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Abstract 

A necessary and sufficient condition for a suitably normed and 

centered stochastically monotone Markov process to converge a,s. is 

given and its limit distribution is characterized. Applications to 

diffusions and continuous time branching processes are presented. In 

particular, an assumption on the conditional means and variances of a 

diffusion process turns out to suffice for establishing a.s, 

convergence, 

1. Introduction 

Let P:Rx 13 ~ [0,1J be a transition probability function, where R 

is the real line and :B is the family of Borelian subsets of R, We 

shall say that P is stochastically monotone CSM) if PCx, C-oo,yJ) is 

non-increasing in x for every fixed y A Markov process 

(X(t):t£[O,OO)} is said to be SM if its transition probability functions 

are SM (see [7J, [9J, [11J, [12J, [4J and [SJ). 

Our main concern is this paper will be to investigate the a,s. 

behaviour of y(t)=aCt)(X(t)+bCt)), {act)} and {b(t)} being some 

constants, as well as to establish some properties of the limi t 

distribution of {Yet)}. 

It was proved in [2J that if {Xn} is a discrete-time Mar]wv chains 

with stationary transition probabilities, and {a } and Cb } are two n n 
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sequences of constants such that Y =a CX tb ) converges in distribution n n n n 

to a non-degenerate limit, then under rather general conditions 

lim ~ a /a l=a and lim ~a Cb -b 1)=8 exist and are finite. If a=l n,oo n n- n-- n n n-

and 8=0, {Y} is mixing in the sense of Renyi [17J, case when a,s. 
n 

convergence or convergence in probability do not hold. We note that 

stochastic monotonicity was not used in establishing these results. In 

[5J we have considered a; continuous time SM Markov process (Yct)} and 

proved that 

exists for all S>O. In addition, 

and 1 imt 7«>act+s) CbCt+s)-bCt)) =rs 

if p~l and/or r~O then (YCtn)} 

converges a,s, for any {t } with lim -'- =0:> and its limit distribution is n n,oo 

continuous with the possible exception of x=O. For such results to 

hold some regularity conditions on (aCt)} and {bCt)} were required in 

addition to convergence in distribution for (Yct)}. However, in many 

cases of interest it is rather difficult to derive convergence in 

distribution and therefore it would be desirable to have an a.s. 

convergence criterion that does not require convergence in 

distribution. We shall· derive here such a criterion assuming only 

tightness and a condition on {Ps} for s£(O,o) with 0>0. 

A random process (sCt)} will be said to be tight if any 

subsequence thereof contains another subsequence converging in 

distribution to a non-identically 0 random variable. We note that our 

definition of tightness assumes that the limits of subsequences are not 

identically O. 

Further we shall consider the following conditions; 

CA1) bCt)=O and either l<lim inft70:>aCtts)/aCt)Oim sUPt7«>aCt+s)/Q.(t)(OO 

or O(lim inft7«,aCtts)/aCt)Oim sUPt7""aCt+s)/aCU(1 for some s>O. 
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(A2) limt-30ooa(t+s)/a(t)=l for all S)O, and 

-oo<lim inft-30ooa(t+s)(b(t+s)-b(t»~lim sUPt-30ooaCt+s)CbCt+s)-bCt))<oo 

for some s)O. 

(B) If cCt)=xaCt) for x with O<x<oo then for scCO,~) with ~)O, p#l 

and any £)0 

limt -?ooP(X(t+s)cCcCt)ps Cl-c),cCt)ps(l+c)lxCt)=cCt»)=l. 

CC) The distribution function F is continuous except maybe for x=O, 

suppF is either the real line or one of its half-lines, and F is 

strictly increasing on suppF. 

If v and p are two probability measures, v«p is to denote that v 

is absolutely continuous with respect to p. 

