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Summary In a oneparameter nonlinear regression it is possible to find a 

parametrization, which has bias and skewness of lower order than usual, con

stant asymptotic variance and normal likelihood. In a multiparameter model a 

parametrization with these properties does not always exist. An easily applic

able condition for the existence is found. Three classes of special models, 

for which it does exist, are examined. In the general case the nonlinearity 

is often marked and there is a need for finding a parameter, which reduces 

the nonlinearity. It is suggested to consider transformations ofa single para

meter because this is easier to interpret than general tr:ansformations. The 

solution will ~n general depend on which nonlinearity effect is considered 

most important. 

American Mathematical Society 1980 subject classifications. Primary 62J02; 

Secondary 62F12. 

Key words: asymptotic bias; asymptotic skewness; covariance stabilization; 

curvature; normal likelihood. 



1. INTRODUCTION 

Inference in statistical models should ideally be invariant under parameter 

transformations or we can say inference should depend on the model but not 

the way the model is parametrized. This is, however, not always possible and 

in practice an analysis of a nonlinear model is made using a chosen parametri-

zation of the model. The purpose of the present paper ~s to examine hlOw much 

can be achieved by transforming the parameter. In practice parameters are 

often chosen because they make physical sense or they are traditionally used 

~n the subject area for the statistical analysis. The present approach should 

be viewed ~n this context. 

We will focus on the nonlinear regression model, i.e. assume that the 

n-dimensional observation Y is distributed according to 
2 

N CnCe), er I), 
n 

the 

n-dimensional normal distribution with mean vector nCe), where nC') is a 

known function of the p-dimensional parameter e and the_components are inde-

pendent all with var~ance er 2 , An alternative description is Y. = n. Ce) + E., 
~ ~ ~ 

where the E. 's 
~ 

are i.i.d. 
2 

NCO,er ). Often the model is described by means 

of covariates k 
xl' ... ,xn E JR , such that there is a function sC'), with 

n.Ce) = sCe;x.). Later we will omit the index e ~n the meanvaln.ile.: and the 
~ ~ 

derivatives thereof. 

The calculations could be made for the more general case of a curved 

exponential family. However for the interpretation of the results and the 

comparison between properties the nonlinear regression is simpler, cf. 

Hougaard (1982) and Kass C198&). 

If the parameter is onedimensional, i.e. p = 1, there is, cf. Hougaard 

(1982), a natural parameter, say S, for which the asymptotic variance is 

constant, the asymptotic skewness ~s 0, the asymptotic bias is ° and the 

likelihood is approximately normal, cf. Sprott (1973). Using as well 
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Beale's (1960) measure of nonlinearity as Bates & Watts (1980) curvature, this 

parameter has zero parametrization curvature. The parameter has a geometrical 

interpretation as the arc length in the solution locus. The transformation 

S = g(8) from the original parameter can be found from the differential 

equation g' (8) 
• • 1/2 

c (n'n) , 
.. 

where n 

w.r.t. 8 and c an arbitrary constant. 

LS the vector of derivatives of n 

For multiparameter models such a nLce parametrization does not exist Ln 

general. It was mentioned by Reeds in the discussion of Efron (1975) that if 

the Riemannian curvature vanishes identically a covariance stabilizing trans-

formation exists. Holland (1973) examined the same problem and found a condi-

tion for existence when the parameter is twodimensional, but it involves the 

choice of a square root of the information matrix. In Section 2 we derive a 

simple condition for the existence Ln the nonlinear regression for arbitrary 

p. If such a parametrization exists, it is optimal in the sense that the 

measures of curvature, Beale (1960) and Bates & Watts (1980) has zero para-

meter effects, the asymptotic third central moments and the asymptotic biases 

are zero and the likelihood is normal, cf, Hougaard (1981). In some simple 

but common models a covariance stabilizing transformation exists, cf Section 

4. 

Most of this paper will consider the situation, when such a parametriza-

tion does not exist or LS too complicated to handle or interpret. The question 

considered is: Is it possible to find a simple transformation, which, although 

it is not optimal, lowers the parametrization effects or makes some specific 

part of the parametrization effect vanish. We will try to find an "optimal" 

solution within a smaller class of transformations. In Section 3 we will 

discuss what should be meant by "optimal" and derive the corresponding solu-

tions. Suppose 81 LS the important parameter and 82"" ,8p are nuisance 
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parameters or alternatively that 81 has independent interest. In that case 

we can transform 81 alone or 82 , ... ,8p alone, but we would not accept 

transformations like 81/8 2 , because they make it difficult to infer about 

81 , A transformation of the kind S = g(8 l ) might give a parametrization 

S, 82",.,8p for which inference about S is simple, e.g. asymptotic pro

bability statements about S might be relatively precise. Thus it is simple 

to transform such statements to statements about 81 , This idea was used by 

Sprott(1980) ~n a generalisation of normal likelihood to the situation of 

nu~sance parameters, 

In Secti([)ll 4 three special cases and two examples are considered. In these 

cases it is possible to find transformations of the important parameter, which 

removes some nonlinearity effect, and these transformations are independent of 

the nuisance parameters. 

As the choice of optimality criterion ~s important a comparison of the 

different criterias ~s discussed in Section 5. 
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2. EXISTENCE OF A COVARIANCE STABILIZING TRANSFORMATION 

The question in this section is: Does there exist a covariance stabilizing 

transformation or more precisely does these exist a parametrization with con-

stant information matrix. This can also be formulated as: Is the solution 

locus isometric to a Euclidean space? In the discussion of Efron (1975) 

Reeds mentioned that this is the case if the Riemannian curvature vanishes 

identically. Following this line we find the following result. 

