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Abstract 

Let for N = 0,1,2, ... ,(N) be the time of first passage of the double-

ended GI/G/1 queue length process with positive 'drift to level N 

and let ~(N) be the waiting time from ,(N) until the next service event. 

Then {~(N)} ~s a Markov chain on (0,00), the ergodic behaviour of which 

is found and shows some interesting connections to random walks. These obser-

vat ions are the key step in establishing an approximation of the form 

for the usual (one-sided) GI/G/1 queue length process with negative drift. 

Extensions to more general models are discussed. 

*) Supported by the Swedish Natural Science Research Council and by the 

Icelandic Science Foundation. 
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1. Introduction 

The present paper lS concerned with the derivation of certain limit 

results for queue length processes. Particular attention is made to the finite 

time case, an area little developed compared to equilibrium, or steady sta,te, 

theory. 

Queueing problems in finite time seem certainly not unimportant from an 

application point of view: the steady state solution in many cases only plays 

the role of an approximation, the validity of which is not always easy to 

judge. However, the analytical difficulties are quite considerable. Closed 

form solutions are complicated even for such simple models as M/M/1, and 

can typically at best be found In some special cases In terms of double trans-

forms, which provide little insight in the behaviour of the queueing probabi-

lities themselves. Therefore approximation methods play an important role, 

the main classical results being based on the concepts of relaxation time and 

heavy traffic. To state these more precisely, let {Q } be the GI/G/1 
t t>o 

queue length process which shall be our main example for a while. Assume that 

the traffic intensity p is less than one and that the interarrival distri-

bution lS non-lattice. Then the queue is stable and attains a limiting steady 

state, 

(2) 

Q ~ Q In distribution, and for suitable constants it holds that t ()() 

-sN -e G(t),pt1, 

where G lS a first passage time distribution of a Brownian motion with 

drift. See e.g. [8] for the M/M/1 case of (1) and [8], [15] for waiting 

time analogues in M/G/1 (to our knowledge, (1) has not been proved for 

G1/G/1). For (2), see [16] and references therein, in particular [6]. 

(3) 

We are here concerned with yet another type of approximation, 

P(Q > N) 
t 

_ C oN <Il(t-~N), N-~()(), 
KN 2 
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l.e. a result of large deviation type. For t = 00, ~(.) = 1 so that (3) 

lS a geometric approximation for the tail of the steady state queue length 

distribution exploited in [11] in a somewhat different setting and pointed 

out in [1] as an easy consequence of the classical exponential tail property 

of the waiting time (a recent result of this type is in [12]). For t < 00, 

waiting time analogues were proved in [2] and in the unpublished technical 

report [3], queue lengths were treated for GI/M/m and a number of variants 

of M/G/l (the first relation of this type seems to have occured In risk 

theory, [13], [5]). 

This set of results leaves open the GI/G/l case of (3) as an important 

gap. Though the method of [2], [3] (developed in Section 2) is quite general, 

it is non-trivial to fill out one of the steps, to establish ergodic proper

ties of a certain process describing excess over .the boundary in a two-dimen

sional problem in renewal theory. The purpose of the present short note is In 

part to resolve this problem (Section 3) and in part to present some of the 

material of [3] In a form stressing basic ideas rather than technical details. 

We finally mention that [4] contains numerical comparlsons of (1), (2), 

(3), for waiting times though, but we would not expect queue lengths to 

behave intrinsically different. None of the results are outstanding as approxi-

mations but (3) compares rather favourably for the purpose of giving some 

rough estimate of the correction to the equilibrium value. Unfortunately it 

does not seem easy to adapt to the present case the very accurate corrected 

diffusion approximation, based on [14] and essentially a variant and refinement 

of (2). It is strongly suggested from [14], however, that the boundary 

problem treated here would be one of the steps in that direction. 
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2. General method and its implementation 

The technique of [2], [3] is based on representing Q = {Qt}t>O ~n terms 

* of what is called a governing process Q {Q*} ~n [7] This is a process t t>O . 

evolving in a spatial homogeneous manner on the whole line, such that Q 

* ";~ behaves as Q for large or moderate queue lengths. Once Q hits or becomes 

close to zero, Q ~s restarted in a regenerative way, say at time c. 

Thus by means of standard formulas for regenerative processes, P(QT > N) 

~s obtained" by convolving * f(t) = P(Qt > N, t < c) with the renewal measure 

U associated with c. For asymptotic purposes, U is just replaced by the 

limiting normalized Lebesgue measure whereas to estimate f(t), we split the 

path of Q in [0, c) up in two segments separated by the first passage 

time T(N) 
• "l~ 
~nf{t>O: Q > N}. One then has to find a supplementary variable 

- t 

~(N) completely describing the initial conditions for the post-TeN) process 

and next 

10 Prove d' th f an ergo ~c eorem or ~n distribution, which 

ensures a regular behaviour of the post-TeN) process; 

20 Prove that T(N) is asymptotically normal conditionally upon 

{T (N) < oo} as N ~ 00. This is done by exploiting some random walk structure 

'";'~ 

of Q which permits to involve what is called the associated process 

~n [9], [2] and prove an unconditional CLT w.r.t. ap by Anscombe's theorem, 

using ap-asymptotic normality of Qi~ and 

(4) 

Having passed these points, (3) then follows rather easily up to the value 

of C. Thus one more step is needed, 

40 Give an alternative derivation of (3) for T 00, which permits 

to calculate C. 

