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Summary 

Using properties of last-exit times, and more generally coop­

tional times, two necessary and sufficient conditions are 

established, for the existence of an invariant measure for an 

irreducible, transient Markov chain. The conditions are also 

related to the classical condition due to Harris and Veech. 
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1. Introduction. 

One of the main results, Theorem 2 of Harris [1J, gives a 

sufficient condition for an irreducible, transient Markov chain 

to possess an invariant measure. At the time Harris wrote that 

he thought the condition to come in some sense close to being 

necessary and indeed Veech [6J 6 years later in 1963 established 

the necessity. The time lag is significant, since a vital part 

of Veech's argument exploits the Martin boundary theory as 

treated by Hunt [2J in 1960. 

Since the appearence of Harris' and Veech's papers most work on 

invariant measures for transient chains in discrete time, has 

dealt with the case of a general state space, see e.g. Yang [7J, 

Tweedie [5, Section 13J, Shur [4J. 

In the present paper we return to chains with discrete state 

space and present in Theorem 1 a new necessary and sufficient 

condition for the existence of an invariant measure for an irre­

ducible, transient Markov chain. It is then shown (Theorem 2) 

how one may derive,using the properties of last-exit (and more 

generally, cooptional) times, another necessary and sufficient 

condition which resembles the Harris-Veech condition. Finally 

the gap between these two conditions is bridged in Theorem 3. 

The properties of last-exit times are also used in the proof of 

one half of Theorem 1. While that theorem does not require any 

boundary theory, the argument employed by Veech and already 

referred to above, is critical for the establishment of Theo­

rems 2 and 3. 
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2. Results 

We consider Markov chains x = (X ,n>O) 
n -

in discrete time 

on a finite or at most countably infinite state space J. Let 

p = (p(x,y)) for x,y E J denote the transition function. 

We shall allow P to be substochastic , i.e. for all x,y 

p(x,y) > 0, I p(x,y) < 1. 
yEJ 

With pn = (p(n) (x,y)) the n-step transitions, introduce 

the Green function 

= 
G(x,y) = I p(n) (x,y). 

n=O 

Throughout we shall assume that P (or X) is irreducible 

and transient, i.e. 

o < G(x,y) < = (x,y E J) • 

The reader is reminded of the basic inequalities 

( 1 ) 

(2 ) 

G (x, y) < G. (y ,y) , 

G(x,y) G(z,y) 
G(x,x) < G(z,x) , 

and, as an easy consequence of (2) , 

( 3) 
G(z,y) 

sup G (z ,x) < = , 
z 

G (y , z ) 
sup G (x, z) 

z 
< = . 

With p the transition function, the distribution of the 

chain X is specified by its initial distribution. It will 

be convenient for us to consider the canonical realizations 

of Markov chains, i.e. we introduce n as the space of all 

sequences w = (wO,w1 ~ ••• ) taking values in J,j; finite or infinite, and de-

note by pIT the measure on n which makes X = (X ) 
n 

the 
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Markov chain with initial distribution 1T and transitions P, 

where X (w) = w 
n n 

(We shall only consider p1T for 1T a 

fini te measure on J. Then p1T is a finite measure defined 

on the smallest cr-algebra F of subsets of n, that make 

all X measurable. The measure p1T concentrates all mass on 
n 

the set of infinite sequences in n (the chain has infinite 

lifetime) iff P is stochastic If 1T is degenerate with 

unit mass at x, we write px 

U: fl -+ JR measurable, p 1TU will 

We have in particular, that 

G(x,y) 
QC' 

= pX l 1 (X = ) 
n=O n y 

instead of P 1T . Finally, 

denote the p1T-expectation 

and more generally, if 1T is a probability on J, 

00 
1TG(y) = p1T y.. 1 

n=O (Xn =y) 

and 0 < 1TG (y) < 00 , the finiteness following from (1). 

for 

of U . 

By a measure on J we shall understand a function ll: J ~ [0,00) • 

The measure II is f ini te if I II (x) < 00 • 

Definition. A transition function P has an invariant measure 

if there exists a measure ll, not identically 0, such 

that 

llP = II . 

An invariant measure II for P is unique if v being any 

other invariant measure, there exists a constant c such 

that v = Cll . o 
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Of course, if y is invariant, y(x) > 0 for all x by 

irreducibility. 

