p. 

-
If r' = n', then, by Theorem 7.4, the rows of An'-k' span Mk'-l which is 

-
non-empty and hence again An'-k' ~ 0 such that xt is integrated of order k'-p 

which proves (3.4). 

Now multiply (4.4) by A. and we get from (4.3) that the first terms of 
J 

the expansion vanish, and that 

Ar-n'+k'-Pf(L)AJ,Xt Ak'-jA -A (L) 
L.I = L.I .,. E. t J n -J 

which shows that 

j = 1, ... ,k 

is stationary which proves (3.3). Since~, = ~,(l) ~ 0 , by the definition 

of k', it follows that we have an error correction model. In the case when r' 

> n' one may get An'-k' = 0 in which case xt will be integrated of lower order 

and one may have to cancel some more powers of .a before the model can be 

interpreted as an error correction model, but the condition that A , k' ~ 0 n -

ensures that no power can be cancelled and that the results hold. 

Example 4.1. 

(4.5) 

Consider the equations 

Xlt - X2t + .ax2t = E.lt 

.a(xlt - x2t ) = E.2t · 

It is clear from the second equation, that xlt-X2t is integrated of order 1 , 

and hence it follows from the first equation that .dx2t is integrated of order 

1 and hence that X2t is of order 2. Thus all terms are not stationary, which 

means that (4.5) can not directly be interpreted as an error correction model 

in the sense of Definition 3.1. We shall give a formal analysis as follows: 

We find 

A' (L) = r 1 .a1 
l-l+.a -.aJ 

= r 1 
l-l 

01 + .ar 0 
OJ l 1 

11 
-11 
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giving k)= 1,mO'= l,ml~= 0 and n' :;: 1, while r' ::: 2, The expansion of 

r'-n'-cl 
<1 • A(L)x t now reduces to multiplying through by it in the equation 

defining xI:' and fllle get 

- A,,;; - a-It 

::: ite2t 

Theorem 4.1 now gives the order of Xt is less than or equal to r'-n'+k'-p 

- -
::: 2. Clearly [" > n', but it is easy to see that An'-k' ::: AO :F 0, which shows 

that the order in this case is equal to 2 and that (4.5) has to be multiplied 

by it to becmne an error correction nwdel, and that the error correction term 

becomes a (i{lt -x2t ) . Thus in order to interprete the equation as an error 

correction model one first has to multiply by .1, 

and €., are parti Honed accordingly 
i: -

r P(L) 

::: l 0 
Q(L)l felt 1 
H(L) J l~2tJ 

It is easily seen that d.et C(L) = dei: P(L) det H(t) and that 

C(L) 
r peL) det HeL) 

= I 
l 0 

- --
-P(L)Q(L)H(Lfl 

I 
H(L) del P(L)J 

Apart from the assumptions on C(z) stated in section 3 we shall aSsIDlle that 

R(z) is non-singular and that PCl) t- O. Then one finds 

and 

(5.1) 

One can define !l(L) ::: 

RC L) -I adz.L = 
\., <1:.21 

ad(Yt - Q(L)R(L)-lZt) ::: P(L)~lt' 
-I Q(L)R(L) and let H(l) == H be the impact of Zt on Y.o-' 

;. I.., 

We shall call ll(L)Zt the revealed target and Yt - H(L)Zt the target error, see 
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Kloei{(1983), We let (k9n;r) denote the indices for the matrix function P(z), 

-
and. get from Theorem 3,1. that if I' - n or P ". 0 then tV'e have the error 

n 

correction model 

(5.2) 
k d- j- - d , . r-n 

,X LI <Pn--j(Yt - ll(L)zt) + PnO .. ).a (Yt - ll(I,)Zt) ::: f(L)L! E.lt' 
,]'::1 < 

We shall interprete this equation as follows: From (5.1) it fol1o~91s that the 

target error is integrated of order d, since PCl) '* 0, Hence can be tracked. 

