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SUMMARY

Given a Markov chain (Xn)n>0 , random times T are studied which are birth

times or death times in the sense that the post-T and pre-T processes are in-

dependent given the present (XT—l’XT) at time T and the conditional post-t

process (birth times) or the conditional pre-t process (death times) is again
Markovian. The main result for birth times characterizes all time substitutions
through homogeneous random sets with the property that all points in the set
are birth times. The main result for death times is the dual of this and

appears as the birth time theorem with the direction of time reversed.



1. INTRODUCTION AND NOTATION

An earlier paper, [7], by Jim Pitman and the author, hereafter referred to as
BDC, contained a study of certain classes of birth times and death times for

Markov chains in discrete time with stationary transition probabilities.

Much of the motivation for that paper came from David Williams' [14]

fundamental results on path-decompositions of diffusions, in particular the

one—-dimensional Brownian motion BM(1).

The types of e.g. birth times considered in BDC were random times T de-
termined by the evolution of the Markov chain, with the property that the
post—T process is again Markov with a transition function possibly different
from that of the given chain, and furthermore T should have a conditional

independence property similar to that in the strong Markov property, with past

and future independent given the present at time T .

However, not all discrete time analogues of Williams' path decompositions
are covered by BDC. For instance Williams showed that for BM(l) made transient
by absorption at a high level, the time T of the ultimate minimum of the
path is a birth time and a death time in the sense that given the value x of
the path at time T, the pre-t and post-tT processes are both Markovian and
conditionally independent. But since the transitions for the two fragmenté

obviously depend on x, results of this type are not included in BDC.

One motivation behind the present paper has been the desire to fill this
gap. A first discussion of the larger classes of birth and death times needed
to accomplish this, appeared in the preprint Jacobsen [5], and some of the
fundamentals there are repeated here. But the main results to be given below
deal with a particular class of birth times (and its dual class of death times)
which apart from possessing several nice properties is relevant to the theory

of time substitutions in Markov processes, cf. the papers by Pittenger [11]



and Glover [3].

The main results of BDC provide characterizations of classes of birth times
"and death times formulated as equivalences between objects defined relative to
the probabilistic structure and objects defined in terms of path-algebra. This
interplay between probability theory and path—algebra is also the essence of
the philosophy behind the present paper. What it amounts to technically will be

discussed at the end of this introduction.

One obvious open problem left by BDC was how the results could be carried
over to processes in continuous time. This has now been done by Pittenger [10]
(Theorem 3.9 of BDC on birth times), Sharpe [13] (Theorem 5.2 on death times)
and, most fittingly and most recently, by Pittenger and Sharpe [12] (Theorem

6.2 on times that are birth as well as death times).

Another important recent reference is the paper [2] by Getoor and Sharpe
where they discuss what types of conditional independence are relevant in con-

tinuous time, and provide necessary and sufficient conditions for the different

types to be valid.

The basic reference for this paper is BDC and it may be useful for the

reader to have a copy available.

The notation to be used here .is that of BDC with some minor changes: given
a countable state space J, let 2 . denote the space of all sequences
u)=(w0,w1,...) in J indexed by the non-negative integers N, let
(Xn,nEID be the coordinate process on §, 1i.e. Xn(w)=u%1, and denote by
(Yn,nEZN+) the sequence of tranmnsitions Yn==(Xn_1,Xn) defined for

n€N, _={1,2,...}. Writing F for the (uncompleted) o-algebra on Q spanned

by all Xn’ a probability P on (Q,F) 1is said to be Markov or Markov (p)

if P makes (Xn) a Markov chain with stationary transitions p. If p 1is



the P-law of XO . p* may be written instead of P and, as is the custom,
p* if U is degenerate at x . The following convention is adapted through-
out: the same letter is used to denote a Markov probability (capital letter)

and its transition function (small letter).

Adjoining a state A to J, write JA=JU{A} and let QA be the space

of all sequences in JA that remain in A once they get there. The lifetime

of a sequence w EQA is z(w) = inf{n€N: Xn(w) =A}.

The space QA and the subspace QO= (z <») of paths with finite lifetime

will be used mainly in Section 4 on death times. For objects pertaining to QA’

the same notation will be used as for the corresponding objects on €.

For n€N, the killing operator Kn : Q—>QA and shift operator en :Q>Q

are defined by
Kn(wo,wl,...) = (wo,...,wn_l,A,A,. D NN
Gn(wo,wl,..,) = (wn,wn+1,.. 1 I

For n=1, 0 is written instead of 61 .

A random time is a measurable mapping from £ to the extended time set

N=NU{»} . Given a random time T, XT, YT, KT, GT are defined by local

X =X on (t=n). Also, XT, K, 91.' are defined

identification, e.g.
T “mn T

only on the set (Tt <o) and YT on (0<T<®™) . As a consequence, for in-

stance (YT_= (a,b)) will be the notation for the subset {w:0<Tt(w)<w,

YT (w) =(a,b)} of Q.

For a fixed n€N the pre-n o-algebra Fn is the o-algebra spanned by
(XO,...,Xn) . The atoms An are the sets of the form A= (XO=XO,...,Xn=xn) .

For T a random time, the pre-t o-algebra FT consists of the sets which



are countable unions of sets of the form (i} (A,T=n) where n€EN, A€A or
n

(ii) ome-point sets {w} where 71(w) = .

A random time . T splits the process (Xn) into two parts, the pre-t

process, conveniently identified with and therefore labelled K‘r s, given as
(X 0K ,nEN) = (Xys .o esX _158,0,..00)

and the post-T1 process eT given as

(Xno GT,nEN)=(XT,X )

17"

As discussed earlier, the main theme in BDC and here is to provide equiva-
lences between probabilistic and path-algebraic objects. Thus for instance two
different types of definitions of random times will be used: (i) operational
definitions and (ii) algebraic definitions. Definitions of type (i) give the
properties of a random time relative to a Markov probability, while those of
type (ii) are concerned exclusively with the properties of a random time as a
function on @ . The latter may be implicit or explicit in nature, for example
a description of a random time involving a collection of parameters is explicit
if the parameters may be chosen independently of each other and implicit if

they are interrelated.

