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Abstract A new three-parameter family of distributions on the positive 

numbers is proposed. It includes as special cases the stable distributions on 

the positive numbers, the gamma distributions, the degenerate distributions and the 

inverse Gaussian distributions. Only the latter correspond to interior points 

in the parameter space. The family is characterized by a simple form of the 

Laplace transform, from which moments, convolutions, infinite divisibility and 

other properties can be derived. Also there are results about mixtures of 

certain distributions over the positive stable distributions. The family is 

a natural exponential family in one of the three parameters. The distributions 

in the family are natural candidates for application as frailty distribution 

for use in life table methods for heterogenous populations. Also L~is~iacuBBeu, 

what properties such distributions preferably should have. As an example the 

survival after myocardial infarction is considered. 

Key words: positive stable distributions; inverse Gaussian distributions; 

gamma distributions; heterogeneity; life tables; mixtures. 



1. INTRODUCTION 

The aim of this paper is to derive a family of distributions, which are natu~al 

candidates for application as frailty distribution in life tables for heterggen

ous populations. In Section 2 we discuss what properties such a family of 

frailty distributions should have. 

In the rest of the paper we consider a specific family of distributions, 

with three parameters a,o and 8. The family generalizes the inverse Gaussian 

distributions, which correspond to a = 1/2. It is derived from the stable 

distributions on the positive numbers (8 = 0). The family is naturally 

completed to contain the gamma distributions (a = 0). Trivially it contains 

the degenerate distributions (a = 1). The family has a number of nice properties 

generalizing those of the inverse Gaussian family. However the family is only 

an exponential family ~n one of the three parameters. Another disadvantage is 

that the density SLS more complicated than the inverse Gaussian density. 

In Section 3 we give a short review of the positive stable distributions and 

~n Section 4 we derive the family and examine its. properties. In Section 5 

the formulae relevant for the application of the new family in frailty models 

are explicitly stated. In Section 6 we consider the survival after myocardial 

infarction as an example. 
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2. LIFE TABLE METHODS FOR HETEROGENOUS POPULATIONS 

The idea to suggest and exam~ne the family came from a consideration of life 

table methods for heterogenous populations. Ordinary life table methods impli

citly assume that the population under study is homogenous, i.e. all individuals 

have the same risk. Vaupel, Mantonand Stallard (1979) suggested a model for 

heterogenous populations, where the population was considered as a mixture of 

individuals, each having a survival distribution. To each individual there 

corresponds a quantity, the so-called frailty, denoted Z, describing the 

relative risk for the individual. The hazard in age t, for an individual 

with frailty Z is assumed to have the form ZV(t), where v(t) describes 

the age dependence. Vaupel et al (1979) suggested using a gamma distribution 

for Z, because the family of gamma distributions is closed under the 

selection induced by mortality, that is if the distribution of Z at birth 

~s gamma, also the distribution among survivors ~n any given age, that ~s the 

conditional distribution given survival until that age, is gamma with the 

original shape parameter, but a different scale parameter. Hougaard (1984) 

showed that all natural exponential families on the positive numbers shared 

the same property of being closed under mortality selection. His main example 

was the inverse Gaussian distributions, because the formulae were rather 

simple in that case. A family of frailty distributions should preferably be 

a natural exponential family, because of the property of closedness. Also 

models created by starting observation in different ages are consistent with 

each other. If the family does not have this property we can generate a 

family with the property, introducing one more parameter. The family which we 

suggest is derived in this way, starting with the positive stable distributions. 

Hougaard (1984) discussed a model with cause-specific frailties. Suppose 

mortality is div~ded into kcauses and let the cauae-specific frailties be 
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ZI"",Zk and assume that the hazard of death of cause ~ for a given 

individual conditional on the frailty is Z.v· (t), where V. (t) 
~ ~ ~ 

describes the 

age effect. Then the total hazard is LZ.V.(t). 
~ ~ ~ 

Whether analyzing total 

mortality or cause-specific mortality we must remember that causes are always 

made up of a number of subcauses. Suppose that we are analyzing total mor-

tality, but that it would have been more relevant if we had analyzed it with 

k causes as above. Under the assumption that the cause-specific hazards are 

proportional, that is there exist U(t) and cI"",ck E (0,00), such that 

v. (t) = c.V(t), the total hazard ~s V(t)LC.Z., also if the cause-specific 
~ ~ ~ ~ 

