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1. Introduction

We consider GI/G/1 queues in an enviromment which is periodic (without

loss of generality with period one) in the following sense: at the arrival of

customer mn, say at time t, his service time Un and the next interarrival

time Tn are drawn according to distributions BX’AX depending on the phase
X = @n = t mod 1 at the arrival instant. We use the obvious notation like

GIper/Gper/1 for the general case, GI/Gper/1 if A is independent of x

and so on.

Such models are obviously well motivated from a number of phenomena ex-
hibiting a marked variation according to the time of the day, the day of the
week, the season of the year and so on. As examples from different fields of
applied probability, we mention [13], {14], f7], [4], whereas the basic ref-
erence within the framework of queues is a paper by Harrison and Lemoine [6].

They treat the Mper/G/1 case by assuming that the arrival process is a

Poisson process with periodic intensity a(t) = a(t+1) (and that all BX = B).

{v } {qQ.} be the processes of actual waiting

Letting {W } oo t’e>0° t’t>0

times, resp. virtual waiting times, resp. queue lengths, they show that under

natural conditions Wn has a weak limit W as n-~, that for each s€ [0,1)

QV(S)

and they also extend some classical formulas for the

(s)

\
n+s

M/G/1 queue to relations between the distributions of W and the V

as n-o,

(see

in that connection also [8]).

Our aims are here twofold, to extend the results of [6] to the GIper/Gper/1
case and to present a rather different approach which provides strikingly simple
and short proofs (but also relies on methods which are rather advanced compared
to the ones in current use in queueing theory). Whereas regenerative processes
provide the key tool in [6], we expioit here the ergodic theory for Harris re-
current Markov chains on a general state space. This topic 1s to some extent

classical (see e.g. [12], [14]), but has only rather recently become more appli-

cable in view of the regeneration techniques presented in [9], [3].



We refer to [11] for a recent text book treatment (see also [2] VI.3 for
a more condensed survey) and state in Section 2 for the sake of easy refe-

rence a few simple lemmas not explicitly given in that form in [11].

The basic assumption is Harris ergodicity of '{en}, the process of phases
at consecutive arrivals, and also that the traffic intensity in some appropriate
sense is less than one. Thus the waiting time process {Wﬁ} beéomes a Lindley
process on a Markov chain, and in fact '{(@ﬁ,wn)} inherits the Harris ergodicity
of {@ﬁ}. This result, given in [lO],is basic for our purposes and briefly re-

inspected in Section 3 since the arguments of [10] require some amendments.

The body of material for periodic queues is then given in Section 4. The
GIper/G er/1 model is formulated, examples showing the versatility of the set-up
are given and the existence of limit distributions is established. For {Wn},
this last fact comes out immediately from Section 3, whereas for {Vt} and
{Qt} we need to introduce some auxiliary Markov chains (e.g. for {Vt} we
look at {En} of the form En = (Rn’ (v )O< s < 1) with R a suitable

n+s

supplementary variable).



2. Preliminaries on Harris chains
Let {On}nG N be a Markov chain taking values in the measurable space

(IE,%) and let in a standard manner PX’PLD etc. correspond to PX(OOEA) =

= I(x€A), P(Q(OOEA) = (A). It is assumed throughout that & is countably

generated and all subsets ACTIE considered are tacitly assumed to be in g.
The classical ergodic theory of such chains under the assumption of Harris

recurrence is given, e.g. in [12] or [14]. More recent references of relevance

for the present paper are [3], [9], [11]/, where regenerative processes are shown

to be of basic importance, and we shall need in particular the following result:

Lemma 2.1 Let {@n} be Harris recurrent with stationary measure w and let

AcE, m(A)>0. Then there exist CcA with 7(C) >0 and randomized stopping

times T(0)<t(1)< ... such that:

(1) {t(k)} 1is a discrete renewal process;

(ii) the © are i.i.d. with the common distribution concentrated on C;

T (k)
(iii) for each k, the post-t(k) chain {ef(k)+n}n€]N is independent of

{1(0),...,1(k)};

(iv) if {@n} is positively recurrent, then Tt(k)/k-8 PX— a.s. with

B€E€ (0,»)  independent of x€ E.