Theorem In a nonlinear regression with n three times continuously differen-

tiable in a simply connected parameter set 8 , a covariance stabilizing trans-

formation exists if and only if, for all i,j,k,l and all values of 8 

D!l (I-p)nkJ·, :.1. 

where n .. 1.S the vector of second derivatives 
1.J 

2 
Cl n/Cl8.Cl8. 

1. J 
and P the projec-

tion onto the tangent space for the solution locus 1.n 8. If it exists all 

the functions giving a coordinate of the transformed parameter 

will satisfy the same differential,equation 

1i .. 
1.J 

.. ,. -1-, .. 
h (n n) n n .. 

1.J 

Proof Using g as the tensor corresponding to the information matrix, 

(2.1) 

Sokolnikoff (1951, p.99) proves that there exists a parametrization having 

constant information if and only if the Riemann - Christoffel tensor 1.S zero 

identically. Inserting the values for a nonlinear regression gives ~he desired 

equation for existence. For the transformed parameter the second derivatives 

of n should be orthogonal to the first derivatives. Expressing this in terms 

of h and the derivatives with respect to 8 yields the differential equa-

tion. 

Remarks For p = 1, the condition is trivially true and a variance stabili-

zing transformation exists. For p 2 there 1.S only one combination of 
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i,j,k,l, for which the equation is not automatically true and that ~s 

The condition in Holland(1973) is computationally more involved, but it 

can be proven to be identical to this condition for the nonlinear regression. 

A covariance stabilizing transformation will yield a parametrization with zero 

Bates & Watts (1980) parameter curvature and minimal Beale (1960) measure of 

nonlinearity, cf Hougaard (1981). In general it is only possible to obtain 

that in a single point. Some special cases, where a covariance stabilizing 

transformation exists are considered in Section 4. 

Bates & Watts (1981) examined the equation (2.1) assuming that the coeffi-

• 
cients of h were constant and equal to the value at 8. They found a 

condition for existence of solutions to this local equation. Usually there 

are no solutions to the equation in Special case 2, Section 4, showing an 

advantage of considering the original equation (2.1). 
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3. PARAMETER TRANSFORMATION RESULTS 

As was found in Section Z it is only in special cases possible to find a 

globally optimal parametrization. And if one exists, it might be complicated, 

mathematically intractable or impossible to interpret. In this section we 

consider transformations in a smaller class, giving parameters, which it is 

possible to interpret. Suppose 81 ~s an important parameter and 8Z, ..• ,8p 

are nu~sance parameters. If we want to make inference about 81, it is of 

little use to know that a smart parameter is s~n 8l /8 Z' If the smart para

meter was log 81 we would be better off, because it ~s as easy to interpret 

as 81 and probability statements can easily be transformed back and forth. 

Two types of transformations are considered. Type 1, where only the important 

parameter ~s transformed, i.e. the new parameter has the form 

(g(8 l ),8 Z, ... ,8p )' where g ~s to be chosen optimally. Type Z, for which 

only results for p = Z are reported, ~s a transformation of both parameters 

individually, i.e. the new parameter has the form (gl (8 1), gZ(8 Z»' where 

gl and g2 are functions to be chosen optimally. A third type, where 81 is' 

kept while the nuisance parameters are transformed,could also be considered, 

but it is limited what can be gained by such a transformation, since the 

distribution of the estimate of the first parameter is unchanged. For proper

ties involving the distribution of a function of the first parameter it doesn't 

matter which of the two types is considered. 

Using these trans£ormations there are two theoretical problems. First what 

should be considered optimal? If a covariance stabilizing transformation 

exists, it will automatically have all parametrization effects zero to a low 

order, see Hougaard (1981). But in the smaller classes of transformations the 

two types are, it is important how the nonlinearity is evaluated. Below it 

will be shown how different definitions of "optimal" give different results. 
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Using these results it ~s possible to get a deeper understanding of how para-

metrization effects influences the inference. Secondly the optimal choice of 

transformation of 81 might depend on the value of 82 , ... ,8p . By choosing 

such a value we end up with a result, which unfortunately is only optimal on 

a line. This is,however,better than the general transformations, which in most 

cases, cf Section 2, only can be optimal ~n a given point. Even when it is 

not optimal it will often be much better than the original parametrization. 

This is further discussed ~n Section 5. 

For making inference about 81 , a natural starting point is the marginal 

distribution of 81 , where 8 denotes the max~mum likelihood estimator which 

~s also the least squares estimator. 

We consider the limit or equivalently m + 00, m being the 

number of repetitions of the whole experiment, since the averages in each 

group are sufficient for estimating 8 and the vector Y of averages has 
m 

the distribution 2 
N (n (8) ,er Im I). 

1lil 
The asymptotic distribution is, following 

ordinary theory, normal 

(3.1) 

where Yll = Yll (8) ~s the upper~left element in the inverse matrix of n'n. 
In an Edgeworth expansion of the distribution of 81 there are two first-

order correction terms to the asymptotic distribution above. The two terms 

correspond to the bias and the skewness respectively. For a Type 1 transforma-

tion S = g(8 l ) each of these first-order terms vanish if g satisfies a 

differential equation. 

Lemma 1. Bias of The asymptotic bias of S 

only if 

~s of order 
2 o (er ) if and 



If p > 2 

g" (8 ) 
1 

8 

the last term should be replaced by 
-1 

L . 2 Ll I1~J' YJ. ~ Yll ~,J':' .L .L. 

Here_Ll ~s the first row ~n 
. . -1~·' 

(11'11) 11' The geometrical interpretation 

of this quantity is the linear function giving the coefficient to 111 in a 

projection onto the space spanned by I1 l , ... ,l1p ' i.e. the tangent space. 