frailties are dependent. That means that the model for total mortality is a 

frailty model, with frailty LC.Z •• 
~ ~ 

Therefore when we analyze total mortality 

we should preferably use a frailty distribution, which naturally allows for a 

description as 

wi th dependent 

LC.Z .• All distributions allow a number of such descriptions 
~ ~ 

Z. 's. 
~ 

If the frailty distribution. is infinitely divisible there 

are also such descriptions with independent Z. 's 
~ 

for all combinations of 

c .. Probably·it will then alsoiriclude some relevant descriptions with 
~ 

dependent Z. 's. Having @Jilinfinitely divisible frailty distribution is therefore 
~ 

not in conflict with the fact that causes can be split into subcauses. As shown 

in Lemma 3 below the distributions P(a,o,8) are all infinitely divisible. 

The assumption of proportionality between the cause-specific hazards is 

often unrealistic. However, this is not only a problem for models allowing for 

heterogeneity. It is the same with ordinary parametric models. For example if 

the cause-specific hazards are .. Weibull hazards with different shape parameters, 

the total hazard cannot be a Weibull hazard. 

If there is a large number of possible causes with the same cause-specific 

hazard and independent identically distributed frailties, we might approximate 

the distribution of LZ .• If the Z. 's have second moments the distribution 
~ l 
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of the sum is approximately normal. Because the frailties are positive we 

might prefer to approximate with a normal distribution truncated at O. 

Probably it only gives little difference at birth, but in older ages it will 

give a larger difference. The truncated normal distributions are a two parameter 

exponential family and can be handled using the results from Hougaard (1984). 

If the second moments do not exist, we might instead approximate by a stable 

distribution, most naturally by a positive stable distribution. It is an 

advantage if the frailty distribution is stable, because it then has a domain 

of attraction, meaning that it can approximate sums of variables from a large 

class of distributions. 

Also it lS preferable if the frailty distribution satisfies simple mixture 

results. If the mixture result can be described as a product result, like (~.4) 

below for the positive stable distributions, it might describe different risk 

factors, which act multiplicatively. Hougaard (1984) mentioned a similar product 

result for the gamma distribution. However such results should not be taken 

too literally, because there might be many different products giving the same 

distribution. For example P(1/2,8 ,0) can be written as a product using (4.4), 

but because it is the reciprocal of a gamma distribution with shape 1/2, it 

can also be described as the product of the reciprocal of a gamma with larger 

shape parameter and the reciprocal of a beta distribution. These products 

are rather unsymmetrical. It would be better if there was a description as 

a ]i>.Toduct of i. i. d. variables, that lS if log Z -~vere infini tely divisible. The 

positive stable distributions, the gamma distributions and trivially the 

degenerate distributions are infinitely divisible in the logarithm. However the 

suggested family does not in general 4ave this property. 

In short infinite divisibility,-of Z allow the causes to be groups of 

subcauses and infinite divisibility of log Z allows for a multiplicative 
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effect of several unobserved risk factors. 

Probably the frailties for different causes or subcauses are dependent, thus 

.(I:reating dependence between the competing risks. For a discussion of such 

dependence, see Pr entice et al (1978). The dependence and interaction between 

causes and the individual differences, which we have attempted to describe by 

the frailty are all difficult problems. Analyzing these detailed would require 

a number of extensive studies, including some with data not presently obtain

able. At the moment it is impossible to make a "correct" model. That we suggest 

the distribution to be infinitely divisible, does not mean that we believe, that 

the subcauses are independent or have proportional hazards, but only that the 

least we can require is that the method is relevant under simple assumptions. 

Infinite divisibility of Z ~s preserved under the selection induced by 

mortality. This is, however, not the case for infinite divisibility of the 

logarithm and for stability. The extreme logical consequence of this, assum~ng 

that frailty only describes genetical properties of an individual, is to assume 

that the distribution is stable at the time of conception, but because 

observation starts at birth or later, ". we do not find a stable distribution, 

but one from the family defined ~n Section 4. In practice frailty is not solely 

genetical or even constant through life. It describes risk factors not taken 

into account by the model and might therefore include smoking habits or 

present diseases. If it is possiLble to measure important risk factors, we should 

of course measure them. But we have to be aware of the possibility, that there 

are risk factors, which we have not thought about. Also having data on cause 

of death makes more detailed conclusiona possible. 

