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In a previous paper, Sternby (1977), the convenience of using martingale 

theory in the analysis of Bayesian Least Squares estimation was demonstrated. 

However, certain restrictions had to be imposed on either the feedback struc

ture or on the initial values for the estimation. In the present paper these 

restrictions are removed, and necessary and sufficient conditions for strong 

consistency (in a Bayesian sense) are given for the Gaussian white noise case 

without any assumptions on closed loop stabiiity or on the feedback structure. 

In the open loop case the poles are shown to be consistently estimated, 

a.e., and in the closed loop case certain choices of control law are shown to 

assure consistency. Finally adaptive control laws are treated, and implicit 

self-tuning regulators are shown to converge to the desired control laws. 



1. Introduction 

The simplicity of the Least Squares (LS) method for parameter identification in 

dynamical systems has made it widely used. As compared to ordinary regression ana

lysis, this leads to additional problems in the study of the asymptotic properties 

of the estimates. Natural questions to ask are the following: What happens if 

there is feedback in the system? What happens if parameters of the feedback tem

porarily take values which in stationarity would lead to an unstable closed loop 

system? What happens if the noise is coloured? Some of these questions have been 

answered in recent years, but a complete solution is not yet found. E.g. one dif

ficult problem concerns the case of (possibly adaptive) feedback without stability 

assumptions on the closed loop system. 

In a previous paper, Sternby (1977), a Bayesian approach was shown to be con

venient in proving consistency. Using martingale theory, consistency was estab

lished under a certain condition, which did not include any explicit stability as

sumptions. However, for a technical reason, restrictions had to be imposed on 

either the feedback structure or on the initial values for the estimates. Here 

we remove these restrictions and give a~ecessary an~sufficient condition for 

consistency in linear discrete time systems with Gaussian equation noise. The no

tation and general theory needed for this are given in Sections 2 and 3, while the 

resul t itself is stated and proved in Section 4. 

In Section 4, the consistency condition is moreover interpreted in terms of 

conditions on the feedback, and some different ways to ensure consistency are 

indicated, Finally, in Section 5 we discuss adaptive control laws, and in particu

lar take self-tuning regulators as examples of feedbacks that allow the "true" con

trol law to be obtained asymptotically. 

The single-input, single-output (SISO) and the multivariable cases can be 

treated simultaneously as was done in Sternby (1977), but in order to emphasize 
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the basic ideas this paper is written out only for the SISO case. 
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2. The least squares identification method 

Let the true system be described by 

T 
yet) = cp(t) x + e(t) (1) 

with cp(t) an-dimensional col:umn vector of variables known at time t -1, i.e~ Ht) 

is a function of previous values of inputs and outputs. E.g. for a linear kth order 

transfer function n would equal 2k and cp(t) would be cp(t) T = [yet - 1), ... , yet - k), 

u(t - 1) , ... , u(t - k)], where u are the system inputs. The sequence {e(i)} is some 

unobservable one-dimensional disturbance and fC is a random n- dimensional column 

vector of parameters which we want to estimate JrOll1 observations 9£ the yetJ 's: 
. - , .. -

Usually x is considered as a constant, but unknown, vector that is to be esti-

mated. By taking x random we thus consider a whole class of systems with the 

structure (1), and picking a certain member of that class is the first part of the 

identification experiment. The second part of the experiment then generates the 

e(t) 's and thus the observables {yet)}. 

The underlying probability space then supports both the parameter x and the 

noise sequence {e(t)}, and will be thought of as a product of a space supporting 

x and a space supporting {e(t)}. Primarily we will be interested in a.e. conver

gence of estimates, ~t -+~oo say, and "a.e." then means almost everywhere with re

spect to the joint distribution of x and {e(t)}. By standard arguments this con

vergence is equivalent to the existence of a set AcRn with P(x E A) = 1, -and such that 

11 11 
for each x E A, xt -+ xooa. e. with respect to the conditional distribution given the 

value of x. (Formally, if we write h(xO) =P(~t'f7- ~oolx=xo} for the conditional pro'

bability that the estimates do not converge to ~oo if the true parameter value is xo ' 

and use that probabilities can be obtained as averages of conditional probabilities, 

h h 'fll th we ave t at 1 Xt converges a.e. en 

11 11 
o = P(xt 1+ x,) = E(h(x)) . 

