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1. Introduction 

We consider GI/G/1 queues In an environment which is periadic (withaut 

loss af generality with periad one) In the following sense: at the arrival of 

customer n, say at time t, his serVlce time U and the next interarrival 
n 

time T 
n 

are drawn according to distributions B ,A 
x x 

depending on the phase 

x = 8 
n 

t mad 1 at the arrival instant. We use the obvious notation like 

GI /G /1 per per 
far the general case, GI/G /1 per 

if A lS independent of x 
x 

and sa on. 

Such models are abviously well motivated from a number of phenomena ex-

hibiting a marked variation according to the time af the day, the day of the 

week, the seasan of the year and so on. As examples fram different fields af 

applied probability, we mentian [13.], [14], [7], [4], whereas the basic ref-

erence within the framework of queues lS a paper by Harrison and Lemaine [6]. 

They treat the M /G/1 
per 

case by assuming that the arrival process is a 

Poissan pracess with periadic intensity aCt) = a(t+1) (and that all B 
x 

B) . 

times, resp. virtual waiting times, resp. queue lengths, they show that under 

natural conditions W has a weak limit W as n ~ co, that far each sE [0,1) 
n 

v ~v(s) 
n+s 

as n~co, and they also. extend same classical formulas far the 

M/G/1 queue to. relatians between the distributions af W and the 

In that connectian also. [8]). 

Our alms are here twafold, to extend the results af [6] to. the 

(s) 
V (see 

G1 /G /1 per per 

case and to. present a rather different approach which pravides strikingly simple 

and shart proafs (but also. relies an"methods which are rather advanced compared 

to. the ones in current use in queueing theory). Whereas regenerative pracesses 

provide the key tool in [6], we explait here the ergodic theory for Harris re-

current Markov chains an a general state space. This tapic is to some extent 

classical (see e.g. [12], [14]), but has anly rather recently became mare appli-

cable in view af the regeneration techniques presented in [9], [3]. 
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We refer to [11] for a recent text book treatment (see also [2] VI.3 for 

a more condensed survey) and state in Section 2 for the sake of easy refe-

rence a few simple lemmas not explicitly given in that form in [11]. 

The basic assumption 1S Harris ergodicity of {e } 
n ' 

the process of phases 

at consecutive arrivals, and also that the traffic intensity in some appropriate 

sense is less than one. Thus the waiting time process {W} becomes a Lindley 
n 

process on a Markov chain, and in fact {(e ,W )} 
n n 

inherits the Harris ergodicity 

of {e}. This result, given in [10], is basic for our purposes and briefly re­
n 

inspected in Section 3 since the arguments of [ld] require some amendments. 

The body of material for periodic queues is then given m Section 4. The 

GI /G /1 model is formulated, examples showing the versatility of the set-up per per 

are given and the existence of limit distributions is established. For {W }, 
n 

this last fact comes out immediately from Section 3, whereas for {Vt } and 

{Qt} we need to introduce some auxiliary Markov chains (e.g. for {Vt } we 

look at {~ } of the form 
n 

supplementary variable). 

~ = (R n n' with R 
n 

a suitable 
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20 Preliminaries on Harris chains 

Let {Gn } nE IN be a Markov chain taking values in the measurable space 

(IE, fo-) and let in a standard manner Px ' Ptp etc. correspond to Px (GO fA) = 

= I(xEA), Ptp(GOEA) = (p(A). It is assumed throughout that g is countably 

generated and all subsets Ac:::. IE considered are tacitly assumed to be in to 
The classical ergodic theory of such chains under the assumption of Harris 

recurrence is given, e.g. in [12] or [14]. More recent references of relevance 

for the present paper are [3], [9], [11] i, where regenerative processes are shovffi 

to be of basic importance, and we shall need in particular the following result: 

Lemma 2.1 Let {e} be Harris recurrent with stationary measure ~ and let n 

Ac:::.JE, ~(A) > O. Then there exist CcA with ~(C) > 0 and randomized stopping 

times T(a) < T(n < ... such that: 

(i) {T(k)} 1S a discrete renewal process; 

(ii) the GT(k) are i.i.d. with the common distribution concentrated on 

(Hi) for each k, the post-T(k) chain {GT(k)+n}nE IN is independent of 

{T(O), ... ,T(k)}; 

{G } 
n 

(iv) if is positively recurrent, then 

SE (0,00) independent of x E JE. 