In conclusion about the applicability of these models for life tables for 

heterogenous populations, I think that the models are not correct, but they 

include more realistic concepts than ordinary life table models. 
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3. STABLE DISTRIBUTIONS 

A distribution is said to be stable (Feller, 1971, p. 169) if the sum of 

independent random variables from the distribution suitably normalized follows 

the same distribution. Suppose X1,X2 , ... are i.i.d. The distribution is then 

stable if for each n, there exists constants such that 

d 
Xl + .•• + Xn = cnX1 + Yn' where 

d 
means having the same distribution. In 

this paper we will only consider the strictly stable distributions, which 

allow to be 0. The norming constants have the form C = n 
n 

1/0. 
for 

some a E (0,2], called the characteristic exponent. The only stable distri-

butions with finite v>ariance are the normal distributions (a = 2) and the 

degenerate distributions, which have a = 1, considered as strictly stable 

distributions. Usually the degenerate distributions are not stable by 

definition, because they are uninteresting exceptions for many theorems and 

formulae. In this paper we will, however, consider them as stable because 

they are naturally included. The stable distributions on the positive numbers 

has a E (0,1] and apart from scale factors they are given by the following 

form of Lap1ace transform 

a 
L(s) = E exp(-sX) = exp(-s ). (3.1) 

This distribution will be denoted P(a,a,O). For a < 1, the density is, cf. 

Feller (1971, p. 583), using Y = - a 

f (x) 
a 

()() 

-1 L r (k~?) (_ x -ci)k sin(ak1r) 
7fX k=l 

These densities are bell-shaped, see Gawronski (1984). 

(3.2) 
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4. DERIVATION AND PROPERTIES OF THE FAMILY 

Let X follow the standard stable distribution P(a,a,O) given by the Laplace 

transform (3.1), where a E(O,1]. The distribution P(a,8,0) for 8 > 0 lS 

then defined as the distribution of (8/a)1/a X. This distribution has Laplace 

a 
transform L(s:) = exp(- 8 s IIJ) and the density for a < 1 is 

f {x(a/8)1/a}(a/8)1/a, where f is defined in (3.2). It follows from the 
a a 

Laplace transform, that for e > 0 and a E(O,l) 

lS a probability density. The distribution is denoted B(a,8,e). For a = 1, 

we can generalize in the same way, using the relevant one point measures 

instead of Lebesgue measure. It lS easier,however,to define p(1,8,e) as the 

degenerate distribution in 8. Thus it does not depend on e. The operation 

of including the parameter e above is actually a standard operation, which 

because of the special parametrization seems more complicated than necessary. 

Letting S be the scale parameter, the density has the form 

f (x/S) exp (-ex) a 
S L (se) a 

The parametrization is chosen to give simpler formulae later on. 

Lemma 1. Basic properties of P(a,8,e) 

a. 'l1he~density for a < 1 lS 

f(x; a,8,e) 
a -1 

- exp(-ex+8e /a)(rrx) 

00 

~ r(ka+l) (_8x-a /a)k sin(akrr) 
k=l k! 

b: The Laplace transform lS 

8 a a L(s) = exp [- - {(e+s) - e }] 
a 

(4.2) 
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c. For fixed a,a the family is an exponential family with natural observation 

x and natural parameter -8. 

d. For 8 o and a < 1 the yth moment exists iff y < a, in which case 

it 1S 

(a/a)y/a r(l-y/a)/r(l-y) 

For 8 > 0 or a = 1 all moments exist and EX 

The kth cumulant, k > 1, 1S 

a-k 
Kk = a(1-a)(2-a)~ ... ·(k-l-a)8 

e. If X follows P(a,a,8) and c > 0, the distribution of cX follows 

a P(a,c a,8/c). 

Proof a. Combine (3.2) and (4.1). b. The integral can be found by means of 

the Laplace transform for P(a,a,O). cL Immediate from the density in a. d. 