For an example, consider stopping (optional) times. Given a Markov probabi-
lity P, T 1is an operationally defined stopping time for P if conditionally
on FT within (T <), eT is Markov with the same transitions p as P. On
the other hand, T is an algebraically defined stopping time if the following
three equivalent conditions are satisfied: (a) (t=n) €E£. for n€EN;

(b) (t<n) EFn for n€EN; (c) 1(w) =inf{n€N:w€Fn} for some sequence
(Fn,nEN) of sets FnEFn . Here one would call (a), (b) implicit and (c) an

explicit definition, because in (a) the sets (r =n) must be mutually disjoint,



in (b) the sets (T <n) must increase with n, while in (c¢) the FnEFn are
arbitrary.

The characterization theorems to be given here, as those presented in BDC

(or Jacobsen [6]),provide probabilistic equivalences between operationally and

algebraically defined objects. For instance, and an easy consequence of the

results in Section 3 of BDC, for stopping times the following is true: a ran-—

dom time T is.an operationally defined stopping time for the Markov probabi-

lity P, iff it is P-equivalent to an algebraically defined stopping time.



2. CONDITIONAL INDEPENDENCE TIMES

In BDC two slightly different notions of conditional independence were used in
the study of birth times and death times respectively: for the birth times
conditional independence of the pre-t and post—-T processes given XT was de-

manded, while for the death times it turned out that the relevant conditional

independence occurs when conditioning on Xr—l'

In this paper we shall use the same conditional independence concept for

birth times and death times as described in the following definition which re-

places Definition 3.11 in BDC.

(2.1). Definition A random time T is called a conditional independence time
for the Markov probability P, if under P .the pre-t and post-T processes

are conditionally independent given YT . o

Thus T 1is a conditional independence time iff there is a conditional di-
stribution of eT given (X ,...,XT) within (0<t<®), or equivalently of

KT given (XT—l’XT"") within (0< 1<), which is a function of the trans-—

ition YT alone.

It should be noticed that conditioning on (XO""’XT) is equivalent to
conditioning on FT and involves in particular the conditioning on the value
of T . By contrast, conditioning on (Xt—l’XT"") does not imply knowledge
of the exact value of T, wherefore in particular, as is essential, the condi-

tional pre-t process has a random lifetime.

It seems most natural to have a unified concept for conditional indepen-
dence applying to the birth time as well as the death time theory. A second
reason for using Definition 2.1 is the following: consider for a real-valued
process in continuous time with, say, right-continuous, left-limit paths, the

time T where the process attains its ultimate minimum. With jumps possible,



the transition function of for instance the conditional post—T process given
the past will in general depend on the transition (XT_,XT) rather than on XT
alone. Translating this into the discrete time situation makes it natural to

study KT and eT given the transition Yr .

The following result provides a useful characterization of conditional in-

dependence times. The proof proceeds exactly as that of Lemma 3.12 in BDC and

is therefore omitted.

(2.2). Lemma A random time T 1is a conditional independence time for the
Markov probability P iff for every n€N_ and every (a,b)€J2 there exists

Fn€Fn, GabGF respectively such that
(2.3) (T=1’1,YT= (a,b)) = (Fn,Yn= (a,b),SHEGab) P-a.s.

or equivalently iff for every mn€ N, and every (a,b)€ J2 there exists

Fn—l,ab € Fn—l , GEF such that

(2.4) (T=n,YT=(a,b)) =(Fn—1,ab’Yn= (a,b),en_IEG) P-a.s. o

Remark Conditional independence times satisfying (2.3) or (2.4) exactly are
not splitting times as originally defined by Williams,see [4], equation (3.3)

or [15], Section III.79. It appears most natural to generalize the definition

there and call Tt a splitting time if

(2.5) (t=n) = (Fn,en_lﬁGn) (nEN+)

for some FnEFn, GHEF . If (2.5) holds with Gn=G not depending on n, T

is a stationary splitting time, cf. [11].

The definition in (2.5) is implicitly algebraic. Lemma 2.2 may now be re-
formulated as stating that conditional independence times are the operationally

defined versions of stationary splitting times (see also the remark following



Lemma 3.12 in BDC and Lemma 2.8 in [11]). The operational definition of general
splitting times demands that KT and GT be independent given YT and T .

m]



3. CI-BIRTH TIMES AND THE CLASS BTR

The purpose of this section is to study various classes of birth times which

are conditional independence times.

(3.1). Definition A random time T 1is a birth time with conditional indepen-

dence (in short a CI-birth time) for the Markov probability P if it is a

conditional independence time for P and if conditionally on Y within

(0<Tt<w) , the post-t process is Markov with a stationary transition function

(depending possibly on YT) . o

As defined in BDC a random time T 1is a regular birth time for P if
there is a transition function ¢ such that conditionally on FT , the post-tT
process is Markov (q). Thus clearly a regular birth time is a CI-birth time.
(Notice that if Tt is a regular birth time for P, the post-t process is

itself Markov without conditioning on the past. This is of course not true in

general for T a CI-birth time).

Suppose P is Markov. Recall that by Theorem 2.3 of BDC, if DE€F with
P(D) >0, then the conditional probability PD=P(- ID) is Markov iff
D= (XO€H,C) P-a.s. where HcJ and C 1is a coterminal event, i.e. C=CVCCJ°

for some VCJ2 with CV= (YnEV,n€N+) and C_€EF invariant for 6.

This result on conditioning events was used in BDC, Theorem 3.9, to give
the following explicitly algebraic characterization of regular birth times:

defining B to be the class of random times of the form

(3.2) Tote

where C 1is an arbitrary coterminal event, ¢ is the associated coterminal

time

TC=1nf{n€N: GnEC} ,
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and p 1is a stopping time for the family (FT +n,n€N) of o-algebras, it was
C
shown that <t 1is a regular birth time for P iff 1 is P-equivalent to a

random time in B . The proof of the theorem also showed that T 1is a regular

birth time for P iff there exists FnEFn, C coterminal such that

(3.3) (T=n)=(Fn,6n€C) P-a.s.

for all n€N, cf. (3.16) of BDC. This observation amounts to an implicitly

algebraic characterization of regular birth times.

The transitions ¢q for 6 are the same as those of P(-[C) and are
given by

g(y)
g (x)

(3.4) 1(x,y) = L, (x,7)p(x,Y)

]

where g(z) =P%(C) .