Since hex) ;? 0 for all x it follows that there is a set A E JRn with P(x E A) = 1 



- 4 -

such that hex) = 0 for x E A (since otherwise E(h(x)) would be strictly positive) . 

Hence, 

as claimed.) Thus, in the present context; convergence a:e. means "convergence 

for almost every realization of almost every system," and nothing can be directly 

deduced about a specific given system with fixed true pa;ameters. For a further 

discussion of this point of view, see Sternby (1977). 

Let Ft be the a-algebra containing all the information available at time.t so 

that in particular Ft c F t+l for all t, and let Fro = limt -7cJ t be the a-algebra gene

rated by all the Ft's. E.g. for the linear kth order transfer function considered 

above, Ft would be the a-algebra generated by the outputs y(l), .. " yet) and 

the inputs u(l),.,., u(t). Furthermore, we will write sEFt if S is Ft-measurable, 

i.e. if liS is a function of the variables generating F ,I' and similarly for sEF. 
t 00 

/\ 
In the Bayesian approach to least squares estimation, the estimate at time t, xt ' 

say, is defined to be the function of the observations which minimizes the condi

tional mean square error. Thus, more precisely, ~t is uniquely determined by the 
/\ 

requirements that xt E Ft and that 

is positive definite for any random vector sEFt . It is well known (see e.g. 

Kalman (1960) or Jaswinski (1970), ch. 5.2) that ~t = E[x!Ft ]. 

This should be compared to the ordinary LS estimate·1; of x which is·obtained 
t. 

by minimizing V t with respect to t, where V t = V t (I;) is defined by 

V t (I;) 
1 t T 2 

- t-t I [yes) - <Pes) l;] 
. 0 s=tO+l 

(1) 

Here the lower limit of summation, to + 1 has to be chosen such that cp(s) , s = to + 1, ... , t 

have been actually observed at time t. In Section 4 we will see that in an important 
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case tt = ~t' and use this to prove consistency for tt from the corres-

11 
resul t for xt . 

Finally, for later use, we introduce the notation N(S) for the null space of 

a matrix ~ and P for the conditional covariance matrix of x at time t, 'i.e., 
t 

Pt = E[Cx - ~t) ex - ~t) T JFt ]· 
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3. General results 

Convergence of Bayes estimates have been studied rather extensively in the 

statistical literature, see e.g. Schwartz (1965) and the references therein. In 

A 
the present context, the basic result is that xt and.Pt converge a.e. Here we 

will use a variant of the formulation in Sternby (1977). 

Theorem 1. Suppose that the distribution of the true parameter x has finite second 

moments. Then ~t and Pt converge a.e. as t-+oo, and, denoting the limits by ~co and 

and 

/I. /I. TI p = E [(x - x ) (x - x) F]. 
(X) 00 00 co 

(2) 

Proof. All the assertions except (2) are established in Sternby (1977) (Theorem 1 

and the subsequent remark). In the cited reference it is also noted that 

(3) 

• /I. A /I. AT A AT 
Slnce xt -+xco a.e., XtXt -+xcoxco' and it follows from the martingale convergence theo-

rem (see e.g. Chung 1968, p. 313) that E[xxTIFt] -+E[xxTIFcoL a.e. Since moreover 

the lefthand side of (3) converges to Pco it follows that a.e. 

TI A AT P = E[xx F] - x x , co 00 00 00 

and (2) then is obtained by applying (3), with t replaced by co, to the righthand 

side. # 

In the next result, which is a minor generalization from Sternby (1977), the 

limit ~ is examined. The statement is slightly complicated by the need to handle 
00 

cases where the probability for Pt to tend to zero is less than one, or where only 

some modes, but not all, may be consistently estimated. 

Theorem 2. Let a E: F be a n-dimensional random vector. If the assumptions of Theo-co 

rem 1 are satisfied, then 
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TA T 1 a xt -+ a x a. e. on {w P ""a == O} . 

TA T 
In particular, if PCP ""a == 0) = 1 then a xt eT a x a. e., and if furthermore a is nonran-

d h TA T 1 . om, t en a xt -+a x a so In mean square. 

