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NOTES ON RIGHT-(LEFT-)CONTINUOUS FUNCTIONS 

§l. Measurability 

If T ={[a,b): a,bEJR}, then I is abase for the topology Tr={UC:C~Ir}' 
r r 

If T denotes the natural toplogy on JR, then a function 

is continuous iff f: (JR,T) ~ (JR,T) is right-continuous. 

f : (JR, T ) ~ (JR, T) 
r 

To prove that a right-continuous function on (JR, T) LS Borel-measurable, 

it suffices to prove (J (T ) c (J (T) = B , 
r = which amounts to prove (J (T ) = B, 

r 

sLnce obviously 

ving T cB. 
r 

T c;.T 
r 

We shall now prove this [and a little more] by pro-

Proposition If T ET, 
r 

then T has a unLque representation T = U I., where 
jEJ J 

I. is an interval of the type 
J 

(a,b) or [c,b); a,b E JR, c E JR. J LS count-

able and if #J=I= {a,l} then the intervals are pairwise disjoint and maximal 

in the sense that sup I. EtT. [If T = 0, then J = 0]. 
J 

Proof Suppose 0:j:TET 
r 

and write x""yifx,yET and [x,y]~T. Obviously 

is an equivalence relation and the equivalence classes are intervals of the 

stated types and therefore each of them contains a rational number. Hence J 

is at most countable, and the rest is obvious. 

Remark If we are only interested in proving T E B then the properties of the 

rationals could be used more effectively as suggested by S. Tolver Jensen. 

Here is his beautiful proof: If C~Ir' then UC = U un ET: q E I}, and 
qEQ 

clearly U{I E C: q E I} is an interval. 

An easy and more conventional way to prove the measurability of the right-

continuous functions is to construct a proper sequence of step-functions. 

Suppose f: JR ~ JR is right-continuous and define the following functions on 

JR for n = 1,2, ... 
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00 -n 
~ = L f((k+l)2 )·1 
n k=- co [k2 -n, (k+ 1) 2 -n) 

(1) 

(2) 

The sequence (<Pn)n;;;l of elementary step-functions will then converge 

pointwise to f on JR, and the same holds for the simple functions (2). 

Note that the functions (1) and (2) are right-continuous and therefore 

the pointwise convergence is uniform on any compact set in the space (R ,T ). 
r 



§2. The space (JR, T) • 
r 
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The space (JR, T ) 
r 

has already been defined in § 1. The main result 1n this 

section is a complete characterization of the T -compact sets. 
r 

compactness is an ambiguous concept 1n the mathematical litterature. We 

shall say that a set in a topological space 1S compact iff every open covering 

has a finite subcovering. When dealing with Hausdorff spaces this terminology 

conforms to that of Bourbaki. Some authors would prefer the term bicompact 

[1,2] . 

From only a rudimentary knowledge of (JR, T) much can be said about (JR,T ) 
r 

because of the relation TeT. This will become apparent 1n the following 
r 

proposition, which 1S easily proved. 

Proposition 1 Let the set X be equipped with two topologies 

and suppose T 1 eT 2' Then the following holds. 

a) Every Tl-closed e set is T2-closed. 

b) Every T2-compact set is Tl-compact. 

c) Every T 2-limit point of A~X is a Tl-limit point of A. 

Proposition 2 The space (JR,T ) 
r 

has the following properties: 

a) It 1S a Hausdorff space. 

T., i=1,2, 
1 

b) It satisfies the First Axiom of Countability, but does not have a countable 

base. 

c) It 1S a Lindelof space. 

d) Q 1S everywhere dense. 

e) The base I consists of clopen sets (i.e. every [a,b) is both open and 
r 

closed.) 

Proof a), b), d), and e) are obvious. An easy proof of c) is the following. 

Suppose CeT = r and JR~UC. Since JR is. a countable union of intervals of the 
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form [a,b), aEJR,. then it is sufficient to prove that every such interval 

can be covered by a countable subcover of C. Suppose [x,y) is given and 

define C={zE[x,y): 3C~C,?! countable, and [x,z]cUCl.. Obviously xEC 

and C is an interval, and it is seen that y=sup C. The rest is easy. 0 

Definition x E JR, Ac:::JR . A is said to have x as a left-limit point [right-

limit poind if An [y,x) *rb [An (x,y] *rb] for all y<x [x<y]. 

Of course x lS a right-limit point of A iff x lS a T -limit point of 
r 

A, but a left-limit point of A is not necessarily a T -limit point of 
r 

Lemma 1 If Ac JR has a left-limit point, then A lS not T -compact. 
r 

A. 

Proof Suppose A has Xo as a left-limit point. Then A contains a strictly 

increasing sequence (x ) 1 t xo· n n> The class of sets {[x ,x 1): nE ill} U n n+ 

lS a T -open cover of A which does not contain a finite 
r 

subcover. o 

Lemma 2 If AcJR is uncountable, then A has at least one left-limit point 

and one right-limit point. 