Proof We apply Orey's C-set theorem ([12] Theorem 2.1 or [14] p. 160-161;
historically, the theorem is associated also with the names of Doob and Jain &
Jamison, cf. [il]). This implies the existence of CCA with 7(C)>0 and
PX(Or>F);€1T(FC) for some €>0, some r€{1,2,...} and all x€C. If r=1,
the relevant construction is then described in [3] or [11]. The general case
can then either be reduced to this by constructing the chain first in steps of
length r and next conditioning in the missing values, or one may proceed by
an easy modification of the construction spelled out in [2]. It should be noted
that if r=1, (iii) can be strengthened to the post-t(k) chain being inde-

pendent of {@n,n<T(k); 7(0),...,7(k)}, whereas if r>1, both of the ap-



proaches just sketched only lead to independence of {@n,ngfrﬂd -r;

1(0),...,7(k)}. This difference is, however, immaterial for the present pur-

poses.

We shall say that a Markov chain {@n} admits coupling if for any two in-
.. . . . . . () () -
itial distributions ¢,y there exist versions {On 1, {@n } of the P@ s

resp. P -, chain defined on the same probability space and an a.s. finite

.(P 3
random time T = T(p,¥) with the property Oéw) = Oiw), n > T.

Lemma 2.2 A Markov chain {On} having a stationary distribution = admits

coupling if and only if it is Harris ergodic.

Proof That a Harris ergodic chain admits couplingvfollows from its regenerative
properties (a general discussion of this topic is in‘[15]; more elementary, one
can simply take T as the coupling epoch of the imbedded renewal processes. See
also [5], where a coupling is constructed under conditions entailed by t.v. con-
(m)

6%, n>T, and the stationarity of {Oiw)}

0(® _
n n -

vergenc@. Conversely,
. . . . . ( .
implies t.v. convergence of the distribution of @ép) to m, hence Harris

ergodicity ([1 ] Prop.6.3).

Lemma 2.3 If a Harris recurrent Markov chain {@n} has the property that for

some probability measure ¢ on IE and some e > 0

. N
(2.1)  1lim inf — ¥ (0 €A) > ¢ ¢(A)
N n —
N-> n=0

P~ a.s. for all ACE, then {@n} is positively recurrent.

Proof Suppose the stationary measure 7 has infinite mass. Then by o-finite-

ness, we can find A with @(A) > 0 and w(A) < =, By [12] p. 36,

P (6 €A)-0, and taking expectations in (2.1) and using Fatou's lemma, a con-
X n

tradiction comes out from



N
e ©(A) < lim inf &+ ¥ P (0 €A) = 0.
_ N X n
N> n=0

Note, conversely, the standard fact that if {G)n} is positively recurrent
with stationary distribution w, then PX— a.s.

N

(2.2) lim ~ ¥ I(0 €A) = m(A).
N n
N->e~ = n=0



3. Lindley processes on a Markov chain

We consider throughout this Section a Harris ergodic Markov chain {Gn}

in the set-up of Section 2 and let = denote the stationary distribution.
Then by a Lindley process on {On} we understand a process {Wn} of the

+ . . . .
form W,=w, W +1-(wn-+xn) where {(On,Xn)} is a bivariate Markov chain

0
on IE xR with transition function depending only on the first coordinate
[obviously, {Wn} may be interpreted as the zero-reflected version of the
corresponding random walk (or Markov additive process) Sn = X0+...+Xn_1 on
{On}]. Clearly, {(@n,wn)} and {(@n,Xn,Wn)} ate Markov chains on T x [0,«),
resp. IExRx [0,9) and have been studied by Nummelin [10], to whom we refer for

further formalism and background material. We shall here briefly reinspect the

parts of [10], which are relevant for our purposes, in particular the following

result ([10] Lemma 4.2):

Theorem 3.1 The chains {(6_,W )}, {(6 ,X ,W )} are Harris ergodic if {0 }
—_— n’ n n’’n’ ' n n

is so and Eﬂ)(( 0. In particular, W has a limit W in the sense of t.v.

convergence of distributions.