Proof. Let 1 Ca) equal one if P""a = 0 and zero if P""a f. O. By assumption a E F"" and 

hence also 1 (a) E F , since lea) is a function of P E F and a. Thus a and lea) can 
"" "" "" 

be treated as constants when taking expectations conditioned on F , and hence, 
"" 

using (2) for the third equality, we get that 

since lea) is zero on the set where aTp a/O. Thus l(a)(aT(x_~ ))2 has expectation 
"" "" 

zero and is nonnegative, and hence has to be zero a.e., or equivalently aTx = aTx"" 

a. e. on {w 11 (a) = l} == {w 1 P ""a = O}. Since a T~t -+ a T~"" a. e., this proves the first part 

of the theorem. 

Further, to prove the last assertion, about mean square convergence, it is suf

ficient to prove that (aT~t)2 is uniformly integrable (uniform integrability is 

defined in Chung (1968), p. 89, and the result is stated on p. 90 therein). How-' 

ever, by (3) 

and since E[(aTx)2IFt] is uniformly integrable by the 'martingale convergence theorem, 

this proves uniform integrability of (aT~t)2 (Chung (1968), p. 313 and p. 93). # 

For systems picked randomly as our model prescribes, this theorem answers the 

consistency question as long as the conditional mean is used as estimate. But also 

in a practical situation, when we are faced with a particular system, this theorem 

should be encouraging. If there is no reason to suspect that the true system belongs 

to a null set (e.g. through overparameterization) , then the estimate can be assumed 

to converge to the true value if the conditional variance tends to zero. 

It is thus desirable to use the conditional mean as an estimate. But unfortu-

nately this is in general difficult to calculate. 
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4. Main results--the G&ussian case 

We now focus interest on the special--but important--Gaussian white noise case. 

Specifically, we will assume that 

(a) eel) ,e(2) , ... are independent Gaussian random variables with mean zero and 

. 2 d varlances a > 0, an 

(b) {e(t)}~ is independent of x and FO' cjJ(t) E Ft_l' and Ft is the a-algebra gene

,rated by FO and yel), ... , yet), for t ~ 1. 

Initially it will further be assumed that 

(c) the conditional distribution of the parameter vector x given FOis 

n-dimensional normal, with (possibly random) mean m and covariance R. 

The important case covered by (a)-(c) is the kth order transfer funGtion briefly 

discussed above. In fact, suppose FO is the trivial a-algebra (which contains no informa

tion), suppose cjJ(t) T = [yet - 1) , ... , yet - k), u(t - 1) , ... , u(t - k)], where the input 

u(t) only depends on y(l), ... , yet) and suppose that y( -k+ 1) , ... , y(O) are nonran-

dom. Then, if (a) and (b) hold and the parameter vector x is independent of the 

noise variables {e(t)} and if the (unconditional) distribution of x is normal with 

(constant) mean m and covariance R, it follows readily that also (c) holds. In 

this, the condition that y(-k + 1), ... , y(O) are nonrandom is rather awkward--this 

problem with initial values is the reason for the slightly involved formulation of 

(c). As will be seen this initialization problem can be circumvented in the study 

of consistency of the (ordinary) LS estimates ~t' but it is necessary for obtaining 

an explicit expression for Qt' 

/\ 
If (a)-(c) are satisfied, then xt'Pt can be computed recursively from the equa-

tions 

/\ /\ T/\ 
xt = xt _l + K(t) [yet) - CP(t) xt _l ], 

(4) 

with 
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1\ 
using the initial conditions Xo = m, Po = R. (Here and in the sequel we arbitrarily 

assume that the recursion starts at t = O. This is only for· convenience of notation, 

and we might of course as well replace 0 by any other time point to') The recur-
o 

sion (4) was obtained by Ast~om and Wittenmark (1970), with a further proof given in 
o 

Astrom (1978) --the conditions (a) -(c) are. stated in a slightly different way in 

their. derivations. (In fact the proof is quick: Using (a)-(c) and the stan-
- . 

dard formula for conditioning in multivariate Gaussian distributions it follows that 

1\ 
the conditional distribution of x given Fl is Gaussian with mean xl and covariance 

matrix PI' and the general result then follows by repeating this argument for 

t=2,3, ... ) 

A basic fact about the (ordinary) LS-estimate tt' which we will use to carry 

over the consistency results for ~t to tt' is that tt also can be computed recur-

1\ 
sively, by very similar equations as for xt ' viz. 

(5) 

with 

and some suitable initial values, ~o'SO' with So a nonnegative definite matrix. 

