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ABSTRACT 

Recent work by Athreya and Ney and by Numme1in on the limit theory for Markov 

chains shows that the close connection with regeneration theory holds also for 

chains on a general state space. Here this is used to study extrema1 behaviour 

of stationary (or asymptotically stationary) Markov chains. Many of the results 

center on the "clustering" of extremes of adjacent values of the chains. In 

addition one criterion for convergence of extremes of general stationary se­

quences is derived. The results are applied to waiting times in the GI/G/1 

queue and to autoregressive processes. 

AMS 1980 subject classification: Primary 60JOS, Secondary 60G10, 60FOS, 60J2S. 

Keywords and phrases: Maxima, stationary Markov chains, regenerative processes, 

clustering of extreme values, point process of exceedances, stationary sequen-' 

ces, GI/G/1 queue, autoregressive processes. 
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1. INTRODUCTION 

Although stationary Markov chains are important both from the applied and theo-

retical points of view, their extremal behaviour has been comparatively little 

studied. A basic (albeit elementary) observation was however made early, im-

plicitly in Berman [6], Barndorff-Nielsen [5], and explicitly in Anderson [1], 

and was used by Berman [7], and Davis [13] in connection with stationary dif-

fusions. This is that if the Markov chain is regenerative then parts of the ex-

treme value theory for independent identically distributed sequences carry over 

in a straightforward way. Recent advances in the limit theory for Markov chains 

(briefly reviewed in Section 2 below) have given this observation much wide 

applicability, and we will use it as a starting point also for the present 

study. Some further scattered results connected with extremes of Markov chains 

are contained in [8],[9], and [15], and there are also a number of papers, an 

early one being Darling and Siegert [12], which use transform and differential 

equation methods to study extremes of continuous parameter Markov chains. A 

survey of this development up to 1973 is given in Blake and Lindsey [10]. 

Specifically, a sequence {Z ;t>O} with values In a measurable space 
t = 

(E,E) lS regenerative if there exist integervalued random variables 

which split the sequence up into independent "cycles", l.e. if 

(1.1) 

are independent and if In addition C C 
l' 2"" have the same distribution. 
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00 

Clearly {Sk}k=O then is a renewal process, i.e. YO= SO' Yl = Sl - SO' Y2 = 

S2 - Sl' . .. are independent and Yl ' Y 2' . . . are identically distributed. 

Occasionally it is useful to have a more general definition of a regenerative 

process, see [3], Section V.l. In the present context, also an intermediate 

concept is needed: we say that {Z } 
t 

is 1-dependent regenerative if there 

exists a renewal process 
ex:> 

{Sk}k=O as above, which splits 

l-dependent cycles CO,Cl "" as in (1.1), with Cl ,C2"" forming a statio-­

nary sequence. Thus adjacent cycles might be dependent, while cycles separated 

by at least one cycle are independent. Clearly a regenerative process is also 

l-dependent regenerative, while the converse does not necessarily hold. 

Now, suppose {Z } 
t 

1S realvalued and regenerative, let 

M = max{Z " 0 < t < n} , 
n t = 

for the "submaxima" over cycles, and let v = inHk; S, > t} . 
t i( 

If ]l = EY· < ex:> 
1 

then by the law of large numbers vt/t~l/]l a.s., and M 1S easily approxi­
n 

mated by max{sO"" 'sv}, which 1n turn can be approximated by 
n 

max{sl"",S[n/]1]}' cf. Theorem 3.1 below. Thus, asymptotically P(M < x) n= 

equals n 
G(x) , where 

1/]1 
G(x) = P(sl ~ x) . Since G is a distribution function 

(d.f.), it follows at once that the Extremal Types Theorem applies so that the 

only possible limit laws of a (M - b ) 
n n n are the three extreme value distri-

butions (listed e.g. in [23], p.10). Further, the i.i.d. criteria for conver-

gence to each of the possible limit distributions (see [23], p.16, 17) can be 

applied to G. 

It is of course easy to find, say, the limiting distribution of the k-th 

largest of the St'S or of the point process of large st-values. However, it 

is entirely possible that there is a strong dependence between large values 

within a cycle, so that a large st-value might correspond to a small cluster 



of large Z 's 
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1n the same cycle and then these results for the S IS 
t 

do not 

translate directly to the Zt's. This clustering of large values is crucial for 

the behaviour of extremes. of stationary Markov chains, and the maj or part of 

the present paper consists of a systematic study of the "degree of clustering". 

A further problem is that often the tail of G(x) = P(St;;; x) l/]J is hard to find, 

while sometimes the marginal d.L of the Zt's' themselves is more accessible. 

It turns out that this problem also is solved if one knows the degree of clu-

stering, since then knowledge of the tails of either one of sI or Zl 1S 

enough to determine the other one. Similar but slightly more involved conside-

rations apply to I-dependent regenerative processes. 

As mentioned above, Section 2 of this paper contains a brief account of 

recent developments in Markov chain limit theory, which make the connection 

with regeneration completely explicit and valid in all cases where the theory 

applies. Motivated by this, a rather detailed investigation of the extreme 

value theory of regenerative processes, with emphasis on clustering behaviour, 

is given in Section 3 together with a brief discussion of the I-dependent case. 

Clustering has already been studied for moving average processes - including 

autoregressive processes which of course are Markov chains - in [14],[26],[27] 

and for general stationary processes by Leadbetter [22], Hsing [18], and Husler 

[19]. Parts of the results 1n Section 3 can be looked on as rather instructive 

special cases of results 1n [22] and [18]. In Section 4 Leadbetter's and Hsing's 

results are reformulated to a form which seems particularly appropriate for 

Markov chains. The case where no clustering occurs is of special interest, and 

is singled out for study in Section 5, leading in particular to a criterion of 

a "martingale-like" flavour. 

In Section 6 the results are applied to a queueing problem studied by Igle-

hart [20], and to autoregressive processes. The section also includes a brief 

remark on periodic chains. A further application, to find a quantitative ex-

planation of the "turn-off" phenomenon in adaptive stochastic control, will be 
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treated in a subsequent paper - this lS the problem which initiated the pre­

sent study. 

There is room for much more research on extremes of stationary Markov 

chains. Here I would like to point out three particular problems. The first 

one is theoretical; even if the assumptions needed to ensure regeneration (Pro­

position 2.1 below) hold In maRY applications, they are clearly stranger than 

what is needed to control extremal behaviour (cf. Chernick [ll]),and it would 

be satisfying to get down to the minimal assumptions needed for e.g. the Extre-

mal Types Theorem. The second one is the practical problem of how good approxi­

mations the asymptotic results give for finite sample sizes, and perhaps how to 

improve on the approximations. Particularly in engineering problems this seems 

relevant. Finally, a problem which reaches well beyond the present context lS 

to find efficient bounds for the tails of the stationary distribution of a 

Markov chain in terms of the transition probabilities. 
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2. LIMIT THEORY FOR MARKOV CHAINS ON A GENERAL STATE SPACE 

Athreya and Ney [4] and Nummelin [24] reformulate the Doeblin-Harris-Orey 

theory of asymptotic stationarity (or "ergodicity") of Markov chains in a way 

which both makes the conditions easier to check and the connection with regene-

rative processes explicit. In this section we give a brief account of their 

work, closely following the elegant approach of Asmussen [3]. 

First, some further terminology and notation. A function p(.,.); 

E x E~ [0,1] H a Markov transition probability on the state space (E,E) if 

for each fixed value of the first variable it ~s a probability on the a-algebra 

E in the second and if it ~s measurable in the first variable for each value 

of the second one. The r-step transition probabilities are then obtained recursive-

ly by P (x,A)=JP l(y,A)P(x,dy), r r-
for P(·,-). The E-valued se-

quence {Xt ; t = O,l, ... } is a Markov chain with (stationary) transition pro­

babilities P(-,-) if 

P(Xt EAII Xt, ... ,XO) =P (X ,A) a.s., 
+r r t 

for r;: 1, t = D, 1, ... , and A E E. The distribution of {X } i ~s determined by the 
t 

transition probabilities and the initial distribution, i.e. the distribution 

of XO' As is customary we often write PA for the distribution of the chain 

with initial probability distribution A, and P if A g~ves probability 
x 

one to the set Le. if X =x o a.s., and we write or E 
x 

for the 

corresponding expectations. A probability ~ is stationary for p(.,-) if 

fr(A) = JP(x,A)'rr(dx), 

for all A E E. Clearly the Markov chain {Xt } is strictly stationary under 

P • 
~ 

Throughout this paper, P denotes probability distributions which make 
~ 

the process involved stationary. Further, writing ,(R) = inf{t~ l;Xt ER} for 

the first time Xt enters R, the set RE E ~s recurrent if P (, (R) < 00) = 1 
x 
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for all x E E. 