Our main result is the following: 

Theorem 1 Suppose that {XCt):tc[O,oo)} is a temporally homogeneous, 

right continuous SM Markov process, {aCt)} and {b(t)} some constants 

with limt-?ooaCt)=oo that satisfies condition CA1), Assume further that 

vt «v s for t)s where vt C. )=PCX(t)c.). Then the tightness of {y(t)} in 

conjunction with condition CB) is a necessary and sufficient condition 

for the existence of some constants {a'(t)} with limt-?ooa'Ct+s)/a'(t)=ps 

for all s, such that {a' (t)X(t)} converges a. s. to a limit random 

variable whose distribution function F satisfies condition (C). 

We shall see that condition (B) is implied by the following: 

Condition (Bl) There exist s)O and p;tl such that 

limt-?ooP(IX(t+s)/X(t)-psl)clxCt);tO)=O for any C)O. 
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In the case when {X(t)} assume finite second moments it will be 

shown that condition (B) is implied by the following; 

Condition (B2) 

lim Var(XCt+s)lxCt)=cct» 
--~-------------------------------------------------=O 

t~~min2{[psc(t)(1+€)-E(X(t+s)IX(t)=cct)],-[psc(t)(1-€)-ECX(t+s)IX(t)=cCt»} 

As an application of Theorem 1 to the case of a Markov process 

with finite second moments that contains some types of diffusions (see 

e.g. [6],[8],[10] and [15]) we get: 

Theorem 2 Suppose that {Xct):t€[O,oo)} is a temporally homogeneous, 

right-continuous SM Markov process, vt «v s for t>s, E(X(t) )~apt and 

2t Var(X(t) )~bp for some constants a, band pwith p;t1, and condition 

(B2) holds. Then {X(t)/pt} converges a,s. as t~ro to a limit random 

variable whose distribution function F satisfies condition (C). 

The above results assume condition (Ai). In the case (A2) we 

obtain similar results by considering {eYCt )} instead of {yet)} and 

using an analogous reasoning. The only difference lies in that F is 

continuous on the whole line as remarked in [5]. We leave it to the 

reader to adapt conditions CB), CB1) and (B2) to this case. 

2. Preliminary results 

Let q be a number with O<q<1 and assume that there exist a 

sequence {t} with 
n 

limn~«P(Xt €Jt )=q where Jt =C_OO,xt ) or 
n n n n 

intervals 

(-oo,Xt ] 
n 

{Jt } such that 
n 

for some {xt }. 
n 

Consider further the quantities {peXt €Jt IXt =x)} 
n n m 

for x£suppFt I 

m 
where 
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Ft is the distribution function of Xt . By stochastic monotonicity, 

P(Xt c:Jt /Xt =x) is non-increasing in x, and by the well-known weal{ 
n n m 

compactness principle (see e.g. [3] p.S1) one can extract a subsequence 
(t ) 

of {tn}, say {t~}, such that Gx m (q)=limn~roP(Xt,tJt,IXt =x) exists 
n n m 

for all xc:suppF t 
m 

with m fixed. By the welllmown diagonal procedure 

for subsequences we can extract a further subsequence of {t'}, say 
Ct ) n 

{t~}, such that Gx m (q)=limn~ooP(Xt*tJt*IXt =x) for any xc:suppFt ' 
n n m m 

m=O,1, ... We show that Gx(q)=limn~ooP(Xt*tJt*/Xt=x) exists for all 
n n 

and x. Indeed, choose t>O. Then there must be some k such that 

t 

t(tf and taking the limit in the Chapman-Kolmogorov formula yields that 

exists for all x and t , where {PtCX,A)} are the transition 

probability functions of {XCt)}. 

We have therefore proved the following: 

Lemma 1 Assume that for some {t } with lim -" t =«> and left-unbounded n n,«> n 

intervals {Jt } limn~ooP(Xt c:Jt )=q with O<q<1. 
n n n 

Then there exists a 

subsequence of {tn}, say {t~}, such that 

exists for all x and t . 