Whereas the assertion of the theorem seems correct, so is not the case for
the proof of IlO] More precisely, with reference to the waiting time paradox
the vital assertion on p. 668;that sampling of a stationary version
of {(en,xn) at a certain sequence {1(i)} of random times yields the same

distribution of (0 ,..,X ,.,) for all i, is erroneous, [This has been acknow-
(1)°7 (1) 7 ‘
ledged by Nummelin and, in fact, a counterexample has been given by M. Jacobsen.
Also the way in which this (unvalid) .stationarity is used in the proof of rela-
tion (4.8) and the aperiodicity is not clear to us]. In view of the basic import-

ance of Theorem 3.1 for the rest of this paper (as well as of the intrinsic in-

terest of the result) we shall therefore give an alternative (and in fact shorter)

proof.

It is easily seen that {(@n,Xn)} inherits the Harris ergodicity of {Gn},
cf.[10], and hence it is obviously sufficient to consider {(On,Xn,Wn)}. We

proceed from Lemma 2.2 by first showing the existence of a stationary version



and next constructing a coupling. The first of these steps is given in [10],

but may be reformulated slightly in a manner more familiar from standard

queueing theory:

" Proposition 3.2 Suppose that {@n} has a stationary distribution 7 and that

* X .o
E X <0. Then, with {(O;,Xn)}_oo a doubly infinite stationary version of

{(6 ,x )} and
n’'n =

% * -+
W = sup too¥X 0= sup +. s
T —e<k<n & -l ~w<k<n— Xk fa-1?
3 * * * . . .
it holds that {(0 ,X ,W )} 1is a stationary version of {(0 ,X ,W )J}.
n’“n’ n : n’>"n’'n

Proof The stationarity is obvious. Further, it is well-known that E X ==ETr X <0

% * % .
implies Xk+...+Xn_1-+ —© as k--» and thus Wn<<w a.s.. Finally,
* sk +
= (sup Xk+ = (W_+ X))
—e<k<n noon

Remark It is of some interest to note that (with some minor topological assump=
tions) one may interpret the distribution of W; as that of the maximum of a

random walk governed by the time-reversed transition probabilities, cf. [14]

p. 123-124,
Proceeding to the coupling, write 6; = (@n,Xn) for brevity and ﬁﬁ =E xR.
Let ¢,y be two initial distributions on Ex [0,») for {(BQ,WH)} and p,X

their marginals in the first component. Then since {6;} is Harris ergodic,

we can couple {BQU)}, {5ﬁk)}, i.e. 6ﬁu> = 5ﬁx), n>T. Then also (E% ;U)

(A) él) have a common value for n = 0,1,2,..., say S( ). Also by

choosing W(w) éw) such that (O

and S

~(u) é@)), (gék),wéw)) have distributions

@, resp. ¥, and letting

W@ L @@,y W) ), By

b +1

bl

(3.3)

{(6§U), Wiw))} is a P@—version of {(Eg,wn)} and {(@(A) (W))} a Pw—version.

To complete the proof, it is thus sufficient to show that Wéw) = Wiw) event-
ually. Now it is well-known that Sn and hence SéT) tends a.s. to -, In
(1) @ 4B s

particular, there is a T1 such that Sn S_—max(w 1



Now it is a standard fact that (3.3) implies

wé‘fr)1 - max{Wé(D) + 5D sr(lT)— sz),...,slgT) - séﬂ, 0},
wéfi = max{W,J(_,w) + SI‘;T), sr(lT) - ng),...,sIET) - sr(fz , 0}.

For n > T1, the first term in these maxima may be cancelled and thus

W(w) = W(w) so that T+ T, 1is the desired coupling epoch. Finally for the

T+n T+n 1

t.v. convergence of Wn we ‘just remark that t.v. convergence of a Markov

chain entails that of any measurable functional.



4. Limit theorems for periodic queues

We number the customers =n = 0,1,2,..., denote their service times by
UO,U1,U°,... and let Tn be the time between the arrival of customers n
and n+1. The phase space is T = [0,1) and we let Gn be the phase at

the nth arrival. Thus for n = 1,2,:...