Proof All proofs in this section are derived by similar methods taking 

known expressions and inserting the transformed values of the first and second 

derivatives. It is practical to derive the expressions for h 
-1 

g Let us 

derive it for p 2. In the new parameter (S,8 2) given by 81 = h(S) the 

first and second derivatives expressed by the quantities in the original para-

metrization are 

.. 2· n11 {h' (S)} + ~l hit (S) 

From this the ~nverse information 2 
(J Y can be derived 

-2 
Y11 {hl(S)} 'Y12 Y 22 = Y 22 

The bias ~s calculated by Box (1971, equation (2.20». The bias of 81 ~s 
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Inserting the corresponding quantities for (S,8 2) yields that the bias 

af S ~s zero if and only if (under the condition that h'(S)*O) 

h" (S) 

h' (S) 2 

For finding the expression ~n terms of g we find that - h" (S) /h' (S)2 

g"(8)/g' (8) giving the desired equation. 
1 1 

Remark Equations of the kind g"(8)/g'(8) = k(8), k a known function, can 

always be expressed as an integral, namely g(8) = !8exp (!xk (u)du)dx. The 

arbitrary constants correspond to affine transformations of g or equivalently 

to choices of lower limits in the intggrals. 

Lemma 2 Skewness The asymptotic skewness of S H of order 0(0") if and 

only if 

g" (6 ) .. ;\; 

If p > 2 the last term should be replaced by 

Proof The proof is analogous to the proof of Lemma 1, iUsing that from (3.2) 

in Hougaard (1981) it follows that asymptotically 

E (8 0 - E8o) 3 -30"4 L Y Y Y n' 'n" ~ ~ =.. qsr iq is ir q sr 

Remarks It follows that if n22 = ° or more generally Ll n22 = ° parametri-

zations have zero bias and skewness at the same time. In fact there is then 

asymptotically a direct relationship 

This is also true for p > 2, in which case Ll n22 = ° should be considered 

as an array equation meaning that for all i,j ~ 2 Ll T:\o 0 = O . 
.. ~J 

n22 = ° means that for known the model is linear ~n 

The condition 
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In formula (3.1) above the asymptotic variance cr2Yll is a function of 

8 • 
A 2 2 A 

If we want to use Wald's test statistic W = (8 1 - 81) /{cr Yu (8)} it 1.S 

preferable that Yll 1.S independent of 8, cf. Vreth (1981). Instead of making 

the whole covariance matrix ~onstant,as in Section 2, we only need to make the 

variance of 81 constant. This is, however, not poss~ble using transformations 

of the two types suggested, because this variance 1.S a function of 81 as well 

as 82", .,8p ' What can be attained is e.g. that Var(8 l ) 1.S independent of 

81 for a given value of 82", .,8p ' This can be formulated as 3Var(8 l )/38 l =0. 

As Var(8 l ) 1.S a/function of p variables, we can at least from a mathemati-

cal point of view as well choose another direction, say v, in which the deriva-

ti ve should be O. More precisely let 8 = 8 + bv, b E JR, v E JRP , where o 
is the parameter point we consider. Then the condition can be formulated in 

terms of dVar(8 l )/db, which will be denoted dVar(8 l )/dv. As this definition 

of "constant variance" only involves one point, 80 , we can actually to each 

point 80 , choose a direction in which the derivative should be O. These 

directions change with the linear part of the transformations. This should be 

accounted for, such that the properties are invariant under linear transforma-

tions of el • The direction· (v1 ,v2) 1.n (8 l ,82)-space transforms to 

(g'(8 l )v1,v2) 1.n (S,e2)-space using Type 1 transformations. 

Lemma 3 Variance of 81 The var1.ance of 81 has derivative 0 1.n direction 

v 

If 

g"(8 ) 
1 

p > 2, v2 ·1.S a 

if and only if 

p-l dimensional vector, say v2 = (v2 , ... ,vp)' 

the last term should be replaced by 
.. -1 -1 

Li ,j>2 LlnijYlivjYllvl 

o if and only if 

, and 
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The derivative of Var(8 l ) in the direction (Yll'Y12) ~s 0 if and only if 

gll(8 l ) 

g' (8 1 ) 

Remarks The last equation is the same as gives skewness o. 

Proof The same method as Lemma 1, using (3.1) ~n Hougaard (1981), which says 

that 

- " (., .. + nO, n" k) d 
L Y ~q Y • n n, k ' an qs .L SJ q S S q 

Var(8.,8.) 
~ J 

2 o y.. asymptotically. 
~J 

If the parameters are of equal importance we might instead consider 

another aspect of the variance matrix and try to keep that constant, e.g. the 

determinant, the socalled generalized variance. Jeffrey (1946) suggested in 

Bayesian theory to use a prior distribution with a density proportional to the 

square root of the determinant of the information matrix, If the determinant 

is constant this prior will be uniform. By a Type 1 transformation the deriva-

tive with respect to 81 can be made zero. 

Lemma 4 Variance determinant 

if 

g"(8 ) 
1 

A 

For p 2, dIVar(8) l/d8 l o if and only 

Proof Similar to Lemma 1, us~ng that if the determinant of the variance has 

derivative zero for 81 , the same is true for the information matrix and 

(
0 ,. )2 
nl n2 . Thus the derivative ~s 



12 

Anscombe (1964) suggested using a parametrization with normal likelihood, i.e. 

the third derivative of the logarithm of the likelihood is 0 at the maximum 

likelihood estimate, making the log-likelihood approximately a parabola. When 

the estimate 8 is not sufficient the transformation equation depends on the 

observations. This problem can be overcome by instead considering the mean of 

the third derivative at the true value 80 , as suggested hy Sprott (1973). 

Because the third derivative is linear as a function of the observations, this 

is the same as considering the theoretical values, i.e. assuming all observa-

tions equal their means. The corresponding multiparameter property is to make 

the log likelihood, say l, approximately a second degree polynomium in the p para-

meters. This is, however, not necessarily possib1~. Actually it is equivalent 

to having zero skewness for all linear combinations of the parameters. There 

lS a duality between normal likelihood and zero skewness. Apart from a factor 

2 
including a power of 0 the third derivative of the log likelihood in any 

direction equals the asymptotic third central moment for a corresponding linear 

combination. This follows from (3.7) In Hougaard (1981). Sprott (1980) found 

that in the multiparameter case it is not relevant to consider the thir:d 

derivative with respect to 8{. Instead he suggested to make the third deriva

tive of the logarithm of the likelihood maximized over 82 , •.. ,8p vanish. 