Proof Since A = U{A n ( - =, n): nE ill} we may and shall assume in the following 

that A lS bounded above. Define C = {z E JR: An [z,=) lS countable}. Then C * rb 

and bounded below. Hence x = inf C EJR, and we claim that An [y,x) * rb for all 

y<x. The existence of right-limit point follows by considering -A= {x: -xEA} 

and using the result already proved. o 

Of course much stronger result could be proved about limit-points of un-

countable sets, but this is all we need. 

Proposition 3 Ac R is T -compact iff A 
r 

lS countable, bounded, contains all 

its right-limit points, but does not have any left-limit point. 
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Proof The necessity of the conditions follows immediately from L.l and L.2 

and the fact that a T -compact set is T-compact (See P.l). 
r 

To prove the sufficiency of the conditions we proceed as follows. Suppose 

A has the stated properties and let C 

Define xl = inf A . 

denote a T -open covering of A. 
r 

Then xl E A and xl E Cl for some Cl E C. The set A" Cl 1.S T -closed 
r 

and satisfies the conditions stated in P. 3. Define x2 = inf (A" Cl) . Then 

X 2 EA" C and xl < x2 • Proceeding as above we either reach the state where 

A" U C. = (j) for some nE IN or we get a strictly increasing sequence (xn) n>l 
i=l 1. 

of points in A. Since the latter case would lead to a contradiction the 

proposi tion is proved .. o 

Remark 1 From P.2.c., the Proposition in §l, and the fact that T has a 

countable base follows easily the following theorem (A.P. Moore): "Let I 

denote the class of all open or closed intervals containing more than one point, 

and suppose C ~ I U I Q,U I r . Then there is a countable C cC such that UC = UC." 

From Moore's theorem it easily follows that every subspace of (:JR ,T ) 
r 

1.S 

a Lindelof space. ([1],pp.58-59) 

Remark 2 We shall finish this section with a curious example showing that a 

product space of two Lindelof spaces, with the usual product topology is not 

necessarily a Lindelof space. Consider (R,T ) x (R ,T ). If this space is a 
r r 

Lindelof space then every closed subset with the relative topology will be a 

Lindelof space. The line y = - x is closed and intersects an open set 

[z,oo) x [- z,oo) 1.n a single point (z, - z). Hence the line with the relative 

topology is a discrete space and therefore not a Lindelof space. ([1],p.59). 
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§3. On the discontinuity of RC-functions 

Before formulating our main results concerning discontinuities [T-discontinui-

ties to be more specific] of right-continuous functions [also called RC-

functions in the following] we shall define some auxiliary concepts. 

Defini tion 1 Suppos e f:]R -+]R and R = JR U {- 00, oo}, then 

{
f (x) - f (x - ), if 

c1 (f;x) = 
R, 0 otherwise 

f (x - ) 
D 

lim fez) exist in]R, 
zHx 

WR,(f;x)= limsup fez) - liminf fez) in ]R , 
zttx zttx 

where 00 - 00 1S taken to be zero. 

The functions 0R,(';') and wR,(';') might be called the left-saltus and 

the left oscillation, respectively. 

Proposi tion 1 Suppose f:JR-+JR is right-continuous. Define 2: (1) (f) = 
r 

{x: oR, (f;x) ::j:: O} and 2:;2) (f) = {x: wR, (f;x) > O}. Then the following holds: 

a) and 2:(1) (f) U 2:(2) (f) 
r r 

1S the set of T-discontinuity 

points of f. 

b) lim oR, (f;x) = lim wR, (f;x) = 0 for all x E JR • 
z++x z++x 

c) The set {x: I oR, (f;x) 1+ wR, (f;x) > d has no right-limit points, if s > 0, 

and in that case is countable. 

Proof a,b) are obvious. c) follows from b) and §2.L.2. o 

Since the set 2:(1) (f) U2:(2)(f) III P.l.a. can obviously be written as 
r r 

00 1 
U {x: I oR, (f;x) I + wR, (f;x) >-} we have: 

n>l n 
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Corollary Every right-continuous function f:R~R has at most countab1y 

many discontinuity points. 

Example 1 Let ( X ) be any strictly increasing bounded sequence of real 
n n>l 

numbers and (cn)n~l any sequence of real numbers. Consider the right-continuous 

function 

(1) 

If c = 1km cn =1= 0, then Xo = 1km xn is a sa1tus point and o£ (f;xO) = - c. 

c may belong to JR., and if cE{-oo,=}, then f ~s unbounded on the closed 

interval limsup c > 1iminf cn ' n n n 

Example 2 Let A ~ R be any countable subset and x~ c =1= 0 
x 

any function 

from A into JR., such that r I c I < + 00. Consider the right continuous 
xEA x 

function 

f = r 
zEA 

c 
z 

1 
[z ,00) 

Using the notation above, we have A = r(l) (f) 
r 

and r(2) (f) = f/J. 
r 

Example 3 Let A and x ~ c be as 1n Ex.2. Define 
x 

{ 
sin(.!.), 

g(x) = 0 x 

if xE [_1. 0) 
7T ' , 

otherwise on JR. 

Then f 1S right-continuous and 1ll the notation above: r (1) (g) = f/J 
r ' 

and w£(g;O) =2. 