0 = (0 -+Tn_1) mod .1 = (@O-fTO'h...-+Tn_1) mod 1

n n-1

and we let PX,EX etc. refer to the case @O = x. With ;; = O(TO,...,Tn_1;

UO""’Un—1)’ the basic periodicity assumption then means that for suitable
families (AX)XEJE’ (BX)XGEE of distributions on (0,») it holds that
(4.1) P (T <t, U <ul¥) =4, (0B ()

n n

(in fact, the conditional independence between Tn and Un is not essential

for the following).

We shall need:

Assumption I {Gn} is Harris ergodic on IE, with stationary distribution

£say) m

E

. ™

Assumption II p = =—= < 1
EﬂT

[an]

Here E T means EE ET m(dx) with ET = IO y Ax(dy) and similarly for
ENU. By the law of large numbers (2.2) for Harris ergodic chains, one also

has for each =x€IE that PX— a.s.
(4.2) ET= lim ——2 EU = lim —— 2.
T m n
Example 4.1 Assume as in [6] that the arrival process is a Poisson process

with a periodic intensity A(t) = A(t+1) which is measurable and bounded. It

is then easy to see that {@n} has a transition density p(x,y) satisfying

(4.3) p(x,y) = @, IAFIELY) + olx,1)p(0,y)
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where ©(x,y) = exp{—} A(u)du} is the probability of no arrivals in [x,y)
x

and p(0,y) coincides with y(y) = m(O,y)A(y)/(1—e—A) where ) = fé Alt)de

[that p(0,y) = ¥(y) follows by noting that for any k ¢(y) 1is the condi-

tional P ~density of T, given {k:iTO‘<k-F1}]. In particular,

. p(X,y).Z @(0,1)p(0,y) for all x€TE implies that {On} is Harris ergodic,

see e.g. [3] for references and background (going back to Doeblin). It is

readily guessed in various ways that the stationary distribution m should be

.given by the density A(y)/A, yEE, 1i.e. that

A(x)
A

Ay) _

A

p(x,y)dx

O -

and this is also easily checked by (4.3). Finally the first limit in (4.2) is

A—1, cf. [6], and thus if all B_ =B, Assumption II is the same as the basic

requirement AEU < 1 of r6 1.

Example 4.2 (cf. also [16]). Assume that all AX contain a common component
H which is spread-out. I.e., A.X > eH for all x€E and some e > 0, and
for some k H*k is absolutely continuous. Then also for some & > 0 and
some integers £,m the density of sz is bounded below by & on [m,m-*z]

so that for all x€E and all Borel sets ‘AEE

*
(4.4) PX(6£€A) > el u l(‘[A+m—X})_>_ se’ fAdY.
Again, this implies Harris recurrence and positivity. Also aperiodicity

can be seen to follow from the fact that (4.4) holds for two consecutive inte-

gers (L+ 1 as wellras ).

In just the same way as for the standard GI/G/1 queue, it now follows that the

+ = + = - .
walting time of customer n+ 1 1is given by Wn+1 (Wn Xn) with Xn Un Tn
Here WO = 0 1if customer O -enters an empty queue, whereas otherwise WO is

to be interpreted as the remaining work in the system at the arrival of customer
0. In view of (4.1), {Wn} is a Lindley process on ‘{Gn} and since Assump-—

tion II is equivalent to E“X < 0, Th. 3.1 yields:
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Corollary 4.3 TFor a GIper/Gper/1 queue satisfying Assumptions I, II, it

holds that {(GH,WH)} is Harris ergodic. In particular, the actual waiting

time Wn(_has a limit W in the sense of t.v. convergence of distributions.

We shall consider the behaviour of {Wn} as settled by Cor. 4.3, but of course
an essential problem is to say more about the distribution of W, at least in
some particular cases. Some information is provided by Prop. 3.2 and the remark
following it, and the;eby also investigations like those of [1] (for a discrete
state space for {Oni)bbecome relevant at least for approximation purposes. We
shall, however, not go into this but pass on to the virtual waiting time proéess

V ,.\ E ‘J_ - . - —;' - “ ;“V - - . . . . ) a: .z .
{ t}tZQ~ and the queue length pirocess {Qt}tzp_fln continuous .time

In continuous time, the periodicity excludes the existence of limits as t-®,

and we must instead restrict attention to sequences of the form S, 1+5S, 2+S,...

with s€[0,1).