A set RE E 1.S a regeneration set if it 1.S recurrent and if there exist 

r >0, E: E (0,1] and a probability A on E such that 

(2.1) P (x,A) > EA (A) , 
r = Vx E R, A E E. 

':this terminology is not yet fixed - Nummelin instead calls R a "small 

set". It can be shown that {Xt} has a regeneration set if and only if it 1.S 

Harris recurrent ([3], Section VI.3). There are two ma1.n situations when a re-

generation set exists: 

(i) When there 1.S a recurrent onepoint set {x0} (one can then take r = 1, 

E: = 1, R = {x0}, and A (A) = P (xO ,A) ) . 

(ii) When, for some r> 0, a transition density f (. .) 
r ' 

exists (i.e. when 

P (x,A) = If (x,Y)].1(dx) for some measure ].1) together with a recurrent set R 
r A r 

and a set S with O<].1(S)<= such that fr(x,Y)~E:>O for any xER, yES. 

(One may then define A by A(B) = ].1(B n S)/].1(S), see [3J, p.VI.3.2; the most 

important case is of course E = ]R. 9, and ].1 = Lebesgue measure, when P (x,A) = 
r 

If {Xt} has a regeneration set, it can be constructed simultaneously 

with a renewal process {Sk} which makes {Xt} regenerative if r = 1 and 

I-dependent regenerative if r '*' 1. This construction 1.S described in Asmussen 

[3], p. VI.3.2 and is rather simple. Loosely the idea 1.S to let a renewal occur 

with probability E: with r time units delay after a visit to R and then to 

restart the process with initial distribution A. The remaining part of the 

construction is to pat.dh together the rest of the Xt -process to make it have the 

right distribution - of course (2.1) is essential for this. Below, when we di-

scuss a Markov chain {Xt} with a regeneration set, YO,Yl , ... will always be 

the intervals between the renewals {Sk} obtained by this construction. Clearly, 

under PA the entire sequence YO,Yl , ... has the same distribution, so that 
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~n particular for k=1,2, ... Further we will say that 

is aperiodic if the PA distribution of Yo ~s aperiodic, i.e. if 

PA (YO E {d,2d, ... }) = 1 only for d = 1. For our purposes the main result ob­

tained in Asmussen [3], Section VI is the following one. 

Proposition 2.1 Suppose that the Markov chain {Xt ; t = 0,1 ... } has a regene­

ration set and is aperiodic. Then the following three conditions are equivalent. 

(ii) There exists a (necessarily unique) stationary initial probability di-

stribution 1T. 

(iii) The P -distribution of x (X,X 1"") n n+ converges ~n total variation to 

sup I P ((X ,X 1"") E A) A x n n+ 

Furthermore, if (i), (ii) or' (iii) holds, then 1T H given by 

(2.2) 

Yo 
= EA {L: f (Xk )} lEA (YO) , 

. k=l 

for any real measurable function f on E. CJ 

To use (i) of the proposition, criteria for finiteness of EA (YO) are 

needed, and in Section 5 also higher moments of YO are of interest. There ~s 

a sizeable literature on the moments of ,(R)=inf{t~l;XtER}, see e.g. [28], 

but unfortunately that a moment of ,(R) ~s finite does not ~n general ensure 

that this moment of YO is finite, s~nce YO also includes the "probability 

E randomization". However, there are some situations where one can draw infe-

rences about moments of YO from moments of ,(R). Here we will list three 

such cases. The first criterion includes the case when R is a onepoint set 

(cf. example (i) on p. 6), and ~s completely obvious, since E = 1 means that 
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Yo = T(R). The proofs of the other two criteria are relegated to the appendix. 

(2.3) 

(2.4) 

(2.5) 

If 

If 

then 

s=l then 

Cl 
E;\(T(R»<co and 

if and only if 

~s uniformly bounded for x ER, 

If the set R ~s a regeneration set for ;\ = 1TR = 1T((.) n R)/1T(R) 

then if and only if 
Cl 

E (Yo) <co. 
1TR 

The theory described above applies with only small changes to a continuous 

parameter Markov chain {Xt ; tE [O,co)}. The main additional restrictions need­

ed are that (E,E) is a Polish space and that the sample paths are right con-

tinuous and have left hand limits at each point. In the sequel we will, usually 

without further comment, assume that the sample paths of all continuous para-

meter processes involved have this property. Some further small changes from 

the discrete parameter case is that now {Xt } ~s aperiodic if Yo ~s non­

lattice and that the sums in Proposition 2.1 (iii) become integrals. Again we 

refer to Chapter VI of Asmussen1s book [3] for further details, and note a 

final difference from the discrete parameter case: in the continuous parameter 

case the construction above always leads to a I-dependent regenerative process 

rather than to a regenerative process. However the process is of course still 

regenerative if it has a recurrent atom. 
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3. EXTREMES OF REGENERATIVE PROCESSES 

If a Markov chain {Xt;tET} with T={O,l, ... } or T= [0,00) satisfies the 

conditions of Proposition 2.1 or its continuous parameter counterpart then it 

is regenerative, orl-dependent regenerative, with fl <00. An important and 00-

vious property of (l-dependent) regenerative processes is that, a function, say 

of a regenerative process {z } 
t 

also is (l-dependent) regenerative. 

(While of course f(Xt ) 1S not necessarily a Markov chain if {Xt } is a Mar­

kov chain.) In this section we first develop the extreme value theory for re-

generative processes 1n some detail, and then briefly discuss the changes need-

ed in the -dependent case. In particular this then applies to instantaneous 

functions of the Markov chain satisfying the conditions of Proposition 

2.1, i. e. to 

(3.1) 

for realvalued functions f (in the first result also values 1n :IRQ, are 

allowed) . 

In the Q,-dimensional case if 
_ (1) (Q,) I 

x - (x , ... , x ) and 
_ (1) (Q,) I 

y - (y , ... , y ) 

are points 1n :IRQ, we write x ~ y 
(i) (i) 

if x ~ y for i = 1, ... , Q, and x < y 

if and 
(i) (i) 

x <y for at least one 1. Similarly max or sup means 

coordinatewise maX1ma or suprema, so that e. g. M = max{xl , ... ,xn } has coordi-

nates 
(i) (i) (i) 

M = max{xl ' ... ,xn }, i=l, ... ,Q,. With these conventions, the 

definitions M = maxO Zt and 
n <t~n So = sUPO<t<S Zt' sk = suPS <t<S Zt' 

= 0 k-l= k 

k=1,2, ... make sense also when Zt = (Z~l), ... ,z~Q,» I is Q,-dimensional. 

Since the distribution of the first cycle, CO' 1n general 1S arbitrary, 

we need the condition 

(3.2) 
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to ensure that its effect on extremes 1S asymptotically unimportant. It is tri-

vial to see that (3.2) holds if {Z } 
t 

is zero-delayed (c.f. p.13 below), since 

SO,Sl"" then are i.i.d. and in the appendix we prove that (3.2) also holds 

if is stationary. We can now state a fairly general version of the re-

suIts of [1],[5], and [6], which were discussed in the introduction. For the 

first part we recall the notation 

renewal sequence associated with 

v = in£{ k > 0,' 8, > t} 
t = j( 

{Z }. 
t 

where is the 

Theorem 3.1 (i) 

with ].l = EY < 00 
1 

Let {Zt;t=O,l, ... } be an i-dimensional regenerative process 

and put G(x) = P(sl-; x)l/].l. Then, for 0 <].l0 < 1 -l/n, 

(3.3) Ip(M <x) -G(x)n j <].l(o+l/n) +p(lv /n-l/].ll >0) 
n= = n 

Hence if (3.2) holds then supxIP(Hn~x) -G(x)n l ~ 0 as n~ooo 

(ii) h T e same result holds for a continuous parameter regenerative process 

{Zt; t E [O,oo)}, with Mn replaced by MT = sUPO-;t-;T Zt and n replaced by T. 