by the target ll(L)zt§ such that the difference, the target error, becomes 

integrated of order d. The error correction tenl1s in (.5,1) signify that 

certain lineal' combinations of the variable can be tracked closer, in the 

sense that these lineal' combinations of the target errors are integrated of 

lower order, or in other words the target error is co integrated , 

Davidson (l983) compares the dynamic target H(L)ze relevant for a 

steady-state growth world, with the static target HZt relevant for a static 

equlibrium world. He then calls H(L) trend neutral of order ID if H(L) t j = llt j 

for j = O,l, ... ,m, and derives the restrictions to be placed on the structural 

parameters of the equation system for this to hold. 

form: 

Let us next assume that the equations are given in the autoregressive 

r F(L) 
l 0 

We assume that H(z) is non-singular , and that F(l) 'I: O. 

The first equation is 

which can be t-Jritten 

(5.3) 

= p .a"'lt 

Here (k' ,n' ,r') are the indices for the matrix function F(L)'. Hence the 
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revealed target is 

where H(L) can be replaced by the first terms in the expansion 

p-l , 
Il(L) = "dhl + e:PH (L) 

j=~r' J p 

-
since Now in case r' = n~ or Fn '-k 1 * 0 the equation 

(5" 3) gives d.se to an error correct ion model for thE~ target error of the form 

of order r~-n·+k'-p. it simple exs.mple of this is given in Section 6 .. 
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Consider the model proposed by Hendry and von 

Ungern-Sternberg ( ) and discussed by Davidson (1983), 

~~·'lJlli21~ .. J3.1 J~et (ceyt,lt) denote the logarith.m of COnSlli'1lption, 

inco:me~ and personal sector liquid assets respectively. The model 

ta.kes\ the form 

1) .dc, 
(; 

(6.2) .:11. ·c 

To complete the 

::;:: 

::: 

t + '11(Yt - 1- et-I) + 'lZ(Yt-l-1t-l) + 6 1t 

(Yt-CC t - 1) + 

we shall add a third equation explaining how is 

generated by 1&3t' Then the equations will have the form discussed in Section 

solve for et and It in terms of Y t and ,,\. Let 

2,. 2 
f(L) = d'll -+ d ll-'ll) - ~12'21(1-d) , 

We shall aSSUille that fez) '" 0 for z :F 10 Then 'ltie find 

• rd+'# L 'l'12L 1 rCt 1 r ,8d + '1uL + '1 L r@.ltl 11 ::;:: 12 !Yt + 
l ')'21L .cl J llt l L '121L J l@.2t J 

and hence 

r C .. ~ 1 
f-l(L) 

r .::j -'1 L ,fr,8Ll+ 'YnL + "I12L 1 - ., 1 
(603) I lj i 

12 III IYt I~ltll ::;:: 

lltJ I. -'I'zlL Ll + '1IllL J II '121 L J + l@.2tJ J 
The first term on the rigth hand side is the target ll(L)Yt and the equation 

(6.3) is the target relation. Now different models for Yt will give different 

behaviour of ct and It' We shall consider two cases 

Case 1: 

~vhich specifies a random 'i>;alk with drift for Ye and 

Case 2: 

-1 t 
aYt = g + Ll 1&3t = g + I ~ , 

- 9=0 3s 
2 Both cases has Ll Y t stationary 'tli tll. zero mean. and since a target relation is 
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given up to stationary terms we find that (6.3) reduces to 

(6.4) 

(6.5) 

ct = Yt - ~Yt/~21 + stationary terms 

It = Yt + ~Yt«P-l)~21 + ~11)/~21~12 + stationary terms. 

If we now take expectations given the negative past we get 

E(ct ) = E(Yt) - g/~2l 

E(lt) = E(Yt) + «P-I)~21 + ~11)g/~21~12 

which are the equations one would get by formally letting ~Yt = g be 

non-stochastic and equating the ~'s to zero, see Davidson(1983). 

