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Abstract A number of functions of the canonical parameter ~n an exponential 

family are shown to be logaritmically convex. In particular the second moment 

is a convex function of the mean. A consequence is that a mixture of distribu­

tions from an exponential family has larger variance than the distribution 

having the same mean, as shown by Shaked (1980). The same method can be used 

to construct new exponential families, as is exemplified by a nontrivial family 

of dependent random variables having gamma distributed sum. 



1. INTRODUCTION 

Consider a onedimensional natural exponential family, i.e. assume the real-

valued random variable X has density of the form exp(ex)/~(e)~(dx). Assume 

that the family is full, i.e. the canonical parameter e varies in the set 

D = {el fexp(8x)~(dx) <oo}. For a general reference, see Barndorff-Nielsen 

(1978). By means of Holder's inequality it can be shown that the normalising 

constant ~(6) = fexp(exh(dx) is log convex, Le. In H6) ~s a convex 

function. Actually In ~(e) ~s a closed convex function. The log convexity 

can also be formulated as 
a I-a 

Ha6 1+(I-a)e 2).2 ~(el) ~(62) for a E [0;1]. In 

DO, the interior of D, ~ is infinitely often differentiable and the kith 

derivative ~s 

k fx exp(ex)~(dx) (1.1) 

If k ~s even, say k = 2n, this defines a new exponential family 

(2n) 2n. ° having density exp(ex)/~ (6)x ~(dx) def~ned at least for e E D . It 

follows that In ~(2n)(e) is a log convex function. 

The purpose of the present paper ~s to prove that a number of other func-

tions are also log convex. The method of proof is similar to the proof of log 

convexity of ~(2n)(e). A new exponential family is constructed having the 

function as normalising constant. This ~s done in Section 2. 

One of the simplest functions which are proved log convex is ~"'~_ ~ 1
2 , 

where e.g. ~" is short for ~"(e), the second derivative of ~(e). From 

the log convexity it can be proved that in the original family, the second 

moment EX2 is a convex function of the mean EX. A practical consequence of 

this is that a mixture of distributions from an exponential family has larger 

variance than the member with the same mean as the mixture. This is proved in 

Section 3. 
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Our aim has been to prove log convexity of some functions, but the method 

also gives new exponential families and can be used to generate such having 

normalising constants which can be calculated from the original normalising 

constant. This is discussed in Section 4, exemplified inter alia by a family 

of twodimensional distributions in which the sum of the variables is gamma 

distributed. 
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_2; CONSTRUCTION OF CONVEX FUNCTIONS 

Each of the functions, which will be proved log convex, is constructed by 

means of a polynomium in one or several variables. As generalisation is fairly 

obvious, some calculations will only be performed for specific examples. 

Consider first a polynomium p(x) ~n one variable. The integral 

fp(x) exp(8x)]1(dx) is finite for 8ED~DQ, because of (1.1), with value, 

say 4i'(8).If p(x»O for all x oratleastonlynegativeonasetof 

measure 0 us~ng ]1 (dx) , this defines an exponential family density 

p(x)exp(8x)]1(dx)/~(8), proving log convexity of 1(8). This function turns out 

to be p(~), if powers are interpreted as differentiations. For example, let 

a be a constant, then 
2 2 

p (x) = x - 2ax + a 

grated using (1.1) yielding 

'" . 2 H8) =~" - 2a~' +a ~ 

2 
(x-a) ~ o. Each term is inte-

More interesting functions can be found by considering polynomials of 

several variables, which will be demonstrated for two variables (x,y). Assume 

the polynomium p(x,y) is nonnegative for all (x,y) or at least only nega-

ti ve on a set of measure 0 using product measure ]1 x]1. The integral 

f Jp(x,y)e8 (x+Y)]1(dx)]1(dy) 
xy 

~s finite for 8 E D::::> DO, with value, saT- ~(8). Because p(x,y) is 

ilonnegative this defines a density of (x,y). Thus the density of z = x + y 

~s 

f p(x,Y)]1(dx)]1(dy) , 
x+y=z 

proving that 1(8) is log convex. As the underlying measure for z is not 

needed for the log convexity, the only problem is to calculate 4i'(8) , which 
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will be done for an example. Suppose 
2 2 2 

p(x,y)= (x-y) =x -2xy+y, which 

is clearly nonnegative. Integrating termvise give products of integrals. Thus 

~ 2 ex ey ex ey 
~(e) f x e v(dx) f e v(dy) - 2 fxe v(dx) f ye V(dy) 

x y x y 

~"~ - 2~12 + Hit 
x y 

from which the log convexity of ~"~ - ~ ,2 follows. Interpreting powers as 

differentiations, e.g. 
2 

x y as ~"~', the integral is ~(e) = p(~!~), showing 

that ~ only depends on a symmetrized version of p (x,y), e.g. the two squared 

terms ~n the example give rise to identical terms in ~(e). 