Proof (i) 

(3.4) 

Hence, 

(3.5) 

From the definition of it follows that 

max sk ~ Mn -; max sk' 
l<k<v -1 O<k<v = = n = = n 

P (H < x) > P (max sk ;;; x) 
n = = O<k<v 

= = n 

n+n].lo 
:> G(x) -p(lv /n-l/].ll >0) 

n 

- P(s o 
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since 1;;1,1;;2"" are i.i.d. with d.L G(x»)1. From the elementary inequality 

1 z (z y - 1) 1 < y / (1 + y) < y, 
= = 

for O<z<l 

y = )10, it follows that 

, n+n)1o n 
IG(x) -G(x) 1::;)10, 

and applied with 
n ,z=G(x) , 

and half of (3.3) thus follows from (3.5). The proof of the other half is s~-

milar, and partly simpler since 1;;0 is not included ~n the lefthand side of 

(3.4), but instead the algebra is slightly more involved since one gets the 

exponent n - n)1o -)1 on G(x) in (3.5) - this is the reason for the irritating 

1/n in (3.3). 

Next, p (I v In - 1/)11 > 0) ~ ° by the law of large numbers, and us~ng this 
n 

and (3.2) m (3.3) shows that supxIP(Mn~x) -G(x)n l ~O, smce 0>0 ~s 

arbitrary. 

(ii) This proof applies also in the continuous case - note that the restrict-

~ons on the sample paths introduced at the end of Section 2 ensure that the 

suprema are determined by finite-dimensional distributions. D 

In cases where the tail of the distribution of 1;;1 can be found, Theorem 

3.1 gives a rather complete description of the asymptotic behaviour of M. 
n 

In particular, if the conditions of the theorem including (3.2) are satisfied, 

then the Extremal Types Theorem follows at once, so that if a (M - b) .con­
n n n 

verges in distribution, for some constants a >O,b , 
n n 

then the limit is an 

extreme value distribution (lists of these can be found in [23], p.10, for 

Q, = 1, and ~n [17] for the general case). Anderson [1] contains an interesting 

discussion of some further aspects of this, and, motivated by a queueing prob-

lem, he specially studies the "wobbly" behaviour of the distribution of 

a (M -b) for many integervalued i.i.d. sequences, and how this behaviour ~s n n n 

inherited by regenerative processes. 
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As mentioned in the introduction, the distribution of sl ~s however 

often quite inaccessible, e.g. this is typically the case for Markov chains 

with a regeneration set which contains more than one point. In addition, one 

~s often also interested in, say, the location of the maximum or ~n the distri-

bution of the k-th largest value. Below we will obtain answers to these prob-

lems by means of more general point process convergence results. 

Perhaps the most basic object is the pointprocess of time-normalized ex-

ceedances of un by {Zt}' defined by 

(3.6) N (A)=Mk/nEA; Zk>u} 
n n 

if {Zt} has discrete parameter, and the corresponding quantity if {Zt} has 

continuous parameter, v~z. 

(3.6' ) 

where I I denotes the length (i.e. Lebesgue measure) of the set, forBorel 

sets A?; [0,=). Clearly, NT is usually not integervalued in the continuous 

parameter case, and hence is not a point process, but instead a random measure. 

However, following Leadbetter [22] (cf. also [26]) we first study a related 

point process, N' n' which ~n some respects is easier to handle. Let 

sequence of integers with 

(3.7) 

r 
n 

be a 

An easy argument shows that such sequences always exist if ]l = E(Yl ) <=. Now 

(and throughout the rest of the paper) assume that Z 
t 

~s one-dimensional,and 
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define a point process N' on [0, eo) by n 

the point t = j r In, for each integer j n 

interval [(j -l)r ,j r ). Thus, formally n n 

(3.8) 

letting N' have a single event at 
n 

such that Z exceeds u in the 
s n 

for some s E [( j - 1) r ,j r )} , 
n n 

for Borel sets Ac. [0,=). The idea behind this is (cf. the introduction) that 

exceedances of u 
n 

by Z 
t 

may come ~n small clusters, where each cluster be-

longs to the same cycle, but that (3.7) ensures that asymptotically each such 

cluster is wholly contained in some interval [(j - l)r ,j r ) and that no such 
n n 

interval contains more than one cluster. Thus NI might be termed the "time­
n 

normalized point process of cluster positions". 

It will be convenient to have the notation Po and EO for probability 

,and expectation in the "zero-delayed" case, when CO,Cl , ..• ~s stationary, so 

that the cycles of the' (I-dependent) regenerative process all have the same 

distribution. For a Markov chain with a regeneration set clearly Po = PA and 

EO=EA, and e.g. (i) of Proposition 2 .. 1 with this notation becomes EO(YO) = 

]J < =, and a slightly more general version of (2.2) is 

YO--l 

(3.9 ) E1T (f(ZO,Zl""» = EO\:O f(Zk,Zk+l,···)}/EO(YO) 

YO 

= EO \:1 f (Zk' Zk+ l' ... )} IEO (YO) . 

Also for a non-Markovian regenerative process {Zt}' (3.9) defines the 

unique distribution P 
1T 

which makes stationary, without changing the 

distribution of Cl ,C2 , ... Below we will use that Proposition 2.1 applies 

also to general regenerative processes so that if E (Yl ) = ]J < = and Yl is 

aperiodic then the P-distribution of (x,x 1"") converges in total var~­n n+ 

ation to the P1T-distribution of (Xl ,X2 , ... ), see Asmussen [3], Chapter V.2.8. 

In that reference is also proved the corresponding result for continuous pa-

rameter regenerative processes, under the minor further restrictions that the 
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cycle length distribution satisfies Stoners condition on the existence of abso-

lutely continuous components. 

Let F be the marginal d.f. of {Zt} under the stationary distribution 

P, l.e. 
1f 

F (x) = P (Z < x) , x E JR , 
1f t= 

for any t. Then, if {Zt} were an i.i.d. sequence, M would have d.f. 
n 

n 
F (x) , and the probability that M 

n 
is less than u would converge, say to 

n 
-1' 

e if 

(3.10) 
n -, 

F(u ) ~e , as n~oo 
n 

or equivalently, as 1S easily seen ([23], p.13), if 

(3.H) n(l-F(u ))~" as n~oo .. 
n 

For the results below, we will assume that the maximum of such an "associated" 

i.i.d. sequence" converges, i.e. that the conditions (3.10), (3.11) hold. 

Further, let xF = sup{x;F(x) < l} be the right endpoint of the d.£. F. We 

refer to the appendix of [23] (cf. also [21]) for definition and properties of 

convergence 1n distribution of point processes, and use the notation d 
~ for 

convergence 1n distribution. 

Theorem 3.2 (i) Let {Zt; t = O,l, ... } be an aperiodic regenerative process 

with II = EY < 00 
1 

which satisfies (3.2), and suppose that (3.11) holds for 

some '='0>0, and let 8'>0 be a constant. Then the following three condi-

tions are equivalent, 

0.12 ) 

0.13) 

-8, 

° P(M < u ) ~ e 
n = n 

P(Sl>x:)/ll 

P1f (ZO>x) 
~ 8, 

as n ~oo, 

as x t xF,and 
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(J.14) as x t xF ' 

Further, for any T > 0 there is a sequence u ==u (T) 
n n 

which satisfies (3.11), 

and if one of (3.12) - (3.14) holds and r 
n 

satisfies (3.7), then for any such 

sequence NI ~ NI 
n 

intensity ST. 

as n~=, 1n [0,=), where NI is a Poisson process with 

(ii) The same result holds for a continuous parameter regenerative process 

if M 
n is replaced by MT == sUPO;;;t;;;T Zt' n by T, and the sum 1n 

(3.14) by 
T 

fO' provided Stone's condition is satisfied and r /n~ 0 
n 

suffi --

ciently slowly. 

Proof (i) Since the Po-distribution of 1';0 1S the same as the P-distribution 

of the equivalence of (3.13) and (3.14) follows from (3.9). The condi­
-8T 

n 0 
G(u) ~ e 

n 
tions of Theorem 3.1 are satisfied, and hence (3.12) implies 

or equivalently that n(l-P(1';l ;;;un)l/ll) ~ 8T O' which in turn holds if and 

only if Thus, S1nce P (ZO>u ) == l-F(u ), 
1T n n 

(3.11) 

and (3.13) implies (3,12). Further, an easy argument shows that if (3.11) 

holds, then for all x < xF which are sufficiently close to xF there is an 

integer n(x) such that u <x < u n(x) == = n(x)+l' 
and that n(x) ~= as x t xF • 

which 

implies that n(x)P1T(ZO>X)~TO' as xtxF , If also (3.12) holds, then simi­

larly n(x)P(1';l >X)/1l~8TO' so that (3.13) follows. 