It is easy to see that instead .of using (3.2), B may be defined as

follows: TEB 1iff there is a coterminal event C and events FnEFn , NEN

such that
(3.5) T(w)=inf{n€N:w€Fn,9nw€C} .

Propositions 3.6 and 3.9 provide two simple implicitly algebraic characteri-
zations of CI-birth times. We are unable to give an explicit algebraic charac-

terization. The main results below deal with the properties of the explicitly

defined class BTR, see Definition 3.14.

Proposition 3.6 is the analogue of (3.3), and is proved exactly like that
using (2.3), the fact that for a random time <t satisfying (2.3) the condi-
tional distribution of the post-T process given FT within (YT = (a,b)) 1is

Pb(° |Gab), and the characterization of conditioning events quoted above.
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(3.6). Proposition A random time T is a CI-birth time for P if and only

if for every n€N, and every (a,b)EJ2 there exists FnEFn and coterminal

Cab respectively, such that

(3.7) (t =n,YT = (a,b)) = (Fn’Yn= (a,b) ,enECab) P-a.s. o

Notice that if 1t satisfies (3.7) exactly (no exceptional sets), then T
is a stationary splitting time with the G=Gn of (2.5) given by
(3.8) G= (aL’Jb) (Y1 = (a,b),0 € Cab) .

With T a CI-birth time for P we shall write Ay for the tramsition
function of the post-t process given YT = (a,b). Thus, if T satisfies (3.7),

dp is the transition function for the Markov probability Q:b =Pb(- Icab) .

The second characterization of CI-birth times 1s an observation due to
J.W. Pitman (private communication). It follows immediately from the defini-

tions of regular birth times and CI-birth times.

(3.9). Proposition A random time T 1is a CI-birth time for the Markov pro-

bability P if and only if, for every (a,b) €J2 the random time Tab de-

fined by

i T on (YT = (a,b))

T = .
ab | © otherwise

is a regular birth time for P.

Of course Theorem 3.9 of BDC provides an explicitly algebraic characteri-
zation of each Tap But to obtain from this an explicitly algebraic charac-
terization of all CI-birth times requires that the 1 be chosen simul-

taneously in such a way that the sets (Tab <) = (YT = (a,b)) be disjoint,

and it is not at all clear how this should be done.
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Consider a CI-birth time <t for P satisfying (3.7). Since, when ignoring

somenull sets, the sets on the right are mutually disjoint for =n, (a,b)

varying, it is clear that for P-almost all w

(3:10) (W) ~inflR€N, 1w E€F 80 ECy ()},

cf. (3.5). The main difficulty arising when attempting to characterize CI-birth

times in an explicit algebraic fashion rests on the fact that the converse is

not true: given an arbitrary collection (Cab) of coterminal events and

AFHEF , if T 1is defined by (3.10), it is not in general true that (3.7)

n

holds (exactly rather than a.s.) no matter what is the choice of the Fn’ Cab

appearing there. We shall now discuss systems of coterminal events for which

the implication (3.10) to (3.7) holds (for all choices of Fn) .

For the two definitions below, let (= (Cab) (a,b)EJz be a collection of

coterminal events. The inclusion > is nom strict, allowing for equality.

(3.11). Definition ( 1is a transition reproducing collection of coterminal

events if (a,b)pr(c,d) implies that either CabD(XO=d,Ccd) or

(X0=d C chd) =0 . Here (a,b)pr(c,d) means that there exists € (X0=b,Cab)

and n€N+ such that Yn(w) =(c,d) . o

Let p be a stochastic transition function on J.

(3.12). Definition C is tramsition reproducing for p if (a,b)pr(p) (c,d)

. . d_ ) d
implies that either C,p2C.q P —aws. or Cabccd—q) P -a.s. Here

(a,b)pr(p)(c,d) means that

[ee]

b
> P (Cab,Yn=(c,d))>O .
n=1

Given a Markov probability P we shall call C transition reproducing for

P if ( 1is transition reproducing for the transition function p of P.
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It seems plausible that if ( satisfies the operational definition (3.12),

may be replaced by a new coterminal event C*b such that

then each C
al

ab

Cab =C:b Pb—a.s. and C* = (CZb) satisfies the algebraic definition (3.11),

but this fact is not verified here.

Definition 3.11 puts some implicitly given constraints on the Cab . There
does not appear to be any explicit receipt for describing all transition repro-
ducing (. Of course ( 1is transition reproducing if all Cab=c . A more

subtle example is the following

(3.13) . Example Let (C'.) be an arbitrary collection of coterminal
_ b 2
(a,b)€d
events and define

= * '
Cab (Yn € Vab’n € N+,Cab)

where
* = e Ot [}
vab {(x,y) : Cab o ny}

Then we claim that (= (Cab) is a transition reproducing collection of
coterminal events. To see this, suppose (a,b)pr(c,d), and find w, n with

w€ (Xo=b,Cab),Yn(w) = (c,d) . We shall show that CabD (X0=d’Ccd) .

. . .. *
Firstly, by the definition of Cab and because wGCab, (c,d) Evab and

. = . . . ..
C But then to show that w'E€ (XO d,Ccd) implies w €Cab , 1t is

1 1

abDCcd :
1 = . . 1Y .€ vk

enough.to see that w'€ (X0 d,CCd) implies Yk(m )€Vab for all k€N+,

. . . % .
. Since by assumption Yk(m )EVcd , 1l.e.

. voo e ' '
1.e. implies CabDCYk(w')

' ' . ' ' . . . . .
CcdDCYk(w') , and since CabDCcd , the implication is evident.

We shall now show that transition reproducing collections of coterminal

events lead to a universal class of CI-birth times.
(3.14) . Definition Let BTR denote the class of random times 1 of the form

(3_15) T(w) =inf{n€N+ :wEFn,enwECYn(w)}
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where for every n, FnEFn and where (= (Cab) (a,b)€J2 is a transition re—

producing collection of coterminal events. o

(3.16) . Proposition Suppose T belongs to the class BTR. Then T 1is a CI-

birth time for any Markov probability P.