It seems natural first to look for discrete renewal processes making {Vn+s}

and {Qn+s} regenerative, but in fact we did not manage to come up with such
ones. In particular, it is not sufficient as in [6] to look at integers n

with Qn = 0 (neither do the o(k) below suffice though this requires a little
more reflection). However, Markov chain methods turn out to apply surprisingly
well, and we proceed by considering Markov chains {Eﬁ}, {nn} containing the

relevant information on {VC}PZO’ resp. {Qt}tzp'

We may assume that the paths of ‘{Vt}’ {Qt} are in D[0,») and for the study of
- ) = S
{Vt} we can then define a random element zZ (Zn( ))05.35.1 of D[0,1] by
Z (8) =V . The process {Z_ } 1is not Markovian since Z alone does not
n n+s n n
determine the arrival process in [n+ 1, n+2]. We therefore let {Rt}t> 0 be
the forwards recurrence time process of the arrival process and look at
{(R_,Z2 )}. 1It is then easy to see that {& } = {(R_,Z )} 1is indeed a Markov
n’“n n n’"n
chain taking values in (0,~) xD and that also {Rn} itself is Markovian on

(0,2). A small problem arises when trying to fit {En} into the framework of
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Harris chains, since we need to specify the transitions from all
EO = (r,z) € (0,#) xD[0,1], 1including also some z which do not at all look

like the paths of the virtual waiting time, some couples (r,z) mnot consistent

with z(t) to have a jump at t =r if r < 1 and so on. This may be done,

e.g., by letting the Pr,z —-distribution of 51 be that of (RO’(Vs)O§f351)
corresponding to a queue with starting values RysVg determined by Y =|z(1 ]|,
RO =r-1 if r > 1, and finally if r < 1, R, should correspond to an ar—-

rival process-with the last arrival beforé time zero occurring at time w(z)-1

where w(z) = sup{s<1: z(s-0) #2z(s)}.

In the discrete time scale indexed by the customers, Assumption I on Harris
ergodicity of {On} may be characterized as a regularity property éf the ar-"-:
rival process. It seems reasonable to expect that something similar must be

set up in the physical time scale (where we look at consecutive integers).
Noting that {Rt} is in one-one correspondance with the arrival process, one

may more precisely be lead to the following condition:

Assumption III {Rﬁ} "is Harris ergodic on (0,«)

In fact, this condition will be in force in our theorems, but it might be noted

that all that need to be checked is in fact aperiodicity (the requirement EnT<oo

is in general innocent in examples): :

Proposition 4.4 ‘Suppose that Assumptions I, II are in force. Then {Rn} and

{En} are Harris recurrent, and positively recurrent if and only if E_T<.

Proof Let ® = (6 ,T ,U ). Then since {(06 ,W )} 1is Harris ergodic (with
—_ n n’ n’ n n’'n

- .. . ~ . 2

IE x {0} recurrent), it is easy to see that so is {(en,wn)} with Ex (0,»)  x {0}
recurrent. Thus by Lemma 2.1, we can find a sequence {1(k)} of random times

such that WT<k)==O, that t(k)/k->B8€ (0,0) and that the sequence Bl’BZ""

of blocks
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Bk = (T(k + ]—) - T(k) s (OT(k) sz(k)) 900 ey (OT(k_i_l)_lawT(k_'_l)_l))

is strictly stationary with one-dependent components. In particular, {Bk} is
metrically transitive, since one-dependent sequences have even trivial tail-o-

field as may be seen by a minor modification of Kolmogorov's zero-one law. Let

r be the time of the first arrival and

ok) =[r+T +... +Tr(k)-1] +1.

Then for some suitable functional ¢ (the explicit form of which needs not

concern us) it holds that

(B

Eoqk) TV BaByigsee

Therefore also {Eé(k) }k=1,2,... is metrically transitive, and hence by the

pointwise ergodic theorem

K

e 1 B . o

(4.5) 1im i % I(Eg(k)GA) = P(EO(1)€A) = @(A) " (say) a.s.
K- ™ k=1

no matter initial conditions and thus {En} is @-recurrent. Further if E T<«,

then o(k)/k—»a= BEWT <o, Thus letting KN=sup{k :0(k) <N}, it follows by

an argument familiar from renewal theory that KN/N—>0L,_1. Hence by (4.5)

1 ¥ p
llmlnf—l\_f > I(ENEA)zllm 1nf—ﬁ——— E

-1
I(g €A)=a "¢(A)
N-w " n=1 N-oo Xy o o (k) '

1
so that by Lemma 2.3 we have positive recurrence. Finally the necessity of
E1T T< > for positive recurrence of {Rn} alone follows easily from (2.2). Al-

ternatively see Theorem 3 in [15].