Thus both cases give rise to the same long-term relations, but it is seen 

that in case 1, we have that ~Yt - g is stationary, and hence Yt is integrated 

of order 1 and therefore the same holds for ct and It' Thus (6.1) and (6.2) 

form an error correction model with an autoregressive representation of ~Ct' 

~lt' and ~Yt' where ct and It are co integrated with Yt such that ct - Yt and 

It-Yt are stationary and enter the equations with suitable coefficients. 

In case 2, however, ~2Yt is stationary which implies that ct and It are 

integrated of order 2. Thus by differencing (6.1) and (6.2) we get an 

autoregressive representation of ~2Ct and ~2lt' Note that in this case ~lt 

and ~2t enter only in the differenced form, which shows that the main 

contribution to the variance of ct and It comes from ~2Yt and the error 

correction terms ~(lt-Yt) and ~(Ct-Yt)' Thus the interpretation of (6.1) and 

(6.2) as an error correction model depends on the model specification for the 

exogeneous variable Yt' 

We shall now show how the formal procedures developed in Sections 3-5 can 

be applied to this example. If we write the case 2 in the autoregressive form 

(6.6) A(L)xt = ~t 

where xt ' = (ct,lt'Yt ) then 
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r ~ 11 +&(1-'f 11) "f 12 (1-&) -'\' U-c1 12 +d("t Iff-'f 12-.8) 1 
A(L) ::: I "f (1--.1) a -"I (I-a) I 21 21 " 

J l 0 0 <1~ 

which by the analysis of Section 4 has k' :::: 1, n' = 1, and r' :::: 2, ~nlereas p = 
0, r' --n'-p 

Hence Theorem 4.1 shows that we shall multiply (6,6) by d = d. It 

-
is easily seen that A n'-k' = Aa :fo 0 ,1 such tl~.at t~he resulting equation gives all 

error correction model of order 2~ since r'-n'+k'-p = 2. rie then obtain the 

information from the analysis that 

error correction terms, Note that r! > n' such that we are in the unbalanced 

case. 

One can reduce to the case r' =: n' by introducing new variables \;1hich are 

found by analysing ACL)', see Theorem 7,5, and the comments at the end of 

Section 7. It turns out that the ne~~ variables, in tvhich the problem becomes 

balfu"1ced are 

Ult :::: c t 

u2t :::: It 

Yt +.1Yt/"I 21 

Yt +.1Yt('l'21 (l-f,)-'l'n)/'l'12'l'21 

In terms of' the new variables the equations now become 

and hence we get an error correction model with an autoregressive model for 

2 a Yt explained by the error correction terms which are recognised as the 

target errors (6.4) and (6.5) c 

If we modify the equation (6.1) to give an integral correction equation 

we get 

(6,7) 
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which together with (6.2) determines a system of equations for (et' It)' ~;le 

solve (6.7) in the form 

h ' h h . <' 2. , h T 18 is Ot'lS t at 11: .d y t 1.S statJ_onary $ t en -Yt is stationary~ and hence c t 

is integrated of order 2s and the target relation is 

Ct ::;; Yt + stationary terms. 

The similar relation for It becomes 

It = O-t'3)1'Zlt.lYtalil + ,d-lE.2t + stationary terms. 

The formal analysis proceeds as follows: We multiply through by d to 

avoid the negative power. We then have an e~pression of the form (4.1) with d 

::;; 1 and 

r all +d( "f n -all)+d2 (1-'111 ) 

ACL) ::;; I 7 21.d(1-d) 

l 0 

o -all+.d(a:u-"i'1l)+d2(~fll-tn 1 
tj2 -'lI'71.10-.1) I 
o <.< £13 J 

-
We find k' = 2, n' = 4, and r' ::;; 5, but some calculation shows that An'-ll:' = 

