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ABSTRACT 

An approximation to the density of the maximum likelihood estimator ~n curved 

exponential families ~s derived using a saddlepoint expansion. The approxima­

tion is particularly simple ~n nonlinea:t~ regression. An example 

~s considered. 

Key words: curved exponential family; nonlinear regression; saddlepoint 

approximation. 
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1. INTRODUCTION 

Using a saddlepoint technique Field (1982) derived a small sample approximation 

for multivariate M-estimates. This approximation is, however, fairly compli­

cated. It involves a so-called conjugate distribution determined by means of 

an integral equation. Also it requires the calculation of several mean values 

under this conjugate distribution. The aim of this note is to specialize the 

approximation to maximum likelihood estimators in curved exponential families, 

where the approximation is much simpler. The conjugate distribution is a mem­

ber of the exponential family in which the curved exponential family is em­

bedded and this distribution can easier be determined, because the integrals 

involved can be explicitly calculated and expressed by means. of the normaliz­

ing constant. In nonlinear regression the approximation is even simpler, be­

cause it can be expressed directly, that is without involving the conjugate 

distribution. The approximation is the same as the one derived by Skovgaard 

(1981). For papers on saddlepoint approximations, see Barndorff-Nielsen (1980) 

and Daniels (1983). 

The results are described in Section 2. In Section 3 we discuss the necess­

ary regularity conditions for the results and in Section 4 the results are 

proved. An example is considered in Section 5. 
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2. RESULTS 

Consider a curved exponential family, that ~s a p-dimensional curved submodel 

of a k-dimensional exponential family. The exponential family has density 

f(x;e) =exp{e't(x)}].l(dx)/He), where eED?JRk , He) the normalizing con-

stant, ].l a measure dominated by Lebesgue measure, t(x) the k-dimensional 

sufficient statistic and the prime denotes transposing. The curved submodel is 

constructed by assuming that e ~s a function e(s) of a parameter 

For our purpose we need to know the value of ~(e) or equivalently X(e) = 

in ~ (e) for the full k-dimensional family. 

For the asymptotics we consider n independent identically distributed 

variables Xl"" ,Xn following the distribution above and then we let n-+ oo • 

n 
In that case the sum Lrt(Xi ) or equivalently the average is 

sufficient and follows an exponential family distribution. For the average the 

canonical parameter ~s e = ne and the normalizing constant is ~ (e ) = n n n 

The maximum likelihood estimator S is usually found by means of the like-

lihood equation, derived by differentiation of the logarithm of the likelihood 

function, giving 

n{t"-T(e(S))}'de/dS 0, 

where T(e) =dX/de=Eet(X). This equation is a special case of Field (1982, 

eq. (1)), which says L . l}!. (X. ,S) = 0, j = 1, .• ,p. 
~ J ~ 

The true value ~s denoted 

So and we let eO = e (SO). The value of e corresponding to the conjugate 

distribution, to be defined below, will be denoted e'*'. By we mean 

d2x/de2 evaluated at e =e*. This notation is fairly different from the no-

tation of Field (1982). 

We can then specialize the results of Theorem 1 ~n Field (1982) to maximum 
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likelihood estimation in curved exponential families. 

Theorem 1 The curved exponential family. 

Under regularity conditions, cL Section 3, the density of (3 at (3 can, if 

8«(3) is an interior point in D, be expanded as 

2 2 
['~' d X ~ -h(e*) _ T(e)} ,U, 

d(3 de 2 d(3 d(32 

2 _I 
de' d X de :1 'Ts --2 dB' + 0 (l/n)] , 

de* 

where e* = eO + de/d(3 Cl, with Cl, given by 

de 
h(e*)-T(e)}' d(3 o. 

The error term holds uniformly for all (3 in a compact set. 

This is the same result as Skovgaard (1981). It also gives the same result 

as the second method in Daniels (1983), but that was only derived for p = 1. 