Suppose 11 is invariant for P. Then 

(4 ) idx,y) = y(y)p(y,x)y-1(x) 

defines a transition function on J which is stochastic, i.e. 

L p(x,y) = 1. The associated Green's function satisfies 
y 

G(x,y) = y(y)G(y,x)y-1 (x) , 

"-

in particular P is irreducible and transient. 

Because GP = G-I with I the identity matrix, for any 

finite measure v 

( 5 ) (vG) P = vG - v 

with all quantities well defined and finite, i.e. y = vG 

is excessive (yP ~ y) with v the correction term. When 

searching for an invariant measure it is therefore natural 

that conditions(i) and (ii) in the result we shall now state, 

should be satisfied. 

Theorem 1. (a) Suppose there exists a sequence (v , n > 0) 
n 

finite measures satisfying the following 3 conditions for 

all x E J: 

(i) lim v (x) = o , 
n-+oo 

n 

(ii) lim v G (x) n = y (x) , 
n-+oo 

(iii) lim (v G)P(x) = yP (x) , 
n-+oo 

n 

of 
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where 0 < 11 < co. Then 11 is invariant for P. 

(b) Suppose conversely that 11 is invariant for P. Then 

there exists a sequence ( \) ) 
n 

of finite measures such that 

'" (i), (ii), (iii) are satisfied. More specifically,with P as 

in (4), the \) may be chosen as 
n 

( 6) "'x \) (x) = l1(X)P (0 = 1) n n 

where 0 denotes the last-exit time 
n 

(7 ) 

with the K finite subsets of J increasing to J as 
n 

n -+ co 

Remarks. Writing (iii) as 

lim I \)nG(y)p(y,x) = I l1(y)P(y,x) 
n-+co y y 

we see that with (ii) satisfied it amounts to allowing inter-

changing the order of summation and taking limits. As will 

be seen below the condition is critical and cannot be dispensed 

with. 

The 0 in (7) is in particular a cooptional time. We use 
n 

the convention that 0 = 0 
n 

if the set in brackets is empty. 

Note that when> 0, 0 is the last time plus 1 that the chain 
n 

is in K 
n 

o 
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Proof of Theorem 1. (a) By (5), for all n, x 

\! GP(x) = \! G(x) - \! (x), n n n 

and for n -+- 00 using (i) - (iii), we obtain )lP (x) = ]J (x) . 

(b) With \! 
n 

defined by (6), where ]J is invariant, 

first note that since 

( 8) 

\! (x) > 0 
n 

only if x E K , 
n 

so since K 
n 

is finite, 

is a finite measure. Next, also because of (8) we have 

\! (x) < pX (X E J '-K ) -+- 0 
n - 1 n 

as n -+- 00 so (i) is satisfied. 

With the shift of order k on st , i. e. 

for all m, we have 

( 9) (0- 0 e = 1) = (0- = k+1) 
n k n 

because 0- is cooptional and therefore find 
n 

\! G(x) = I ]J(Y)PY(o- = 1)G(y,x) 
n n 

Y 

= )l(X) I G(x,y)pY(o- = 1) 
n 

Y 
00 

\' \' AX = ]J (x) L L P ( Xk = Y, 0- 0 e k = 1) 
Y k=O n 

00 

AX = ]J(x)P (0- > 0) 
n 

Y,o­n 
= k+ 1) 

\! 
n 

X k m+' , 

Since PX(o-n> 0) > pX(Xo E Kn) -+- 1, 

holds. 

we see that also (ii) 
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Finally, using (6) and the expression for v G 
n 

just derived 

v GP(x) = v G(x) - v (x) n n n 

AX 
= ].l(x)P (0 > 1) 

n 

-+ ].l (x) 

as n -+ 00. As ].l is invariant, ].l (x) = ].lP (x), and thus 

(iii) holds. o 

Remark. Referring to part (b) of the theorem, it is useful 

to note that if a sequence (v) of finite measures has been 
n 

found such that (ii) holds, with the limit ].l invariant, 

then (i) and (iii) hold automatically. Indeed, as before 

(10) v GP (x) = v G (x) - v (x), 
n n n 

so using (ii) 