For 8 = 0 and a < 1 the result is wgll known, cf. Feller(197l, p.578) and 

Shanbhag and Sreehari (1977). The result for 8> 0 is found by differentia-

tion of the Laplace transform at s = O. e. Follows from the Laplace transform. 

The parame.ter space above 1S o < a ~ 1, a > 0, 8 2:. O. To some 

extent it 1S possible to include the boundary. The value a o corresponds 

to a distribution degenerate in 0, which is not interesting. Fixing a < 1 

and 0 the limit e + 00 yields degenerate distributions in O. By letting 

a be a function of 8, we can also find other degenerate distributions for 

Most interesting,however, is that the limits for ,a + 0 are the gamma 

distributions. Therefore we will define P(0,a,8) to be the gamma distribution 

wi th shape parameter a and scale parameter 1/8, that is the distribution 

with density a a-I 
8 x exp(-8x)/r(a). In this case we need e > O. Therefore, 

the parameter space, (O,l]x(O,oo)x[O,oo}U{O}x(O,oo)x(O,oo), say~, is neither 

openno~ closed and it is not a cartesian product. For later reference we note 

that the Laplace transform for a = 0 1S 
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Part c., d. and e. of Lemma I generalize to the full parameter set. 

Lemma 2 limits in distrihutions 

a. The family P 1S continuous ln distrihution, that is_~if a sequence of 

h. 

points (a ,a ,e) from ~ converges to a point '(a,a,e) ln ~ the n n n 

distrihutions P(a,a ,S ) converges weakly to P(a,a,e) n n n 

For fixed and 

S -+ 00. 

I-a 
].l> O,P(a,].le ,e) converges weakly to ].l for 

Proof a. For the weak convergence we show pointwise convergence of the 

(4.3) 

Laplace transform. The only step which is nontrivial is a -+ 0, which we 

prove for e = e a = a. 
n ' n 

It follows from I'Hopitals rule that 

h. 

Ln(s) 7' exp [- <5d/da{(S+s)a_Sa} /d/da(a)Jfa.=O 

<5 = exp[-O{ln(S+s) - lne}] = {si (e+s)} . 

The mean and variance of I-a 
P (a,].lS , e) is 

from which the result trivially follows. 

Lemma 3 Convolutions and infinite divisihility. 

a. Let X. 
1 

of Xl+ ... +X- 1S then P(a,L<5.,S). ne 1 

following 

and 

P(a,<5.,S) 
1 

respectively, 

The distrihution 

h. P(a,<5,S) is infinitely divisihle. Actually for any n it 1S the sum of 

n i.i.d. P(a,<5/n,S) variahles. 

Proof a. The Laplace transform of the sum is the product of Laplace transforms. 

'IDn~ result follows hecause <5 enters linearly in the exponent in the Laplace 

transform, cf~(4.2) and (4.3) . h. Immediate from a. 

Actually we can show a stronger result. The distrihutions are generalized 

gamma convolutions, (g.g.c.) see Thorin (l977L, a property which- implies 

infinite divisihility.For a distrihution to he a g.g.c. the Laplace-Stieltjes 
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transform 

g(s) E exp(sX),JRe (s) < 0 

has to be of the form 

g(s) exp{as - f~ log(l -s/y)dU(y)} , 

where a > 0 and U(y) 1S nondecreasing, and satisfies three regularity 

conditions, which will be mentioned in the proof below. Thorin (1977) mentions 

that the positive stable distribution P(~,8,0) for aE (0,1) is a g.g.c. with 

U(y) = sin(1Ta) (by)a /rr for some b > O. W"e will show that all distributions 

P(a,8,S) are g.g.c. by means of the following general lemma. 

Lemma 4 Generalized gamma convolutions. 

If a distribution is a generalized gamma convolution, the same applies for any 

S > 0 for the distribution given by the dansityexp(-Sx)/L(S) with respect 

to the measure given by the original distribution, with Lap1ace transform 

L (S). 