Standard arguments ([23], p. 25) show the exis tence for any T > 0 of u (T) wi th 
n 

n(l-F(un»==nP1T(ZO>un)~T and hence, if (3.13) holds, nP(1';1>un)~1l8T. 

We will show that NI 1 N' by approximating with a suitably time-scaled point­
n 

process, '" N , 
n 

of exceedances of u by 
n 

defined as 
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for A,;; [0,=). Since sO,sl"" are i.i.d. under PO' and EO(Nn«O,l]» ret 

-1 -1 d 
nll PO(sO>un)=nll P(sl>un)~8T, it follows at once that Nn~N' under PO' 

Further, for any k, 

(3.15 ) 

By the Poisson convergence of '" N , 
n the last term tends to zero, and since 

la arbitrary it then follows from (3.2) that P(sO>un) ~O, as n~=. Since 

sl,s2"" have the same distribution under P and Po this shows that 

'" N 
n 

d NI ~ , as n~= In [0,=), also under P. 

'" 

k 

We will now outline a proof that each event of N 
n 

In a fixed bounded In-

terval - for simplicity the interval [0,1), the general case being similar -

asymptotically corresponds to precisely one event in NI 
n 

at the same location. 

Since N ..1 N' 
n 

this will prove NI ..1 NI 
n ' 

cf. e.g. Lemma 3.3 of [27]. 

{r } 
n 

satisfying (3.7) set t. =jr , j =1,2, ... , 
J n 

write v! 
J 

for 

For 

and 

let n. be the maximum over the remainder of the cycle which contains the time­
J 

point t. , 
J 

such that 

(3.16 ) 

l. e. n. = sup{ Z ; t. < t < SI}. Clearly, there exist integers 
J t J= v. 

J 
r I = 0 (r) and (3.7) holds with r replaced by r I. Since 

n n n n 

have the same distribution under P and P , 
1T 

P (max{ nI' ... , n [ / .• J} > U ) 
1T n rn: n 

[n/rnJ 

< P (max{Yo"'" Y } < r I) + L 
1T n n . 1 

J= 
P (max Z Z I } > u ) s., ... , s.+r n 

J J n 

rl 
n 

< P (Yo>r l ) +nP(Yl>r') + (rl/r )nP (Zo>u) 
1T n n n n 1T n 

by (3.7) with r 
n 

replaced by 

total variation convergence to 

rI, and by (3. 11 ). As 
n 

it follows from 

P 
1T 

that also P(max{nl' ... ,n[n/r ]}>un)~O, 
n 
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rv 

as n ~ =. Thus, asymptotically each event of N 
n 

In [0,1) corresponds to 

at most one event In NI. 
n 

On the other hand, 

lim sup peN ([ (j - 2) Ik,j Ik]) ::: 2, for some j E {2, ... ,n}) ~ 0, as k~= 
n -

n~= 

rv 

Slnce N converges to a Poisson process, and this by a straightforward argu-­
n 

rv 

[0,1) ment shows that asymptotically each event of N In corresponds to at 
n 

NI. if '" point s E [0,1) least one event In Further, N has an event at a 
n n 

with s=klJ/n, then NI has its corresponding event at some t=jr In, where 
n n 

j satisfies S I E«j-l)r ,jr] on the event {max{yO •... ,y }<r}, so that 
ns lJ n n n = n 

r r 
I s - t I <..E. + 1 is. I -ns i < ~ + 

= n n ns lJ = n 
k Sk 

sup n I k - lJ I . 
O<k:;;n/lJ 

a.s. so that the bound tends to zero a.s. 

Since it In addition does not depend on the event considered, the loca-

'" tions of the corresponding events In N 
n 

and NI 
n 

asymptotically coincide, as 

required to complete the proof. 

(ii) The proof in (i) applies, with notational changes only, also to a con-

tinuous parameter process, except for the argument in (3.16). By (. iii} of the 

appendix, (3.2) holds with P replaced by P 
1f 

and thus, by the same argument 

as in (3.15), P (l.:O>u )~O, 
1f n 

as n~=. Thus, we may choose a sequence 

{q. ~=} 
n 

of integers with q = 0 (n) , 
n 

np(l.:o>u)~O, asn~=. 
qn 1f n 

and 

By stationarity, nl ,n2 , ... are identically distributed under 

the same distribution as l.:0' and hence 

P , 
1f 

and have 

} n n 
P (max{nl,.·.,n[ I ]. >u ) <- P (nl>u ) =- P (l.:O>u ) ~ G, 

1f nr n =r 1f n r 1f n 
n n n 

as n ~ =, 

r 
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if r > q 
n = n' 

so that the result of (3.16) holds for any such {r }. 
n 

o 

It is known (and easy to prove) that if {Zt;t=O,l, ... } satisfies the 

conditions of the theorem and is stationary then it is strong mixing and hence 

satisfies Leadbetter's condition D(u ) 
n 

for any sequence {u L 
n 

Thus e is 

what Leadbetter call s the "extremal index.", and parts of (i) of the theo!rem 

can alternatively be verified by using Corollary 2.3 and Theorem 4.1 of [;2.2J. 

(The precise definitions of the extremal index and of D(u ) 
n 

are given in Sec-

tion 4 below). 

In Sections 4 and 5 methods for determining e are derived. As noted in 

the introduction, in cases where these apply, by the theorem above it is enough 

to have approximations for either one of or 

of P(l;;l > un) to obtain an approximation of the other one and convergence of 

N' • 
n 

-eT 
e one easy consequence of the theorem is that -eT 

r(M < u ) ~ e , 
n= n for u = 

n 

un (T) ,T ~ O. In addition the theorem gives the asymptotic distribution of, say, 

the location of the max~mum and of the height of the k-th highest cluster, 1n 

the manner of [23], Chapter 5. We will not state these results explicitly, but 

instead turn to the process N of exceedances of u by the Z t-process it-n n 

self . Rather than, say, the asymptotic distribution of the k-th highest cluster, 

this gives the asymptotic distribution of the k-th largest individual Z -value, 
t 

the limit however being more complicated in this case. Again, we will only 

state and prove the point process convergence formally, and leave the corrolla-

ries to the interested reader. The limit of N 1S a compound Poisson process 
n 

N which, informally, can be constructed as follows: the locations of events 

~n N are determined by a Po.isson process with intensity eT, and the multi-

plicities of the events are independent, with distribution given by the "com-
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pounding d.f." G. In the continuous parameter case, N measures the time 
n 

spent over un' and it should be noted that then the "multiplicities" may well 

have a non-discrete d.f., so that N is a random measure, rather than a point 

process, and in this case, convergence of N 
n 

to N ~s in the sense discussed 

in [21], Chapter 4. Further, let ~k = ~k (un) be defined for k> ° by 

Z > u } 
t n 

if {Zt} has discrete parameter, and by 

and Z > u } I 
t n 

if {Zt} has continuous parameter (with Sk-l = 0 for k = 0). 

Theorem 3.3 Suppose that the assumptions of Theorem 3.2 (i) or (ii) are satis-

fied for some TO> 0, and that u = u (T) 
n n 

(3.17) P (~l ~ x I ~l > 0) ~ G(x) , as n ~ 00 , 

for continuity points x of the d.f. G, 

satisfies 

then N .1 N 
n 

(3.11). If 

as n~oo, 
d 

(NT ~ N, as 

T ~oo, in case (ii» ~n [0,00) where N ~s the compound Poisson process de-

scribed just before the theorem. Conversely, if N 
n 

(or NT in case (ii» con-

verges in distribution to a non-zero point process (random measure in case (ii» 

then the limit necessarily is a compound Poisson process, and (3.12) - (3.14) 

and (3.17) are satisfied. 