The expansion is transformation invariant, or more correctly equivariant, 

that is that if the parameter is transformed the approximation is transformed 

in the same way as the density, a property the Edgeworth expansio.n does not 

share. The value of Cl, will be transformed, but the value of e* is invariant 

under transformations of (3. The determination of Cl, has a clear geometrical 

interpretation, because Cl, is the maximum likelihood estimator for y if the 

value T(e«(3» ~s observed m the exponential subfamily given by eO + de/d(3 y. 

It follows that if e«(3) is in the interior of D there exists a solution Cl, 

and it is essentially unique, that is if there are two solutions they represent 

the same probability measure. 

For nonlinear regression the results simplify even more. Let the k-dimen-
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sional Y be normally distributed with mean vector nCS), which is a known 

function of s and variance matrix 
2 

(J 1. Let n be the matrix of derivatives 

of n and n the array of second derivatives. We assume that 2 
(J is known. 

Theorem 2 Nonlinear regression 

Under regularity conditions for n(B) the density of S at B can be ex-

panded as 

where P is the projection 
. . . -1-
n(n'n) n'. The error term holds uniformly for 

all B ln a compact set. 
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3. REGULARITY CONDITIONS 

In order to prove his theorem, Field (1982) lists a number of regularity con-

ditions, which we now will comment upon. His Assumption 1 ~s that the esti-

mating equation has a unique solution. Skovgaard (1981) has an interesting way 

of overcoming this problem. Instead of the density of the maximum likelihood 

estimator his expansion approximates the intensity of the point process of 

local maxima of the likelihood function. Assumption 2 requires that the joint 

(L1/Jl(x.,S), ... ,LIj! (X.,S),S) 
~ ~ ~ p ~ 

density of exists and has Fourier transforms 

which are absolutely integrable under as well the true density as the conju-

gate density. For maximum likelihood estimation in exponential families these 

densities do not exist, because there is a one-to-one correspondence between 

the components, for the one-dimensional case the components in the mean value 

parametrization are (t - T ,"1:). However, as long as the relation between the 

variables is linear the argument of Lemma 1 in Field (1982) can still be app-

lied. 

His Assumption 3 has 6 parts, which are somewhat technical. Except for 

parts (ii) and (iii) they are satisfied if e(s) ~s 5 times differentiable, 

because we are considering maximum likelihood estimation and because the di-

stribution of X is an exponential family. Part (ii) ~s satisfied if e(s) 

~s an interior point in D, which we have to assume. This is, however, also 

necessary for the differentiability of X(e). Part (iii) requires that the two 

matrices, whose determinants appear ~n the approximation, are non-singular. 

D(e*), which ~n this case is 

~s the information about a under the hypothesis that e ~s of the form 

80 + de/dS a, for some a, which is an exponential subfamily. Thus it is po­

sitive definite if different values of e give different probability measures 



6 

and d8/dS has full rank. The other matrix has to be assumed non-singular. 
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4. PROOFS 

Theorem 1 First we need to determine a defined by the equations for 

r=l, •.. ,p 

or 

Nr(x,S) exp{L;a.1/!.(x,S)}£(x)dx=O, 
J J J 

,d fer- exp{L. a.1/!. (x, S) }f (x) dx = 0 
ar J J J 

The left hand side is, after insertion of the expreSS10ns for 1/!. and f(x) 
J 

Because it is an exponential family we can interchange integration and diffe-

rentiation and calculate the integral. We find 

This derivative is zero iff the derivative of the logarithm 1S zero and that 

1S 

thus giving the equation for a. 

The rest of the proof is simple, because the integrals can be calculated 

using the conjugate distribution, which is the distribution with parameter 

e* = eO + de/dS a. We list the values 

-1 
C = fexp{La.1/!. (x,S)}£(x)dx 

J J J 

de 
=eXp{-T(e)'-a+x(e*)-x(e )} 

dS 0 
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A={ES*d1jJ.(X,S)/3S }l . l r ~l,r~p 

In the latter expression a term vanishes because of the definition of S*. 

Insertion in Fields formula then yields the result. 