Proof The Lap1ace-Stie1tjes transform of the distribution 1S gs(s) 

g(s-S)/g(-S). Using the known form of g yields 

gs (s) == exp[as - /OX> {log- l+(S-s)/y} dU(y) 
l+S/y 

exp{as-f; log (l-s/u)dU(u-S)}, 

which 1S of the g.g.c. farm with 

U(u) 
J 0 0 < u < El 

LU(u-S) u>S 

tlIhUB we only nee'd to show, that 
"'-
U satisfies the three regularity conditions. 
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1. u(a) a, clearly 

2. f~ I log u I dU(u) < 00, follows because it H smaller than f; I log y I dU (y), 

which is finite by assumption. 

3. 00 -1 '" 
fl u dU(u) < 00. The integral equals 

00 -1 
J u qU(u-e) 

oq -1 
f (y+e) dU(y) 

max(l, e) max(a,l-e) 

-1 00 -1 
= e U(l) + fl y dU(y) , 

which is finite by assumption. 

Corollaryil P(a,8,e) is a generalized gamma convolution. 

Proof For a E(a,l) it follows from the result of Thorin (1977) and the 

lemma. For a = 1 it is trivially a g.g.c., U the a-measure and a = o. 

Also for a = a the result is trivially true, a = a and U concentrated 

in one point. 

Bondesson (1981) extends the generalized gamma convolutions by defining 

T , y > a, as the distributions allowing a description as 
y 

g I (s) 
g(s) 

a + f (y-s)-Y dU(y) , 
[a,oo) 

again with U satisfying some regularity conditions. The g.g.c!s then corres-

ponds to Y 1. For Yl < Y2 we have T c T with strict inclusion. 
Yl Y 2 

For Y E(a,l] T is exactly the distributions obtained as weak limits of 
Y 

finite convolutions of distributions P(1-y,8,e). 

Also there are mixture and product results for the positive stable distri-

butions. First we describe a product result. If X and Y are independent, 

X follows P(a,~,a) and Y follows P (y, Oy, a) , then Z = xy l / a follows 
""=-'r 
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(4.4) 

This result is in Feller (1971,p.176). The value of a can be calculated by 
.Z 

conditioning on Y in the Lap1ace transform. The same result can be reinter-

preted as a mixture result. If Z conditional on Y ~s P(a,aXY'O) and Y 

~s P (y, a~, 0) , then Z ~s Our parametrization ~s 

suggested because it gives simple mean values for e > 0, simple convolution 

results and unifies with the gamma distribution, but inter alia with the 

loss of a simple value of aZ' However if X and Y are standard stable 

distributions as defined in (3.1) also Z will be a standard stable distribu-

tion. 

Another product result is ~n Wi1liarns (1977), who showed that for 

n = 1,2, ... the distribution P(l/n, 1,0) ~s obtained as 1/(X1 ·X2··· "Xn- l ), 

where X1"",Xn- l are independent, X. ~ P(O,i/n,l). 
~ 

For n = 2 this is 

the well known result that P(1/2,a,0) is the reciprocal of a gamma distribu-

tion with shape parameter 11/2. 

As shown ~n Bondesson (1978) the gamma distributions are infinitely , 

divisible in the logarithm, that is if X follows p(O,a,e), log X has an 

infinitely divisible distribution. From this and the product result of Williams 

(1977) it trivally follows that for l/a integer the distributions P(a,a,O) 

are infinitely divisible in the logarithm. Bondesson (1981) showed that the 

logarithm of P(a,a,O) is an extended generalized gamma convolution, that is 

the difference between two g.g.c.'s if and only if l/a ~s an integer; being 

an e.g.g.c. implying infinite divisibility. However P(a,a,O) ~s infinitely 

divisible in the logarithm for all a and a, as shown by Shanbhag and 

Sreehari (1977) . It ~s trivial that the distributions p(l,a,e) are infinitely 

divisible in the logarithm. For e 
> ° the logarithm of PO/2,a,e) is , 

however, not infinitely divisible, because the tails are decreasing too fast, 
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cf. Ruegg (1970) and Bondesson (1981). This shows that infinite divisibility 

of the logarithm is not preserved under the selection induced by mortality. 

In conclusion we have infinite divisibility in the logarithm on the boundary 

of the parameter set, but at least for some interior points that property is 

not present. 

There are also n~ce mixture results for other distributions, inter alia the 

Weibull and Gempertz distributions. But first we prove a more general lemma, 

formulated for the kind of mixtures considered in life table methods for 

heterogenous populations. 