Proof This time we define the approximating process 

'" 
Nn (A) = L: ~t . 

t;tjl/nEA 

N by 
n 

(With n replaced by T ~n case (ii): similar comments apply during the rest 

of the proof.) Clearly, '" Nand N differ only in the location of points. 
n n 

However, a slight variation of the last argument in the proof of Theorem 3.2 

shows that these differences asymptotically vanish, so that Nn ([t l ,t2» -



20 

again using [27J, Lemma 3.3, N 4 N f N ~ or some process 
n 

if and only if 

'" d 
N ~ N. 

n and S1nce are i. i. d., 

it follows at once that '" d 
N ~ N, 

n 
where N 1S not identically zero, if and 

only if nP(sl>un)/]l~8T and (3.17) holds, for some 8>0 and G. By Theo-

rem 3.2, this completes the proof. o 

This result simplifies for 8 = 1, S1nce (3.17) then 1S a consequence of 

the other assumptions. For completeness we state this as a corollary. 

Corollary 3.4 If the assumptions of Theorem 3.2 (i) hold with 8=1 then 

d N ~ N, as n~=, 1n [0,=), where N 1S a Poisson process with intensity 
n 

T. 

Proof It 1S sufficient to prove that 

(3.18) 

s1nce a compound Poisson process with a compounding distribution which gives 

mass one to the point 1 is just an ordinary Poisson process. Since E(~l) ~ 

YO-l 
EO ([k=O l{~>un}) and P(~l>O)=PO(sO>un)' we have that 

1 + P (~l ;;: 2 i ~l ;;: 1) = (p (~l ;;: 1) + P (~l ;;: 2) ) Ip (~l ;;: 1) ~ E (~l) Ip (~l ;;: 1) 

YO-l 
= EO (\'=0 l{Xk>un})/PO(sO>un ) ~ 1, as n ~ =, 

by (3.14) with 8 = 1, and hence P(~l;;: 21~1;;: 1) ~O. As t; 
1 

1S integer-valued, 

this proves (3.18). o 

Parts of the discrete parameter part of Theorem 3.3 can also be obtained 

from [18] and [19] - this 1S very similar to the relation between Theorem 3.2 

and [22] mentioned above. It would be straightforward to extend the results 

above to describe the entire sample path behaviour around extremes as in [14], 
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[26], [27], and alsQ to obtain nontrivial limits for the case 8 = 0, and to in-

elude a separate normalization for the I; IS 
k 

(this is of particular interest 

in the continuous parameter case). 

We conclude this section with a brief discussion of I-dependent regenera-

tive processes. It is straightforward to extend Theorem 3.1 also to this case -

in (3.3) the term G(x)n lS replaced by P(max{~l'" "~[n/~]} ~ x) and the 

term ~8 has to be increased. Since the Extremal Types Theorem holds for 

l-dependent sequences it then applies to {z } 
t 

and thus the only possible 

limit distributions of a (M - b) for -dependent regenerative sequences with 
n n n 

~ = EY <= 1 
are the extreme value distributions. Also Theorems 3.2, 3.3, and 

Corollary 3.4 have counterparts in this case. We state parts of this as a theo-

rem, including a criterion for 8 = 1 which will be used in Section 5 below. 

Theorem 3.5 The results of Theorem 3.2 and Corollary 3.4 hold also for I-de-

pendent regenerative processes provided P (~l > x) and P 0 (~O > x) are replaced 

by P(~1>x'~2~x) and PO(~O>x'~l~x), respectively. In particular, if 

un =un(,O) satisfies (3.11) for some '0> 0 and 

(3.19) 

then 8 = 1 

PO(~O>un'~l~un) 
Y -1 o 

EOC L l{Zk>x}) 
k=O 

~ 1, 

and 
d 

N ~ N, 
n 

In [0,=), 

as n ~ =, 

as n ~ 00, for any , > O. o 

We only give a brief comment on the proof. Since ~O'~l"" are l-depen-­

dent there may be "clusters" consisting of 2 adjacent large ~-values, and then 

the process 

However, if 

'" 

N 
n 

'" N 
n 

used In Theorem 3.2 may not converge to a Poisson process. 

instead lS defined by (3.8), with z 
s 

replaced by and 

N converges in distribution to a Poisson process with intensity 8" for 
n 

any r = 0 (n) , 
n 

with r ~=. 
n 

This can e.g. be seen from [22], Corollary 3.2 
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or from Theorem 4.1 below. The approximation of 
'V 

NI by N 
n n 

can then be made 

along similar lines as ~n Theorem 2.2. Next, the counterpart of Corollary 3.4 

can either be obtained directly, by straightforward arguments, or else by no-

ting that also Theorem 3.3 holds for I-dependent regenerative processes, if 

(3.17) is replaced by 

Finally, the last statement of the Theorem is just the counterpart of Corollary 

3.4 with x ~n (3.14) replaced by u . 
n 

However, it is easy to see from the 

proofs that all the statements remain valid with x replaced by u 
n 
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4. EXTREMAL INDEX FOR GENERAL STATIONARY SEQUENCES 

Throughout this section, let {Zt} be a general, not necessarily Markovian, 

strictly stationary sequence, and let F be its marginal d.f., i.e. F(x) = 

P (z < x) . The sequence satisfies Leadbetters "distributional mixing" condition t= 

D(u ) 
n 

if there are constants 

A > 0, such that 

{et n} 
n,N 

with et ~ 0 
n,[nA] as 

(4.1) Ip(AB) -P(A)P(B)I ;;;etn 9,' , 

for all sets A of the form {Z. <u , ... ,Z. <u} and sets 
~l = n ~P = n 

1 < i l < ... < i < j 1 < ... < j < n = p p= {Z. <u , ... ,Z. <u}, 
J 1 = n Jp I = n 

with 

n~oo, for all 

B of the form 

and jl-i >9, p= 

([23],p.S3). Hsing [18] and Husler [19] use a slightly stronger mixing condi-

tion, which Hsing calls Mu ), 
n 

where it is required that (4.1) holds for all 

sets A,B such that AEa{l{Zl;;;un}, ... ,l{Zk;;;un }} and 

BEa{l{ZkH;;;un}, ... ,l{Zn;;;un }}, for some kE [l,n-9,]. If D(u) holds, 
n 

then (see [23], Section 3.7, and [22]) the only possible limit laws of 

a (M - b) are the extreme value distributions and under weak further restric­n n n 

tions there exists an "extremal index", ~.e. a constant e such that if 

n(l-F(u »~T 
n 

then -eT P(M < u ) ~ e - of course this correpsonds to the con-
n= n 

stant e in the previous section. Leadbetter [22], Hsing [18], and Husler [19] 

also g~ve some criteria for finding 8 and proving convergence of NI 
n 

and 

N. We will now use these to find conditions which seem particularly useful 
n 

for Markov chains. The result ~s also related to methods used by Berman in a 

continuous parameter context. As in Section 3, M =max{Zl""'Z }, N (A) = n n n 

II{ tin E A; Z > u }, NI is the point process of cluster positions, and the con­
t n n 

vergence of NI ~s supposed to hold for all r = 0 (n) with r In~ 0 "slowly 
n n n 

enough", ~.e. there ~s some sequence rl for which the result holds, and it n 

then holds for any r > rl with r = 0 (n) . n= n n 
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Theorem 4.1 (i) Let {Zt;t = O,l, ... } be a stationary sequence such that for 

each T> 0 there are constants {u = u (T)} with n(l-F(u)) ~T. (i) Sup-
n n n 

pose D(u (T)) holds for each T> O. Then has extremal index 8>0 
n 

if and only if 

(4.2) lim sup I P (M[ ] < u I Zo > U ) - 8 i ~ 0, as E + 0, nE = n n 
n~oo 

and then N' ~ N' 
n 

1n [0,00), as n-+ oo, 

where N' 1S a Poisson process with intensity 8T, for u =u (T), for any T>O. 
n n 

(ii) Suppose 

dex 8> O. Then 

holds 

d 
N ~ N, 

n 
as 

for each T> 0 and that 

n~oo, for some point process 

if there are constants 82 ~ 83 ~ ... such that 

N 

(4.3) limsupl P(Nn((0,d)=k-lIZO>un)-8kl~0, as E+O, 
n~oo 

has extremal in-

if and only 

for k=2,3, ... and N then is a compound Poisson process, with intensity 

8T for the locations of points, and probability (8 k - 8k+l ) /8~ for 81 = 8, 

that an event has multiplicity k. 