Consider now the right-continuous function 

hex) = r cz · g(x - z), x E JR • 
zEA 

We now have r(2) (h) = A, 
r 

and 

(2) 

(3) 

(4) 

o 



It will be convenient In the sequel to have special names for the sets 

L(l) (f) 
r 

and L(2) (f) 
r ' 

and so we shall call them the left-jump spectrum and 

the left-noise spectrum of f, respectively, where f:JR ~R is not necessari

ly right-continuous. The definition of L(l)(f) and L(2)(f) should be clear. 
!2., !2., 

Of course, for every RC-function f, LP) (f) =L~2) (f) = 0. 

Proposition 2 Suppose r.cR, i=L,2, 
l= 

then necessary and sufficient condi-

tions for the existence of a right-continuous [left-continuous] function 

f:JR ~ JR with left-jump [right-jump] spectrum r 1 and left-noise [right-noise] 

spectrum r 2 , are that r l and r 2 are disjoint and countable. 

Proof Let fl be the function defined In Ex.2 with A = r l' and let f2 be 

the function (4) defined in Ex.3 with A=r 
2 

and consider This 

proves the sufficiency. The necessity follows from P.l.a and the Corollary 

above. o 

Remark It is somewhat unsatisfactory to work with limit-values ± 00 outside 

the space (R,T). This implies that for a RC-function f with an empty left

noise spectrum, i. e. pure left-jump spectrum, the "left-version" f(x -) ~ 

lim f(x) is not necessafltily a LR-function in our sense. There are at least 
zttx 
two possibilities to avoid this. The one is to consider only bounded functions, 

which we do not find attractive, and the other possibility is to extend (R,T) 

to (R,T), where T is the smallest topology containing 

TU ([ - 00, a) : a E JR.} U {(a,oo]: a E RJ, which is essentially that adopted by 

Jacobsen in his recently published book on counting processes. [3]. 



9 

§4. On the variation of RC-functions 

The main topic in this section is the variation of a right-continuous function 

in the vicinity of a point in its noise spectrum. For this purpose we shall 

introduce the fo1lowing concept for an arbitrary real function. 

Defini tion If f: lR -4lR and x E JR, then the set 

Qo(f;x) ={yElR : 3(x) lHx and 
N n n> y = lim f(x )} 

n 
n 

will be called the left-noise of f at the point x. 

In an analogous way the right-noise of f at x lS defined and denoted 

by Q (f; x) 
r 

If f lS a RC-function, then of course Q (f;x) = {f(x)} 
r 

for a1l x E JR, 

and Q.Q, (f ;x) lS equal to {f (x) } or {f (x - ) } if x lS a T-continuity point 

of f or a saltus point respectively. The situation lS quite different, when 

x E L~2) (f) , l. e. x belongs to the left-noise spectrum of f. Note that 

Q.Q,(f;x) lS never empty. 

Proposition 1 Suppose f: lR-4IR, then Qf(, (f ;x) 

sets for all x E JR . 

and Q (f;x) are T-closed 
r 

Proof It suffices to consider the left-noise. Suppose y lS a T-limit point 

of Q,f(, (f;x). [For the definition of T see the last lines on p.8]. Then there 

lS a sequence 

Y =1= Y for all 
n 

(Yn)n~l of points in JRnrl.Q,(f;x), such that 

n. Since Yn E rl.Q, (f ,x) there lS a sequence 

such that (x ) lHx nm m> and y = 1 im f (x ). 
n;m nm 

y = limy and 
n n 

(xnm,f(xnm»m~l' 

Now construct a sequence In the following way. Choose a = 
1 

(Xlml,f(Xlml)' thena2=(x2m/f(x2m2»' where x2m2>(x+xlml)/2 etc .... , 

a =(x ,f(x », where x >(x+x( 1) )/2,... Obviously a -4 (x,y), 
n nmn nmn nmn n- mn- l n 
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hence nt(f,x) is T-c1osed Slnce it contains its T-1imit points. 

Proposition 2 Suppose F is a non-empty T-c1osed set and Xo E JR, then there 

. f' f JR JR h h (") (f ) F d 'r(2) (f) = {xO} . eX1S t a RC- unct10n : -+ suc t at "t ;xO = an L 

Proof There exist a sequence (y ) of points in F, such that the 
n n>l 

T-c1osure of {y : nE :N} is F. Note that the y's are not necessarily all 
n n 

different. Let (X ) be strictly increasing sequence, such that 
n n>l 

(x) 1txO' n n~ 

Define a sequence of functions 

00 

g : JR -+ JR, nE ill, such that 
n 

gl (x) = L Y n 1 (x) , x E JR , 
n=l [x x ) 

n, n+l 

and 

(1) 