Lemma 5 Mixtures over P(a,8,S) 

Suppose that T conditional on X has a distribution with integrated hazard 

X M(t), that ~s p(T>tIX) exp {-XM(t)}, where M(t) is a known nonde-

creasing function. If X has the distribution P(a,8,S), a E(O,l], the 

marginal distribution of T has integrated hazard 

8 a a -[{S+M(t)} -S] 
a 

Proof P(T> t) = E peT > tlx), which can be found from the Laplace transform, 

see also Hougaard (1984). 

Corollary 2 Mixtures of Weibulls and Gompertz' over the positive stable 

distributions. 

a. If the distribution of T given X ~s Weibull (y, SX) , that is with 

hazard ;cXYS t 
y-l 

and X followS: P(a,8,0)/. a E(O,1] the distribution of 

Weibull a T ~s (ay,oS la). 

b. If the distribution of T given X ~s Gompertz (y,SX), that ~s with 

hazard Xy S exp(yt) and X follows P(a,8,0), a E(O,l] the distribution 

of T is Gompertz (ay,8S a/a)., 
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Jewell (1982) showed that a Weibull (p,r) is a mixture over s of Weibulls 

(q~s) if and only if p < q. The corollary specifies the mixing distribution. 

Hougaard (1984) found the mixing distribution for p = q/2,corresponding to 

a = 1/2. A reformulation of a. as a product result is that if T ~ Weibull 

(y,S) and X ~ P(a,8,OL independent of T, the product T x- l / y ~s 

Weibull(ay,8Sa/a). The Gompertz distribution is often parametrized with 

t hazard ab . In this parametrization the result of the marginal distribution 

is 
~~t ~-a 
ab, with b = b . 

For a = 1/2 we have the ~nverse Gaussian family, with an unusual parame-

trization. The density is 

such that it ~s an exponential family ~n the parameters 82 and 8. 

Also the gamma distributions are an exponential family with two parameters, 

8 and 8. 

Because the density ~s complicated, max~mum likelihood estimation is 

difficult. For fixed a and 8 the family is exponential and therefore 

maximum likelihood coincides with the method of moments, for the natural 

observations, that ~s 8 ~s the solution to 88a- l = X, which has a unique 

solution except for a = 1. This equation will also be one of the likelihood 

equations in the general estimation problem. The method of moments gives an 

explicit solution. Let s2 and k be the empirical variance and third 

cumulant,.l.and define R = s 4/ (kX). The moment estimator is then given by 

- 2 - I-a a = 2 - l/(l-R), 8 = (l-a)X /s ,8 = X8 , 

which has a solution for 0 ~ R ~ 1/2, where R ~s defined as 0 for 

2 
s = O. Another possibility for estimation is to use the Laplace transform, 

analogous to Heathco~e; (1977). A paper on estimating the index a of a 

general stable distribution ~s DuMouchel (1983), which also gives references 
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to other papers on that subject. In the life table situation X ~s not 

observed, thus requiring a completely different procedure. An example is 

mentioned in the next section. 
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5. RESULTS FOR FRAILTY DISTRIBUTIONS FROM THE FAMILY 

This section includes formulae for application of the distributions P(a,8,e) 

as frailty distribution. That is we assume the hazard for a person with frailty 

z ~s Z~(t) and that Z ~s distributed according to P(a,8,e). Let 

t 
M(t) = fa ~(u)du. Then the distribution of Z among the survivors in age t 

~s P(a,8,e+M(t», cf. Hougaard (1984) . 

The parameter space ~s strange. For a E(O,l), the condition is 8 > 0, 

e > 0, but for a = 0, which gives the gamma distributions, we need 

8 > 0, e > ° and for a = 1, the degenerate distributions, we need 8 > 0, 

whereas the distribution does not depend on e, and we can therefore restrict 

e in any way we like, for example e E JR, e > 0 or e = 0. That means that 

the parameter space ~s neither open nor closed and it ~s not a Cartesian 

product. Some of the interesting hypothesis are on the boundary, for example 

the hypothesis of stability (8 = 0), the hypothesis of gamma distribution or 

equivalently constant coefficient of variation (a 0), see below, and the 

hypothesis of homogeneity (a = 1). In the latter case, there are two more 

problems. Firstly because e is then a nuisance parameter which is present 

only under the alternative, and secondly because for large e's there are 

distributions arbitrarily close to the degenerate distributions, cf. Lemma 2 b. 