Proof By [22 J, Theorem 4.1, N' ~ N' if {Zt} has extremal index 8, and 
n 

hence it is sufficient to show that this is equivalent to (4.2). However, by 

combining (4.2) with Theorem 3.1 of [22] it is seen that 

index 8 if and only if, for n' = [nd , 

{z } 
t 

has extremal 

(4.4) limsup Ip(M ,>u )/(00) -P(M ,<u iZO>u )1 ~O, as E + o. 
n n n = n n 

n~oo 

Let v = max{ t < n' ,. Z > u } 
= t n 

be the time of the last exceedance of u before !time 
n 

n'. Then, splitting up according to the value of v, and using in turn sta-

tionari ty and nP (Zl > un) ~ TO we have that 



(4.5) P(M I > u ) 
n n 

> 

n l 

2::P(v=t) 
t=l 

n l 
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2:: p·C v = t, Z I 1 < u "", Z I < u ) 
c-l n + = n n +t = n 

n'PCZo>u ,M ,<u ) 
n n = n 

nIp (Z 0 > U ) E(M ,~u I Z > U ) 
n .. n-nO n 

,...., ETOP CM I < u I Zo > u ) n = n n 

To prove the opposite inequality we first note that by [22], equation (2.1), 

(4.6) 

Further, 

C4.7) 

and Sl.nee 

2 
PCM ,>u ,max{Z '1"",Z2 ,}>u ) "'PCM ,>u) n n n+ n n n n 

as n~oo. 

n' 
P(M ,>u ,max{Z , 1"",Z2 ,}~u)~ 2:: PCv=t,Xt l~u , .... ,X '+t~u) n n n+ n -n- +-n n-n 

t=l 

n'PCZO>u,M ,<u) n n = n 

r-J ETOP (M ,< u I Zo > u ), n = n n 
as n~oo , 

P (M I > u ) = P (M ,> u ,max{ Z I 1"'" Z2 ,} < u ) n n n n n+ n = n 

+ P (M ,> u ,max{ Z , 1"'" Z2 ,} > u ), n n n+ n n 

(4.4) now follows from (4.5) - (4.7). 

(H) It follows from [18], Theorems3.:1.1>a.nd3.3.4 ,th.atwe Qnly have to show 

(4.3) holds if and only if 
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(4.8) limsupIP(Nn«a,d) ~kl Nn«a,s]) ~ 1) - 8k/81 ~a, as s + a,-
n~= 

Now, by part (i), agam with n I = End 

P (N « a, s]) > 1) = P (M I > u ) 
n = n n 

and hence, for T> a, 

-ST8 
~ 1 - e - ,as n ~=, 

2 
=E:T8+a(s), as si-a, 

,,:,P(N «a,d) >k)/(E:T8) +o(s). 
n = 

Thus, to show that (4.3) and (4.8) are equivalent, it suffices to show that 

limsupIP(Nn«a,d)=k-lIZa>un)-P(Nn«a,sJ)~k)/(E:T)I~a, as si-a. 
n~= 

However, this follows by similar computations as ~n part (i), after redefining 

V to be the last time before time n ' for which the interval [v,n ' ] contains 

k exceedances of un by {Zt}' Le. with v=max{t~n'; Nn([t/n,sJ)=k}. 0 

Corollary 4.2 Suppose {Zt;t = a,l, ... } is a stationary and regenerative se­

quence such that, with the notation of Sections 1,2, Yl = SI - Sa is aperiodic 

and satisfies 
2+8 

EYl <=, for some 

there is a sequence such that 

extremal index 8 > a if and only if 

(4.9) 

8> a, and assume further that for 

n(l-F(u (T)))~T. 
n 

as n~=, 

(i) Then 

T>a 

has 

for u = u (Ta) for some and then N' 1 N' 
n ' 

as ~n part (i) of the 
n n 

theorem. 



(ii) Suppose {Z } 
t 

has extrema1 index 
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8> O. Then 
d 

N ~ N, 
n 

as for 

some point process N, if and only if there are constants 82 ~ 83 ~ ... , such 

that 

(4.10) 

for k=2,3, ... , and then N H as ~npart (ii) of the theorem. 

Proof The proofs of the two parts are similar,. so we only consider (i). Since 

is regenerative, it satisfies D(u (T» 
n 

for each T> 0, and it thus ~s 

sufficient to show that (4.2) and (4.9) are equivalent. Now, writing ~ = 

(4.11) 

and similarly 

(4.12) P(M[nE]~unIZO>un)::::P(~<u 1ZO>u )-P(max{Zy , ... ,Z[ ]}>u Iz >u). 
- n nOnE nOn 

It is known, see e.g. [3] ~ Theorem IV.3.1 that 

l+E 

2+E 
E Y1 <co implies that 

E yO < 00, and hence, 

s~nce nP(ZO>Un)~TO' Further, using that 

pendent and, in the third step, (3.9) with 

(4.14) 

< ].lP(M[ ] > i.l ) nE ·n 

Zo ' YO and 

P = P and 
'IT 

ZYo,ZYO+1'" . 

f(Zl,Z2"") = 

are inde-
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as n~oo. 

By (4.11) - (4.14) 

limsup IP(M[nsJ~unIZO>un)-P(r;~unIZO>un)I~].lTOs~O, as siO, 
n ~ 00 

and hence (4.2) and (4.9) are equivalent. 0 
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5 . THE CASE 8 = 1 

The most important special case is when the extremal index is one. The results 

are simplest and most complete for this case - the point process N of (ordi-
n 

nary) exceedances then converges to an (ordinary) Poisson process so that e.g. 

the asymptotic distribution of the k-th largest value, for any k, is the 

same as if it came from an i.i.d. sequence with the same marginal d.f. Further 

8 = 1 for many interesting sequences. 

Criteria for 8 = 1 can of course be gotten as special cases of the re-

sul ts in Sections 3 and 4. Thus, for example if {Zt; t E T} with T = 

{0,1,2, ..• } or T=[O,oo) lS an aperiodic regenerative process with 

then, by Theorem 3.2, 8 = 1 if 

(5.1) 
P(Sl>x)/]l 

lim inf P . (Z >x) > 1, 
xt~ 'TT ° 

]l = EY <00 
1 

slnce the ratio In the "lim inf" cannot be larger than one, and the same result 

holds for a I-dependent regenerative process if P(sl > x) lS replaced by 

P(sl>x,s2~x), by Theorem 3.5. Similarly, if {Zt;t=O,l, ... } is a statio-

nary sequence for which there are constants {u =u (,)} with n(l-F(u ))~, 
n n n 

such that D(u) holds, for any ,> 0, then 8 = 1 if 
n 

lim inf P (M[ ] < u I Zo > u ) ~ 1, as E: i- 0, nE: = n n 
n~oo 

for un=un('O), for some '0>0, or equivalently if 

(5.2) limsupP(M[ ]>u IZO>u )~O, as si-O. nE: n n 
n~oo 

(In this situation, perhaps the most directly applicable criterion for 8 = 1 

lS Leadbetter's condition D'(u), see [23], p.58. This is slightly more re­
n 

strictive than (5.2), as lS easily seen). 
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Using Theorem 3.5 we will now prove a further criterion for 8 = 1 which 

applies to instantaneous functions Zt = f (Xt ) of a Markov chain {Xt }. The 

result is of the same type as Berman [8], Theorem 2.2, but requires substanti-

ally weaker conditions. In addition to the notation of Sections 2 and 3 we will 

write 

P (x) =P (f(Xl ) >u ) 
n x n 

= P (Zl > u ). x n 

Theorem 5.1 Let Zt = f (Xt ) where {Xt } 18 an aperiodic Markov chain with a 

regeneration set, for which EA(Y~)<co for some a>l. If 0.2) and (3.11) 

hold, for some T > 0, and 

(5.3) E (P (Xo) s)nl +s / a ~ 0, as n ~co, 
1T n 

for some s > 1 with l/a+ l/s < 1 then the assumptions of Theorem 3.5 hold 

with 8 = 1 so that in particular asn~co, in [0 ,co) , where N is 

a Poisson process with intensity :T. 

Proof It follows from the assumptions that {Z } is I-dependent regenerative 
t 

and· hence, by Theorem 3.5, it is sufficient to show that 

(5.4) ~ 1 and ~ 0, 

as n~=. Here 

YO-l 

P,\ (I;; 0 > un) = E,\ (l{ Z 0 > un}) + E,\ ~:; 1 l{ max{ Z 0' ... , Zk -1 } ~ un' 2k > un} ) 

YO-l YO-l 

=E,\( L l{Zk>un }) -E,\( L l{max{ZO,,,,,Zk_l}>un'Zk>un}), 
k=O k=l 

and thus, since by Proposition 2.1 

and (3.11) the first part of (5.4) holds if 
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Yo 
(5.5) n EA(~=ll{max{Zo""'Zk_l}>un'Zk>un}) ~O, as n~=. 