The integral can still be calculated if we allow p(x,y) to be apol~nomium 

in x,y and exp (a. x), exp (b. y), i = 1, ... , I, 
~ ~ 

For example 

~ (k) (e+a) k 
f x exp(ax) exp(ex)V(dx) 

where a. ,b. 
~ ~ 

are constants. 

If the polynomium has only one term, this is just a change of parameter, but 

if there are more terms this does give new results. For example if the poly-

nom~um ~s 
2 

{exp (ax) - l}, we prove log convexity of ~ (e + 2a) - 2~ (B + a) + 

~ (e). 

Any nonnegative function p(x) will by this method g~ve rise to an 

exponential family, thereby proving log convexity of some function on the set 

for which the integral is finite. The advantage of polynomials in x and 

exponentials of x ~s that the integral can easily be calculated using 

difference and differential operators on ~ and it ~s finite on DO. 

From the proof it ~s trivial that if ~l(e) and ~2(e) are created ~n 
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this way, also ~l (S) + ~2(S) lS OK, proving log convexity of this function. 

It ~s, however, true ln general that if fl (S) and f 2 (S) are both log 

convex, also their sum is log convex. To see this evaluate (f l + f 2) 

a l-a a l-a 
(aS l + (1-a)S2) .2 fl (SI) fl (S2) + f 2 (Sl) f 2 (S2) , because of the log 

convexity of fl and f 2 · 

ffl (Sl) + f 2 (Sl)}a{fl (S2) 

Using Holder's inequality that is < 

I-a 
+ f 2 (S2)} ,which is the desired result. As we 

can multiply by a positive constant without changing log convexity, it is 

clear that the classes of functions we consider are all convex cones, i.e. the 

class of log convex functions, the class of log convex functions derived from 

positive polynomials, the class of positive polynomials etc. Therefore it is 

sufficient to consider minimal examples, i.e. a minimal class of functions 

generating the same as all polynomials. For example if the ess:ential infimum 

of p(x) using ~ lS c > 0, a stronger result follows from using p(x) - c 

as polynomium. More generally, if nonproportional polynomials Pl' P2 exist 

with Pl (x) ~ 0, P2(x) ~ 0, p(x) = Pl (x) +P2(x), stronger results follow 

using Pl (x) and P2(x) instead of p(x). A positive polynomium in one varl-

able, not including exponential terms, is a sum of squares of polynomials, 

Le. if 
2 

p(x) ~ 0, 3k, Pl, ... ,Pk: p(x) = L {Pi (x)} , such that we need only 

consider squares of polynomials. For polynomials of several variables or in-

cluding exponential terms, this is not true. As noted by Berg, Christensen & 

Jensen (1979) the positive polynomium p(x,y) 
2 2 2 .2 

x y (x + 'J - 1) + 1 is not a 

sum of squares of polynomials. As the infimum of this polynomium is 26/27, it 

follows that 2~""CP" - cp,,2 + cp/27 is log convex. Taking y = exp(a x /2) :fo'r 

some constant a, yields log convexity of 

cp'lII (8 + a) + cp" (8 + 2a) - cp" (8 + a) + cp (S) /27. 

It seems not possible to give a simple characterization of a minimal generating 

class for the log convex functions derived by polynomials. 
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Formally this procedure constructs a mixture of distributions generated as 

translations of (1.1) for k = 0,1, ... and for a polynomium in, say, n 

variables, a mixture of n-dimensional distributions each consisting of indepen-

dent variables generated by translations of (1.1). It is, however, not a true 

mixture, because the weights might be negative, and for k odd the integrand 

in (1.1) 1S not necessarily positive. The most interesting results follow from 

choosing the weights as negative as possible. 

It is not necessary to use product measure or the same e for x and y. 

By choosing different measures another class of log convex functions can be 

found. The results actually generalize to multidimensional families, which 

can be exemplified by the two-dimensional family 

Z 
exp (elxl + eZxZ)].l(dxl , dxZ)I<P(el,e Z). By use of the polynomium (xl-xZ) 

we get a family with normalising constant dZ~/delz - Zdz~/deldez+dZ~/deZZ, 

proving that this function is log convex. 

If ].l 1S concentrated on the nonnegative numbers ~(n)(e) 1S log convex 

for all integers n. Using the method in this paper also many other log 

convex functions can be found in this case as well as in other cases with 

observations concentrated on a subset of JR. For those cases there seems not 

to be results concerning positive polynomials in general, but there are some 

results for polynomials in one variable and excluding exponential terms. 