Note that g 1S zero outside [xn ,xn+1), and consider the function f: JR -+ JR 

defined by 

00 

f (x) = L g (x), x E JR 
n=2 n 

(3) 

f 1S right-continuous and takes the value nA(-nvy) 
n 

at the point 

z = x + (x 1 - x ) (x - Xl) / (xO - Xl) E [x,x 1)' n = 2,3, ... , Slnce n n n+ n n n n+ 

fez ) =g (z ) =nA (-nvg1 (x) . (4) 
n n n n 

Hence lim f (z ) = y , (z) 1ttxO and P. 2 now follows from P.1. 
n n n nn> 

Remark 1 Suppose Le JR is countable and has no limit-point. Let 

o 

(x) be an 
n 

enumeration of the elements 1n L. It is then easy by the aid of P.2 to prove 

the existence of a right-continuous function f: JR -+ JR such that n t (f ;xn ) 

F ,n = 1,2, ... , where (F) are a family of arbitrary prefixed non-empty 
n n 

T-c1osed sets. This is of course not the case, if L has one or more 1imit-

points. If Xo is a right-limit point, z EL, and (z) 1 H xo' then, n n n> 
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because of §3. P.l.b, d(F ) ~ 0, 
n 

as n ~oo , where d(F) 
n 

stands for the 

diameter of F . 
n 

Note that d (F ) = Lil n (f; z ). If on the other hand 1.S a 
n N n 

left-limit point and (zn)n>l tt xo' then limsup F r::: rtn (f ;xO) • 
n n - N 

If f: JR ~ JR, then the graph of f, denoted here by Graph(f) , is 

{(x,f(x» : xEJR}. Writing (JR 2 ,T2) for the plane equipped with the natUl;al 

product topology we can state the following proposition, which is obvious from 

what has been said so far. 

Prop os i tion 3 Suppos e f: JR ~ JR 1.S a RC-function. Then 

a) Graph(f) =U{rt (f;x): xEJR} 
r 

2 
b) Graph(f) UU{rt9, (f ;x) : x E JR} 1.S the T -closure of the graph of f. The 

closure 1.S nowhere dense 1.n (JR2 ,T2) and so has Lebesgue-measure zero. 

We shall close this section by an example showing that a closure of a 

Borel-function can be the whole plane. 

Example Consider the countably infinite set D = {x E 1R : n m E:IN} = U{D :n E :IN} 
nm' n' 

where xnm =1= xk 9, if (n,m) =1= (k,9,) , Dn = {xkm E D : k = n} is dense in (JR ,T) for 

all nE IN. Note that Dn n Dk = Cb if n =1= k. Let A = (an)n>l denote an enume-

rated dense set in (JR ,T), and consider the following Borel-function f: JR~JR, 

00 

(5) 

We claim that JR = rt (f·x) = rt (f'x) 9,' r' for all x E JR , and 
2 

Graph (f) = 1R • 

Of cours e f = 0 a. e. [AI], where Al is the Lebesgue-rneasure on the line. 
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§5. Digression 

In this section we shall digress somewhat from our maln topic and make some 

comments on M. Jacobsen's book referred to in §3.R. We shall restrict ourselves 

here to the first section "ONE-DH1ENSIONAL COUNTING PROCESSES", pp. 1-52. 

One of the basic concepts introduced by Jacobsen is that of "smooth densi-

ty". Using the notation JR + -+ +. --
(0,=), JR = JR U{=}, and B = C1 (T) , the concept 

can be defined as follows: 

Definition 1 A probability P on 
-+ - -+ 

(JR ,BnJR) 

sity f: (JR+, T n IR+) ~ (JR; ,Tn JR;), if 

a) f is right-continuous; 

b) f(O+) ~ lim f(t) exist; 
tHO 

c) + f(t-) exist for every tEJR 

lS said to have a smooth den-

d) t 
P(O,t] = JOf(s)dA l for all 

+ 
t E JR , where Al lS the Lebesgue measure on 

the line. 

Remark 1 We shall say that a function 
-+ 

f: JR~JRO lS a smooth density function, 

if it satisfies the conditions in D.l. above. We shall see In the next section 

that the integral in D.l.d. may be written and considered as a 

Riemann integral. 

Following Jacobsen we shall denote by F and G the distribution function 

F(t) =P(O,t] defined on JR+ and the survivor function G=l-F, respectively 

+ 
The point t' =inf{t>O:G(t) =O} is called the termination point of P. 

Definition 2 Suppose P has a smooth density f. The intensity or hazard 

for P lS the function defined by 

(1) 
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From D.2 follows, that 

t 00 
G(t) =exp( -IOll(S)dx) =G(oo -) +It f(s)ds. (2) 

Proposition 1 Suppose P has a smooth density, then the intensity for P 

+ + -+ - -+ 
]J : (JR ,T n JR )~ (JRO' T n]Ra) is characterized by the following properties: 

a) II 1S right-continuous; 

b) ]J(O+) exist; 

c) 

d) 

e) 

f) 

]J(t-) exist for every + 
t E JR 

h 
10 ]J(s)ds <00 for some h>O; 

t ]J(t) = 0 whenever 10]J(s)ds =00 . 

except possibly at 

]J(t) =D+(-lnG(t» ~ - lim (lnG(t+h) -lnG(t»/h, 
hHO 

+ t I • , 

t if t < t . 