Proof We shall show that T satisfies (3.7) exactly (with the Fn there
not the Fn from the definition of tT) . Clearly t(w)=n and YT(u)) = (a,b)

iff Yn(w) = (a,b), enwECab and for all k, 1<k<n omne of (i), (ii) holds:

(1) w¢ F

(ii) ekw ¢ CY (@)
k
oo 3 oo 3 .
Represent each C as (Y €V_,m€EN ,C_ ) with C invariant. Then
X m Xy +7 Xy Xy

define

v2y={(u,V) : (x,y)pr(u,v)} ,

recalling the meaning of pr from Definition 3.11. In particular nycvxy .

We claim that subject to 1(w) =n, YT(w) = (a,b) , for every k, l1<k<n,

it is true that (i) or (ii) holds iff ome of (i)', (ii)', (iii)"' holds:

(" w ¢Fk
.. : 0
' (

(ii) Yﬂ\w) eva(w) for some £, k<£<n

. .. 0

iii)’! Y EV for all £, k<A< = =
(iii) o () Y, () or , Sn and (X;=b, CYk(w) Cp) =0 .
Since these three conditions involve only Wys e s the proposition will

then be established.

Now fix w with 71(w) =n, YT(w)=(a,b) and k with 1<k<n. Suppose
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that wGFk . Write (x,y) =Yk(w) . Then (i) or (ii) is equivalent to one of
(1)', (i1)' or (iii)" where
... 0
1"
(iii) Yz(w) EVYk(m) for all £, k<£<n and enwgcYk(w) .

This is clear if in (ii)' and (iii)" V is written instead of V0 . But

the definition of VO ensures that
X, =y CC)D(X =y, Y QVO for some mEN )
0 “’’xy 0 7’ m  'xy +

and this together with ngcvxy shows that the use of VO instead of V 1is

legitimate.

The proof is completed by showing that (with the assumptions about w, k
made above), (ii1)'e>(1ii)" . Here = 1is evident because enwE (XO =b,Cab) .
Conversely, if (iii)" holds, we have (x,y)pr(a,b) by the definition of V?(y,
hence since ( 1is transition reproducing, either (X0=b’cxycab) =0 or
CXyD (XO =b’Cab) . Were the last option possible we would have kaG ny
because enwE (XO =b’Cab)chy and Yﬁ(m) €Vg§ycvxy for k<£§n , and
since wEFk by assumption this would force t(w) =k contradicting the
assumption tT(w) =n. Thus necessarily (X0 =b,CXyCab) =@, and we are back
to (iii)'.

Remark Taking Fn=52 for all =n, it follows in particulgr from the proof
that if C is transition reproducing, then inf{n : 6 €C, } 1is a random time

n
satisfying (3.7) exactly. Thus there exists FﬁEFn such that

_ .0
(3.17) (6k¢CY ,l§k<n,en€CY )_(Fn’enECY ) (n€N+).
k n n
Introducing G as in (3.8), we have emeCYm(w) iff em_leG, so

(3.17) may be written

€ G) (n€N) .

c _ 0
(ekEG s O§k<n—1,6n_1€G) —Y(Fn,en_l
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Also 1= inf{n€N+ : en_1€ G} so (with a minor modification), T 1is one of
the penetration splitting times characterized by Pittenger [11], Theorem 4.4.
o
(3.18). Example The class of random times T of the form (3.15) with (C as
in Example 3.13, is the class BO first introduced in [5]. Specializing further
one finds that with £ :J2—>R some function, the times T and T given as

the first, respectively the last time that the sequence (f(Yn), n(EN+)

attains its ultimate minimum, both belong to BO.

It was shown by Millar [9], that =, T are CI-birth times for a wide class

of Markov processes in continuous time. o

It is easy to give examples of CI-birth times 1 for a Markov probability

P such that Tt is not P-a.s. equal to a member of BIR. But apart from the

explicit description (3.15), the times in BTR possess a number of nice proper-

ties, as we shall now see.

Suppose that o0>0, T>0 satisfy (3.7) so that for Fn’GnEFn and Cab’Dab

coterminal, the identities

(G =n’YO' = (a9b)) = (FH’YI’I = (a,b) :ene Cab) s

(3.19)
(T =n,Y = (c,d)) = (Gn,Yn =(c,d),6 €D _,)

hold exactly for n(EN+, (a,b), (c,d)Eszr Now consider the random time

p=O+T060.Then

(b =0, = (a,5),Y = (c,d)) = (8 = (c,d),8, €C D )

n,cd’Yn

for suitable H €F , and consequently for P Markov
n,ab n

p— = = d °
(3.20) P(ep € F Y= (a,b),Yp = (c,d)) =P ( lcachd)

Thus p will not be a CI-birth time for P wunless for all (a,b),(c,d)
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. _ _ . . d_
with P(Yo = (a,b),Yp =(c,d)) >0, the inclusion CabDDcd holds P -a.s.
However with the proof of Proposition 3.16 and Definition 3.14 in mind, the

following result is not surprising and easily proved.

(3.21) . Proposition If ¢>0,t >0 belong to BTR and both satisfy (3.15)
with the same family ( of coterminal events, then also p€BTR and satis-

fies (3.15) with the collection ( ,where p=0c+To 60 . o

This result provides one explanation for the terminology 'transition repro-
ducing' in Definition 3.12:1etP be Markov and let .y, be the common transition
function for P(eKG . IYK= (a,b)) where k=0,T or p . Then not only are the

(qab)(a,b)EJZ the transition functions for Gp given Yp , but they

also arise by the two stage procedure consisting in firstly considering the

post—0 process given Yc and its distribution, and then secondly, for this

new process, evaluating the transitions for the post-T process.

The main result of this section gives a characterization of homogeneous

random sets with all points CI-birth times, in terms of collections of times

in BTR.

By a standard definition a process (Un)nEN defined on (Q,F) 1is homo-
+

geneous on N_ if

(3.22) Un+k=Uno ek (k,nEN,_I_) .

(Usually (3.22) is required to hold only outside an exceptional set, but here
we shall assume that it is an identity om all of @ for all k,n. Note that

we require homogeneity only for k,n>1) .