-
AZ (:. O. Hence the process ( c t.!) t ~ y t ) is of order r' -n' +k' -p ::;; 2, and we shaH 

r'-n!-d' 0 
multiply through by £1 =.d in order that the equation can be 

interpreted as an error correction model. We thus find that c t - Yt is a 

stationary error correction term which appears with coefficient -all in the 

Since 1'9 > n~ vIe can introduce a new variable, and an investigation of 

the columns of ACL), or the rmvs of ACL) ~ j will show that the new variable is 

2 
Ut = ct - Yt -.d Yt(~-l)lall 

together ,,,,i tll 1, and 
1: 

In the new variables the matri~ A becomes 

r an +.1(rll-an )+.12 (l-'Y 11) 

ACL) = I ~21~(1-.1) 
t 0 
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which is seen to have k' = 3, n' = r' = 5. Hence the process (ut ,lt 'Yt) is 

r'-n'-d integrated of order r'-n'+k'-d = 2, and we shall multiply through by d 

-1 = d . Thus we shall cancel a factor d again and we find that the error 

correction terms now appear in the 

autoregressive model 

in fact integrated of order -1, which means that ct can be tracked extremely 

2 well by Yt + d Yt(~-1)/al1' in the sense that the error does not accumulate, 

t 
i.e. the sum of the target errors l u has a bounded variance. 

s=O s 

The next example we shall consider is a model proposed by Harvey(1982) 

for a stochastically varying trend. 

Example 6.2. 

equations 

Yt = mt + oxt + ~lt 

dmt = ~t + ~2t 

~t = ~3t 

dxt = ~4t. 
This is an autoregressive model, and we find 

r 1 -1 0 -Q 

A(L) I 0 d -1 0 = I 0 0 d 0 
l 0 0 0 d 

1 
I 
I 
J 

which has determinant det A(L) = d 3 , and hence r' = 3, and we find k' = 1 

n' = 2. Thus we are in the unbalanced case, but it is easily seen, that 

- -

and 

An'-k' = Al ~ O. Hence Theorem 4.1 shows that the process is integrated of 

order r'-n'+k'-p = 2, and that a factor of dr'-n'-p = d is missing in the 

equations before they can be interpreted as an error correction model. Then 

the term involving d2 will be the autoregressive part and those with d the 
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stationary error correction terms, and that the only error correction equation 

~¥here anything is corrected is 

It is seen that the main contribution to the varis.l1ce of Ill, is due to the 
t: 

order 2, and 

integrated of order 0., Hence 'de have an example ~qhere three variables are 

involved which are not of the same order. 

Since r' > n' a differ-encing ,lIas needed, It can b(~ avoided by 

introducin~ the new variable u 
6 t The problE'Jl1 is now balanced, and 

the equations become 

In this case k' = 2, n' = r' = 3, and the process is of order r'--n'+k'-p =: 2. 

Hence the imbalance in A has been removed by the change of variables and the 

new equation can be vieli1ed as an error correct:ion model ,t¥here we now get the 

information that yt-mt-axt and Ut are the stationary error correction terms, 

whereas xt is the error correction term of order 1. The relevant error 

correction model now becomes 

2 d mt :;: .dut + G. 3t 

where now the error correction term contributes less than the shocks to the 

variation of Yt , 

7. Mathematical results 
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Consider a matrix valued function CCz) which is defined in an open disc 

D = {z ; Izl < l+p } in the complex plane. The function is called holomorphic 

if the n'th derivative exists for all n, and it is a well known result that 

the Taylor series expansion of a holomorphic function at a point zeD 

converges in the largest open disc contained in D, see for instance 

Thron ( 1953) . 

We shall investigate the function C(z) around the point z = 1, and we 

assume that the matrix C(z) is non-singular for z ~ 1, and that CCl) is 

singular, but ~ O. We define the coefficients {C. ; j = 0,1 •... } by the 
J 

expansion 
co 

C(z) = E (l-z)jC. , Il-zl < p 
j=O J 

We shall repeatedly use the fact that if C (z) is defined by n 
n-l 

C(z) = E (l-z)jC. + n (l-z) C (z) 
j=O J n 

then C (z) is a holomorphic function in D. This follows since the functions n 
n-l . 