At this stage we want to point out the following: i) Jacobsen's class of 

smooth densities and the corresponding class of intensity or hazard functions 

are rather restrictive and very elementary functions are excluded; (ii) the 

fact that the intensity functions do not necessarily have a left-limit at the 

termination point (and only at this point) is rather annoying and the space of 

these functions becomes rather awkward; iii) the concept of "intensity func-

tion" is much more fundamental for the whole theory than that of "smooth densi-

ty". Hence we shall introduce below a different smoothness requirements. Of 

course this will be done in such a way that all the main results in [3] hold 

under these requirements, which is indeed the fourth and main reason for 

writing this section. 

Definition 1 A probability P on (JR +. B n JR +) 1S said to have a left-smooth 

intensity if 



a) 

b) 

c) 

M is left-continuous; 
t 

-f OM(S) ds 
P (0, t] = 1 - e 

M = 0, if 
t 

t > t . 
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+ for all t E]R. ; 

Remark 2 Note that P·.l.d. 1S satisfied, since 

lim G(t) = lim exp{ - f~M(S)dS} = l. 
tHO tHO 

(3) 

After we have decided on the class of intensity functions, specific pro-

perties of the corresponding density functions are of little or no concern 

regarding the exposition of the theory of mUltiplicative intensity models for 

counting processes in Jacobsen's book [3]. On the other hand it is of impor-

tance for practical purposes that the class of density functions (or distri-

but ion functions) is reasonably extensive and contains all the well known 

functions, which have proved useful (this is probably the reason why Jacobsen 

prefers to start with "smooth density" as a basic concept). Let this be the 

justification for the following proposition, which is easily proved. 

Proposition l' A probability P on cm. + ,B n JR +) has a left-smooth intensity 

iff the corresponding distribution function F (or survival function G) 1S 

left-differentiable with left-continuous derivative, except possibly at tt, 
+ + _+ __ + ,.f. 

f: (m. ,B n m. 0) -+ (]RO' B n]RO ), such that for t:j: t t 

- t f ( t) = D F ( t) = M ( t) • exp { - f 0 M ( s ) ds } ( 4) 

Remark 3 Note that F can be recovered from (4) by partial integration in 

Riemannian sense. Note also that the anomaly that can arise at the termination 

points in Jacobsen's class of intensity functions occur now 1n our class of 

density functions. 

Two other basic concepts ln Jacobsen's book and of great concern here are 
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the "canonical counting process of class HII and the corresponding "intensity 

process". Let us briefly sketch what leads up to these concepts. 

Definition 3 If JNO =JNO U {oo}, then the full counting process path-space is the 

set lV of functions w: (IRO ,T n IRO) -+ ( JNO ,TnJNO)' which are right-continuous, 

non-decreasing, increasing only in jumps of size 1, and w(O) = O. The stable 

counting process path-space is the subset W= {wE:W: wet) < 00 for all t,;; a}. 

Using the terminology introduced ~n §3.p.6, which is easily adapted to W, 

the following proposition concerning the structure of the paths should be obvious 

[See §3.P.1.c]. 

Proposi tion 2 If wE: W[W], then <2) (w) = rJJ, L:;1) (w) ~s countable and has at 

most one limit point. In that case it ~s a left-limit point and does not belong 

to the jump spectrum L:(l)(w). 
r 

Let F and F denote the smallest 
s 

cr-a1gebras over 1iJ w. r. t. which the 

projection Nt:W-+(lNO,.cr(TnJNO» is measurable for all tE: [O,s], all tE: IRO' 

respectively. For the restrictions to W we have F = F n Wand 
s s 

F = F n w. 

Definition 4 A canonical one-dimensional counting process ~n short CCP, is a 

probability on (W,F) and a stable canonical one-dimensional counting process 

~s a probability on (H,F). 

We now come to the basic idea of Jacobsen From the exceedingly simple struc-

ture of the jump spectrum and the fact that it determines 

completely the path w, he is led to consider the distribution of the first jump-

ing time '1' the distribution of the second jumping time '2 given '1 etc. 

This results in his basic theorem, which we shall now quote ([3], p. 16). 

Theorem Suppose given for n E: JNO and any 0 < t1 < ••• < tn < 00 a probability 

concentrated on the interval (t 00] 

n' 
with survivor function such 
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that the collection of probabilities satisfies that for every t> 0 the mapplng 

(tl, ... ,t )~G ~ (t) lS measurable. Then there is a unique canonical count-
n nLl ·· .tn 

ing process P such that for n E:INO' t> 0 

p(, l>tlF )=G (t) P-a.s. on 
n+ 'n n'l""n 

h < 00] 
n 

(5) 

Remark 2 The probabilities concentrated on 
D 

(t 00] 
n' 

. . . -+ 
are probablll tles on JR 

with G t t (t ) = 1. '0 == 0 and F [F ] is the a-algebra generated by 
n 1'" n n 

'0' ... "n' In particular FO = F 
'0 

, , 
n n 

{0.W} and 

Definition 5 A CCP,P, is said to belong to the class H, if the members of a 

corresponding family of G-functions, {G t t} 
n 1'" n 

have smooth densities (See D.l). 