Here, to obtain the exact LS e~timate which minimizes (1), one should start the re-

cursion at some t-value, say tl such that (2) has a unique minimum for ~ = tt ' and 
. 1 tl T -1 

and S = [I l cjl(s) cp(s)] as initial values. 
tl 

However, in practice one 

would often use some conventional (incorrect) starting values, and this is the 

situation we analyze here, and as before we will use tl ::: O. In passing it may 

also be remarked that it is obvious that St always converges, since it is nonin-

creasing and bounded from below. 

In the main result we make use of the concept of absolute continuity. A 
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probabili ty distribution P is said to be absolutely continuous with respect to 

another probability distribution Q if events which have zeroQ-probability also 

have zero P-probability, i.e. if Q(A) =0 implies that peA) =0. It can be shown 

that equivalently P is absolutely continuous with respect to Q if it has a density 

with respect to Q, i.e. if P-expectations can be computed by first multiplying 

with a density function and then taking expectation with respect to Q. Absolute 

continuity of general measures is defined in the same way. E.g. if a Gaussian 

distribution in Rn has a strictly positive definite covariance matrix, then it 

has a strictly positive density function and hence is absolutely continuous with 

respect to Lebesgue measure in mn (i. e. volume measure in mn), and vice versa. 

An important property of absolute continuity is that it preserves a.e. convergence, 

i. e. if a sequence converges a. e., ~t + ~oo' say, with respect to Q and P is abso-

1 utely continuous with respect to Q, then ~t + ~oo a. e. with respect to P. (The 

f f ° ° dO h A A d n ° h proo 0 this assertlon is lmme late: T at X t +xoo a.e. un er ~ lS t e same as 

Q (~t does not converge to ~oo) = 0, which by absolute continuity implies that 

A A A A 
P(xt does not converge to xco)= 0, so that xt +xco a.e. under P.) 

Theorem 3. Let {yet)} be the output of a system (1) which satisfies (a) and (b) 

above, and let tt be the LS-estimate generated by (5), with initial values 

to'So' 

(i) If the true conditional distribution of the parameter vector x given FO a.e. is 

absolutely continuous with respect to the Gaussian distribution with mean to and 

covariance matrix SO' then ~t converges a.e., and if the random vector aE Fco ' then 

(ii) If So is strictly positive definite and St +0 a.e., then there is a set 

A E]Rn such that the complement of A has measure (or "volume") zero and such that 

tt +x, 



a.e. for each fixed x E A (i.e. with respect to the conditional distribution given 

x). 

Proof. Suppose first that in addition (c) holds, with m=to and R=0 2So ' so that 

/\ 
xt and Pt satisfy (4) with these initial conditions. It then follows at once from 

the forms of (4) and (5) that ~t and P /i satisfy (5) (with tt replaced by ~t and 

2 ~ /\ 2 
St by P /0 ). Thus I;t = xt and St = P /0 also for t=l, 2, ... , and it follows from 

Theorems 1 and 2 that tt+~co and St +Pco/02 a.e. and that 

T T 
a i;t -7- a x a.e. on {wIPcoa=O}, 

where {wlp a=0}={wI02S a=O}={wls a=O}, a.e. 
00 '00 00 

Now, if the true distribution of x given FO a.e. is absolutely continuous with re

spect to the Gaussian distribution with mean to and covariance matrix SO' it follows 

straightforwardly that the entire true distribution is absolutely continuous with 

respect to the distribution where the conditional distribution of x was assumed to 

be Gaussian with mean ~o and covariance matrix 02S0 . That tt converges a.e. under 

the true distribution then follows at once, since convergence a.e. is preserved under 

absolute continuity, as discussed immediately before the theorem. Furthermore, above 

i·t is shown that {wls a =0 and ~T~ "=Fir aTx} has probability 0 if (c) holds with co t 

m = to' R = 02S0 . By absolute continuity it then also has probability zero in the 

correct distribution, which completes the proof of part (i). 

Finally, if the hypothesis of (ii) is satisfied, it also follows, using the 

argument in the beginning of Section 2, that there is a set AEJRn with probability 

one in the Gaussian distribution with mean to and covariance matrix 02S0 such that 

tt -7-X a.e. with respect to the conditional distribution given x, for all x E A. 