C(z), Z (l-z)JC .• and (l-z)-n are holomorphic in D as long as z ~ 1. At the 
j=O J 

co • 

point 1. however, the function C (z) has the expansion C (z) = E (l-z)JC.+ 
n n '0 In J= 

Iz-ll < p, which shows that C (z) is also holomorphic at the point 1. 
n 

We 

want to give a representation for the determinant of C(z) and for C(z) the 

adjoint matrix defined by 

C .. (z) = (-l)i+jdet Cji(z) 
1J 

where Cji(z) is obtained from C(z) by deleting row j and column i. Note that 

C(z) is also holomorphic since each element is given as a finite sum of finite 

products of holomorphic functions. 
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We define the coefficients {C. ; j ::: O~l~ ..• } 
J 

the expansion at z = 1 

- j-C (z) - Z O--z) C,. 'l'le define the null spaces 
j=O .J 

and 

ThEm, since C is regular. there is no vector x vJhich makes all C. zero, 
J 

hEmce Mj ::: {O} for j ~ k~ say. Note that Ck must be non-zero, and that r.;<-1 *' 
{OJ, and that Co ::: CO) #- 0 i.mplies that MO -F Rm, We shall now define the 

inde}{ n ::: ! m., where m, is the dimension of' M.. The basic idea is that if x 
j=O J J J 

e MJ , then 

x'C(z) = (l-z)j+l x'Cj+1(z), 

since the first j+l terms x'CO, .. "x'C. are zero, This corresponds to the 
. J 

idea that }{ is a cointegration factor of' order j+ 1, and ~.e shall u.se this to 

evaluate the determinant. 

The multiplicity r of the root z = I of det C(z) is 

greater than or equal to n, hence there exists a function fez) f. 0, such that 

We want to choose a convinient coordinate system to evaluate 

the determinant and this is done as follmvs: Frmn the relation 

m 
R J MO :;) Ml :;) ••• :J ::: {O} 

we get an orthogonal decomposition of Ff 

~Ja = ~iJo + vI + H .It ¥ 0 •• Yk~ 

where 

V. = t<iJ. 1 n M ,I ::: NO n . o. n N. In N ,1 
J .]- J J- J 

is of dimension ill, l-m" Note that e(l) *' 0 implies that Vo f. {O} and that 
J-.- .] 
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the definition of k implies that Vk ~ {O}. 

We define C(z) by x'C(z) = x'C.(z), for x E V., then 
J J 

(7.1) x'C(z) = (l-z)jx'~~z) , x E V. 
J 

where x'C(l) ~ 0, since x E M .. Thus V. is the space of cointegration factors 
J J 

of order j. 

Now choose a basis {v.; j = l, ... ,m } for urn, such that the vectors given 
J 

by {v.j j = m-m. l+l, ... ,m-m. } span V .• We use the notation m_I = m. We J 1- 1 1 

define the order of v. to be i(j), thus i(j) = i if v. E V .• Note that 
J J 1 

max i(j) = k and 
~j~m 

or 

m ~ ~ 

that Z i(j) = Z i(m. I-m.) = Z m. = n. 
. 1 . 0 1- 1 . 0 1 J= 1= 1= 
v'C(z)v = C (z) = (l-z)i(p)~ (z) p q pq pq 

C(z) = diag{ (l-z)i(p) ;p = l, ... ,m} C(z) 

From (7.1) we find 

n -and hence that det C(z) = (l-z) det C(z). Now let r be the multiplicity of 

the root z = 1 of det C(z), then r ~ n, since C(l) may be singular. This 

completes the proof of Theorem 7.1. 