That makes more sense, when 81 is important and 82 , ... ,8p nuisance para

meters. However also in this case the parameter transformation equation will 

typically depend on the observations. Because the expression is more com?li-

cated it lS not possible to overcome this problem by taking the mean of the 

third derivative, but instead the problem can be overcome by considering the 

theoretical values, i.e. inserting the means instead of the observations in 

the third derivative. 

Lemma 5 Normal likelihood For a given direction 
2 

v E JR , where o 

the Ed3Z/dv3 = 0 if and only if 



g" (S ) 
1 

g' (SI) 

13· 

nI' nll +n2' nllv2v~1+2(nl' Ti12v2v~1+n2' n12v~v~2) 

Y 

o if and only if 

o for v = (Yll'Y12)' if and only if 

g" (S ) 
1 

maxi £'(Sl,S2) 
S2 

if arid only if 

o ~n the true value for points having 

Remark The last two equations are the same and identical to zero skewness 

for (3. 

Proof .. The first three equations are simple consequences of 

l(s) = - :L{Y. - n. (S)}2/(2c?) + constant using metoods similar to Lemma l. 
~ ~ 

For the last one we consider a point (Sl,S2). First we find the function of 
~ 

Y and SI' which gives S2 the value maximizing t for given SI. This is 

done for general models using derivatives of the log likelihood function. By 

implicit differentiation in the point (Sl,S2) it is found that 



Also it is found that 

o d3e /dS 3 
+ -<-2 2 1 

where f (Sl) max 

yields 

14 

In the nonlinear regression the mean or theoretical values of the derivatives 

are 

E f. 
~ 

E f .. k 
~J 

0, E f .. 
~J 

-2' • 
- () n!n., 

~ J 

Inserting these values calculated for the transformed parameter into the 

expression for the third derivative, yields that the theoretical value of 

~s zero if and only if satisfies the differential equation. 



15 

Bates & Watts (1980) suggested a measure of curvature, which was later 

discussed in Bates & Watts (1981), Hamilton, Watts & Bates (1982) and Hougaard 

(1981). To each direction v in the parameter space two measures of non-

linearity were defined, one independent of the parametrization and one depen-

dent of the parametrization. In this paper only the latter is considered. In 

order to reduce them to one number Bates & Watts (1980) suggested using the 

maximum over all directions. This maximun can be used for constructing con-

servative confidence regions. Hougaard (1981) found that also the directional 

curvatures can be used to judge how close the distributions of estimated para-

meters are to the asymptotic distribution. 

It is not simple to m~n~m~ze the maximal curvature by means of transforma-

tions of Type 1 and 2. However if a specific direction ~s important the corre-

sponding curvature can be minimized using Type 1 as well as Type 2 transforma-

tions. Also in this case the direction might be a function of the parameter. 

Hougaard (1981, formula (3.7» showed e.g. that the skewness of 81 is smaller. 

than 3/lp times the curvature in the direction (yll,yh)' It is therefore 

natural to find the transformation, which minimizes the curvature in that 

direction, giving a parameter S with small skewness. The distribution and 

thereby the skewness of S ~s the same for Type 1 and Type 2 transformations, 

but the upper bound can be smaller for a Type 2 transformation than for Type 

1. As will appear below ~n Lemma 6, the bound is minimized for the same trans-

formation as makes the skewness O. The equation for Type 1 involves only 

the projection onto the space spanned by nl , whereas for Type 2 it ~s the 

nl - part of a projection onto the space spanned by nl and 

Lemma 6 Bates & Watts Curvature For a given direction 2 
v E JR , where 

v l '1= 0, Bates & Watts curvature ~n direction v ~s minimal over all trans-

formations of 81 , if and only if 



g" (8 ) 
1 

" . 
n~11 

16 

In the direction of 81 this equatioTh 1S 

For minimizinglthe curvature over all transformations of the form (gl(8 l ), 

Proof. The squared curvature 1n direction v 1n the transformed parameter 

is of the form 

2 
d(a(g"/g') + b g"/g' + c), 

with 

ties a,b,c and d are functions of 8, but not of the transformation. Thus 

the curvature is minimized for g"/g' = - ! 
2 b/a giving the desired equat·i6n~. 

Similarly£-or the Type 2 transformation, the curvature is a quadratic form in 

g"/g' 
1 1 and g2/gZ yielding minimum for the described solution. 
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For minimizing the measure of nonlinearity proposed by Beale (1960) the 

equations are more complicated. In Lemma 7 the result is reported Dor Type-1-

transformations. The resuld for Type 2 transformations is much more complicated 

and therefore not reported here. 

Lemma 7 Beales measure of nonlinearity Beales measure of nonlinearity is 

minimized over transformations of 81 if and only if 

g"(8 ) 
1 

Proof Similar to Lemma 6, Beales measure ~s also a quadratic function of 



18 

4. SPECIAL CASES AND EXAMPLES 

Special case 1 Suppose and 0, which is the case, when 

1.S a sum of a nonlinear function of 81 and a linear function of 8 Il 
2' i 

fi (81) + bi 82 , We will assume that all bits are 1, because that makes the 

formulae a little simpler. In this case the condition in the Theorem in 

Il 

Section 2 is trivially fulfilled, such that there exists a covar1.ance stabili-

zing transformation, say (6 1 ,6 2) 

g2 satisfies the same differential equation (2.1), so we need two independent 

solutions g to the equation. It follows from the equation that g12 = gZ2 = 0, 

such that g(8 l ,8 2) = h(8 l ) + a 82 , for some function h and some constant 

a. In terms of h the differential equation lS 

h"(8) = h'(8 )SPD' ·~/SSD' + acf'f S .. - :E'f Sfi)/(n SSDf'), 1 1 f,I f f 

where 
., 2 ... 