In the present case, Q ~s the so-called double-ended queue, i.e. 

the difference NA_NB between two independent renewal processes governed by 
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the distributions A, B of the interarrival time, resp. the serv~ce time, and 

c ~s the length of the first busy cycle. The initial conditions corresponding 

to a customer having arrived just before zero, ~.e. a busy cycle starting at 

t = 0, means NA being zero-delayed and NB having B itself as delay 

distribution. At time T(N), an arrival has just occured and so the post-TeN) 

NA-process ~s again zero-delayed. However, to determine the post-TeN) NB_process 

we need to know the delay, that is, the time ~(N) until the next epoch of NB. 

Of the above steps, 40 can be found in [1]. The expression for C ~s 

somewhat complicated, but can at least be made explicit in any model with 

imbedded Markov chain of matrix-geometric type, cf. [11]. Compared to [2], [3], 

30 follows in just the same way and 20 ~s sketched in Sect. 4, requiring some 

technical variants. Where a really new idea is required is in 10 s~nce ~ 

fails to be regenerative, and we proceed to study this problem. 



3. The Markov chain s 

For each y > 0, 
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we let P refer to the case where ~ is zero
y 

delayed (NA(O) 1) and NB has delay y. That is, the epochs of NA,NB 

SA(O) = 0, SA(n)=XA(1) + ... + xA(n) are 

etc with the obvious notation and independence assumptions. Define for 

N = 0,1,2, ... 

N + 1} 

(then 13(0) = T(O) = 0, s(O) = y). Let further n(u) be the overshot of level 

B A B A 
u for the random walk {y + (X (1) - X (2» + ... + (X (n) - :lC(n+1»}n > 0 and 

observe that n(·) 1.S independent of XA(1) and 

A n (X (1». 

THEOREM 1. Suppose that EXA(n) < EXB(n) and that A or B are non-lattice. 

Then are all proper .. Let further be independent 

of the A B 
X (n),X (n) and each distributed as A X (n), and define ~(N) = 

A A rv 

n (Y 1 + ... + YN) . Then sand s are identically distributed Markov chains 

on (0,00). For all y>O, the limiting distribution of s(N),~(N) as N~oo 

exists and is that of the weak limit n(oo) of n(u) as u~oo. 

Proof: The first statement is easy S1.nce the law of large numbers implies 

that S(N) <00. Also the development of NA_NB above the level N after time 

T(N) is governed by just the same conditions as if we start NA_NB at time 

zero with instead y = s (N) . Hence s is time-homogeneous Markov. That also 

rv 

S is so follows by checking that observation of a Markov process {n(u)} at 

the epochs 
A A 

{y 1 + ... + YN} N > 0 of an independent renewal process yields 
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a homogeneous Markov chain. This structure shows also that if a limit n(oo) 

of n(u) exists (which is a standard random walk result in the present case), 

rv 

then [[ (N) -? n (00) weakly. Hence it only rema~ns to check that ~ and ~ have 

the same initial values and the same transition functions: The first statement 

follows from ~ (0) = y = ~ (0) and the second from 

Remarks: The explicit form of the transition function for ~ ~s not needed 

but comes out quite easily in terms of the transition semigroup for n as 

p(~(1)2.x 1~(O)=y) 

00 

00 

f Py (n (z) 2. x)dA(z) 

o 

J p(n(z) 2. x1n (0) =y) dA(z) 

o 
The process ~ provides a further example of a Lindley process with replace

ment, cf. [10]. Indeed, for all N with s~< ~(O) we have ~(N) = ~(O)-SA(N) 

so that ~ evalues with the same increments as the random walk {-SA(N)} 

until the first negative value 
A 

-n (~(O» = -z occurs: Here 
A 

n (u) ~s the 

overshot of level u for 
A S (n). Then -z is replaced by a positive value 

o 

depending on the past only through z and distributed as the overshot of level 

z for the random walk 
A B 

S (n) - S (n). 
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4. The large deviation result 

Let A,B denote the Laplace transforms of A,B. We shall need; 

CONDITION (a) A lS non-lattice and the equation A('1)13(-'1) = 1 admits a solu-

~ 

tion '1 > 0 with the additional property B"(-'1) < 00. 

Define now the associated process ([9],[2]) by 
a -1 -'1x 
A(dx) = cS e A(dx) , 

a '1x B(dx) = cSe B(dx) where 
~ ~ -1 

cS = A ( '1) = B ( -'1 ) , and let a p a E etc refer to , 

this set of distributions. It is a standard fact that for a stable queue 

(EXB(n) < EXA(n» the associated queue is transient, aEXB(n) > aEXA(n). Let 

further :.t = o(XA(k), XB(k):k < n) ,yeN) = ° (XA(k) , xBen: k < n, 9, < N-n). For 
n - n - -

~ «""(N) "... 
G t: ;-J.-S (N)' G S; {S (N) < oo} we then have G E .,. S (N) as well and hence in the same 

way as in [5],[14],[2],[4] that 

(5) P G 
Y 

using the independence of the XB(S(N)-N+k) 
("j' (N) 

of .)'-S (N) 

B 
and a Ee -'1X (k) = cS . 