Since So is assumed to be strictly positive definite this implies that the comple

ment of A, which has probability zero in the Gauss_ian distribution, also has Le-

besgue measure (or volume) zero, which concludes the proof of part (ii). 'It 
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Remark 1: Note that no assumptions are made in Theorem 3 on stability or feedback. 

Consistency is only coupled to the condition Soo::: 0, with Soo::: 0 a.e<. -» ~t -+ x a,e. 

Theorem 3 thus replaces and supersedes Theorem 3 and corollaries 1 and 2 of 

Sternby (1977), The condition S ::: 0 will be further examined below. Note also 
00 

that the awkward condition (c) (which for the kth order transfer function trans-

. lates to y( -k + 1), ... , y(O) being non-random) is not needed for ·the result, but 

only the very weak requirement of absolute continuity of the conditional distri-

but ions of x given Fa. The condition (b) may be slightly weakened, in that the 

resul t holds also if Ft contains some extra information in addition to knowledge of 

y(l), ... , yet) and Fa, as long as this extra information is independent of x and 

{e(t)}. 

Remark 2: Using the same technique with absolute continuity o~ measures, the 

counterpart to Theorem 5 of Sternby (1977) can also be shown so that, for 

~ ::: lim tt' the sets where S ::: 0 and ~ ::: X qm differ only· by a null set. 
00 ·t 00 co. 

Remark 3: It would be desirable to be able to drop the Gaussian assumption on 

the noise sequence as well. But this is more involved, since it requires the 

absolute continuity of a product measure of infinitely many components. 

Remark 4: In Sternby (1977) also mean square convergence was shown. This part 

cannot be extended in the same way, since the distribution. of the ~stimates is in-

volved, and not only null sets. In fact, the second moments need not even exist. 

Remark 5: In general nothing can be directly deduced from the theorem about a 

specific system, since the notion a.e. always excludes parameter sets with zero 

probability. However, if ~(t) does not depend on the parameters, then consistency 

a. e. in the product measure implies consistency a. e. for every parameter vector x. 

We thus have a non-Bayesian consistency result, e.g. for ordinary regression ana-

lysis, where ~(t) does not contain old inputs or outputs of a dynamical system. 

On the other hand, for this case stronger results can be shown by other methods, 

see e.g. Solo (1981). 
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The most straightforward application of Theorem 3 is to cases where the whole 

St -matrix tends to zero, Then all components of the estimate will be consistent. 

The next theorem gives a condition for this to happen. 

Theorem 4: Wi th notation as in Theorem 3 and S > 0 o 

t T 2 
{wlst-+o}={wl I [a cp(s)] diverges for every constant column vector a/O} 

s=O 

Proof, The corresponding proof for Pt in Sternby (1977) goes through without 

changes, since only the structure of equation (5) is used. 

Using Theorems 3 and 4 we see that there are only two possibilities: 

I) S -+ 0 -> I;. -+ x 
t St' 

or 11) St f 0 => HaT <P(t)] 2 converges for some a f: 0 T 
=> a <p ( t) -+ 0 . 

# 

The second case imposes certain restrictions on the control law. For the analy-

sis the following lemma is useful. 

Lemma 1: Let {e(t)} be a sequence of independent, zero mean normal random variables 

with a variance 0 2 (t) bounded away fr~m zero, 0 <s ~ i (t), for ~ll t. Let {vCt)} be 

another sequence with e(t) independent of {v(k); k ~tL 

diverges a.e. 

This result is intuitively clear, and the proof (using e.g. the extended Borel-Can-

telli lemma, see Breiman (1968)) is omitted, being a standardexercise inp::-obab~~ity theorr. 

Using the lemma, the a in case 11 above can be further specified. 
. T 

uCk) is the latest input present in a <p then all components of a, corresponding 

to yet) for t > k, must be zero. This is because y( t) always contains e(t). and 

I[aT<p(t)]2 would otherwise diverge according to the lemma. 

It is thus clear that eithe:c the parameters converge to their true values or 

the control law will converge to a linear one satisfying aT·<PCt) =0. 

As a special case, if <P(t) does not contain any inputs, (pure AR model or 

If 

all b-parameters known) then 11) cannot happen, and the estimates are consistent. 
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For closed loop systems there are several ways to guarantee consistency by 

T avoiding a cp (t) -+- 0: 

- use a nonlinear control law 

- use a time-varying control law, e.g. an ever-lasting shift between two con-

stant and linear control laws. 