Using that YO H an extended stopping time (see [3] ,p. VI. 3 .3)it follows from 

Holder's inequality with l/a + l/s + l/r = 1 that 

(5.6) 

Since 

Yo 
EA (k:ll{max{zo"" ,Zk_1} > 'fn,Zk > un}) 

= 

Yo 
,,; EA ( . L l{ max { Z 0' ••• '~-1} > un} P A (~ > un 11 XO' ... ,\. -.1 ) ) 

k-=l 

YO 

= EA ( L l{max{ZO"" ,Zk-1} > un}Pn (Xk - 1» 
k=l 

E(Y~) <= by assumption, and s~nce 

as above, to prove (5.5) it is thus enough to show that 

(5.7) as n~=. 

However, by Proposition 2.1, 

s =]lE (p (XO) ), 
'IT n 

and thus (5.7) follows from (5.3), since s(l-l/r) = 1 + s/a. 

For the second part of (5.4) we write 



32 

YO+Y1-1 

P A (sO> un' sl > un) ;;;; EA (l{ sO> un} k:Y 1{ Zk > un}) 

o 

and proceed as in (5.6), to obtain the same bound, with YO replaced by Y1 , 

Since the second part of (5.4) then follows as above. o 



33 

6. APPLICATIONS 

This section contains two applications of the results and a brief comment on 

periodic chains. The first application lS to the (actual) waiting time in the 

GI/G/l queue. The asymptotic distribution of the maximum has been obtained by 

Iglehart [20], while our~remaining results are new. Iglehart also discusses the 

virtual waiting time - it would be easy to apply the present methods In this 

case too - and Anderson [ 1 ] studies discrete quantities like the queue-length. 

The second application concerns autoregressive processes. Here the reader is 

also referred to [14],[26], and [27] for a rather complete description of ex-

tremal behaviour for some particular classes of innovations. 

(i) Waiting times in the GI/G/l queue. In this customers arrlve according to a 

renewal process with general interarrival distribution, and experience i.i.d. 

service times, again with some general distribution. It is easy to see that if 

customer no. n has to wait a time W until he is serviced, then the waiting 
n 

time of customer n+l lS W 
n 

plus the difference, say D n+l' between the 

service time of customer n and the interarrival time between customer nand 

n + 1, if this quantity is positive, and zero otherwise. Thus {W} lS suc­
n 

cinctly described as a "Lindley process" l.e. by 

(6.1) 

where 
+ 

denotes positive part, lS an i.i.d. sequence, and where WO' 

the waiting time of the possibly fictitious customer no. zero is independent 

of {Dn }. Clearly the process (6.1) is a Markov chain with stationary transi­

tion probabilities, and if E Dl < 0 then {O} lS a regeneration set, by the 

strong law of large numbers. It is well known, see e.g. [16] or [3J, Section 

XII.S that if in addition DO is non-lattice and there is ay> 0 with 
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then {W } has a stationary distribution P 
1T 

and the following tail estimate 
n 

holds, 

(6.2) 

with varlOUS expressions for the constant C given In the cited references. 

Thus, n P (WO> u ) ~ T 
1T n 

if u 
n 

is defined e.g. as u = (log n + log C - log T) /y. 
n 

Further, the time So = YO to the first renewal (i.e. visit to {a}) has finite 

moments of all orders. Let M = sup{Dl ,Dl + D2 , ... } and let N(x) = If:{ t ~ 1; 

Dl + ... +Dt>-x}. We will now show that (4.9) and (4.10) hold, with 

00 

(6.3) 
-yx 

8=fP(M<-x)ye dx, 
o -

00 
-yx 

8k =fP(N(x)=k-l)ye dx, k=2,3, ... , 
o 

so that by Corollary 4.2 the pointprocess N 
n 

of exceedances of u by 
n 

.{Wt;t=O,l, ... } converges, 
d 

N ~ N, 
n 

under the stationary distribution P , 
1T 

where N is the compound Poisson process described in Theorem 4.1 (ii). The 

same arguments as in Theorem 3.1 and 3.2 then show that this also holds for an 

arbitrary initial distribution. In particular it follows that for any initial 

distribution 

-x 
P(y(Mn - (lognC8)/Y) ~x)~le 

-e as n ~ 00, 

for all X; which lS one of the maln results of [20]. 

To prove (4.9), let hex) =p(SUP!{Dl,D l +D2""}~-x). A straightforward 

( '{D D D + D } >11 - W Iw > u ) ~ 0 argument shows that P1T sup. 1 + ... + SO' 1 + ... SO+l"" n 0 0 n 

as n~oo, and hence, by (6.1), 

(6.4) P1T(sup{Wt;l~t<SO}~unIWO>un) 

= P1T (sup{WO +Dl ,··· ,WO + Dl +-· •. +DSo-l}~uniWo>un) 

P1T (sup{Dl ,· .. ,D l + ... +DS -l}~un-WOIWO>un) 
o 

P1T (sup{D l ,D1 +D2, .. ·}~un -WOIWO>un ) +0(1) 
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E (h(WO-u )IWO>u ) +0(1). 'IT n n 

By (6.2), the conditional distribution of W - u ° n 
tends to an 

exponential distribution with mean l/y. Further, h 1S bounded and monotone 

decreasing and thus its set of discontinuity points is countable, and hence 

has probability zero under the limiting exponential distribution, and it fol-

lows from (6.4) that 

00 

P'IT (sup{Wt ; 1 ~ t < SO} ~ un IWO > un) -+ fh(x)ye -yxdx 

° 00 

Thus (4.9) holds, with e given by (6.3). The proof of (4.10) 1S entirely 

similar. 

Finally, it might be remarked that even if the parameters e and ek 

cannot be obtained analytically, they are easy to compute. E.g. to find e by 

simulation one only has to repeatedly run the random walk Dl ,Dl + D2 , . .. and 

check whether it ever exceeds an independent exponential, mean l/y, random 

variable. 

(ii) Autoregressive processes The sequence {Zt;t = O,l, ... } 1S an autore­

gressive process (AR-process) with LLd. innovations {Vt;t = 0, ± I, ... } if 

it satisfies the difference equation 

Zt + alZ t _l + ... + a Z = V , P t-p t t=O,l, ... , 

for some constants al,···,ap ' with (random) initial values 

Let Xt be a p-dimensional column vector with components 

k=l, ... ,p, so that Z = X (1) and 
t t 

(6.5) X = AX + BV t ° 1 t+ 1 t t+ l' =" . .. , 

for B = (1,0, ... ,0) I and 

Z 1"" ,Z - -p 

X (k) = Z 
t t+l-k' 
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1 

A 1 o 

o 

1 

Since the Vt's are i.i.d. it follows at once from (6.5) that {Xt } ~s a 

Markov chain ~n RP with stationary transition probabilities. We shall assume 

that all the zeroes of the polynomial are strictly outside 

of the unit circle, or equivalently that all the eigenvalues of A have abso-

lute values less than some p < 1, and that E(logmax(l, IVOi )/:t = c <00, for 

some a> 1. Then, for any n> 1, 
,k -a -a 

P(IVki >n )~C(logn)k, so that 

k 
P(IVkl >n i.o.) = 0, 

p 2 1/2 
for llxll = (L lX') , if X=(Xl··, ... ,X)", it follows that p .. con-

J= J 

verges absolutely, a.s. Iteration of (6.5) gives that 

(6.6) 

and s~nce t+l t+l· 
IIA XO" ~p IIXOII ~ 0, a.s. it follows that the distribution of 

converges to a unique stationary distribution, viz. the distribution of 

Now suppose that Vo has a density (with respect to Lebesgue measure) 

which is bounded away from zero on some interval, say by a constant 0> O. 

Without loss of generality we assume that this interval ~s [-1,1] - this 

just amounts to a change of location and scale for the 

(6.6) with t = P - 1, X = U + APX 
p 0' 

with 

V's 
t 

and z 's. 
t 

By 
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_ p-l (/~l 
U-(A B, ••• ,AB,B) ~p 

~{I~ ), say. 