A random subset M of N+ is homogeneous if (Un) is homogeneous,

where Un=1(n€M) . In terms of M, (3.22) becomes

(M-k) NN, _=Mo 6, (KEN,) ,
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writing A-k={fL-k:£L€A} for A a subset of N, . (That M is a random
subset of N+ means that for every o there is defined a subset M(w) of N+

such that w- 1(n€M) (w) 1is F-measurable for every n€N+) .

In discrete time the structure of homogeneous processes is of course very

simple: let U=U1 and take n=1 in (3.22) to find

U =Uo®__, (mEN,) .

Conversely, given U measurable, (Un) defined this way is homogeneous.

Similarly, if M 1is a homogeneous random set, then

(3.23) M={n€N_:0__ €G)

where G=(1€M) . Conversely, given GEF, M defined by (3.23) is homogeneous.

Given a random subset M of N+, let TisTgsees denote the points of M

=inf M, T =:'Lnf{n>1:1 :n €M} etc.

in increasing order of magnitude. Thus T 2

In particular

(T1=1) =(lEM) .

In order that Ti(w) be defined for all w, we adopt the convention that

=00

if the cardinality IM(w)I of M(w) 1is < i, then Ti(w) =Ti+1(w) = ...

Thus
(T1=°°) = (M=¢) s

a . <T. o . <o) ,
nd T,<T;y OB (Tl )

In this section, when writing M={T1,T2,...} , we shall always assume the

T, to have been defined in this manner.

It is easy to see that M={’E1,T2,...} is homogeneous iff T is of the

form
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(3.24) Ti=Ti_1+TOGT. >
i-1

with T= T satisfying
(3.25) T=1nf{nEN+ : en_1€G}

for some GEF .

For arbitrary M, introduce (Zi) is1° the process of transitions made at

Z.=YT . Then Zi is defined only on (Ti<00)

the timepoints in M, i.e. i

i
“and the process (Zi) may have finite lifetime. Also denote by Gi the

smallest o-algebra containing FT s ..,.7_7’T . (Thus GiDFT , but in general
1 i i
the inclusion may be strict, also if M is homogeneous . If for every j<i,

T. 1s F -measurable, then G.=F ).
] T, it

We shall show

(3.26) . Theorem (a) Let P be Markov and let M={T1,T2,...} be a homo-

geneous random set. Suppose each T, is a CI-birth time for P with respect

to Gi such that the transitions for GT given Gi do not depend on i,

i
i.e. for all i, (a,b),

b
P(eTiE -16,) =Q

_ b . . .. .
on (Ti<°°, Zi— (a,b)) , where Qab is Markov with transitions 9 and ini

tial state b . Then there exists a collection (= (Cab) of coterminal events,

transition reproducing for the transitions. p of P, such that

- . 1 -
M={n€N_:06_ _, €G"} P-a.s.
where G'= U (Y,=(a,b), 6€C .) . Also necessarily, for every i,
1 ab

(a,b)

F =G. P-a.s.

T. i
i

(b) Let C= (Cab) be a transition reproducing collection of coterminal events
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and let M= {ry5T9s-- -} denote the homogeneous random set {n€N_ : 6 1 €G!}

where G= U (Y,=(a,b),0€C ). Then <tT.€BTR and F_ =(G. for all i and
1 ab i T. 1
(a,b) 1
with respect to any Markov probability P, each T, is a CI-birth time for P

with
P8 €-17_ ) =P°(-IC_.)
T. T. ab
i i
on ('I.'i<°°, Zi= (a,b)) , in particular the transitions for GT given FT do
i i
not depend on 1i.

Proof (a) Since FT CGi , each TS is an ordinary CI-birth time for P,

i . . A
hence by Proposition 3.6 we can find Fr(ll) EFn and Ca(llt) coterminal such that

(1),

(3.2)  (1;=n,7; = (a,b)) = (Ffli),Yn= (a,b),0_€cld P-a.s.

for every i,n,(a,b) . But then on (Zi= (a,b))
- pP (1)
(o €17 ) =2 (-Ic))
i i
and since by assumption the right hand side must not depend on i we deduce
(1) _ () b ... _
that for every (a,b), Cab =C P -a.s. for all 1i,j with P(Zi (a,b)) >0,

ab
P(ZJ. = (a,b)) >0 . It follows that (3.27) may be assumed to hold with C;t)= Cab‘

coterminal not depending on i provided (a,b)€R:={(x,y): ZP(Zi = (x,y)) > 0}
i

and for (a,b) ¢ R we may and shall take Cab=® .

With (= (Cab) as just found, define G' as in the statement of the
theorem and put M'= {n€N+ : en—l €G'} . The definition of M and (3.27) (with
C&E;) replaced by Cab) show that McM' P-a.s. For the opposite inclusion,

write M={n€N+ : en_1€G}, let (a,b) ER and find i,n and an atom A of

Fn . Ac:(Yn= (a,b)) , such that P(A,'ri =n)>0. With (Ti=n)A the section of

(Ti=n) beyond A (cf. BDC, Definition 2.7), we find that on the FT -atom
i

(A,Ti =n)



- 21 -

‘ _b
. FT.)—P (
i i

1?(9T € - (ri=n)A) >

. . b b
hile b 3.27) this also equals P (°|C . L= = -
W y ( ) q (+]C,). Consequently (t; =n), C, P-aws.
. ... _ b _ _
and since by the definition of M, (Ti —n)AcGab P a.s. where Gab

{w:w0=b,(a,b,w1,w2,...)EG} it follows that CabCGab P"~a.s. and
' =
P (n € M'~M) P(enecYn,en_1 ¢c)

= . %)ERP (Y_=(a,b),0_€C_,,0 . ¢GC)
b

b
= > P =(a,b))P (C .G )
(a,b)€R n ab ab

=0 .