T(k)/k~ S P - a.s. with 
x 

Proof We apply Orey's C-set theorem ([12] Theorem 2.1 or [14] p. 160-161; 

historically, the theorem is associated also with the names of Doob and Jain & 

Jamison, et. [11]). This implies the existence of CcA with ~(C) > a and 

P (G > F) > s~(FC) for some s> 0, some rE U,2, ... } and all x E C. If r = 1, 
x r = 

the relevant construction is then described in [3] or [11]. The general case 

can then either be reduced to this by constructing the chain first in steps of 

length r and next conditioning in the missing values, or one may proceed by 

an easy modification of the construction spelled out in [2]. It should be noted 

that if r = 1, (iii) can be strengthened to the post-T (k) chain being inde-

pendent of {G ,n<T(k); T(O), ... ,T(k)}, whereas if r>l, 
n 

both of the ap-

C' , 
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pro aches just sketched only lead to independence of {e ,n < T (k) - r; 
n = 

T(O), ... ,T(k)}. This difference is, however, immaterial for the present pur-

poses. 

We shall say that a Markov chain {e} admits coupling if for any two ~n­n 

itial distributions there exist vers~ons of the D _ 
-'- tp , 

resp. P~-, chain defined on the same probability space and an a.s. finite 

random time T = T(tp,l/J) with the property n > T. 

Lemma 2.2 A Markov chain {e} having a stationary distribution TI admits 
n 

coupling if and only if it is Harris ergodic. 

Proof That a Harris ergodic chain admits coupling follows from its regenerative 

properties (a general discussion of this topic is in [1§J; more elementary, one 

can simply take T as the coupling epoch of the imbedded renewal processes. See 

also [5], where a coupling ~s constructed under conditions entailed by t.v. con-

vergenc~. Conversely, n 2'.. T, and the stationarity of 

implies t.v. convergence of the distribution of 

ergodicity ([1 ] Prop.6.3). 

Lemma 2.3 If a Harris recurrent Markov chain 

some probability measure tp on ill and some 

(2.1) 1 lim inf 
N 

N 
.L 

n=O 
I(e EA) > E: tp(A) 

n 

e (p) to 
n TI, hence Harris 

{e} has the property that for 
n 

E: > 0 

then {e} ~s positively recurrent. 
n 

Proof Suppose the stationary measure TI has infinite mass. Then by 0-finite-

ness, we can find A with tp(A) > 0 and TI(A) < 00. By [12] p. 36, 

P (e EA)~O, and taking expectations in (2.1) and using Fatou's lemma, a con­
x n 

tradiction comes out from 



N 
E ~(A) < lirn inf N L 

N ~oo n=O 

5 

P (8 E AY = O. x n 

Note, conversely, the standard fact that if 

with stationary distribution ~, 

(2.2) 
N 

l' 1 L 1(8 EA) lrn N n 
N~ 00 n=O 

then P - a.s. 
x 

~(A). 

{8} lS positively recurrent 
n 
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3. Lindley processes on a Markov chain 

We consider throughout this Section a Harris ergodic Markov chain {8 } 

In the set-up of Section 2 and let 'IT denote the stationary distribution. 

Then by a Lindley process on {8} we understand a process 
n 

{W } of the 
n 

n 

form where {(8 ,X )} lS a bivariate Markov chain 
n n 

on lli xJR with transition function depending only on the first coordinate 

[obviously, {W} may be interpreted as the zero-reflected version of the 
n 

corresponding random walk (or Markov additive process) Sn = XO+",+Xn_ 1 on 

{8 }]. Clearly, {(8 ,W)} and {(8 ,X ,W)} a:r:e Harkov chains on IE x [0,(0), 
n n n n n n 

resp. lli xJR x [0,(0) and have been studied by Nummelin [la], to whom we refer for 

further formalism and background material. We shall here briefly reinspect the 

parts of [la], which are relevant for our purposes, in particular the following 

result ([10] Lemma 4.2): 

Theorem 3.1 The chains {(S ,W )}, {(8 ,X ,W)} are Harris ergodic if {8} 
n n n n n n 

is so and E X < O. 
'IT 

In particular, 

convergence of distributions. 