SSD' = f'f - S·/n SPD'" = f'f - S'S"/n and Sf' = 2:df1.' (8 l )/d8 l , f f' f,f f f 

The complete solution to the differential equation 1.S 

where ' cl and c 2 are arbitrary constants. A natural choice of and 

is then given by which is independent of and 

g2(8 l ,8 2) = Sf/n + 82 , which is also the average of the means of the observa-

tions, say n = 2:1l./n. 1. The estimate of this parameter 1.S Y, the grand 

average of all observations. We have then succeeded in finding a covar1.ance 

stabilizing transformation. 

Most of the transformations from Section 3 coincide, such that there 

essentially are two equations. One, which corresponds to the onedimensional 

case 1.. e 8 known 1.·s g"(8 l )/g'(8 l ) - '," /("') , .. 2 ' ' - Illl,lll III III . It can be simplified 

metrization 

c I(ninl)' where c 1.S an arbitrary constant. In this para

S = g(8 l ) has constant information and normal likelihood in 
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direction (1,0). Also Beales measure and Bates & Watts curvature in all 

directions are minimal under Type 1 transformations. The equation is indepen-

dent of 82 , 

The other transformation is the same as the above covar~ance stabilizing 

transformation with a = O. The equation ~s g"(8 l )/g'(8 l ) = Llnll, which 

reduces to gl(8 l ) ISSDf . This parameter S = g(8 l ) has constant asymp-

totic variance for S, the bias and skewness of S are 0 and the deter-

minant of the variance matrix is constant. The likelihood ~s normal, as well 

in the sense of Sprott (1980) as ~n direction (Yll'Y12)' Finally Bates & 

Watts curvature ~n any direction ~s minimal among Type 2 transformations. 

The transformation equation corresponding to 82 known has the interpretation 

of gl(8 l ) as a constant times the square root of the sum of squares of 

derivatives of f. The second equation is similarly a constant times the square 

root of the sum of squared deviations of derivatives of f. 

Special case 2 Suppose ni (8) = 82 f(8 l ;xi ), which is a common example of 

nonlinear regression models. By differentiation nl 
.. 

82 f, n2 = f, nU =8 2 f, 

~12 = f, n22 = O. In particular n12 is proportional to nI' from which it 

follows that the space spanned by the first and second derivatives has a 

dimension at most I higher than the space spanned by the first derivatives 

alone. It also follows that the condition in the theorem in Section 2 is 

satisfied, so there does exist a covariance stabilizing transformation. From 

inserting in the transformation equation we find that solutions have the form 

g(8 l ,8 2) = 82 h(8 1) + a. For conven~ence we can choose a = O. The differen

tial equation forh ~s then 

h" (8 ) 
1 

where 

(4.1) 

are known 

functions of 81 , Q(8l ) appears in a number of places, e.g. the determinant 
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The covariance stabilizing transformations depends on both parameters, 

Now we will consider the simpler transformations of Type 1 and 2. It turns 

out ~n this case that the transformations of 61 are all independent of 62 , 

Also the equations can be reduced to equations for g' (6 1), The transformations 

corresponding to 62 known, i.e. for properties like constant information, 

normal likelihood ~n the direction (1,0)' and Bates & Watts curvature minimal 

~n direction (1;0)' is c ~s an arbitrary constant. 

In this case the transformations, which make the bias and the skewness 0 

coincide, such that the distribution of this parameter is well approximated 

! 
by the asymptotic distribution. The equation ~s g'(6 l ) = Q(6l)2/f'f. This 

parameter also has normal likelihood ~n the sense of Sprott (1980) and normal 

likelihood in the direction (Y ll ,Y 12), the derivative of the variance of 

61 ~n the direction (Yll ,Y12 ) is 0 and the Bates & Watts curvature ~n 

direction (Yll ,Y12) ~s minimized over Type 2 transformations. 

The determinant of the covar~ance matrix is independent of S, when 

g' (6 1) = IQ(6 l ). By also transforming 62 to 
2 

p = 6 the determinant becomes 
2 

constant. The derivative of the variance in direction (1,0)' is zero, when 

g'(6 l ) = I{Q(6 l )/f'f}. Finally g'(6 l ) = I(f'f)/f'f yields minimal Bates & 

Watts curvature in direction (Yll'Y12)' among Type 1 transformations. 

Special case 3 

combination of the first two special cases. An example is the Gompertz func-
x. 
~ 6261 + 63 , tion used ~n actuarial science to model mortality rates, x. 

~ 

being the age of group L. Also in this case a covar~ance stabilizing trans-

formation exists. The solutions must have the form g(6) = 62h(6 l ) + a6 3 +b. 

For convenlence we can assume b to be O. One solution to the equation is 

the average of all meanvalues, g(6) = 62 Lif(6l;xi)/n + 63 , For the solution 
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with a = 0, h will satisfy a modified vers~on of the equation ~n Special 

2 · Q and R sums of squares and sums of products of deriva-case ,~.e. ~n 

tives are replaced by sums of squared deviations respectively sums of products 

2 
of deviations. Mathematically Q(8 l ) = SSDf SSDf - SPDf,f and R(8 l ) 

2 
SSDf = f'f - Sf/n , Sf where for example SSD' SPD .. - SPD . SPD' ., 

f f,f f,f f,f 

Li df(8 l ;xi )/d8 l and SPDi,f = f'f - SfSf/n. 

Also for the transformations of 81 alone, we find equations similar to 

those from special case 2, only modified in the same way as above. 

Example 1 Suppose ni (8) = 82 exp(-8 l xi ), which for example appears in 

physical and biochemical applications, where x. 
~ 

is the time since start of 

the experiment. Suppose first that 82 is known, say 82 = 1. This model has 

been considered in Bates & Watts (1981), with a slightly different notation. 