Corollary 7~ For the adjoint matrix we have the result 

(7.2) 

where f .. (z) ~ 0 and r.. ~ n-p when v. E V • 
J1 J1 J P 

By deleting the row j with v. E V from C(z) we leave out a 
J p 

factor (l-z)P in the determinant and the index n is reduced by p. 

~ . 
The next result gives a representation of the matrix C(z) = Z (l-z)JC. 

j=O J 

Theorem 7.3 

(7.3) 

and hence 

The coefficients of the adjoint matrix satisfies 

-
C. = 0 , j = O,l, •.. ,n-k-l 

J 



(7.4) 

Further 

(7.5) 
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C(z) 
n-k -= (l-z) Cn_k(z) 

-
C .C. = 0 ,0 ~ i < j ~ k n-J 1 

which shows that 

(7.6) C .C(z) = (l-z)jc .C .(z) , j = 1, .•. ,k. 
n-J n-J J 

Let us consider the coordinate system {v.; j = l, ... ,m } from 
J 

the proof of Theorem 7.1, and express C(z) in these coordinates. From (7.2) 

we find that r .. ~ n-p when v. E V , but we have n-p ~ n-k. Thus the smallest 
Jl J P 

- -
power that can occur in the expansion of C(z) is n-k, which shows that C. = 0, 

J 

j < n-k, and this proves (7.3) and (7.4). To prove (7.5) and (7.6) we will 

show that 

cc .) (C.) = 0 for all p,q,r and 0 ~ i < j ~ k. n-J pq 1 qr 

We then get (7.5) by summing over q. Now if q ~ m-m. l' then v E Vo + 
J- q 

+ V. 1 and r ~ n-(j-l). Thus the smallest power in the expression for 
J- qp 

C(z) is (l_z)n-(j-l) which shows that (C .) = O. 
pq n-J pq 

Similarly if q > m-mi , i.e VqE Vi +l + .•. + Vk = Mi' then clearly vq'C i = 
0, and hence (C.) = O. Now if we take i < j, then m-m. ~ m-m. l' which 

1 qr 1 J-

shows that all q values were considered, and this completes the proof of the 

relation (7.5) and (7.6). 

-
The relation (7.5) shows that the rows of C . are contained in the null 

n-J 

spaces of C. whenever i < j, and in particular that the rows of 
1 

are contained in Mi = NO n 

- -
Cn-(i+I)"",Cn- k 

n N .• We can now prove 
1 
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k 
Theorem 7.4. If r = n then Z C .C. is proportional to the identity and 

j=O n-J J 

- -
the rows of C . l""'C k span M. , i = O,l, .•. ,k-l. n-l- n- 1 

Proof. If r = n then the matrix CC 1) is regular, see the proof of 

Theorem 7.1. From the relation 

C(z)C(z) = det C(z) I mxm 
- - -

we find from the fact that Co = ... = C k I = 0 and C .C. = 0 for 0 ~ i < j n- - n-J 1 

~ k, that the first possibly non-zero term on the left hand side is 

k n -
(l-z) Z C .C. 

j=O n-J J 
k 

and if det C(z) = (l-z)nf(z), fez) ~ 0, then Z C .C. is proportional to the 
j=O n-J J 

identity and hence has rank m. 

Now consider the terms (C .) (C.) . From the proof of Theorem 7.3 it n-J pq J qr 

follows that 

and that 

(C.) = 0 for q ) m-m. 
J qr J 

hence 

where the summation is for q such that m-m. 1 < q ~ m-m. or v E V .. This 
J- J q J 

-
shows that the rank of C .C. is less than or equal to m. I-m .. We then 

n-J J J- J 

evaluate as follows 

k _ k _ k 
m = rank(Z C .C.) ~ Z rank(C .C.) ~ Z (m._l-m.) = m. 

j=O n-J J j=O n-J J j=O J J 

It follows that equality holds throughout and that 
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-
rankC . 2: rank(C .C.) = m. I-m .• 

n-J n-J J J- J 

This completes the proof, since then 

_ _ k 
m. 2: rank(C . 1""'C k) 2: Z (m._I-m.) = m. 