Lemma 2 There exists a random variable Wq such that Wq=limt~ooG~~)(q) 

a.s., ECWq)=q and ECWq/Xt)=G~~)(q) a.s. for all t>O. 
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Proof The Chapman-Kolmogorov formula is easily seen to lead to 

Further, (2) yields 

(3) 

The Markov property in conjunction with (3) implies that {G~t)(q)} 
t 

is a martingale. Because this martingale is bounded, limt~roG~t)(q)=Wq 
t 

a.s. exists. The total probability formula yields E(Wq)=q, and the 

closure property for martingales implies ECW IXt)=G~t) (q) a,s, 
q t 

completing the proof. 

If W is such that pew =O)=1-P(W =1) then W is said to be of type q q q q 

I, and of type 11 otherwise. It was shown in [5] that type 11 W may 
q 

admit at most three values with positive probability, 

We shall agree to write limt~ooAt=A a,s, or to say that limt-?",At 

a,s, exists when ever limt7oo1A =1A a,s. where 1 denotes the indicator 
t 

of a set. 

Lemma 3 Suppose that for some left-unbounded intervals limt700 {Xe: It} 

a,s. exists. Then for any real s limt7«,{Xt €lt+s} a.s, also exists. 

Lemma 4 Suppose that {t } is chosen such that {yet )} converges in n n 

distribution to a limit distribution F. Then 

(i) if FCO)(1 then there exists q with F(O)<q<1 such that 

limn-?oo {Xt eJt } 
n n 

intervals {Jt } 
n 

a,s, exists for some left-unbounded 

vlith limn-?ooPCXt eJt )=q. 
n n 
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Cii) if FCO-»O then there exists q' with O(q'(FCO-) such that 

limn~ro {Xt £Jt } 
n n 

intervals {Jt } 
n 

a.s. exists for some left-unbounded 

with limn~~P(Xt €Jt )=q. 
n n 

We defer the proofs of Lemmas 3 and 4 as ~ve feel at this stage 

necessary to explain the main idea of the paper. 

3, Outline of the a,s, convergence proof 

We shall confine ourselves to the case XCt)JO and assume condition 

(Ai) to be in force. The other cases will turn out to be similar. By 

lemma 4 we know that there exists x such that F(O)(P(W ~x)(1. 
q 

{X(t)} was assumed stochastically monotone, we deduce that 

Since 

where J t is either C_oo,xt ) or (_oo,xt ] for some numbers {xt }. It will 

be shown that we may assume Jt=C_oo,xt ] such that (4) and Lemma 3 imply 

that limt~ro{Xct)(Xt+s} a,s. exists for any s with -«>(s(oo, Since 

condition (B) will turn out to entail limt~ooxt+s/Xt+Ps for some p with 

p~1 and any s, we get 

As s in (5) is arbitrary we are led to conclude that 

-1 
limt~ {xt xct)(x} a. s. exists for all x, while the assumed tightness 

of {yet)} will ensure that {Xt1X(t)} has a non-degenerate a.s. limit 

variable. 
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4. Proofs 

Proof of Lemma 3 It is easy to see that A=limt7"" {XtcIt } a.s. is an 

event belonging to the tail (J-field Y of {X(t)}. Since we assumed 

Vt«Vs for t>s we can argue as in [3J p.93 to deduce that 

eSJ\=limt700{Xt€It+s} a.s. also exists for all real s. 