lim sup v (x) < ].l (x) - lim inf v GP (x) . n - n 
n-+oo 

But for any K c J finite, 

lim inf v GP(x) > lim inf 
n 

n-+oo 

I 
yEK 

v G(y)p(y,x) 
n 

= I ].l(y)p(y,x) 
yEK 

implying, since ].l is invariant, that 

lim inf v GP(x) > ].l(x) 
n 

and inserting this above we deduce that (i) holds. And 

(iii) now follows taking limits in (10) using (i), (ii) and 

the invariance of ).1. o 
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Example 1. If J is finite, no invariant ~ exists because 

it is impossible to have (i) and (ii) satisfied simultaneously 

with ~ > o. This of course is trivial anyway - since P 

is irreducible and transient, at least one row sum must be 

< 1 , and it follows easily that P viewed as an operator 

on the space of finite measures with norm 11 ~·II = L ~ (x) is 
x 

a genuine contraction, in particular 11 ~pn 11 + 0 as n + 00 

for all ~. o 

In view of this example we shall assume J to be countably 

infinite in the remainder of the paper. 

Example 2. Let J = N, the non-negative integers and assume 

that only the transitions p(x,x+1) = a(x), p(x,x-1) = S(x) 

and p(x,O) = y(x) can be > O. We assume of course that 

P is irreducible (e.g. a(x)y(x) > 0 for all x) and 

transient (e.g. IT a(x» 0). (Examples of this type were dis­

cussed by Harris [1] ). 

Suppose is invariant for P • Taking K = {0,1,···,n}, 
n 

we conclude from Theorem 1 (b) that (i)-(iii) hold with 

"'x v (x) = ~ (x) P (0 = 1). 
n n 

'" Now, p(x,y) > 0 is possible only if x = y-1, y+1 or O. 

Comparing with (8) it follows that v (x) > 0 
n 

only if 

or x = n. But then 

~(x) = lim v G(x) 
n n+oo 

= lim (v (O)G(O,x) + v (n)G(n,x)) 
n n n+oo 

= lim v (n)G(n,x) 
n n+oo 

x = 0 



since v (0) + 0 
n 

( 11 ) f.l (x) = 
lJTOT 
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by (i). Consequently 

lim G(n,x) 
G (n, 0) 

n+oo 

in particular we see that if an invariant measure exists, it 

is unique. 

In the special case where S:: 0 , v (x) > 0 
n 

only if x = 0, 

which is impossible if (ii) is to be satisfied with f.l > O. 

So in this case no invariant measure exists. 0 

For Example 2, we just saw that the invariant measure, if it 

exists, is unique, and if f.l(0) = 1, it is given by the li-

mit in (11). This corresponds to having (ii), and by the re-

mark following the proof of Theorem 1 also (i) and (iii) satis-

fied with 

v 
n = 1 

G(n,O) s , 
n 

where, as we shall write from now on, s denotes the mea­
x 

sure degenerate at x with unit mass. As we shall see pre-

sently it is always possible to represent at least one invar-

iant measure (assuming one to exist) using V 
n 

of this form. 

It is a standard fact, which follows from (3) and a diagonali-

zation argument, that given a reference state a E J, an in-

finite sequence (x ) 
n of distinct states may be found such that 

( 1 2) 
G (x ,x) 

lim n = K(X) 
G (x ,a) 

n+oo n 

exists simultaneously for all x, with 0 < K < 00 
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Based on this we first prove the following Corollary to 

Theorem 2 in [1] 

Proposition 1. Suppose that for all y E J, p(x,y) > 0 for 

only finitely many x. Then P has an invariant measure. 

Proof. With a, (x ) 
n 

satisfying (12), it is clear that (i) 

and (ii) hold, with \! 
n 

\! GP(x) = I \! G(y)p(y,x) 
n n 

y 

= G- 1 (x ,a)s 
n x 

n 
involves only a 

is then automatic. Hence, by Theorem 1 (a) , 

But since 

finite sum, (iii) 

K is invariant. 