In that paper it was found that the parametrization which removes the para-

meter-effects curvature is a solution to 

g"(8 )/g' (8 ) 
1 1 

3 2 
- L.{X. exp(-28l x.)}/L.{x. exp(-28lx;)} 

~ ~ ~ ~ ~ ~ 

This equation can be simplified to 

However the solution is not simple and it will depend on the design variables 

xl, ... ,xn ' But we might be able to find an approximate solution, depending 

less on the design variables. We can approximate the sum over ~ by an inte-

gral. Often in practice the 

x. We can t}len approximate 
n 

x. 's 
~ 

are chosen equidistant from time 

x 
~ cl fOn x2 exp(-28 l x)dx 

° to 
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where cl lS a constant depending on the time between two successive observa

tions. We might adjust the integral limits by half of this time. Because of 

the arbitrary constant we need not care about cl. The integral lS 

However the square root of this is not simple either. In applications often 

and we continue observation until the mean is practically zero. ~ 

Therefore we can approximate x by infinity, then having to solve only the 
n 

integral 

-1/2 
c 81 

This final solution is independent of the design. We choose 
-1/2. 

Y = - 81 

Because of the way this approximate solution is found there are no guarantee 

that this parametrization is good. On Fig. 1 the skewness of the maximum 

likelihood estimator for this parametrization and the original one are compared, 

assuming n = 10, x. = i, 0 = 0.01. 
1 

the absolute skewness lS smaller for y 

For values of larger than 0.1 

than for For large values of 

81, the skewness of y is very small. For 81 less than 0.1, y is worse 

ln terms of skewness. 

Consider now the two parameter model. It lS then an example of Special 

case 2. The skewness removing transformation lS independent of 82 and given 

by 

where 

and flf 
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This equation ~s even more complicated than the one for 82 known, but again 

we can approximate the sums by integrals and then insert 00 for x. 
n 

Again 

the time between success~ve measurements goes out as a factor which can be 

incorporated in c. Apart from the constant factors we approximate 

and 
-1 

flf ~ 8 
1 

whi~ch gives 

i.e. g(8 l ) = c ln 81 , say a = ln 81 . This parametrization is compared with 

81 and y on Fig. 2 using the same design as above for Fig. 1, which also 

includes the skewness ofa. The value of the skewness is proportional to 

1/8 2 . Fig. 2 corresponds to the value 82 = 1. For valuesrof8l greater 

than 0.2 the absolute skewness of a is smaller than that of 81 and for 

all values ~n the range the absolute skewness is smaller for a than for Y. 

In particular a is a good parametrization for large values of 81 . 

In conclusion, we can find good parametrizations by approximating the 

sums by integrals. An important point is that the solution depends on the 

assumptions made about 82~ whether it is known or unknown. This is of course 

not surprising, because it is similar to considering marginal or conditional 

variances, but earlier discussions of transformations have often involved 

approximations based on assuming the other parameters known. Although the para-

meters a and y are suggested assuming that the design consists of equidistant 

points, they might also be better than 81 when the design is not equidistant. 

We must then expect them not to be as good as ~n the equidistant case. If the 

design is not equidistant, it is possible to include a weight function ~n the 

integral, if we can suggest.one, which approximate the true weights and for 

which the integral can be calculated. 
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Example 2 Errors on two variables Suppose there are n = 2k random variables 

Xl"" '~'Yl"" ,Yk , 
2 

which are independent and normally distributed with 

variance a and the following me_anvalues. EX. = ~., EY. = Cl + S ~., 
1 1 1 1 

1 = 1, ... ,k. Of the k + 2 parameters, Cl and S are interesting parameters 

and ~l"'"sk nuisance parameters. Therefore we are mostly concerned with 

making inference about Cl and S. Of the second derivatives only a few are 

different from 0, 1, i = l,o .. ,k. Because 

(I-P)d2EY./dSd~. + 0 for k > 2, no covariance stabilizing transformation 
1 1 

exists. Because of the simple structure of the second derivatives, for known 

S it is a linear model, the transformation of S to remove bias is the same 

as the one to remove skewness. The equation for this transformation is 

2 
g"(S)/g'(S) = - 2S/(1+S), i.e. we should instead use y = Arctan B. 

Anderson (1976) also suggested this because the expansion of y is simpler 

than that for S and because the distribution of y - y is invariant under 

rotations of the (X,Y) space. Also y has normal likelihood, cf. Sprott 

(1980). This parameter does not have constant variance. The variance is 

where 
2 2 

SSD = r ~. - (r~.) /k, 
1 1 

so this depends on S as well 

as the other parameters. It 1S, however, invariant under rotations of the 

(X,Y) space. For making the variance independent of S, one should, from 

Lennna 3, solve the equation g" (S) /g' (S) = - S/ (1 + (2), which has the solution 

g(S) = log {S + /(1+S2)}. The vanance of g(S) 1S thus l/SSD. 

In this model the value of Beales (1960) measure of nonlinearity 1S quite 

simple. The value 1S 

Transforming S to y g(S) yields 
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where 

27 

Ny (52 r 3 J g" (13) (1+13 2) + 2 13 LJ2 
4(k+4) L SSD L g' (13) 

I; = L 1;. /k. The measure ~s minimized for 
~ 

g" (13) 
g' (13) 

-·2 
E =kl; /SSD. 

213 
2 ' (1 +13 ) (l +E) 

It can be reduced to g' (13) = c(l + (3 2) -1/ (l+E) . The 

equation depends on the other parameters through E. For ~ = 0 this trans-

formation is the same as the zero bias - skewness transformation. Using this 

transformation yields the following minimal value of Ny 

2 .. , 2 
N = (5 { 313 E + k + 13 2 .} 

y,min (k+4)SSD 1 + E 

TransformatiJon of B by the zero bias - skewness transformation yields the 

value 

Ny (52 { 
(k+4)SSD 3 

By supplementing this with the nonlinear transformation of a to a = a + 13 1;, 

the measure is 

N 
y,a 

(52 2 
(k+4)SSD (k + 13 ). 