Theorem 2 For the non linear regress ion S (S) = n ((3) and the sufficient s ta-

tis tic is 
2 

t =Y/a . In this case 

such that the equation for a lS 

giving 

. . -1· 
a= (n'n) n'(n-n) o 

-2 2 
x(S)=!a 2:S. 

l 

-2 !a n'n and 
-2 

T(S) =a n, 

such that dS/dSa = na is the projection of the discrepancy between the mean 

vector for the estimated value and for the true value on the tangent space In 

the estimated value. Using P for the projection 

S* = n + P (n - n ) o 0 

-1 -2 
C = exp { - ! a (n - nO) I P (n - no) } 

-2 . . .. 
A=-a {n'n+(n-no)'(I-P)n} 

-2· • 
2:=0 n'n 

The result now follows from Theorem 1. 

••• -1~ 
n(n'n) n' we find 
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5. AN EXAMPLE 

The Michaelis-Menten reaction describes the velocity of an enzymatic process 

as 

v = V cl (K + c) , max m 

where V is the maximal velocity, c the concentration at which the velo-
max 

city is half of maximal. From measurements at different known concentrations 

cl' ... ,ck we want to estimate and infer about the parameters K and V m max 

Suppose that the logarithm of v. 
1. 

is normally dis tributed with mean 

Q,n V . + Q,n c. - Q,n (c. + K ) 
max 1. 1. m and variance 2 

C5 • Because Q,n Venters in such 
max 

a simple way the marginal distribution of K as well as its approximations 
m 

are independent of V max 
Figure 1 shows different approximations to the mar-

ginal density of K assuming a true value of 2 and with measurements at con­
m 

centrations c. =1,2, ... ,6. 
1. 

The variance 2 
C5 is chosen to 0.22 . From a ma-

thematical point of view it is natural to extend the parameter space, letting 

K > - 1. Some of the approximations below have other lower limits. 
m 

The figure shows the sadd1epoint approximation described in Section 2. It 

1.S compared to the asymptotic normal distribution of K 
m 

This approximation 

1.S poor, because of large nonlinearity. The true distribution of K 
m 

1.S 

rather skew; the first approximation to the skewness is 1.58, cf. Hougaard 

(1981). The approximate normal distribution 1.S not equivariant under non1inear 

parameter transformations. Using the asymptotic normality of some function 
~ 

g(K ) 
m 

we can find other approximations to the density of K 
m 

The problem 

is of course to choose some appropriate function g. Hougaard (1984) found a 

differential equation for g, such that the skewness and bias of g(K) 
m 

asymptotically are of lower order than generally and such that the asymptotic 

variance of g(K) is constant. As this equation 1.S fairly complicated in the 
m 

present case, we must be satisfied with less, for example finding a function 
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g, with zero asymptotic skewness and bias 1n a single specified point. Follow-

ing Bates and Watts (1981) and Ross (1970) we suggest to choose a concentration 

such that the skewness and bias of g(K ) = Q,n(K + cO) m m 
asymptotically 1S 

zero for Km = 2. With the present design this requires Co = 0.18. This 

approximation to the density of K 
m 

follows the saddlepoint approximation 

fairly well. In practice we cannot find the optimal value of cO' because it 

depends on the. true unknown value of K. 
m 

Instead we choose a value based on 

prior knowledge of K or based on the estimate. For comparison we have also m 

examined the value cl = 0.41, which is the best for K = 1.4. 
m 

the skewness of Q,n(Km + cl) is 0.15. 

For K = 2 
m 

Also the illdgeworth expanS10n is shown for the distribution of K 
m 

inclu-

ding the first correction term. This approximation suggests a partially nega-

tive density. In this case the approximate density is negative until K = - 0.30, 
m 

but the cumulative distribution function is negative until K = 0.35. 
m 

Where 

the asymptotic normal distribution is based on simple approximations to the 

first and second moments, assuming that the third central moment is 0, the 

first correction term in the Edgeworth expansion utilizes better approximations 

only to the first and third moments, because the correction to the variance 1S 

of lower order. The Edgeworth expansion is not equivariant under nonlinear 

parameter transformations, for Q,n(Km +co) it coincides with the asymptotic 

normal distribution. The first correction term in the Edgeworth expansion 

depends only on the parameter effects nonlinearity. The saddlepoint approxima-

tion, however, also includes the intrinsic nonlinearity. 
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