The limit points of sequences of the form (12), determine the 

Martin entrance boundary for the Markov chain, see Hunt [2] 

Of course in general, by Fatou's lemma, K will be excessive 

but need not be invariant. If however an invariant ~ exists, 

" consider the dual chain P and observe that by Martin exit 

boundary theory 

( 1 3 ) lim 
n-+oo 

" G(x,X ) 
n 

" G(a,X ) 
n 

= h(x) 

exists "a P - a.s., simultaneously for all x, with, because 

" " is a stochastic transition function, h a P-harmonic func-

tion of x, . P"h" = h". ~.e. (see Hunt [2, Theorem 2.1]). Now 

choose one realization of (X ) 
n 

under for which (13) 

holds for all x. By transience and possibly taking a sub-

sequence, this yields an infinite sequence (x ) 
n 

of distinct 

" P 

o 

states such that G(x,x) / G(a,x ) -+ h(x) for all x. Equiva-
n n 

lently 



- 11 -

G (x I x) 
1 im G (x n I a) = ].l (x) :h (x) ].l -1 (a) 
n+oo n 

for all x, and denoting the limit by K (x) , 

I K (y) p (y , x) 
y 

so K is invariant for P (and in general:;t:. ].l). This 

essentially is the argument used by Veech [6, p.860] . In our 

setting it has yielded the following result. 

Proposition 2. Suppose P has an invariant measure. Given 

any a E J it is then possible to find an infinite sequence 

(x) of distinct states such that (i), (ii), (iii) of Theo­
n 

rem 1 are satisfied with 0 < ].l < 00 and 

V n = 1 
G (x ,a) 

n 
E: 

X n 

We shall next prove a result which in appearance is very 

o 

similar to the Rarris-Veech condition (RV). First we remind 

the readers of the contents of (RV) ([1, Theorem 2] and 

[6, Theorem 1] ). 

Let for x E J, T denote the hitting time 
x 

T = inf {n>O: X = x} and introduce x n 

A 
x 

= (T < 00) = 
x 

00 

u (X = x) • 
n=1' n 

Then the following condition is necessary and sufficient for 

an invariant measure to exist: there is an infinite sequence 

(x) of distinct states such that 
n 
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x 
(HV) I im P n (X 1 E J '- K I A) = 0 

T - x K,n x 

for all x E J . Here lim a(n,K) = 0 means that to every 
Kin 

E > o , nO and KO c J finite can be found such that 

a(n,K) < E for n > nO' K :::> I}O' K c J finite. If, 

(HV) above, a(n,K) decreases when K increases, 

lim a(n,K) = 0 iff to every E > 0 there exists 
Kin 
KO c J finite with a(n,KO) < E for n > nO . 

as in 

of course 

and 

The reader is reminded that as defined in Jacobsen [3] , a 

random time 0 defined on D is modified cooptional if 

(0 = n+1) = (00 e = 1), (cf. (9)) for all n > O. Also, 
n 

the chain (X) when reversed from 0 has a transition 
n 

function as described in Theorem 2 of [3] • 

Note that by irreducibility and the properties of 0, if 0 

is modified cooptional, and x E J, either 

for all y or Py (X (' = x) = 0 0-1 . for all y. 

Py (X " = x) > 0 
0-1 

Theorem 2. In order that P has an invariant measure, it is 

necessary and sufficient that there exists an infinite sequence 

(x) of distinct states and, for every x, 
n 

a modified coop-

tional time o wi th Py (X = x) > 0 
x 0-1 for all y, such that 

x 
x 

( 1 4 ) lim P n(X E J''- K, 0 > 1 I B ) = 0 
K,n 0 -2 x x x 

where B = (X = x, 0 < 0 < 00) • 
x 0 -1 x x 

Proof. The probability in ( 14 ) is the probability that the 

reverse of (X) killed at 0 , n x given that it starts in x, 

after one transition is inside J'K. Hence by Theorem 2 of 

[3] it equals 
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( 1 5) 
-1 

G(x ,Y)P(y/x)G (x ,x). 
n n 

Suppose first that P has an invariant measure. Choose 

a E J and find (x ) 
n 

such that (i)-(iii) of Theorem 1 

are satisfied with \) 
n 

= G- 1 (x ,a) E: 
n x I cf. Proposition 2. 