This transformation of a ~s fairly natural in the light of the special cases 

'" I and 3. The parameter a ~s the average of the means of the Y-observations. 

Because Beales measure ~s invariant under linear transformations and the 

average of means of the X-observations ~s linear in the I;-parameters, this 

is as good as using the average (a + ~) /2 of all mean values. 
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5. DISCUSSION 

In an asymptotic expansion of the distribution of the estimate of a parameter 

the first parametrization dependent term ~s of higher order than the para-

metrization independent terms. In the ;oneparameter nonlinear regression there 

exists a parametrization ~n which the first parametrization dependent term is 

of lower order than in general, such that convergence to the asymptotic dis-

tribution is much faster. In the multiparameter model it is not in general 

possible to remove the first term by reparametrization. Therefore a more de-

tailed consideration is necessary. Bates & Watts (1980) examined 24 published 

data sets and found that in 18 of these cases the parameter-effects were un-

acceptable large, showing a clear need for transformations of parameters. 

Choosing a good, but not necessarily optimal, transformation might make the 

nonlinearity acceptable. The present approach is designed to give parameters, 

which can be interpreted and where the computational problems in transforming 

back and forth are not too large. The main difficulties in the present approach 

are the following three. Firstly the solution depends on the property, which 

makes it necessary to give priorities to the different properties. Then it is 

also interesting to examine, when several properties have the same solution. 

The, different properties are discussed below. Secondly the solution might 

depend on the value of the other parameters. In many cases, e.g. the three 

special cases and the examples mentioned in Section 4, the solution is actual-

ly independent of the other parameters. This might be true even if the distri-

bution depends on the other parameters, e.g. in the errors in two variables 

example, the solution y = arctan S ~s independent of other parameters, but 

the variance ~s 
2 2 

C5 /{SSD(l + S )}, and SSD ~s a function of the other para-

meters. If the solution depends on 82 we might choose a value of 82 , 

because even if the transformation is only optimal for one value of 82 , it 

will be better than the original, at least in a neighborhood of the 8,,-value. 
L.. 
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Thirdly it might be difficult to find or express the solution to the differen

tial equation or the solution might be too complicated for practical purposes. 

Also we would prefer the transformation not being too dependent on the design. 

It might still be an advantage to consider the equation because it can be used 

to suggest approximate solutions or there might be a specific 82-value_for 

which the solution is simple. Because of these difficulties finding a good 

parametrization is still a matter of trying several and examining their per

formances in the data set at hand. The differential equations can be used to 

find the optimal transformation in simple cases and to suggest possible trans

formations in more complicated cases. How this can be done in practice was 

demonstrated in Example 1, where some sums could be approximated by integrals 

and inserting the approximation, it was possible to solve the differential 

equation. 

In Example 1 and in the special cases it was also seen how the optimal 

transformation depends on whether other parameters are included, even if it 

does not depend on the value of the other parameters. Such a dependence is of 

course present in inference in general, but it is important to note that a 

transformation, which is good in a simple model, is not necessarily any good 

in more complicated models of the same structure. 

Because of the dependence on properties an examination of the different 

properties lS required. For the oneparameter case these properties were dis

cussed in Hougaard (1982). It is important that the distribution of 81 lS 

simple, i.e. the bias and skewness should preferably be small. If n22 0, 

the same transformation yields zero bias and zero skewness. However in general 

it will be two different transformations. If they are different skewness 

should be considered most important, because it is much easier to correct for 

bias and also because the zero skewness transformation has other properties. 
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It makes the likelihood normal in the multiparameter way suggested by Sprott 

(1980). He showed that if the likelihood is normal and a quantity F4 , derived 

from the fourth derivative of the likelihood function, is small, the test 

statistic 
A 2 11 A 

(e 1 -. 81.> /1"" (e) ~s a rather close approximation to the likelihood 

ratio test statistic. Here III is the upper left element of the inverse of 

I(e), the socalled observed information, the matrix of second derivatives of 

the log likelihood function. Also thiS transformation minimizes the Bates & 

Watts curvature in a specific direction using a transformation of Type 2, i.e. 

Vreth (1981) examined Wald's test in oneparameter exponential families. 

Such a test is of the form 
A 2 A 

W = (e-e) /Var(e), where Var(e) ~s an estimate 

of the var~ance of e. He showed that in some cases W converges to 0 for 

e converging to 00, such that for each value of e, the hypothesis is 

accepted for values of e large enough, values so extreme that the hypothesis 

ought to be rejected. This problem arises because the denominator depends more 

on e than the numerator. Using the variance stabilizing transformation that 

problem disappears and Wald's test is valid. As shown in Section 2 a covariance 

stabilizing transformation does not always exist. For testing a hypothesis 

about el' it would suffice, if Var(e l ) were constant. Unfortunately it is 

not possible to make it constant with a Type 1 or 2 transformation. All that 

can be obtained is that the derivative ~n some chosen direction is zero. 

Var(e l ) is ~n general a real function of p variables. Therefore there will 

automatically be a (p - 1)- dimensional subspace, where the derivatives are o. 

A,transformation of el changes this subspace, but the space will typically 

not increase in dimension, not even with the transformations making the deriva-

tive in some direction zero. 

Also Bea,1Jes (1960) measure of nonlineari ty as well as Bates & Watts (1980) 

curvature can be reduced. However these properties give equations, which 
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involve the projection onto the direction nl , whereas the other properties 

involves the nl-part of a projection onto the space spanned by (n l ,n2). 

For Bq.tes & Watts curvature this can be changed by considering Type 2 trans-

formations instead. 

Ross (1970) suggested use of the socalled stable parameters, which only 

vary a little in the region of parameters fitting the data well. An example of 

a stable parameter is ~n our Special case 1 the average of all meanvalues. 