So we have shown M=M' P-a.s. Writing M'={t',7!,...}, it is then
1’72

clear that Ti=Ti,FT =FT"G]!_=Gi P-a.s. for every i . We complete the
i i
proof by showing that (C is transition reproducing for p, and that FT =Gi
i
P-a.s. But if ( 1is transition reproducing it is easy to see that T:!L_l is

measurable with respect to the P-completion of FT, or F'r , (an argument
i i
for a similar assertion is provided in the proof of (b) below), hence so is

T.

and ¥ =G. P-a.s. follows.
i-1 T 1

i
The argument that ( 1is transition reproducing is more lengthy and uses

that T, is CI-birth with respect to Gi rather than just FT
i

Let i<j and (a,b),(c,d) be given such that P(Zi = (a,b) ,Zj = (c,d)) >0.
Then find k,n€N+ , an Fk-atom'AC (Yk= (a,b)) and an Fn—atom
BC(XO=b,Yn=(c,d)) with PD>0, where D=(A,Ti=k,6k€B,Tj=k+n) . Since

T. 1is G.-measurable, DEG. and
1 J J

d
(3.28) P(GT.E- D)—QCd
J
because T. is CI-birth relative to GJ. . Here as below we write Q}}:y=

Py (- C. ). The conditional probability may however also be found using that
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T, is CI-birth. Using the homogeneity of M, which implies in particular that

T.=T.+T. .08 on (T,<w), we find
T i

PO €B,Tj =k+n,0_ €- IA,Ti =k)

i N
=P(® €B,T. .06 =n,0 06 _ €-|A,T,=k)
T. J-1i T. T, . T. 1
i 1 J-1 i
=Qb (B,T. .=n,0 €+)
ab’ -1 ? Tj_i

and from this it follows directly that

B’Tj—i =n)

- oP .
P(eTj €-|p) = Q,, (6, €

Using the Markov property of Q];b at time n shows the right hand side to

equal Q:b(' (T._i=n)B) , and comparing with (3.28) we therefore find

d d

Q5g = QI (rs_y=mp)
. b _ b d _.d,. d _
Now not only is Qab—P ( Cab)’ ch—P ( Ccd) , but we also have Qab
d
P( Cab) . Thus
d

4
Cog) =P (+1C s (tsy

pY(- =n)y)

. _ _ d_ . . - _
i.e. Ccd—(Cab,(Tj_i—n)B) P -a.s., in particular CCdCbab P a.s.

Summarizing we have shown that if i<j, then

(3.29) P(Zi=(a,b),2j=(c,d))>0f»»C(:dc:Cab P -a.s.

We must show (see Definition 3.12) that (a,b)pr(p)(c,d) implies Ccdccab

Pd—a.s. or Pd(cab Ccd) =0 . By assumption n may be found with
(3.30)  PP(C_.,Y =(c,d)) =P°(Cc_)Q° (Y =(c,d)) >0
’ ab’'n ’ ab’*ab''n ’ ?

in particular Cab #¢@ and (a,b) €ER. If (c,d) &R, Ccd=¢ and there is

nothing to prove, so we may also assume (c,d) €ER.
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Now find i with P(Zi= (a,b)) >0, and consider the two possible cases:

(i) =>0, (ii) m=0, where

(3.31) 1T=P(Zi=(a,b) ’YT.+n= (C’d)’eri+neccd)
i

In case (i), the identification between M and M' shows that P -a.s.

(z;=(a,b),Y_, =(c,d) ,eTimECcd) ngi(zi = (a,b),2; = (c,d)) ,
1

d .
and then w>0 and (3.29) gives Ccdccab P -a.s. as desired.

In case (ii), because T is CI-birth we have
b -
O=P(Zi_ (a’b))Qab(Yn— (C:d)sengccd)
-p(z, = P (v = (e, )
_P(Zi_(a’b))Qab(Yn— (Cs ) Qab ed

The first factor is > 0 by assumption, the second is > 0 by (3.30) ,
d 3 . d A d -
hence Qab(ccd) =0, i.e. P (Ccdlcab) =0 or P (Cabccd) =0 and the proof of

(a) is complete.

(b) Since T satisfies (3.15) with Fn=Q > Ty € BTR . Now T, =

1

Tig*Tq0 GT » SO0 using Proposition 3.21 and proceeding by induction it is
i-1

clear that each TiEBTR and that (3.15) holds with (Cab) the given collec-

tion € . That each T, is CI-birth for any P as stated, follows then from

Proposition 3.16.

To show that FT =Gi we must check that Tj is FT -measurable for
i i
j<i. But on the F_T —atom A = (XO =Xq» cee s X =X 5T, =n) , only those time-
i
points k<n can belong to M for which CX D(X0=xn,CX x ),
k-1%% n-1"n
among these exactly those succeed for which (x ,X,) EV for k</f<n.
£=1°"4 1%
Thus MN{l,...,n-1} and hence also Tj is constant on A. u}

and then

The starting point in Theorem 3.26 is a homogeneous random set M, i.e. a



- 24 -

set with a specific algebraic structure. It is then shown essentially that the
points in M are CI-birth times iff the set G characterizing M (cf. (3.23))

has a special form which is described explicitly algebraically.

Alternatively one might have taken an arbitrary random set M=¥{Tl,12,...},
assuming as in Theorem 3.26 (a) that each T, is CI-birth for P . This how-
ever would allow for the possibility M={t} with T an arbitrary CI-birth

time for P, and as maintained above, no explicit algebraic description of

such T appears possible.

As we shall presently see, Theorem 3.26 has connections to results in [3],

[11].

Suppose that the conditions in Theorem 3.26 (b) are satisfied and let P

be Markov. Because

00
T

Z; =2

i-1
on (Ti-<a$ , 1t 1s easy to see that the process Z==(Zi)iEN (which may have
+

finite lifetime) is Markov with transition function

a((a,b), (e, d)) =P (2, = (c,d) IC ) .

Thus the Markov chain Z is obtained from a time change in the original

chain P . Time changes of this type were discussed by Pittenger [11] - if

above Cab==Cb depends on b only, then (XTi)i€N+ becomes a Markov chain

and we have an example fitting exactly into Pittenger's theory.

More generally Pittenger considered time changes M=={T1,T2,...} (here we

take Z rather than (XT ) to be the time changed chain) such that Z is
i

Markov and each T, is a conditional independence time for P (but not

necessarily. CI-birth). One essential algebraic condition on such M 1is
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(3.32) Ti=Ti_1+O'o OT' ,
i-1

see [11], (3.5b). This leads of course to much more general time changes than

those treated in Theorem 3.26, even if all T, are required to be CI-birth.