Suppose PEH and a corresponding family of G-functions 

as a class of intensities (See D.2). Then Jacobsen defines on 

stochastic process (At)t>O given by 

on 

on 

Obs. On (W,F) [N = 00] = (f). t . 

[N < 00] 
t 

has {]J } 
ntl···tn 

(W,F)[(W,F)] the 

(6) 

We are now able to define a very important concept. We quote Jacobsen ([3], 

p.28). 

Definition 6 For a canonical counting process P of class H, the intensity 

process 

t>, . = 00 

is given by A 
t-

Hm 
sHt 

A 
s 

for A = 0 
t-

Remark4 In D.6 ,(w)=oo for n>m if wonlyjumpsm times, and 
n 

for 

D I' T = lm, 
00 n The intensity process is determined module indistinguishability 

nttoo 

( [3 J, p. 28) . 
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Jacobsen gives explicitly two reasons for using A as intensity process 

rather than A ([3],p.26),viz. i) A_ is predictable, i.e. 

w.r.t. 
- D -
F = V F 'ii) 
t- s' s<t 

for all n EJNO' \ _> 0 P-a.s. on 
n 

A is measurable 
t-

h < 00] • 
n 

Consider now the following two definitions regarding left-smoothness to be 

compared with D.5 and D.6 above. 

Definition 5' A CCP,P, is said to belong to the class H~, if the members of 

corresponding family of G-functions {G t t} have left-smooth intensities. 
n 1'" n 

(See D.l'). 

Definition 6' If P is a CCP of class H~, then the corresponding inten-

sity process A= (At)t>O is defined by 

on 

on 

[N < 00] 
t 

[N = 00] 
t 

where is the intensity of the G-function 

We now claim that (7) lS predictable and A > 0 
T 

n 
We also have, that 

A = lim peN -N h~ llF h)/h, 
t hHO t t- - t-

(7) 

(See D.2 Y). 

on h < 00] P-a.s. 
n 

(8) 

P-a.s. on [Nt < 00], and Jacobsens propositions and theorem become valid after 

proper and trivial modifications. It therefore seems clear that the "extension" 

to left-smoothness lS a natural one and will result in a more elegant exposi-

tion of the subject. 
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Remark 5 In his definition of a martingale ([3]p.38), Jacobsen requires that 

the sample paths are right-continuous having left-limits everywhere, and in his 

proposition p.46 he proves that the likelihood process, (£t)t~O there considered 

is a martingale. In the mathematical setting just suggested above, we should 

prefer open intervals, [O,t), instead of closed ones in the construction of the 

process. Then £t becomes 

-A N N 
t t- t- -~t 

£ = (e IT \) /~ e ) , 
t k=l k 

which lS left-continuous, predictable, and satisfies 

E{I.Q, I}< +00, 
t 

E{£t IF } = £ s s 
for s < t. 

(9) 

Hence (9) is a martingale in the "classical" sense, - see for example [4l(J. Doob, 

1953). 

Remark 6 It is regrettable that the proofreading of the first section of Jacob-

sens inspiring "Lecture Notes" had not been very successful. There are more than 

dozen minor "misprints" and inaccuracies. In 3.12. Th.(p.23) and its proof the 

condition [N < 00] is missing, and the proof needs an amendment. As it stands 
(J 

the theorem and its proof is valid for stable CCP1s. The comments following the 

definition of the integrated intensity p.33 should be compared with §3. C.p.7 

and R.l.p.12 above. 
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§6. On the Riemann integrability of RC-functions 

In this section we shall briefly collect some useful facts concerning the 

classical Riemann integral and study its natural extension to unbounded func-

tions on unbounded intervals. For convenience we begin defining two function-

spaces, which are of special concern in this and subsequent sections. 

Definition 1 Let le JR denote an interval. 

i) By RC (I) we denote the vector space over JR of all right-continuous 

functions from (I,T n I) into (JR ,T). 

ii) By RC(I) we denote the space of all right-continuous functions from 

(I ,T n I) into (JR ,1') . 

iii) By LC(I) and LC(I) we denote the spaces of left-continuous functions 

corresponding to i) and ii) respectively. 

iv) By and - +- + RC(I) [LC(I) ] we denote the cones over 

and respectively, of non-negative functions in the corresponding 

spaces above. 

Proposition 1 The space RC(I) [RC(I)] contains all the constant functions 

on I and is closed under the binary operations v and A, i. e. "max" and 

"min". 

Remark 1 Since P.l. is obvious we shall not prove it, but note the following 

consequences. If fERC(I) [RC(I)] then f+~fvO and f-~-(fAO) belong 

+ -Ifl=f +f. 

We shall now give two equivalent definition of sets of measure zero on the 

real line, and we shall call such sets null-sets without any reference to 

Lebesgue-measure, because as noted by F. Riesz.: "In fact, the idea of a set of 

measure zero does not depend essentially on the general theory of measure,and 
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the maLn properties of these sets can be established Ln a few words." ([5], 

p.S). 

Definition 2 A subset N of JR will be called a null-set, if it can be co-

vered by a finite number or by a denumerable sequence of intervals whose total 

length is arbitrarily small. 