W has a limit W in the sense of t.v. 
n 

Whereas the assertion of the theorem seems correct, so is not the case for 

the proof of [10] More precisely, with reference to the waiting time paradox 

the vital assertion on p. 668J that sampling of a stationary version 

of {(B ,X) at a certain sequence {T(i)} of random times yields the same 
n n 

distribution of (8T(i)'XT(i») for all i) is erroneous, [This has been acknow­

ledgedby Nummelin and, in fact, a counterexample has been glven by M. Jacobsen. 

Also the way in which this (unvalid) .stationarity lS used in the proof of rela-

tion (4.8) and the aperiodicity is not clear to us]. In Vlew of the basic import-

ance of Theorem 3.1 for the rest of this paper (as well as of the intrinsic in-

terest of the result) we shall therefore give an alternative (and in fact shorter) 

proof. 

It lS easily seen that {(8 ,X )} 
n n 

inherits the Harris ergodicity of {8 } 
n ' 

cf. [la], and hence it lS obviously sufficient to consider {(8 ,X ,W )}. 
n n n 

We 

proceed from Lemma 2.2 by first showing the existence of a stationary version 
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and next constructing a coupling. The first of these steps is given ~n [10], 

but may be reformulated slightly in a manner more familiar from standard 

queueing theory: 

. Proposition 3.2 Suppose that {e} has a stationary distribution ~ and that 
n 

E X < O. 
~ 

-J~ * 00 

{(e ,X )} a doubly infinite stationary version of n n -co 

{(e ,X)} and 
n n 

* W 
n 

," * 
sup ~+",+Xn-1 

-oo<k<n 

* *.+ (sup X. + ... +X ), --k n-1 
-00<k<n-1 

* * * it holds that {(S ,X ,W )} 
n n n ~s a stationary vers~on of {(S ,X ,W )}. 

n n n 

* Proof The stationarity ~sobvious. Further, it is well-known that E X = E X < 0 
~ 

implies * * ~ + .. ,+Xn- 1 --t -00 as k~-co * and thus W < 00 a. s .. Finally, 
n 

* W 
n+1 

* * + (sup ~+",+Xn) 
-oo<k<n 

Remark It ~s .of some interest to note that (with some minor topological assump':': 

* tions) one may interpret the distribution of W 
n 

as that of the max~mum of a 

random walk governed by the time-reversed transition probabilities, cf. [14] 

p. 123-124. 

'" Proceeding to the coupling, write e 
n 

(e ,X ) 
n n 

for brevity and IE =JE xJR. 

Let lD,1J; be two initial distributions on lE x [O,co) for {CS ,W)} and ~,A 
n n 

their marginals in the first component. Then since {S } 
n 

we can couple {S(V)} {SeA)} ~ e S(~) 
n ' n ' " n 

and S (A) - s (A) have a common value for n 
n+T T 

choosing WelD) w(1jJ) such that (S(~) WelD»~ 
0' 0 0'0 ' 

lD, resp. 1J;, and letting 

(3.3) 

"'e(A) > T 
n ' n • 

0,1,2,00', 

is Harris ergodic, 

Then also 

say 
(T) 

S • 
n 

Also by 

have distributions 

{(S(~) welD»~} ~s a P -version of {(S ,W)} and {(SeA) ,w(1J;»} a P",-version. 
n'n lD nn n n 't' 

To complete the proof, it is thus sufficient to show that WelD) = w(1J;) event-
n n 

ually. Now it is well-known that S 
n 

particular, there is a T1 such that 

and hence SeT) tends a.s. to 
n 

(T) (lD) (1jJ) 
Sn < -max(WT ,WT ), n ~ T1, 

-co In 
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Now it lS a standard fact that (3.3) implies 

{w (tp) + s (T) 
max T n' s (T) - s 1(T) , ..• ,S (T) - s (T)1' O}, 

n n n-

{w (\jJ) + s (T) 
max T n' s (T) - s1(T), ... ,seT) - S(T)1' A}. 

n n n-

the first term In these maxima may be cancelled and thus 

so that T + T1 lS the desired coupling epoch. Finally for the 

t.v. convergence of W 
n 

we just remark that t.v. convergence of a Markov 

chain entails that of any measurable functional. 
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4. Limit theorems for periodic queues 

We number the customers n 0,1,2, ... , denote their serv~ce times by 

and let T be the time between the arrival of customers n 
n 

and n+1. The phase space ~s IE = [0,1) and we let 8 be the phase at 
n 

the nth arrival: Thus for n = 1,2, ... 