Remark It is tempting to assert that the go(k) are so i.i.d. since the
(er(k) ,WT (k)) are so.However,if is not apriori obvious even that o(k+1) #o(k),

and also dependence between § and & arises 1f o(k+1)=0(k) +1.
o(k+1) o(k)

We can now state and prove our main result on the virtual waiting time:
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Theorem 4.5 "Suppose that Assumptioné I, IT are in force and also that Assump-

tion ITIT holds (or just that {Rn} is aperiodic and EﬂT<<»). Then

)} 1is Harris ergodic on (0,~) xD[0,1]. 1In particular, for

{(Rn’ (Vn+s)0_<_ s<1

as n-—o,

each s< 1V " has a t.v. limit V(S)
—_ n+s

Proof Since {En} has a stationary distribution (Proposition 4.4), it is suffi-

cient for Harris ergodicity to show that {En} admits coupling. This is done almost

in the same way as in the proof of Theorem 3.1. Since {Rn} is assumed Harris

ergodic and hence admits coupling, it is sufficient to show that two chains

] 1.
{En}, {En} with the same initial distribution of RO can be coupled. To this

1 " 1 " 1 "
end, we may assume that T =T , U =U_ for all n and that R, =R.. Then
n n n 0 0

1] "

] "
{gn}, {gn} have the same input process (in particular R.n==Rn for all n)
'l’ V

| \ n
and differ only through the values ZO,ZO. Now if say ZO(1) §_20(1), there

" ]

isa T > 1 with VT==O and hence VT==O. Similarly, we let T > 1 satisfy
1 1 n

] "
VT==O if ZO(1) > 20(1) and get in both cases that En = En for n>[T]+1.

The queue length can be treated in an entirely similar way. As auxiliary Markov

chain we can take, e.g., {(Rn,Yn,nn)} defined on the state space

N B B .
(0,2) xD[0,1] xR~ by Y = (Qn+s)O§_S§_1 and n_ = (M1,...,Mk,0,02..) if

Qn =k, M1 is the residual service time of the customer being served

at time n and M2""’Mk the service times of the remaining k-1 customers

(in their order of service). We remark that whereas in Prop.4.4 it is not essen-—

tial that W =0 (only certain statiomarity properties are used), then so

t(k)

is not the case here: if WT(k):#O’ we can not represent say Qo(k) as a

functional of Bk’Bk+1"" alone but moest invoke also the BK with £<k.

Otherwise just the same argument applies, and we get:

Theorem 4.6 Under the conditions of Theorem 4.5, {(Rn,Yn,nn)} is Harris

Q(S)

as n-—o>«,

ergodic as well. In particular, Qn+s has a t.v. limit
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Also several further generalizations are possible. For example, along similar
(even easier) lines it may be shown that the processes of queue lengths just

before arrivals and just after departures have t.v. limits, one may consider

simultaneous convergence of Vn+s and Qn+S and so on. Also since the law

of large numbers holds for Harris ergodic chains, cf¢ (2.2), one would expect
that time-average considerations like in [6], [8] should apply to deduce re-
lations between the various limit distributions, but we have not carried this
out. As a limitation to the methods of this paper one may note, however, that a
model with a server working periodically seems to require additional work.

We finally remark that Assumption III (or equivalently the aperiodicity) can

be shown almost trivially to hold in Examples 4.1, 4.2: In Example 4.1, we just

1 "

need to note that two arrival processes with RO#:RO can be coupled by letting

] n
thenlcoincideefter'maX(RO,RO), and in Example 4.2, the assertion follows easily

from HKZ having a density bounded below on an interval of length > 2 (alter-

natively, a proof is in [16]).
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