Definition 2' A subset N of JR will be called a null-set, if it can be co-

vered by a sequence of intervals of finite total length in such a way that 

every point of N is an interior point of an infinite number of these inter-

vals. 

Remark 2 The equivalence of D.2 and D.2' is easily proved ([S],p.6). D.2 is 

Lebesgue's definition, but D.2' seems to be Riesz's idea. For our purpose D.2 

is the proper one. 

The following theorem contains one of the main results of the classical 

theory of Riemann integrals. We assume the reader is acquainted with the rudi-

ments of this theory. 

Theorem 1 Suppose f: (I ,T n I) ~ (JR ,T) LS bounded and le lR is a bounded 

proper interval, i.e. a = inf I <b = sup lE 1R, then f LS Riemann integrable 

over I iff the set of discontinuity points is a null-set, and Ln that case 

(1) 

where a=xO<xl < ... <xn=b, x. 1<1;· <x., and max(x. -x. 1)~0 as n~= . L- = L= L . L L
L 

Remark 3 A proof of Th.l can easily be found in the mathematical literature. 

For those who read Danish a lucid account of the relation of Riemann 

integration to that of Lebesgue is given in [6], which also contains a proof 

of Th.I. 
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From Th.1 and §3.C follows directly the following proposition. 

Proposition 2 Suppose f E RC (I) [LC(I)], where I denotes a bounded proper 

interval. Then f is Riemann integrable in the classical sense iff f is 

bounded. 

The next proposition LS of interest and will be used later in this section. 

Proposition 3 Suppose f. : (I,T n I) -+ (JR,T) 
L 

is Riemann integrable (I and 

bounded!), i = 0,1, then fO v f1' fO A f1 are Riemann integrable on I. 

In particular (f. A a) vb, a,b E JR, are Riemann integrable. 
L 

f 

Proof Let N. denote the null-set, where f. Lsdiscontinuous, i=O,l. If 
L L 

x El ....... NO ....... N1 , then fO v f1 is continuous of x. Hence the set of discontinu

ity points of fO V f1 LS a null-set, it is a subset of NO U N1 . The rest is 

obvious. 

We shall now extend the notion of Riemannintegrability guided by the wish 

to preserve the midde1-sum property (1) and P.3 if possible. Note that the 

ingredients of the constructive definition of Riemann integral are: i) bounded 

proper interval I, ii) bounded function f:I-+JR; iii) finite partition of 

I into subinterva1s; iv) area1 of a rectangle. We want to remove the bounded-

ness requirements in i-ii), and we shall first be concerned with ii). 

Definition 3 Suppose f: (I,T n I) -+ (JR ,T), where I, I <.::= JR, denotes a bounded 

proper interval with endpoints a < S. Then f is said to be Riemann inte-

grab1e Ln extended sense if for all a, bE JR the functions (f A a) V bare 

Riemann integrable on I (in the classical sense), and 

fS f (x)dx ~ lim 
a 

fS(f Aa) vb(x)dx exist in JR. 
a 

(2) 

We shall say that f LS Riemann summab1e if the integral (2) LS finite. 
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Remark 4 The "integral operator" defined 1n D.3 is of course linear over ]R.. 

If f 1S integrable in the sense of D.3, then f+ and f are. f is summ-

able iff f+ and f are (or if If I are). Note that the integrability of 

only implies the integrability of f, if either f+ or f 1.8 

summable. 

Remark 5 D.3 does not preserve the middel-sum property (1) for unbounded 

functions, but P.3 is preserved in the sense that the spaces of Riemann inte-

grable functions in the extended sense are lattices as follows from P.4 

Lemma Suppose 
-+ - -+ 

f: (I,T nil) ~ (]R. o,T n ]R. 0) and for all aElE, fAa 1S con-

tinuous except possibly on a null-set N , 
a then f is continuous except 

possibly on a null-set Nf U N = UN. 
aE]R. + a nEJN k 

Proof If Nf denotes the set of discontinuity points of f then it is easy 

to see, as 1n the proof of P.3, that Na=Nf . It is also clear that a<b 

implies Na ~Nb' 

f(x) <+ 00, then 

Hence 

a. Hence Nf ~ U Nk 
kEJN 

U N = U NkC:=Nf. 
aE]R.+ a k=JN -
for k> f (x) , and if 

co 

On the other hand if 

f(x) =00 then x E N 
a 

xENf and 

for some 

and U Nk 1S a null-set so the proof is completed. 
k=l 

From L.l above follows immediately the following proposition by considering 

1 f + separate y and f . 

Proposition 4 If f 1S Riemann integrable in the extended sense, then f is 

continuous everywhere except possibly on a null-set. If g is also Riemann 

integrable in the extended sense (over the same interval!) then f v g and 

fAg are also. 

We are now able to extend further the classical Riemann integral to func-

tions on unbounded intervals. 