Proof of Lemma 4 We shall confine ourselves to the case of X(t)~O, 

b(t)=O and1<lim inft7~a(t+s)/aCt)~lim sUPt7ooaCt+s)/aCt)<"". The other 

case satisfying condition (A1) is reducible to this one by taking 

1/Y(t) instead of Yet). The proof will be carried out by assuming the 

contrary and reaching a contradiction. Choose x to be a continuity 

point of F and let F(x)=q. Then using the notation of Lemma 1 we get 

(6) PCact*)X(t*+s)~x)=fPCa(t*)XCt*)~xIX(O)=y)v Cdy) n n n n s 

where s>O. Taking the limit. as n7<lO yields 

(7) 

where F(s) is t.he limit. dist.ribution of {a(t.* )Xet*+s)}. Assume now 
n n 

t.hat. Wq is a.s. const.ant., i.e. Wq=Fex) a.s. By Lemma 2 G~O)(q)=FCX) 

a,s. wit.h respect. t.o Vo and since vs«vO we get G~O)Cq)=F(X) a.s. wit.h 

respect. t.o Vs as well. In view of (7) we get F(s) ex )=F(x) and t.his 

being true for any s)O it is easily seen t.hat lim inft700aCt.+s)/aCt.»1 

in conjunction wit.h the t.ight.ness of {YCt.)} is cont.radicted. Thus Wq 

is not. a.s. const.ant. and we may choose a point x, which is a 

cont.inuit.y point of the dist.ribut.ion funct.ion of Wq , with 0<PCWq~z)<1. 
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Lemma 2 implies: 

stochastic monotonicity and (8) ensure the existence of some 

left-unbounded intervals {Jt } such that limt~{Xt£Jt}={Wq>Z} a,s., and 

if pew >z»F(O) there is nothing more to prove. Assume therefore that 
q 

P(Wq>Z)(F(O)' We may "split" the 0 atom of F. According to 

Theorem 2.9 of [5] this situation corresponds to the case of W of type 
q 

II when Wq takes only two values kq and 1 with positive probability. 

Thus and pew =k )=l-P(W =1). 
q q q 

Since 

eS{Wq=l}=limt~ro}Xt£Jt+s} a,s. on the account of the assumption 

lim inft~roa(t+s)/a(t»l we get that Jt+seJt for t large enough and 

eS{W =1} = {W =1}. However, as we have proved in [5] {W =1} with q q q 

O<PCWq=l)<l entails o<p(es {Wq=l})<l, but it is impossible that 

PCes {Wq=l}»P(Wq=l) from an inspection of the already mentioned Theorem 

2.9 of [5]. Thus {Wq=l} is an invariant event, and because {Wq=kq} is 

its complementary, it must also be invariant. Therefore Wq is an 

invariant random variable. It follows that E(G~O) )=E(G~s) )=F(x) and 
s s 

(7) implies Fi~j =F(x). The proof may now be completed as in the the 

case when Wq=constant a.s. considered before. 

Proof of Theorem 1 

F(O)<limt~(X)PCXt£Jt)<l then PCesA»p(A) for all s>O. The existence of 

such A was ensured by Lemma 4. Recall that if 1]=lim inft~roa(t+s)/a(t), 

then 1]>1. It follows that lim inft~«>a(t+ks)/a(t)=1]k for any positive 

k. Notice further that if xt is the right end-point of J t then, if 

necessary extracting a further subsequence of {t }, we may assume that 
n 
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a C tn ) ~CXt where c is a posi ti ve constant, The above arguments bo il 

n ]{S . . -1 k -1 ]{ 
down to pca A)=llmn~roPCXt eJt +ks)=llmn~ooP(Yt (c ~ )(FCc ~). As F 

n n n 
is a proper distribution, we can find k large enough such that 

-1 k F(c ~ »q. Thus, there is k such that P ( eks A) ) PC A ). However, 

eSM2A for any s)O as we have already noticed in the course of the 

proof of Lemma 4. This makes p(esA»p(A) the only possibility and 

concludes the argument . 

.§.~E_2_: We show now that if {sn} is a sequence of positive numbers 
s 

with lim" s =0 then lim -'- e nA=A a.s. for any Ae J. Indeed, (Xct)} n,oo n n,co 

was assumed right-continuous in which case it is known that 

~t=limn~oo .:Pu+s a.s. (see e.g. [16J) where ..;/It is the a-algebra 
n s 

generated by {Xu:O~u~t}. Since PC8 nAI~t+s )=PCAI~t) for t)O we get 
s n 

PCA'I ~t)=PCAI~t) with A'=limn~oog nA on letting n~oo. Because gSA is 

decreasing in sand eSA:!A for all s)O we conclude that A=A' a.s. as 

stated. 