1 n-l- n- J J 1 j=i+l 

which shows that the matrices on the left span all of M .• 
1 

If r > n we do not get so complete information, but we shall show below 

how the case r > n, the unbalanced case, can be reduced to the case r = n, the 

balanced case. The idea is that instead of taking only linear combinations of 

the x's we allow powers of d in the coefficients. We can then prove, that by 

transforming the variables we can increase n while keeping r fixed, and we 

thus reduce to the balanced case after at most r-n transformations. A similar 

idea is the starting point for the work of Yoo(1985). If r > n then C(l) is 

m 
singular and we can find a vector a = Z a v e RID such that a'C(O) = O. Let s 

p=l p p 

be the largest j for which a. ~ 0, and define T (z) by 
J a 

v.'T (z) 
J a 

r s 
= la-l Z (l_z)i(s)-i(p)a v ' 

s p=l P P 

v.' 
J 

, j ~ s 

j = s 

We can then prove 

Theorem 7.5 The matrix function 

C (z) = T (z)C(z) 
a a 

has indices (r ,n ,k ), where r = r, n 2: n + 1, and k 2: k. a a a a a a 

Proof. Since det T (z) = 1 we clearly have r = r. For j ~ s, we have a a 

v.'C (z) = v.'C(z),and it follows that the order of v. is the same for C (z) 
J a J J a 

as for C(s). If j = s, then 

a v 'c (z) s s a 
= ~ (l_z)i(s)-i(p)a v 'C(z) 
p=l p p 

= ~ (l_z)i(s)-i(p)a (l-z)i(p)v 'C(z) 
~l p p 



34 

Hence, since a'C(l) = 0, we get that the order of v is ~ i(s) + 1, which s 

implies that k is at least as large as k, whereas n is greater than n. 
a a 

Let us briefly discuss the relevance of the above formulation for the 

theory of time series. The reason that the holomorphic functions play a role 
00 

is that if {Zt; -00 < t < 00 } is stationary, and if B(z) = Z ziB~ is 
.0 1 1= 

00 

* holomorphic for Izl < l+p then the process Yt = B(L)zt = Z B.zt . is a 
. 0 1. -1 

stationary process. 

1= 

The coefficients B~ decrease exponentially fast in i, 
1. 

which shows that the process {Yt} is well defined and it is easy to see that 

it is stationary. 

We have throughout considered the matrices as linear transformations of 

the row vectors, using the notation v'C(z). This comes from the fact that in 

the moving average model (3.1) the change of variable Yt = TXt gives the 

relation 

Thus by choosing a suitable T we can change the variables to find a convinient . 

coordinate system in which to calculate the determinant or, in case T depends 

on L, to reduce the unbalanced case to the balanced case. 

If the starting point of the investigation is the autoregressive model 

(4.1) then the change of variable Yt = TXt implies the equation 

A(L)T-lYt = [T,-lA(L)'J'Yt = dd~t. 
Thus the inverse of T' operates on A(L)'. Now it is easy to see that from the 

definition of the adjoint, it follows that (ACL)') = (A(L))', and hence that 

the results of the previous Theorems can be aplied without problems. 

Let us end this section by giving explicitly the transformation of the 
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variables that increases n by at least 1. 

If 

If 

cl 
.d :Kt := C(L)~ , . t 

;:: Ta(L)xt as follows 

~ j "" s 

)-i(p)a " 
p'''pt 

j ::: S 

and a' A(l)' ::: 0, then one can introduce the variable by 

r 
y ::: I 
jt l 

-1 i 
X,.-8,d 

,]'t S 

l-i( ') ) .. ] a.x 
,J st 

Examples of this are given in Section 6, 

j < s 
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