8 
n (8n- 1 + Tn- 1) mod 1 

and we let P,E 
x x 

etc. refer to the case 80 = x. With ':t = a(TO,···,T 1; n n-

UO, ... ,Un_ 1), the basic periodicity assumption then means that for suitable 

families (A)x EIE' (Bx)x EIE of distributions on (0,"") it holds that 

(4.1) P (T < t, U < u I r ) 
x n- n- n 

(in fact, the conditional independence between T and U ~s not essential 
n n 

for the following). 

We shall need: 

Assumption I {8 } 
n 

~s Harris ergodic on IE~ with stationary distribution 

{say) 1T 

Assumption 11 p 
E U 

1T 

E T 
1T 

< 1 

with .. E T = J""O y A (dy) 
x x 

and similarly for 

E U. By the law of large numbers (2.2) for Harris ergodic chains, one also 
1T 

has for each x fIE that P - a. s. 
x 

(4.2) E T 
1T 

n~oo n~oo 

Example 4.1 Assume as in [6] that the arrival process is a Poisson process 

with a periodic intensity A(t) = A(t+1) which is measurable and bounded. It 

~s then easy to see that {e} has a transition density p(x,y) 
n 

(4.3) p(x,y) tp(x,y)A(y)I(x2. Y) + tp(x,1)p(O,Y) 

satisfying 
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y 
where ~(x,y) = exp{-J A(u)du} lS the probability of no arrivals in [x,y) 

x 
and p(O,y) coincides with ~(y) = ~(O,Y)A(Y)/(l-e-A) where A = J1 A(t)dt 

o 
[that p(O,y) = ~(y) follows by noting that for any k ~(y) lS the condi-

tionalPO-densityof TO given {k~TO<k+1}]. In particular, 

p(x,y) ~ ~(O,l)p(O,y) for all x E JE implies that {e } 
n 

is Harris ergodic, 

see e.g. [3] for references and background (going back to Doeblin). It is 

readily guessed in various ways that the stationary distribution 'TT should be 

given by the density A(Y)/A, yE JE, Le. that 

A(y) 
-A-

1 A (x) J -A- p(x,y)dx 
o 

and this is also easily checked by (4.3). Finally the first limit in (4.2) is 

-1 A ,cf. [6], and thus if all B = B 
x ' 

Assumption 11 is the same as the basic 

requirement AEU < 1 of [6]. 

Example 4.2 (cf. also [16J). Assume that all A 
x 

contain a common component 

H which is spread-out. 1. e. , A > EH for all x E JE and some E > 0, and 
x-

*k for some k H is absolutely continuous. Then also for some 0 > 0 and 

some integers Q, ,m the density of 
*Q, 

H lS bounded below by on [m,m + 2J 

so that for all xEE and all Borel sets AcE 

(4.4 ) 

Again, this implies Harris recurrence and positivity. Also aperiodicity 

can be seen to follow from the fact that (4.4) holds for two consecutive inte-

gers (£ + 1 as well as £). 

In just the same way as for the standard GI/G/1 queue, it now follows that the 

waiting time of customer 

Here W = 0 o if customer 

n + 1 is given by + 
W +1 = (W + X ) n n n 

with X = U -T • 
n n n 

o .enters an empty queue, whereas otherwise is 

to be interpreted as the remaining work in the system at the arrival of customer 

O. In view of (4.1), {W } lS a Lindley process on 
n 

tion 11 is equivalent to E X < 0, 
'TT 

Th. 3.1 yields: 

{e } 
n 

and since Assump-
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Corollary 4.3 For a GI / G /1 per per queue satisfying Assumptions I, 11, it 

holds that {(e ,W)} lS Harris ergodic. In particular, the actual waiting 
n n 

time W has a limit W in the sense of t.v. convergence of distributions. 
n· 

We shall consider the behaviour of {W} as settled by Cor. 4.3, but of course 
n 

an essential problem is to say more about the distribution of W, at least in 

some particular cases. Some information is provided by Prop. 3.2 and the remark 

following it, and thereby also investigations like those of [1] (for a'discrete 

state space for {e }) become relevant at least for approximation purposes. We 
n 

shall, however, not go into this but pass on to the virtual waiting time process 

In continuous time, the periodicity excludes the existence of limits as t ~oo, 

and we must instead restrict attention to sequences of the form s, 1 + s, 2 + s, ... 

wi th sE [0, 1) . 