~~E_3~ We shall next show that {XCt)fxt} converges a.s. as t~ro for 

some constants {xi.}' Indeed, choose se (0, 1) such that F C Xo ) =s for a 

conti nui ty poi nt Xo of F. Then Xo must be a point of type I for 

{XCt faCt )} since otherwise Theorem 2.9 of [5J would imply that there 
n n 

exist A1 and A2 with Al=limn~co{Xt €J~ } a.s. and A2=lim ~oo{Xt €J~ } 
n n n n n 

a.s. with PCA1)(FCxO)(PCA2 ) but no such set A with PCA1 )(PCA)(FCxO)' 

However PCgSA1»PCA1) for all s)O by step 1, and by Step 2 PCgSA1 ) can 

be chosen such that PCA1)(P(gSA1)(FCxO) and we reached a contradiction. 

Thus Xo is a point of type I and therefore there exist some 

left-unbounded intervals {It} with right end-points {XtJ such that 

A=limt~oo{Xt£It} with PCA)=FCxO)' It is further easy to see that 

(9) limn~roP({XCtn)£It }~{X(tn)~a(tn)xO})=O 
n 
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11 being the symbol of symmetric difference of two sets, Since 

On the other hand, condition (B) implies 

and 

Stochastic monotonicity applied to Cll) and (12) yields 

(13 ) 

uniformly for x>aCtn)(xO+c). 

Taking into account Cl0), (13) and the continuity of F at Xo we 

get 

(15) 

which is equivalent to 

{X(t )~a(t )xO}) 
n n 
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Proceeding in the same way as above, but using (14) instead of (13) we 

get 

{X(t )a(t )xO}) 
n n 

It is easy to see that (10), (16) and (17) yield 

(18) limn~P({X(tn+s)€It +s}A{X(tntS)~a(tn)XOps})=O 
n 

Because Xo was chosen to be an arbitrary continuity point of F we get 

limn~«>x£ ts/x£ =ps and since {tn} was assumed to be an arbitrary 
n n 

sequence with lim ~ t =«> such that {XCt )} converges in distribution we n..,.«> n n 

get limt~rox£ts/x£ =ps for any se( 0,0). It is easy to see that the 

1 tt '1 ' 1 ' , I' s f 1 a er Imp les lm Xtts xt=p or any rea s Recall that 

limt~ro{X(t)€It+s} a,s. exists for all s and the above considerations 

boil down to the existence of limt~oo{X(t)(Psx£} a.s. But ps can take 

any value as s is at our disposal. It follows that {X(t)/x£} 

converges a.s. as t~oo. 

§.teI?. 4: To show that F satisfies condition CC) it suffices to notice 

that the argument used in the proof of Theorem 4.6 of [5] applies in 

this case as well. Indeed, although the existence of p was proved in 

[5J under assumptions different from right-continuity for {Xct)}, it is 

clear that limt~ooa(tts)/aCt)=ps for all s suffices for the proof that 

F satisfies condition CC). We note that unlike Theorem 4.6, Theorem 1 

does not assume that a non-degenerate limit exists (for subsequences), 

but such limits appear non-degenerate from the properties of eSA 

described by steps 1 and 2 . 

.s.tel2..~: To prove that the conditions of Theorem 1 are necessary notice 

first that tightness is obviously a prerequisite for convergence in 
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distribution. On the other hcmd, convergence in distribution in 

conjunction with right-continuity for {X(t)} may be easily shown to 

supercede the conditions of Theorem 4.9 of [5] preserving its 

conclusions. Thus {a' (t)X(t)} converges a,s. for some {a' (t)}. This 

is readily seen to imply condition (Bl) and a simple exercise in 

stochastic monotonicity along the lines of the proof of step 3 

concludes that condition (Bl) implies condition (B), completing the 

proof. 