- use a more complex linear control law than can be described by aTcp = O. 

These· results agree with those of Gustavson et. al (1977) for more general identifi-

cation schemes. 

In the open loop case, those components of a which correspond to outputs 

must be zero. This can be seen from Lemma 1 and the fact that with open loop 

control the noise and input sequences are independent. In the next section 

(Theorem 5) the results are shown to imply that all estimates corresponding to 

outputs will be consistent. As discussed in Sternby (1977), a condition similar 

to, bu,t weaker than persistently exciting input is required to assure Gonsistency 

also for the input parameters. 
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5. Adaptive control laws 

T . 
In order to handle general control laws, where possibly a <P(t) -+ 0, we need more 

detailed information on which parameters will converge. The following lemma con-

cerning the null space of S co' is then useful. 

Lemma 2: If So > 0 then, 

co 
a I N(S ) ~> I T 2 

[a <P(s)] < co , a.e, _ co 
s=o 

Proof. The same technique is used as in the appendix of Sternby (1977) proving a 

similar lemma. In particular we may assume that Sco is diagonal, with entries 

\,A2, ... , An in the diagonal, so that Aj is the jth eigenvalue of Sco' Then 

-1 
(St·· ) .. :::; l/A. for every A. I- o. 

JJ J J 

This is shown as in Sternby (1977) for one element at a time by setting all eigen-

values in S to zero except A., 
co J 

But a has no components in N(S ) so that for any t, co 

-1 -1 \t T 
Now, as in the proof of Theorem 4 of Sternby (1977), St = So + LO<P(S)<P(s) , so that 

T -1 T -1 \t T 2 \t T 2 
a St a = a So a + LO [a <P(s) ] > LO [a <pes)] , which concludes the proof of the theorem. 

The next theorem shows what will happen with the LS method for general control 

laws. Notice that no stability condition is required, and that no control law is 

specified. 

Theorem 5. If the hypothesis (i) of Theorem 3 is satisfied and So > 0 then 

co 
A T 2 I [(I;co- x) <PEt)] <co, a.e. 

t=o 

Proof. Theorem 3 shows that with probability one, ~co - x is orthogonal to any given 

vector in the null space of Sco' To be able to use Lemma 2, however, we must show 

# 
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that w.p. 1, ~oo-x is simultaneously orthogonal to all the vectors in the nul1 

space of Soo' Since N(Soo) is finite dimensional, it is spanned by a set of random 

vectors vI' " . " , v p' where p = dim(N(S )) also is random. Further let v. =0 for 
00 J 

p<jsn ' 1 ,.. " {I T (~ "\" } so that P(st.) =1 for each j by Theorem 3 ana UeIlne "". = w v. - x) = v 
J J 00 J 

, 

since clearly S v. =0 and v. can be chos en such that v. E F and then also 
00 J J J 00' 

Thus, with probability one ~oo - x is orthogonal to v l' ... , vp 

and the result follows from Lemma 2. 

and hence to N(S ), 
00 

This result has also been obtained by Ljung (1974) in a non-Bayesian version, but 

under the assumption of closed loop stability. 

With the assumptions of Theorem 3, any adaptive control taw based OR Least 

Squares estimation, where the estimates enter the control law only as ~t~(t) will 

thus converge to the corresponding control law for known parameters. Under these 

circumstances, closed loop stability for the adaptive system is closely coupled to 

the choice of control law for the corresponding problem with known parameters. To 

actually prove stability one has to examine the different algorithms separately. 

This is often straightforward, but will not be further discussed in this paper. 

Several self-tuning regulators fall within the category discussed above. The 

common minimum variance type implicit self-tuners (regulator parameters directly 

estimated) are of this type, whether the leading b parameter is estimated or not. 

Also the implicit pole placement self-tuner fits into this framework. 

For a more general adaptive control law, Theorem 3 shows that the parameters 

will almost always converge. Theorem 5 and Lemma 1 show that, un1 ess ~ = x the 
00 

final control law can be written (~ - x) T ~(t) = O. This expression for the control 
00 

law can be compared to its original definition, and it might then in some cases be 

possible to show convergence of the control law to the desired one. It is however 

also easy to give examples when this is not possible. 

# 
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6. Conclusion 

It has been shown that in the Gaussian white noise case; consistency for the 

LS estimate follows if the "conditional variance" St tends to zero. This requires 

no assump~ions on stability or on the control law. 