For an example, let (' be transition reproducing, let o be given by (3.15), put

T, =0, and define T by (3.32). Then the T satisfy (3.5a,B,c) of [11] and

1
therefore e.g. Z is Markov with respect to any P. (The set I in [11] is the
~set G from (3.8)). However, because of the Fn appearing in (3.15), M= {Tl,rz,.,..}

will not in general be homogeneous. The time change corresponds to taking only

a subset of the full homogeneous set {n>1:6 1EG}, G as in (3.8).
2 n—

We shall also discuss the relation .of the preceding to the time change re-
sults of Glover [3]. Translated into discrete time and the setup used here,
his Theorem 1.5 states the following: let A= (An)nEN be a raw additive func-
tional (RAF) defined on §Q with A0=O and suppose that for all n€N_,

A :=A =-A is either 0 or 1. Define for i€N
n n n-1 +

T, = 1nf{n€N+:An= i} ,

and suppose finally (condition (a) of Theorem 1.5, [3]) that for every i,

(3.33) Anl(n__<_1:i)

is FT -measurable for n€N+ . Then with respect to any Markov probability

1

P, each T is a conditional independence time and Z = (Zi)’ Zi=YT , 1s a

i

Markov chain.

By definition, A 1is a RAF if Ak+n=Ak+Ano ek exactly for all k,n€EN.

If also AAn=O or 1, necessarily

A =73 1.06 |,
noo 6K

where G= (A1 =1) = (AAl =1) . But then (AAn= 1) = (en_l €G) ,and it is clear
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that the time change determined by A 1is the same as that induced by the homo-
geneoﬁs random set M= {n :Sn_1€(3}, and that all time changes from homo-

geneous M arise from RAF's in this manner.

The extra condition (3.33) is critical when establishing the Markov proper-
ty for Z . A little path algebra shows it to be equivalent to the following

condition, expressed in terms of G: for every n€N+ there exists FnEFn

such that

(G,6__

L1 €O =(F_0__,€6) ,

which except for a small modification is condition (b) of Theorem 4.4, [11].

So the time changes in [3] appear as special cases of those in [11].

Summarizing the above discussion, we have encountered three types of time
changes: those in Theorem 3.26 involve homogeneous random sets with all T
CI-birth times; those in [3] are induced by homogeneous random sets with all
T, conditional independence times; and finally those in [11] arise from cer-—

tain subsets of homogeneous random sets with all T conditional independence

times.

Throughout this section we have discussed CI-birth times T which by de-
finition obey a strong Markov property involving conditional independence of
the pre-t and post-t procesées given YT . Other authors have studied birth
times where this conditional independence occurs when conditioning not only on

YT but also on some auxiliary FT—measurable variable.

Thus, in [8] Millar has introduced (for processes in continuous time)
randomized coterminal times and shown that if T 1is such a time, then condi-
tionally on FT the post-T process is Markov with a transition function de-
pending on XT and a FT—measurable variable U . Therefore, unless U is

a function of (XT_,XT) , T will not be a CI-birth time.
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Millar's definition of randomized coterminal times is quite complicated.
Simpler examples of birth times with a conditional independence property in-

volving an extra variable can be found in Getoor [1].

From (3.19) it follows that with o, T given by (3.19), the random time
p=0+ToO 90 will be a birth time with the kind of conditional independence
discussed by Millar and Getoor, provided YG is Fp-measurable. Finally it

may be remarked that Millar points out that the class of randomized coterminal

times is closed under the addition (o,T)—=>0+ToO 60.
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4. CI-DEATH TIMES AND THE CLASS DTR

This section contains the definitions and results which are the death time

analogues of those in Section 3.

(4.1). Definition A random time T 1is a death time with conditional indepen-

dence (in short a CI-death time) for the Markov probability P if it is a

conditional independence time for P and if conditionally on Y. within

(0<t<») , the pre-t process is Markov with a stationary transition function

(depending possibly on YT).

According to a definition in Section 5 of BDC, a random time T 1is aregu—

lar death time for a Markov probability P if the pre-t process is Markov (q)

for some (substochastic) transition function q with the pre-t and post—-T pro-

cesses conditionally independent given 0<T <o and XT—l'

Any regular death time for P is a CI-death time. This statement is not
as transparent as the similar one for birth times, so we shall produce an

argument and at the same time introduce some notation.

Recall that if Q 4dis a Markov probability on QA with initial measure v
and transition function ¢, such that (Xn) with positive probability ,

has finite lifetime, then the process reversed from the lifetime defined

by the reversal transformation R :QA—aQA given by

j XC-l—n if n<g<o
A otherwise

A

is again Markov with a substochastic transition function q on J . Here

(4.2)  qxy) = aly,0E ()

(=]

for x,y€{0<g<w} with &(z) = ZQ(Xn=z) .
n=0
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Therefore, if T 1is a regular death time for the Markov probability P on

@, the reversed pre-t process Ro KT is Markov with stationary transitions,

hence so is RoKT given T<w and for this latter process conditioning on

XT_1 simply amounts to freezing the initial state, so that RoKT , and there-

fore also Ro RoKT =KT , conditionally on XT_1 is Markov with stationary

transitions. By the conditional independence property shared by all regular

death times it now follows that any regular death time is a CI-death time.

The main result, Theorem 5.2, in Section 5 of BDC states that a random time

T 1is a regular death time for the Markov probability P* iff t is P*-

equivalent to a random time in the class D. A remark in BDC shows how this result

may be generalized to Markov probabilities with a non-degenerate start. Since

we shall work with this generalization here, we shall redefine D and restate

the regular death time theorem.

If HcJ, VCJ2 , let Tay denote the modified terminal time

J'O if XOEH

(I .
W | inf{n€N, :Y €V} otherwise .

The class D 1is now defined to comprise all random times T of the form

(4.3) T=sup{n:1l<n< Tay? Sn_IGF}

for some HcJ, VCJz, FEF . (By the usual convention t=0 if the set in

brackets is empty; in particular T=0 on (XOEH)) .

Then the following is true: T 1is a regular death time for the Markov

probability P iff 1 is P-equivalent to a random time in D.

As pointed out in BDC, the results on regular birth times and the corre-
sponding results on death times are duals. This duality is prevalent also in

the theory of CI-birth times and CI-death times, so the death time results
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will be presented in the same order as their analogues in Section 3. Also, to

keep down the length of the paper, we shall not give proofs.