It seems natural first to look for discrete renewal processes making {V } n+S 

and {Q } regenerative, but in fact we did not manage to come up with such n+S 

ones. In particular, it is not sufficient as in [6] to look at integers n 

with Q = 0 (neither do the a(k) below suffice though this requires a little 
n 

more reflection). However, Markov chain methods turn out to apply surprisingly 

well, and we proceed by considering Markov chains {~ }, {n } 
n n 

containing the 

relevant information on {V} 
t t>O' resp. 

We may assume that the paths of , {V t}' {Qt} are In D[O,oo) and for the study 

{Vt } we can then define a random element Z = (Zn(S»O< s< 1 of D[O,l] by 
n 

Z (:s) = V The process {Z } is not Markovian since Z alone does not 
n n+ S n n 

determine the arrival process In [n + 1, n + 2] . We therefore let {Rt}t>O 

the forwards recurrence time process of the arrival process and look at 

{(R ,Z )}. 
n n 

It is then easy to see that {~ } 
n 

chain taking values in (0,00) x D and that also 

{(R ,Z)} is indeed a Markov 
n n 

{R} itself is Markovian on 
n 

be 

(0,00) . A small problem arises when trying to fit {~ } into the framework of 
n 

of 
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Barris chains, since we need to specify the transitions from all 

1;0 = (r,z) E (0,00) x D[O, 1], including also some z which do not at all look 

like the paths of the virtual waiting time, some couples (r,z) not consistent 

with z(t) to have a Jump at t = r if r < 1 and so on. This may be done, 

e.g., by letting the P -distribution of 
r,z 

corresponding to a queue with starting values 

be that of (RO' (Vs)O < s < 1) 

RO' V 0 determined by V 0 = I z( 1) I , 
R = r-1 o if r > 1, and finally if r ~ 1, RO should correspond to an ar-

r.ival process'with the last arrival before.time zero occurring at time w(z)-l 

where w(z) = sup{s~l: z(s-O)=I=z(s)}. 

In the discrete time scale indexed by the customers, Assumption I on Barris 

ergodicity of {e} may be characterized as a regularity property of the ar­
n 

rival process. It seems reasonable to expect that something similar must be 

set up in the physical time scale (where we look at consecutive integers). 

Noting that {Rt } lS in one-one correspondance with the arrival process, one 

may more precisely be lead to the following condition: 

Assumption III {R lis Barris ergodic on (0,00) 
n 

In fact, this condition will be in force in our theorems, but it might be noted 

that all that need to be checked is in fact aperiodicity (the requirement E T < 00 
7T 

is in general innocent in examples): 

Proposition 4.4 Suppose that Assumptions I~ 11 are inf6rce. Then {R } 
n 

and 

{I; } 
n 

are Harris recurrent, and positively recurrent if and only if E T<oo. 
'IT 

Proof Let e = (B ,T ,D). Then Slnce {(B ,W)} lS Barris ergodic (with 
n n n n n n 

lEx {a} recurrent), it is easy to see that so lS {(e ,W)} with ]Ex (0,00)2 x {a} 
n n 

recurrent. Thus by Lemma 2.1, we can find a sequence {T(k)} of random times 

such that that T (k) /k ~ 6 E (0,00) and that the sequence 

of blocks 
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1S strictly stationary with one-dependent components. In particular, {Bk } 1S 

metrically transitive, since one-dependent sequences have even trivial tail-0-

field as may be seen by a minor modification of Ko1mogorov's zero-one law. Let 

r be the time of the first arrival and 

o (k) = [r + TO + ... + TT (k) -1] + 1. 

Then for some suitable functional ~ (the explicit form of which needs not 

concern us) it holds that 

Therefore also {~} is metrically transitive, and hence by the 
a(k) k=1,2, ... 

pointwise ergodic theorem 

(4.5) 
K 

rim i L I(~er(k) EA) = P(~er(1) EA) = tp(A) , (say) a.s. 
K~oo k=1 

no matter initial conditions and thus 1S tp-recurrent. Further if E T < 00 

7T ' 

then 0 (k) /k ~ a = SE7TT < 00. Thus letting ~ = sup{k : er (k) ~ N}, it follows by 

an argument familiar from renewal theory that 
-1 

~/N~a . Hence by (4.5) 

1im inf ~ ~ I(~NEA);;: lim inf ~ i_ ~ I(~er(k) EA) = a -l<p(A) 
N ~oo n=l N ~oo -N n=l 

so that by Lemma 2.3 we have positive recurrence. Finally the necessity of 

E T < 00 for positive recurrence of {R} alone follows easily from (2.2). Al-7T n 

ternative1y see Theorem 3 in [15J. 