For a < 1 the distributions have density with respect to Lebesgue measure, 

but for a = 1 the distributions are degenerate. Because we do not observe 

the variable Z itself, but only the survival time, which ~s a mixture over 

z, it is not a problem in estimation that the distributions do not have 

densities with respect to a common measure. 

The relation between the integrated population hazard A(t) and the integrated 

individual hazard M(t) ~s 



{
8 1n {1 +M(t)/e} 

A(t) = a a 
8 [ {e +M(t)} - e ]/a 

which can be inverted to 

17 

M(t) {
e [ exp{A(t) /a} -1] 

e [ {1 + aA ( t ) a -le -a} 1/ a - 1] 

a = 0 

o < a < 1, 

a = 0 

o <a < 1 

For the p;opu1ation hazard the two cases unifies to 

A(t) = O{e +M(i)}a-1].l(t) 

At age t the squared coefficient of variation is 
-a 

( 1-a){ e + 11 ( t) } /8 , 

expressing that for a = 0 it is constant, for 0 < a < 1 it ~s decreasing 

converging to 0 and for a = 1 it ~s constant, equal to O. The gamma 

distributions are the only distributions for which a non-zero coefficient of 

variation is constant under mortality selection, as follows from Morris (1982). 

With completely unspecified ].l(t) the parameters a,a and e are not 

identifiable, a problem which is discussed in Heckman and Singer (1982) and 

Hougaard (1984). We will comment on the estimation problem with parametrized 

].l(t), assuming a Weibull distribution .for each individual. That is suppose 

y-1 
].l(t) = yt Assuming Z following P(a,8,e) implies that the population 

y a-I y-l 
hazard ~s A(t) = 8{e + t} yt We could include a mUltiplicative 

parameter c, such that ].l(t) y-1 cyt , but as P(a,a,e) includes a scale 

parameter, the model is not more general. If e = 0 the model collapses to a 

twodimensiona1 model, only ay and 8/a can be estimated. That is testing 

the hypothesis of stability (e=O) invb1ves a nuisance parameter, which is 

present only under the alternative. This happens also for other distributions 

than the Weibull, cf. Lemma 5. Apart from the problems of the boundary of the 

parameter space, this gives a completely ordinary parametric model for the 

hazard and the four parameters a, a, e and y can be estimated and ana1yzed 
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ln the usual way, but the estimmtes have to be derived using an iterative 

procedure. 
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6. AN EXAMPLE 

As an illustration we will consider the survival after myocardial infarction. 

This disease is the death of a part of the heart muscle, caused by insufficient 

oxygen supply. In the first days after the infarction mortality is very high and 

heart arhytmies and other complications are frequent. After the infarction the 

mortality decreases. Usually the acute phase with high .mortality (about 6 weeks) 

is interpreted as the result of a process, where the organism adjusts to the 

reduced heart volume. An alternative or supplementary explanation of the 

decrease in mortality ~s heterogeneity. Probably there are large differences 

between the patients in how well their heart is able to satisfy the needs of 

the organism. The differences are only partly observable by the localization 

of the infarction and enzyme values, which correlates to the size of the 

infarction. 

We will suggest a model, that assumes that heterogeneity is the only 

explanation of the decrease in mortality, that is the individual hazard is 

assumed constant and the frail~y distribution is assumed to be P(a,8,S). 

Thus the population hazard is 8(S+t)a-l. This model is applied to a data set 

of 1140 admissions during 1977-79 to Glostrup Hospital, Denmark. This data 

material is analyzed in detail elsewhere, using a Cox-model with time-dependent 

covariates, but not taking any heterogeneity into account, see Madsen et al 

(1983) and Hougaard and Madsen (1983). In this material the survival time is 

measured in days only, and as 102 patients die the first day, we analyze it 

as grouped data. The patients were followed up after one year, except for three 

emigrants, who were last seen at the hospital on day 18. This makes our model 

multinomial with censored data. The cell probabilities are nonlinear functions 

of the parameters, the probability of death day t, which covers time t-l 

until t is 
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{
{I + (t-l) /8 }'-8 _ (1+t/8)-8 

Pt = exp [-8{ (8+t-l)a..,Oa}/a]- exp [-0{ (8+t)a-8a}/a] 

a=:O 

o ~ a < I 

The likelihood function can be maximized in the usual way; we have iterated 

by means of Newtons algorithm using the second derivative c.:)f the log likelihood 

function. 