Polynomials of one variable, which are nonnegative on the nonnegative numbers 

can be written on form p (x) = Pl (x) + x Pz (x), where PI' Pz are poly-

nomials, which are nonnegative on the whole real aX1S. Thus compared to the 

real case the only extra positive polynomium of degree less than or equal Z 

1S p(x) = x, saying that cp' (e) is log convex. For ].l concentrated on [0;1] 

the positive polynomials of one variable can be represented by 

p(x) = xPl (x) + (l-x)PZ(x), where Pl(x) and PZ(x) are nonnegative on the 

real aX1S. Compared to the real case we get x and 1 - x of degree 1, 
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yielding log convexity of <p I (8) and <P(8) - <p 1(8). Of degree 2 the extra 

2 2 
polynomials have the form Pl (x) = (x-a) , P2(x) = (x-b) for some a,b, ~.e. 

p(x) = {l+2(b-a)} x2 + (a2 -b 2 -2b) x+b 2 . For general polynomials it is 

very limited what can be said to characterise them. A simple example for ~ 

concentrated on [0;1] stems from the convexity of ax 
e 

x{exp(a) - l} + 1 - exp(ax) ..:. 0, giving log convexity of 

<p I (8){exp (a) - l} + <P(8) - <p (8 + a). 

which implies that 

If the original distribution is continuous and p not identically 0, 

the function ln ~(8) is strictly convex. If it is discrete, the derived 

distribution might be degenerate in which case the convexity is not strict. 

The functions without exponential terms can be written ~n terms of moments 

~n the original distribution by isolating a power of <p. The examples 
2 

(x - a) 

and 2 
(x - y) above are the functions <p E (X - a) 2 and 2 

<p Var(X). 

The table lists some simple examples and the polynomials used to prove 

the log convexity. The ranges for the constants a and b are described. The 

constants c and d are (possibly complicated) functions of a and b. 
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3. A CONVEX FUNCTION OF THE MEAN 

In the preceding section only functions of the canonical parameter were con-

sidered. This section focuses on the following theorem and its implications. 

Theorem In an exponential family the second moment 1S a convex function of 

the mean. 

; This result has been proven earlier by Shaked (1980) and Schweder (1982). 

A particularly simple class of models is those, for which the secon~ moment is a 

guadratic function of the mean. A unified theory for these models has been 

developed in Morris (1982, 1983). 

Introducing the meanvalue parameter T = EeX and X(e) = ln ~(e), the 

2 conjecture concerns the convexity of f(T) T + X"(e(T», the terms descri-

bing (EX) 2 and Var(X) respectively. The theorem could be formulated in 

terms of the second moment around any given value instead of O. This is 

however, not more general, as the difference 1S an affine function, such that 

convexity is preserved. 

Consider a mixture of distributions from the expo~ential family. More 

precisely let T be a continuous or discrete random variable concentrated on 

o 
T(D), such that each value of T chooses the (unique) distribution from 

the exponential family having mean T. Let X follow that distribution given 

T. The uncondi tional mean is EX = E (EX"IT) = ET, It follows from 

the theorem that Var(X) ~ Var(XIT=T O)' i.e. the variance 1n a mixture is 

larger than the variance 1n the member of the family having the same mean. 

2 
To see this, choose f (T) = ET (X - TO) , the second moment around To' Then, 

2 
uS1ng U(dt) as the measure for T, Var(X) = E(X-T O) = J f(T)u(dt), which 

because of the convexity is greater than or equal to f(T 0) = Var(X/T = TO)' 

This result is not surprising as in practice mixture distributions are chosen, 

when there is some theoretical belief that the distribution is from a certain 
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family, but the variation 1S larger than expected in that family. In short, 

mixtures are used to increase the variation. However in general it 1S not true 

that the var1ance is increased. In location models and in scale models the 

var1ance 1S a convex function of the mean, from which it trivially follows 

that the second moment 1S strictly convex. In those cases and 1n exponential 

families as shown above, the variance 1S actually increased. 

(T r-J N(TO,Q" 2), XiTr-JN(T,o 2) the value 
t x 

For the normal distribution case 

of Var X/Var(XiT = TO) 1S (1 - p 2) -1 , where p is the correlation coeffi-

cient. In other cases that ratio 1S a simple measure of how large the variance 

is compared to the variance in the exponential family. 