n 
Write the sum in (15) as 

G(x ,a) I G(x ,y) ) 
G(x:,x)\)nGP(X) - yJK G(x:,a) p(y,x) I 

and with C = sup G(z,a)/G(z,x) < 00 (by (3)), let n + 00 

z 
and use (ii) and (iii) to obtain 

lim sup p (n,K) < C (]JP (x) - I ]J (y) p (y ,x) ) 
n+oo y~K 

for every K c J finite. Since the right hand side + 0 as 

K t J, it is clear that (14) holds for any modified coop-

tional 0 with PYB > 0 for all y . It remains to 6b-x x 

serve that with 0 = sup {n> 1 : X = x} this condition on x n-1 

B holds, and the first part of the proof is complete. x 

For the converse suppose that (x ) 
n 

and (0) have been 
x 

found such that (14) holds with pYB > o. 
x Pick a E J and 

find a subsequence such that 

G(x • ,x) 
lim n = K(X) 

• G(x .,a) 
n n 

exists simultaneously for all x, cL ( 12) . Then (i) and 

(ii) of Theorem 1 hold with -1 
and \) = G (x, a) E: ]J = K , 

n n x n 
writing n' = n as we shall from now on, and it remains 

only to establish (iii) in order to complete the proof. 
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p(n,KO) < E 

finite 

find 

for n 

G(x Y) 
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K C J o finite such that 

Then for n ~ nO 

G(x x) 
\' n, ( ) 
L. G(x a) p Y,x = 

YEJ ....... K n, 
G(xn'a) p(n,K) < DE 

n, 

where D = sup G(z,x) / G(z,a). Using (ii) it therefore follows 
z 

that 

lim sup I \! GP(x) - I K(Y)p(y,x) I n n-+co YEK 

G(x Y) 
= lim sup I \! GP(x) - I n, p(y,x) I < DE • n 

YEK 
G(x a) n, 

Since \! GP(x) < \! G(x) < D for all n, 
n - n 

letting K t J, 

this implies that 

But then 

I K(Y)p(y,x) < co • 

yEJ 

lim sup I \! GP(x) - KP(X) I 
n n-+co 

< DE+ I K(Y)p(y,x) 
yE'J",K 

for K :::> K o finite. Letting K t J and then 

desired conclusion, \! GP(x) -+ KP(X) 
n 

follows. 

E + 0 the 

o 

In conclusion we shall establish the equivalence between (HV) 

and Theorem 2. More precisely, we shall show the following 
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Theorem 3. Let (c) be the condition that for some infinite 

sequence (x) of distinct states, (14) of Theorem 2 holds 
n 

with 0 x = sup {n~1: Xn - 1 = x}. Then the Harris-Veech con­

dition (HV) and the condition (c) are equivalent. 

Proof. Since A = (T < (0) = (0 > 0), by transience x x x 

A 
x = B x 

y P -a.s. for all y . As in (15) let p(n,K) denote 

the conditional probability from (14), where, as we have just 

seen, B 
x 

may be replaced by A . 
x 

the conditional probability in (HV). 

Also write h(n,K) for 

Now 0 -1 is the last t.ime n with X = x and decomposing 
x n 

p (n ,K) into two terms according as T = 0 - 1 x x or T < 0 - 1 , x x 

together with an application of the strong Markov property 

at T ,readily gives 
x 

( 1 6 ) p (n ,K) = h (n , K) pX (0 = 1) + pX (X 2 E J ....... K, 0 > 1) . 
x 0 - x 

x 

Here pX(0 = 1) is the probability that the chain, given 
x 

that it starts in x, never returns to x, so by transience 

x P (0 = 1) > o. The last term on the right of (16) does not x 

depend on n, and + 0 as K t J. From these remarks, the 
\ 

equivalence of (HV) and (c) follows immediately. o 

Although the papers [7] , [5] , [4] all deal with Markov 

chains on a general state space, the results presented here 

are closely connected to them. Indeed, translating the criti-

cal condition (C) of Shur [4 p.491] into the setting with 

discrete state space, the reader will recognize that (C) is 

exactly the condition that lim p(n,K) = 0 for all x, with 
K,n 

p(n,K) given by (15). Also, (13.2) of Tweedie ~] for r = 1 
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very much resembles (but is not quite the same as) 

lim p(n,K) = o. The condition (1.5) of Yang [7] , as pOinted 

out by Yang himself, is (HV) reformulated for the general 

state space case. 

Finally, it should be observed that there is no principal 

difficulties in carrying over from discrete to a general 

state space, the contents of Theorem 1. The reader is in-

vited to supply the details. 
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