Here L 1S a' triangular matrix with ones in the diagonal, so that the 

determinant of L equals one. Since Vl,···,V . P 
are i.i.d. with density 

bounded below by cS. on [- 1,1], their p-dimensional joint density is bounded 

from below by cS P on the rectangle K = { (xl' ... ,xp); I Xj I ;;; 1,1;;; j ;;; p} and 

hence the density of U 1S also bounded from below by cSk on the non-degene-

rate simplex L(K). Let R be a sphere around zero such that 1 
R?:ZL(K). 

Then, since APx ER for x ER, it follows that the p-step transition density 

so that by (ii), p.6, R is a regeneration set, provided it 1S recurrent. 

However, using the estimates above it is straightforward to check that the 

density of the stationary distribution of Xt (i.e. the distribution of 

00 k _ p-l k 00 k 
2:0 A BVk - 2:0 A BVk + 2:p A BVk ) has a positive density on R. Further, clearly 

P1T(Xt ;;;X,Xk ;;;x) -P1T(Xt;;;x)P(Xk;;;x)~O, as t~oo, for k=O,l, ... and any con­

tinuity point x of the stationary d.f. of Xt . Hence {Xt } 1S Renyi-mixing, 

so that by [25], Theorem 2.2 the set of limit points of {Xt } 1S dense in R 

a.s. Thus R is recurrent, and hence 1S a regeneration set. It then follows 

from Theorem 2.1 and the fact that Xt has a unique stationary distribution, 

and from Theorem 3.1 (i) that the only possible limit laws of 

- b) are the extreme value distributions. 
n 

a (max{Z 1 ' ... ,Z } n n 

In this situation, it doesn't seem easy to get a handle on the cycle maX1-

ma, needed to apply Theorem 3.2 directly, and also Theorem 4.1 would involve 

quite difficult computations, c.f. [27]. Instead we will find a simple cri-
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terion for e = 1, using Theorem 5.1. For this we assume that VI has a con­

tinuous density which is non-zero on the entire real line, that E IVll <=, 

and that 1 a l j + ... + I an I < 1. Let 0 < 8 < 1 - P and let R be a sphere around 

zero with radius (EIVll + 8)/(1- p - 8). By the same argument as before it 

follows that under the present hypothesis any sphere ~s a regeneration set, 

and thus in particular R ~s one. Moreover, for Xo (/. R 

< p 11 Xo 11 + (1 - p - 8) 11 Xo 11 - 8 + 1 

(1 - 8) ( 11 Xo 11 + 1) . 

Since {Xt } has a regeneration set, it ~s Harris recurrent, and it then follows 

from [28 ], Theorem 3 (ii), with g (x) = Ilx 11 + 1, that there is an n> 1, 

with 
T 

E n <c(lIxll+l), 
x = for x f/. R. Here and below c denotes a generic con-

stant. It follows that for any x, 

Hence, 

~c(pllxll +EIVll +1). 

E T(R)a 18 uniformly bounded on x E R, 
x 

for any a, 

concentrated on R, also Thus, by (2.4), 

and s~nce le 

Next, let H(x)=P(Vl>x) and choose y'>l such that y"= 

~s 

y' (I all + ... + 1 a p I) < 1 (this is possible s~nce I all + ... + i a p I < 1 by assump­

tion). Then, with the notation of Theorem 5.1 and with Z =X(l) as before, 
t t 

(6. 17) s s) E (p (Xo) ) = E (H(u + alZ O + ... + a Z 1) 
1T n 1T n p -p+ 
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< P (max{iZOI, ... ,IZ ll}>y'u) +H((l_y")U )s 
TI -p+ n n 

< pP (IZO' > ylu ) + H((l- Y")U )s 
TI n n 

It is readily seen that c = P (- alZO - ... - a Z 1> 0) > 0, 
TI P -p+ 

and hence, by 1n-

dependence, 

cH(x) = P (- alZO - ... - a Z 1 > 0, Vl > x) 
1T p -p+ 

Together with (6.7) this yields that 

(6.8) s -s s 
E (p (XO) ) < pP (I Zo I > y'u ) + C P (ZO> (1 - y" )u) . 
TIn = 1T n 1T n 

We now choose {u} to satisfy (3.11), Le. nP (ZO>U )~L>O, and make the 
n TI n 

crucial assumption that 

(6.9.) 
log P TI ( , Z 0 I > yu) 

lim inf log PTI (ZO > u) 
u~oo 

> 1, for y>l, 

for y>O. 

It follows from (6.9) that there are constants 6' > 1 and 6" > 0 such that 

-6' -6" 
P (IZOI >y'u ) =O(n ), P (ZO> (l-y")u ) =O(n ) 

TI n 1T n 

and hence, by (6.8), 

-l-s/a 
=o'(n ), 

provided s and a are choosen suitably large. Thus the hypothesis of Theorem 

5.1 is satisfied so that 8=1 and 

with intensity L. 

d 
N ~ N, 

n 
where N is a Poisson process 



40 

This shows that 8 = 1 ~n many cases of interest. However, if the g~ven 

data is the (tail of the) distribution of Zo it might still be a quite 

difficult problem to verify (6.9). In [27] this is done for a class of distri­
p 

-u 
e which have tails that decrease smoothly, and roughly as butions of 

for some p> 1. In particular this includes the normal case. However, it is of 

course trivial to check (6.9) directly in this case. In [27] it is also shown 
p 

that 8 typically is less than one if the tail of Vo decreases like e-u 

for p < 1, or slower. 

(iii) Periodic Markov chains. Except for Theorem 3.1, the results assume, ex-

plicitly or implicitly, that the Markov chains are aperiodic. This restriction 

~s more apparent than real. E. g. if {Xt } has period d> 1, then defining 

rv 

X 
t 

one obtains an aperiodic Markov chain {X} which also has stationary transi­
t 

tion probabilities, and defining teXt) =max{f(Xtd), ... ,f(X(t+l)d_l} the re-

suIts can be applied to z = t(X ) 
t t 

to obtain the limiting behaviour of maxima 

over periods. The extremes of Z = f (X ) 
t t 

itself, rather than maxima over peri-

ods, can be similarly studied us~ng slightly more involved functionals. 

The conditions D(u) and ~(u) of Theorem 4.1 does not involve periodi-
n n 

city explicitly, but may still often be invalidated by periodic behaviour. How-

ever, again these conditions can be simply modified, to involve only "intervals!" 

of integers rather than general sets . . 
~l ' ... '~p and 

. . 
Jl"" ,Jp to take care 

of such cases. 
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APPENDIX 

(i) Proof of (2.4). Let N be the number of visits In R up to and including 

the time when the first regeneration occurs, so that N lS independent of {X } 
t 

and 
n-l 

P(N=n)=(l-s) s, for n = 1,2, .... Further, let Tl = T (R) 

(k - l)-th and k-th visit to 

and for 

k>2 let be the time between the R. Since 

N 
Yo = Lk=l Tk + r, it is sufficient to show that 

(A. 1 ) 

Since N lS independent of {Xt }, 

= n a a n-l 
L ( L EA Tk)n (1 - s) s. 

n=l k=l 

. E Ta < = and for 2 a ( ) By assumptlon, A k:::: , EA Tk ~ sUPxER Ex T R <=, and hence the 

last sum is finite, so that (A.l) holds. 

(ii) Proof of (2.5). The "if" part follows at once, Slnce T(R) ~Yo' On the 

other hand, with the notation of (i) above, it is well known (see e.g. [3], 

Proposition VI.3.4) that for k> 2 

is just TR, and thus 

a 
= E T (R) • 

1TR 

the P -distribution of 
1TR 

Hence, if 
a 

E T(R) <= it follows by the argument In (i) that 
TIR 

a 
E Yo <= . 

1TR 

(iii) Proof that if {Zt} ~s stationary and regenerative~ with Yl aperiodic 

and fl =EY1 <= ~ then (3.2) holds. Let a<= be the right-hand endpoint of 

the (stationary) distribution of Zo' l.e. a= sup{x;P 1T (Zo> x) > A}. It fol-
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lows from (3.9) with f(ZO,Zl, ... )=I(ZO>x) that P1T (ZO>x»O if and only 

if P1T (sl>x)=PO(sO>x»O, so that a also is the right-hand endpoint of 

the distribution of sl' Since sl,s2"" are i.i.d., max{sl"",sk} ~ a, 

and s~nce furthermore P 1T (sO> a) ~ P 1T (max{ ZO' Zl' ... } > a) = 0, this establishes 

(3.2) . 
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