Furthermore, 11.- condi tion -is given for the ,icondi Eonal variance" to tend to 

zero,_ which imposes certain restrictions on the control law. Finally, a general 

condition is given f~r the possible convergence pOints of the_estimates. The last 

cOndl tion can in some cases be used to show convergence ofaaaptive contrbl laws 

to the desi~ed ones. The assumption of Gaussian noise is essential to our method 

of allalysis. However, rather similar results to Theorem 3 hold also without this 

assUmption, but with some condi Hons on the rate of c()llve'rgence to zero by S~. 

This is proved in an important paper by Lai and Wei (1982), which appeared after the 

submission of the present paper. 

Using Theorem 5, and maybe extensions thereof, it is possible to examine the 

asymptotic properties of adaptive control laws. It might be difficult to get 

general results, but specific algorithms are ,easily analyzed. Implicit versions 

of self-tuning regulators have been discussed in this paper. In the corresponding 

explici t self-tuners the parameters of the control law are calculated from a 

linear transformation of the estimates and should be possible to handle with 

Theorem 5. The examination of other adaptive control laws with this tool is left 

as a topic for future work. 

Acknowledgement 

We want to thank an anonymous referee for a careful reading which led to sub-

stantial improvements of the presentation of this paper. 



- 18 -

7. References 
o 

Astrom, K.J. and Wittenmark, B. (1971): Problems of identification and control. 
J. Math. Anal. Appl. 34, 90. 

o 

Astrom, K.J. (l978J': Stochastic control problems. In W.A. Coppel (Ed.): 
Mathematical Control Theory. Springer Lecture Notes in Mathematics, 680, 1-67. 
Berlin. 

Breiman, L. (1968): Probability. Addison-Wesley. New York. 

Chung', K.L. (1968): A Course in Probability Theory. Harcourt, Brace & World, 
Inc., New York. 

Gustavsson, 1. et. al (1977) : Identification of processes in closed loop-identi
fiability and accuracy aspects. Automatica~, 59. 

Jazwinski, A.H. (1970): Stochastic Processes and Filtering Theory. Academic Press. 

Kalman, R.E. (1960): A new approach to linear filtering and prediction problems. 
Trans. ASME, Ser D. J. Basic Eng. ~, 35. 

Lai, T.L. and Wei, C.Z. (1982): Least squares estimates in stochastic regression 
models with applications to identification and control of dynamic systems. Ann. 
Statist.[O, 154-166. 

Ljung, L. and Wittenmark, B. (1974): Asymptotic Properties of Self-tuning Regula
tors. Rept.7404, Dept. of Automatic Control, Lund Institute of Technology, 
Sweden. 

Schwartz, L. (1965): On Bayes Procedures. Z. Wahrsch. verw. Geb. i, 10. 

Solo, V. (1981): Strong consistency of least squares estimators in regression 
with correlated disturbances. Ann. Statist. ~, 689. 

Sternby, J. 
theory. 

(1977): On consistency for the:nethod of least squares using martingale 
IEEE Trans. Aut. Control ~, 346. 



PREPRINTS 1983 

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE OF 

MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, 2100 COPENHAGEN 0, DENMARK. 

No. 1 

No. 2 

No. 3 

No. 4 

No. 5 

No. 6 

No. 7 

No. 8 

Jacobsen, Martin: Two Operational Characterizations of Cooptional 
Times. 

Hald, Anders: Nicholas Bernoulli's Theorem. 

Jensen, Ernst Lykke and Rootzen, Holger: A Note on De Hoivre's 
Limit Theorems: Easy Proofs. 

Asmussen, S~ren: Conjugate Distributions and Variance Reduction ~n 
Ruin Probability Simulation. 

Rootzen, Holger: Central Limit Theory for Martingales v~a Random 
Change of Time. 

Rootzen, Holger: Extreme Value Theory for Moving Average Processes. 

Jacobsen, Martin: Birth Times, Death Times and Time Substitutions 
in Markov Chains. 

Hougaard, Philip: Convex Functions ~n Exponential Families. 



PREPRINTS 1984 

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE OF 

MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, 2100 COPENHAGEN 0, DENMARK. 

No. 1 Rootzen, Holger and Sternby, Jan: Consistency In Least Squares 
Estimation: A Bayesian Approach. 