Proof of Theorem 2 We shall show that the conditions of Theorem 1 are 

satisfied. Indeed, by well-known properties for sequences of 

distribution functions (see e.g. [16]), any subsequence of {X(t)/pt} 

contains another subsequence converging to a proper distribution, 

whereas the means and variancs of such sequences converge to the mean 

and the variance of the limit distribution. The positivi ty of the 

variance of the limit distribution makes such a distribution 

non-degenerate and tightness follows. 

Condition (B2) implies condition CB) which was shown to be 

equivalent to condition (Bl)., Indeed, this can be obtained by applying 

the Chebyshev's inequality, 

5, Applications 

(i) Di ffusions: It has been noticed by several authors that 

diffusions are SM. Indeed, the birth and death processes are SM (see 

e.g. [11]). Since any diffusion can be seen to be a limit of birth and 

death processes (see [19J) it follows that diffusions are SM. Examples 

of diffusions to which Theorem 2 applies may be found in RosIer's paper 

[18] where {aCt)X(t)}, for suitable chosen {act)}, is shown to converge 
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a.s. to a limit variable X which generates the tail a-field T and 

determines the Martin boundary of the process. Such converging 

processes were derived from Ornstein-Uhlenbeck processes in Ti(n. For 

some background on Ornstein-Uhlenbeck processes see [10J. 

Another diffusion that falls into the category studied in this 

paper is a diffusion process that approximates some types of 

Galton-Watson processes (see [6], [8J and [15]). In this case 

E(XCt) IX(O)=xo)=xoe.Bt and VarCX(t) IXCO)=xo)=axol,Bebtce.Bt-U. It is 

easy to see that if we modify E(XCt)/X(O)=xO) and Var(X(t)IXCO)=xO) by 

allowing perturbation factors, the conditions of Theorem 2 may still 

hold, such that establishing a. s. convergence in such cases is no 

longer dependent on finding a lucky martingale trick. 

2. Markov branching processes 

We shall consider a supercritical Markov branching process with 

offspring distribution {Pk} and life-time distribution .Be-axdx (see [1] 

Chapter IV). Define aCt) to be a r-quantile of the distribution 

function of X(t) where q<r<l, q being the extinction probability of 

{X(t)}. Since 

(19) ·X(t ) - _X(t)xt,i 
+u - ri=l (t+u) 

where conditional on ~t the X~t!U) are independent and distributed as 

X(u). It is easy to see from (19) that {X(t+u)/XCt)} turns out to 

converge in probability to E(XCu) )=pu as t~ro for some p)l. This 

property entails limt~wa(t+u)/aCt)=pu for u>O such that condition CA1) 

is satisfied. To prove tightness for {XCt)/a(t)} we notice that (19) 

and limt~<oaCt+u)/a(t)=pu for u>O lead us to conclude that W, the weak 
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limit of any converging subsequence of {X(t)/a(t)}, is distributed as 

lIptL7~l)wt,i where {Wt,i} are distributed as Wand are independent 

given ::ftt . From here it is easy to see that PCW<oo)=1 where the 

non-degeneracy of W follows from the way (a(t)} were chosen. Thus 

Theorem 1 applies and provides a straightforward proof of a result 

which is usually proved by using properties pertaining to generation 

functions. 

There are many models of branching processes (see e.g. [13] and 

[14] ) that, under appropriate condi tions, may be considered 

stochastically monotone. This observation may help relax the 

conditions imposed for their a.s. convergence and provide 

characteristics of their limit distribution functions. 

This research was partly carried out ~\lhile the author visited the 

Institute of Mathematical Statistics, University of Copenhagen and was 

supported by a grant from the Danish Natural Science Research Council. 
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