Definition 4 Suppose f: (I,T n I) ~ (JR ,T), where I denotes a proper interval 
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on JR, then f ~ 0 lS said to be Riemann integrable, if f lS continuous 

except possibly on a null-set and its Riemann integral lS 

(R)!If(x)dx= (R)!Bf(x)dxDlim lim !Of/\a(x)dx, 
a y+a at~ y 

(3) 

cStB 

where a = inf I < Y < cS < B = sup I and + aE JR • f lS said to be Riemann summable 

if (3) is finite. 

If f > 0 does not hold, then f lS said to be Riemann integrable if f+ 

and f are [implying that f lS continuous except possibly on a null-set] 

and at least one of them are Riemann summable. In this case 

If (4) lS finite, f lS said to be Riemann summable. 

Remark 6 D.4 lS quite natural so we prefer just to speak of Riemann integrable 

functions. It lS also convenient to define (R)! If (x) dx = 0, if I lS empty or 

a singleton. It should be clear that the middel-sum property (1) does not hold 

if f is unbounded and does not necessarily hold if f is bounded on an un-

bounded interval. 

Example 1 Define + 
f:JRO ~JR as follows, 

o on [0,6] on [0,6], 

f n -1 - 2 1 xn- l - lion [n - L n + 6], if nE N is even 

-1 -1 
- n + 21xn - 11 " " odd . 

Then + f, f and f are all continuous and bounded. + f and f are therefore 

both Riemann integrable, but not summable, 

00+ 

(R)!Of (x)dx= L 
nEN 
even 

1 1 00-

2n =00 = L - = (R)! f (x)dx 
nEN 2n 0 
odd 
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Hence f l.S not Riemann integrable, but the "classical" improper Riemann 

1 00 (- 1) n In 
integral exis ts. Its value is -. L = - Q,nv2. 2 n=l n 

We now come to the following question. What is the class of Riemann inte-

grable functions on unbounded interval such that a middel-sum property like 

(1) holds for these functions? The answer depends on how the concept "finite 

partition of the (bounded) interval I into disjoint sub intervals " is ex-

tended. 

What makes (1) interesting and computationally useful is the single re~ 

quirements on the sequence of partition-points max(x. -x. 1) -+0 as their num
i 1. 1.-

ber increases. In particular the partition points may be equidistant (!). The 

consequence of this single requirement is that a complete knowledge of the 

function is not needed to calculate in a simple way a good estimate of its 

integral. From this point of view the following definition of W. Feller and 

quoted from S. Asmussen seems to he the only proper one emhrasing important 

classes of functions. [7] 

Definition 5 Suppose f: (I,T n I) -+ (JR. ,f) l.S bounded, and I a proper inter

val on JR., bounded or unbounded. If h > 0 define I~ = I n [nh, (n + l)h), nE Z, 

and the two following step-functions on I: 

fh (x) = sup f(y), 
n yElh 

f (x) = inf f (y) , 
h n yElh 

if xEln~ ; 

if n 
xElnlh . 

Then f ~ 0 is said to be directly Riemann integrable, if 

and f Ifh (x)dx - f I~ (x)dx-+ 0 as h -+ O. 

(4) 

(5) 



25 

If f > 0 does not hold then f is said to be directly Riemann integrable if 

f+ and f are. 

Remark 7 It is obvious that the direct Riemann integral is an extention of the 

classical one, but to rather restrictive classes of bounded functions on un-

bounded intervals, and this extension is the only natural one preserving the 

middel-sum property (1). That the classes of directly Riemann integrable func-

tions on unbounded intervals is rather restrictive is caused by the equidi-

stance of the partition points as will be demonstrated 1n the following example. 

Roughly speaking, the functions must go rather fast and smoothly to zero, say 

at least like Ixl-l-o(o >0) as Ixl ~OO. 

Example 2 Consider the function + f::IRO ~:IR determined by 

-1 -1 
I x - ni, on [n - n • n + n ), n E IN '- {l}, 

otherwise 

Since f 1S non-negative and continuous it 1S Riemann integrable 1n our 

00 00 -2 ~2 
(R)J Of(x)dx = L n =6"-1. 

n=2 
sense, even summable, and 

f 1S also bounded and f (x) ~ 0 as x ~OO. Choose hE (0,1) and cons ider 

(see(4». Whatever the value of h fh takes all the values 

nE :IN - {l}, and hence 
00- 00 -1 00-1 

J Ofh (x) dx ~ L hn = h L n = 00, i. e. 
n=2 n=2 

f 

Riemann integrable. 

-1 
n 

is not directly 

Remark 8 Note that the space of all directly Riemann integrable functions on 

some unbounded interval I is a vectorspace over JR, which is a proper sub-

space of the vectors pace of all bounded Riemann summable functions on I. 

We have now extended the classical Riemann integral without invoking 

Lebesgue's general theory of measure and integration, but of course every 

Riemann integrable [summable] function f is Lebesgue integrable [summable] 

and these integrals of f are the same number. 
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We finish this section with an important (but obvious!) proposition con-

cerning our main subject, and recall §5.R.1. 

Proposition 5 If f E RC (I) then f 1S locally integrable in sense that to 

every xEI there exists a hEJR+ such that Jx+hf(x)dx exist. If 
x 

f E RC (I) then h can be so chosen that JX+hf (x) dx 1S finite. 
x 
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