If the model is given by some design variables xl' ... ,xff ' atable parameters 

can also be the meanvalues for some given values of the design variables. This 

usually works well in terms of reducing the nonlinearity. Bates & Watts (1981) 

examined the Michaelis-Menten reaction, with meanvalue function 

n. (8) = 82x./ (8 1 + x.), and found values rand s of the design variable, 
~ ~ ~ 

such that the parameter effects array vanishes in 8 Sor the parameter 

Sl = 82 r/(8 l +r), 62 = 82S/(8 l +s). As long as we only try to remove the 

parameter effects in a single point 8, there are many. possiblities. We just 

need a function, which satisfies (2.1) ~n 8 • For a model of the form 

ni (8) = 82f(8 l ; xi) (Special case 2), we can reduce it to a oneparameter 

problem by considering functions of the kind 82h(8 l ) and then choose two 

functions h l ,h2 , which satisfies (4.1) in 81 , which will give a transforma-

tion with zero parameter effects for points on the line for which 81 = 81 . 

Choices as for a constant, a ~ {O,l} andh(8 l ) = 

exp(8 l s), makes (4.1) to a second order equation in s, which if we are lucky 

has two solutions:~i'or our value of 81 , We find Ross' (1970) solution by 

choosing h proportional as a function of 81 to f; in the Michaelis-

Menten example that is - 1. The stable parameters have a very clear 

interpretation as means of observations for specific values of the design 

variables, but for testing hypothesis about 81 , it is simpler to consider 

trans£6rmations of 81 alone. 



32 

ACKNOWLEDGEMENT 

This project ~s supported by the Danish Natural Science Research Council. 

The comments from S~ren Johansen are greatly appreciated. 



33 

REFERENCES 

.1. Anderson, T.W. (1976). Estimation of linear functional relationships: 

Approximate distributions and connections with simultaneous equations 

in econometrics. J.R. Statist. Soc. B 38,1-20. 

2. Anscombe, F.J. (1964). Normal likelihood functions. Ann. Inst. Stat. Math., 

12., 1 - 19. 

3. Bates, D.M. & Watts, D.G. (1980). Relative curvature measures of non

linearity. J.R. Statist. Soc. B 42,1-25. 

4. Bates, D.M. & Watts, D.G. (1981). Parameter transformations for improved 

approximate confidence regions in nonlinear least squares. Ann.Stat. 

2., 1152-1167. 

5. Beale, E.M.L. (1960). Confidence regions 1n non-linear estimation. 

J.R. Statist. Soc. B 22,41-76. 

6. Box, M.J. (1971). Bias 1n non-linear estimation. J.R. Statist. Soc B, ~, 

171 - 201. 

7. Efron, B. (1975). Defining the curvature of a statistical problem (with 

applications to second order efficiency). Ann. Stat. 2, 1189 - 1242. 

8. Hamilton, D.C., Watts, D.G. & Bates, D.M. (1982): Accounting for intrinsic 

nonlinearity in nonlinear regression parameter inference regions. 

Ann. Stat. 10, 386-393. 

9. Holland, P.W. (1973). Covariance stabilizing transformations. Ann.Stat. 

1., 84 - 92. 

10. Hougaard, P. (1981). The appropriateness of the asymptotic distribution 

in a nonlinear regression model in relation to curvature. Research 

Report 81/9. Statistical Research Dni t. Danish Medical and Social 

Science Research Councils. Copenhagen, Denmark. 

11. Hougaard, P. (1982). Parametrizations of non-linear models. J.R. Statist. 

Soc. B 44, 244 - 252. 



34 

12. Jeffreys, H. (1946). An invariant form for the prior probability in 

estimation problems. Proc. Roy. Soc.,! 196,453-461. 

13. Kass, R. (1984). Canonical parameterizations and zero parameter effects 

curvature. To appear in J.R. Statist. Soc. B. 

14. Ross, G.J.S. (1970). The efficient use of function minimization in non

linear maximum likelihood estimation. Appl. Statist . .!2., 205"7221. 

15. Soko1nikoff, I.S. (1951). Tensor Analysis. Wi1ey, New York. 

16. Sprott, D.A. (1973). Normal 1ike1ihoods and their relation to large 

sample theory of estimation. Biometrika, 60, 457 - 465. 

17. Sprott, D.A. (1980). Maximum likelihood in small samples: Estimation Ln 

the presence of nuisance parameters. Biometrika!i2, 515 - 523. 

18. Vreth, M. (1981). On the use of Wa1d's test Ln exponential families. 

Research Report no 70, Department of Theoretical Statistics, 

Institute of Mathematics, University of Aarhus, Denmark. 



PREPRINTS 1983 

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE OF 

MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, 2100 COPENHAGEN 0, DENMARK. 

No. 1 

No. 2 

No. 3 

No. 4 

No. 5 

No. 6 

No. 7 

No. 8 

Jacobsen, Martin: Two Operational Characterizations of cooptional 
Times. 

Hald, Anders: Nicholas Bernoulli's Theorem. 

Jensen, Ernst Lykke and Rootzen, Holger: A Note on De Moivre's 
Limit Theorems: Easy Proofs. 

Asmussen, S~ren: Conjugate Distributions and Variance Reduction Ln 
Ruin Probability Simulation. 

Rootzen, Holger: Central Limit Theory for Martingales via Random 
Change of Time. 

Rootzen, Holger: Extreme Value Theory for Moving Average Processes. 

Jacobsen, Martin: Birth Times, Death Times and Time Substitutions 
in Markov Chains. 

Hougaard, Philip: Convex Functions Ln Exponential Families. 



PREPRINTS 1984 

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE OF 

MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, 2100 COPENHAGEN 0, DENMARK. 

No. 1 

No. 2 

Rootzen, Ho1ger and Sternby, Jan: Consistency 1n Least Squares 
Estimation: A Bayesian Approach. 

Hougaard, Phi1ip: Parameter Transformations 1n Mu1tiparameter 
Non1inear Regression Models. 