Table 1 gives the estimates and corresponding standard errors for the full 

model and under the hypotheses a = 0 and 8 = O. Also the logarithm of the 

maximized likelihood function is reported. For the model where the daily death 

probabilities are freely varying this function is -2245.89, such that the 

likelihood ratio test statistic for goodness-of-fit is 357.5 with 356 deg~ees 

of freedom. However, as most of the cells are empty, the X2_ di-stribution is 

not a good approximation. After grouping the survival times, the goodness-of-

fit is not as good, with fewer deaths than expected in the period 30 - 120 days 

after the infarction. 

Heart failure is known to be an,",c important complication, implying a poor 

prognosis. We have tried to analyze the patients with and without this compli-

cation separately. For these two groups the results are described in Table 2. _ 

For patients without heart failure the estimate is on the boundary, suggesting 

a stable distribution. Thus the calculation of standard errors is meaningless. 

A partial explanation of this might be the method of determining the presence 

of heart failure. The determination is. based on an X-ray taken afteradmllssion. 

In some cases the patient has died before the X-ray examination, thus 

invalidating the use of detected heart failure as a risk factor the first days, 

because some of the deaths in the group without heart failure are wrongly 

classified. The estimate is, however, still on the boundary, if we analyze 

the data conditioning on survival status after a couple of days. 
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Under the hypothesis a = 1/2, the estimate is also on the boundary e = 0, 

because the mortality decreases too fast to be explained by an inverse Gaussian 

frailty. The fit is rather bad, for example for all patients the logarithm of 

the likelihood function is -2550.08. 

For all patients analyzed together and for the patients with heart failure, 

the hypotheses a = 0 and e = 0 are both rejected, the fit for e = 0 being 

worse than for a = O. For the patients without heart failure the fit for 

a = 0 is much worse than for e = O. 

Measured by the coefficient of variation the estimates imply CLhetelSog~ne.ity 

of 5.4 for all patients, 3.7 for patients with heart failure and 00 for 

patients withoUb. Conipared,to"patients -with heart failure the mortality ~n 

the other group is practically zero. Splitting the patients thus works as 

excluding a group of almost zero mortality from the heart failure patients, 

thus explaining the decrease in coefficient of variation from 5.4 to 3.7. The 

infinite value for patients without heart failure is possible because ,this 

group only has small influence on the total mortality. 

It is rrott possible to conclude from th:i:s. simple analysis whether one or 

the other explanation (or both explanations) of the mortality decrease is 

correct. The aim of this section is only to suggest the explanation based on 

heterogeneity and to demonstrate that it is practically possible to analyze 

models, where the survival distributions are explicitly formulated after a 

consideration of heterogeneity. 
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Table 1 

Estimates (and standard errors) 

ex e 

Full model 0.116(0.038) 

o 

0.040(0.006) 0.07(0.05) 

ex = 0 

8 0 

Full model 

ex = 0 

8 = 0 

0.241(0.0l3) 

0.0598(0.00B7) 0.28(0.06) 

0.0254(0.00l3) 

Table 2 

Estimates (and standard errors) for subgroups. 

Patients with heart failure 

ex 

0.114(0.044) 

0.263(0.015) 

0.083(0.013) 

0.122(0.008) 

0.0481(0.0027) 

8 

0.14(0.09) 

0.4l(0.09) 

Patients without heart failure 

ex 

Full model 0.281 

ex = 0 

8 = 0 0.281(0.046) 

8 

0.0053 o 

0.0136(0.0022) 0.28(0.16) 

0.0053(0.0009) 

log L 

-2424.64 

-2428.67 

-2431.67 

wog L 

-1862.07 

-1865.02 

-1870.28 

log L 

-400.90 

-408.62 

-400.90 
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