Proof of the theorem By twice differentiation of 
2 

f(T) = T + X"(8(T» it 

is found that fIt (T) -2 2 2 -3 
2 + X""(dT/d8) - X'" d T/d8 (dT/d8) . Using 

T(8) = X' it found that f"(T) 2 + 
-2 ",2 ,,-3 Differentiation 1S = X""X" X X 

of g(8) In(~"~-~I2) In X" yields g"(8) X" 
-1 = = 2 In ~ + = 2 + X""X" 

- ", 2 ,,-2 
X X The convexity of g, shown 1n Section 2, implies g"(8) > 0, 

which 1n turn implies fIt (T) g II (8) /X" ~ 0 and thereby convexity of f (T) , 

using that X" = V X > O. If the variance 1S not strictly positive, X 1S 

degenerate; independent of 8 and T varies in a one-element set, in which 

case the result 1S trivially correct. 
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4. CONSTRUCTION OF NEW EXPONENTIAL FAMILIES 

The method of Section 2 yields new exponential families. Some of them have a 

natural interpretation. For example suppose that for a positive random variable 

the probability of sampling is proportional to the variable. This is often 

the case in stereological applications. The distribution in the sample is then 

the family derived by choosing p(x) = x. Another example of the same effect 

is in Hougaard (1984), where the hazard of death is proportional to x and 

the distribution of x among deaths is thus the derived family. 

In most cases, however, the derived distributions do not have a natural 

interpretation in terms of the original distribution, but they might be in-

teresting in their own right. It is for example possible to construct dis-

tributions with several modes. Wewill consider two examples of a different 

kind. 

Starting with the inverse Gaussian distribution, for which a for our 

purpose natural version of the density ~s 

f "( ) / / )i/2 {( ")1/2} -3/2 ( /) " x; 8 ,"<jJ "= \. -W 'IT. exp 2 W 8 "" x exp 8 x + W x , 

for x > 0 and 8 and Ware parameters, 8 ~ 0, W < 0. Letting primes 

denote differentiations with respect to 8 and with 

1/2 -1/2 
~(8,W) = exp{-2(W 8) }(-W) , 

we find 

which is fairly simple. From this we find that the density of the distribution 

derived by the polynomium 
2 

(x-y) ~s 

(-8) 3/2 (_W)1/2 . 'IT -1 exp{ 4 (W8) 1/2Jx -3/2 y -3/2 (x-y) 2 

. exp{8 (x+y) + W(1/x + 1/y)} 
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Also starting with the gamma distribution we can find a two dimensional 

distribution with x and y dependent, fer which the sum z = x + y 

is gamma distributed. 

Besides assuming p(x,y) > 0 for all x,y':::" 0 it is necessary to 

assume that all terms ~n p(x,y) are of the same order, say k. In Section 2 

it is described how to calculate ~(e) such that 

( ) e ( x+y ) 0 - 1 y- 1 / "'( ) p x,y e x y ~ e 

~s a probability density, using the normalising constant in the gamma density 

(~(e) = reo) /eo for 
0-1 

].l (dx) = x dx) . Splitting up after the terms ~n 

p (x,y) the integral giving the density of z = x + y will consist of terms 

each corresponding to a sum of two independent gammas, for which the sum of 

shape parameters is 

normalising constant 

2 o + Y + k. For example p(x,y) = (x-y) 

~(e) r(o)r(y){(o-y)2+ 0 +y} e-(8+y+2) 

yields the 

and the 

distribution of z is then gamma wi th shape parameter 0 + Y + 2. In this 

distribution x and y tend to be different; the density is 0 along the 

line x = y. 

Using the mixture interpretation, cf. Section 2, the result is not surprising. 

It can be considered as a mixture of twodimensiona1 distributions consisting 

of independent gammas such that the sum of the shape parameters constantly 

~s 0 + Y + k. However this procedure allows negative weights, and it is easy 

to check that the weights are allowable; the only criterion being that the 

po1ynomium and thereby the density for (x,y) ~s nonnegative. 
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TABLE OF LOG CONVEX FUNCTIONS 

function 

H8 + 2a) - 2H8 +a) + H8) 

2 
cp" - 2acp' + a cp 

CP"(8) - 2cp'(8+a)+H8+2a) 

cp"cp _cp,2 

~"" - 2 
2acp" + a cp 

cp""Cp - acp" I CP' + (a _ 1)cp,,2 

CP" 2 cp + cp 11 cp 2 _ 2CP , 3 

2 
cp (2n) cp _ cp (n) 

cp (2n) _ 2acp (n) + a 2 cp 

14 

range for a(b) 

JR 

JR 

JR 

[0,2] (JR) 

JR 

[0;4] 

JR 

JR 

[0,4] 

originating po1~nomium 

2 
{l - exp (ax)} 

2 
(x - a) 

2 
{x - exp (ax)} 

( . ) 2 '. x-y 

2 ' 
(x - cy + d) . 

2 2 
(x - a) 

( 2 2)2 x -y 

2 2 2 
(x - cy - dxy) 

2 2 
(x - ay) 

2 
(x - yz) 

( n n)2 x -y 

n 2 
(x - a) 

( 2n 2n d n n)2 x - cy - x y 
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