Remark It is tempting to assert that the ~0(k) are so i.i.d. S1nce the 

(ST(k) ,WT(k) are so.However,if is not apriori obvious even that 0(k + 1) =1= 0(k), 

and also dependence between ~0(k+1) and arises if er(k + 1) = 0(k) + 1. 

We can now state and prove our ma1n result on the virtual waiting time: 
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Theorem 4.5 Suppose that Assumptions 1_, .11 are in force and also that Assump-

tion III holds (or just that {R } 
n 

is aperiodic and E T < 00). Then 
'IT --

{(Rn' (Vn+s)O< s< 1)} ~s Harris ergodic on (0,00) xD[0,1]. In particular, for 

each s< 1 V has a t.v. limit V(s) 
n+s as n-t 00. 

Proof Since {~} has a stationary distribution (Proposition 4.4), it ~s suffi­
n 

cient for Harris ergodicity to show that {~ } admits coupling. This is done almost 
n 

in the same way as ~n the proof of Theorem 3.1. Since {R } ~s assumed Harris 
n 

ergodic and hence admits coupling, it is sufficient to show that two chains 

I " 

{~ }, {~} with the same initial distribution of FU· c~n be coupled. To this n n 
I 11 I 11 " end, we may aSSume that T =T 

n' U =U for all n and that RO = RO' Then n n n 
I " I 11 

{~ }, {~ } have the same input process (in particular R =R for all n) n n n n 
I 11 I " and differ only through the values ZO,ZO' Now if say ZO(1) 2. ZO(1), there 

" 
~s a T > with V = 0 

T and hence VT = O. Similarly, we let T > 1 satisfy 
I " " V = 0 

T if ZO(1) > Zo (1) and get ~n both cases that ~n ~n for n> [T] + 1. 

The queue length can be treated in an entirely similar way. As auxiliary Markov 

chain we can take, e.g., {(R ,Y ,n)} defined on the state space 
n n n 

(0,CO)XD[0,1] xIR :JN by Y -(Q ) 
n - n+s 0 < s < 1 and nn = (M1""'~' 0, 0 ~ .. ) 

Qn = k, M1 ~s the residual service time of the customer being served 

if 

at time n and M2""'~ the service times of the remaining k-1 customers 

(in their order of service). We remark that whereas in Prop.4.4 it is not essen-

tial that WT(k) = 0 (only certain stationarity properties are used), then so 

is not the case here: if WT (k) * 0, we can not represent say as a 

functional of Bk,Bk+l , ... alone but most invoke also the Bl with l<k. 

:Otherwise just the same argument applies, and we get: 

Theorem 4.6 Under the conditions of Theorem 4.5, {(R ,Y ,n)} is Harris 
n n n 

ergodic as well. In particular, Qn+s has a t.v. limit Q(s) as n-t co • 
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Also several further generalizations are possible. For example, along similar 

(even easier) lines it may be shown that the processes of queue lengths just 

before arrivals and just after departures have t.v. limits, one may consider 

simultaneous convergence of V n+s and and so on. Also Slnce the law 

of large numbers holds for Harris ergodic chains, cf( (2.2), one would expect 

that time-average considerations like in [6J, [8J should apply to deduce re-

lations between the various limit distributions, but we have not carried this 

out. As a limitation to the methods of this paper one may note, however, that a 

model with a server working periodically seems to require additional work. 

We finally remark that Assumption III (or equivalently the aperiodicity) can 

be shown almost trivially to hold in Examples 4.1, 4.2: In Example 4.1, we just 
, 11 

need to note that two arrival processes with RO * RO can be coupled by letting 
, " 

them coincide after max(RO,RO) , and in Example 4.2, the assertion follows easily 

*£ 
from H having a density bounded below on an interval of length > 2 (alter-

natively, a proof is in [16]). 
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