LEMMA 1: As N ~ 00 , T (N) lS asymptotically normal w.r.t. a p with mean 
y' 

AN and varlance K 2N where 

a 2 a 2 

(6) 
-1 2 3( °A OB) A =----- K A - +--

a a a 3 a 3 ' 
]lA ]lB ]lA ]lB 

a aEXA(n) , a 2 a B 
]lA oB VarX (n) etc. 

Proof: It is well-known from renewal theory that 

(7) 
NA(t)-NB(t)-A- 1t 

(A-3K2t)! 

lS asymptotically standard normal. Furthermore, from NA(T(N» = N+1+NB(T(N» 

it follows by division by T(N) and 
A B 

N (t) / t ~ 1 / ]lA' N (t) It ~ 1 /).lB tha t 
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-1 

(8) 1 \ --a-) 
]JB 

- a.s. 

Now Anscombe's condition for (7) was shown in [3] Lemma 4.4. Hence letting 

t = T(N) and applying Anscombe's theorem we get that 

-1 N+1 - A T (N) 

(A-3K2T(N»£ 

lS asymptotically standard normal. Applying (8) once more, the proof lS comp-

lete. 0 

One can now carry out the step 3 0 ln Section 2 exactly as In [2], and 

up to the value of C, one gets 

THEOREM 2: Consider a stable GI/G/1 queue length process {Qt}' Then if 

tondition (a) holds, 

(9) 

where cS A(y), A,K are given by Lemma 1 and 

(10) C D 

where D lS the constant ln the standard asymptotic relation p(W> X) ';;;;'De -yx 

for the equilibrium actual waiting time. 

[the relation (10) follows from the validity of (9) for t = 00 and [1]. 

For a check, consider M/M/1 with ]JB = 1/S,]JA=1/o;. Then y= S-a;= (1-p)S, 

D = cS =p and hence C = p in agreement with P (Q 00 >N) =pN+1] . 
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5. Service and arrivals in groups 

It 1S natural to ask whether our large deviation result can be extended 

to more general models, and we shall here briefly reV1ew some of the discussion 

1n [3] for the case of serV1ce and/or arrivals in groups. A survey of such 

models can be found 1n [8] and a variety of practical important cases ar1se 

according to how the server behaves near zero, 1.e. if his serV1ce capacity 

exceeds the number of customers present. However, the governing process 

is in all cases the same, the difference between two compound renewal 

processes, cf. Fig. 1, and there is no intrinsic difficulty 1n defining the 

associated 

1;(N) 

1\ --- ;~ 

Q (t) 

0(2) - (p(N) ~ 
1;(3)=1;(4) 

N ---
4=0(0 =J 3 

2 
1 ,-

> 
T (3)=T (4) T(N) T(0(2»+n(0(2» 

Figure 1 

process and thereby assessing the values of the parameters O,A,K 1n (5). 

The problem is again to comp'li:te C (which we shall not discuss here, see 

[3]) and, for a rigorous proof, to establish ergodicity of a suitable supple-

mentary variable chain. 
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We define agaln T(N) = inf{t>O: Q\t) > N}, ~(N) as the residual serVlce 

time at time T(N), but it lS seen that to determine the behaviour of the 

* post-TeN) process we need also to know the overshot <p(N) = Q (c(N»-N-1 

(on Fig, 1, (PO) = 1 ,<p(4)=O). Again, clearly {I; (N), <p(N)} lS a Markov chain, 

but to show ergodicity seems considerably more complicated than in the case 

of single arrivals and services (where <p(N)=O). One possible approach would 

be by imposing conditions on absolutely continuous components and show Harris 

recurrence._Infact, this was our initial approach to Th. 1 before the parti-

cular structure of the problem was realized, but is heavily technical already 

for that ease. 

We shall instead here just point out that an easy alternative approach 

lS available for the particular important ease of compound Poisson arrivals. 

To this end, let 

cr(k) the k'th n such that <p(n) o and 
A N (T (n), c(n) + ~ (n)] = 0 

cf. Fig. 1, and consider the evolvement of {~(n), <p(n)}n > cr(k). Since 

* * Q (T(cr(k»)-1 = cr(k) the value of Q (t) at t =T(cr(k» + ~(cr(k» is cr(k)+1-G 

where G is the number in the next group of services hence independent of 

~(cr(k», <p(cr(k». Also the next arrival occurs at time T(cr(k» + ~(cr(k» + U 

where U is exponentially distributed and independent of ~(cr(k». This shows 

that (~,<p) regenerates at n = cr(k) and standard methods are applicable to 

derive convergence in distribution. 
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