In the death time theory the counterpart of a coterminal event is a se-

quence T-= (Tn,n€N+,) of terminal events

(4.4) TV = (X, €H,Y, €V, 1<k<n)

where HcJ, VC..T2 are sets not depending on n . Of course the invariant

part of the coterminal event is matched by the initial part (XOEH) of each

T . Notice that T €F . .
n-1

The notation from (4.4) will be used below with subscripts ab where
(a,b) €J2 . Notice that there is really a switch in notation from (4.3) to
(4.4): (4.3) forbids transitions in V prior to T while (4.4) demands that
all pre-n transitions belong to. V. Of coﬁrse (4.3) is modelled upon the defi-

nition of D from BDC, but in the remainder of the section we shall use the

notation (4.4).
The first two results are the duals of Propositions 3.6 and 3.9.

(4.5). Proposition A random time T is a CI-death time for P if and only

cJ, Vé1 CJ2 such

if there exists FE€F and for every (a,b)EJ2 subsets Hab b

that

(4.6) (t=n,Y_ =(a,b)) = (sz,Yn= (a;b),6__, €F) P-a.s.

for n€N+ .

(4.7). Proposition A random time T is a CI-death time for the Markov proba-

bility P if and only if for every (a,b)€J2 the random time Tob defined

by
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{T on (YT = (a,b))

(4.8) T, =
' 0 otherwise

is a regular death time for P.

Suppose that T 1is a CI-death time for P so that (4.6) holds. Consider

(a,b) with P(YT = (a,b))>0, introduce

[ee]
Jab ={x€J: nEOP(Xn=X,n< T <00,YT =(a,b)) >0} ,

the state space for K. given YT = (a,b) . Straightforward calculations show

that KT given YT = (a,b) 1is Markov with transitions

8.1 (¥)
Qgp (%5 =p(X’y)lvab(X’y)§m (x,7€J 1)
where
oo
gab(z) = n=1PZ(Yk ¢ Vab’l <k< n,Xn_1 =a)

However, the symmetry between the birth time and death time theories is
brought out more clearly by considering K. reversed, as was done in Theorem
of Jacobsen [6], and leads in a natural way to the death time analogue of

Theorem 3.26.

Introduce §&(z) = X P(Xn= z) and the transition function in natural
n=0
P-duality to p (cf. [6]),

p(x,7) = E(N (T, 0 E T ()

Without loss of generality we may assume & >0, and then p(x,y) 1is de-
fined if £&(x),£(y) <. For convenience we now assume &<o (so the P-chain

is transient), although it is enough that £<o on the state space UJab for

K_.
T

~

. n . .
Corresponding to (Tab)n€N+ there is a natural dual coterminal event cab
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which is a subset of the space QO==(§-<a0<:QA of paths with finite lifetime,

namely

~ ~

(4.9) Cab= (YkGVa ,1 §k<C<°°’X;—1€Hab)

= (Yke'vélb u (Hab x {A}) U {(A,A)},k€N+) ,

where of course

~

Vab ={(x,y) €J2 : (y,%) EVab} .

(About notation in the sequel: symbols with a " refer to objects pertaining to

the path space QO) .

A~ A

(4.10). Proposition With P,P,Cab as above and T satisfying (4.6)

Y= (a,0)) =P*(-[c )

(4.11) P(RoKTE-

Remark This result states that the distribution of KT reversed given Y.

~

(a,b) 1is the same as that of 6. given Y, = (b,a) for a process P 1in
T T

natural duality to P and with T a CI-birth time for P satisfying (3.7)

~

P-a.s. wi C ny.
a.s. with the Cab there replaced by the dual Cab of (Tab) ol

Proof Both chains under consideration start in a, so to prove (4.11) it
remains to identify their (substochastic) transition functions which by (4.2)

and (3.4) are

A

e(y)qab(y,x)e—l(x) and lﬁ (x,y)ﬁ(x,y)%(y)

ab g(x)

respectively, where

o
e(z) = I P(X_=z,n<1<»|Y_=(a,b)) ,
n=0 n T

~ AZ ~
g(z) =P (Cab)
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It is essential to note, and fairly obvious to verify, that the two chains

have Jab as state space. Inserting the expressions for 41 and p above, it

is seen that we need only show that the functions eg_l and £g are propor- . -

~

tional on Ja (We write g=gab) . Now

b
e(z) = X P(X =z,n<1<»,Y_=(a,b))
n T
n=0
=3 X P(Xn=z,T=k,Yk= (a,b))
n=0 k>n
- r rpx =z,T1;b,6k_1€F,Yk=(a,b))
n=0 k>n

and using the Markov property at times n and k-1 (recall that TlngFk_l)

this reduces to

[e o]
g(z)Pa(Xl =b,F) I P(X_=2,T
n=0

n+1
ab ) -

Consequently e(z)g—l(z) is proportional to
[eo]
n+l
(4.12) z P(Xn=z’Tab )

n=0 L

On the other hand Pz(c <o) =1 and

oo
3 z =
g(z) > P (YkEV 1§k<n,Xn_1€Hab,; n)

n=1 ab
R ~ ~ ~
— z =
= X > P (YkEVab’1§k<n’Xn—l u)p (u,d) .
n=1 u€H
ab
By duality
oz o N u _ -1
P (YkEVab,l §k<n,Xn_1—u)-E(u)P (Yk€Vab,l§k<n,Xn_1 z)E ~(z)

and since with p the initial distribution for P=Pu, E(u)g(u,A) =yu(u) , it
follows that

[oo]

- _ _ n
£(z)g(z) = nElP(Xn_1 =2,T,)

which is (4.12) exactly, so the proof of (4.11) is complete. o
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With the preceding discussion as motivation, we shall without further

comments state the analogues of the definitions and results from Definition
3.11 onwards.

Consider a collection T==(T2b,(a,b)€.fzu1€N;, of sequences of terminal

~

events and define Cab as in (4.9) above.

(4.13). Definition 7T 1is a transition reproducing collection of sequences of

~ ~

terminal events if (a,b)pr(c,d) implies that either Cab:>(X0==c,Ccd) or
=@ . Here (a,b)pr(c,d) means that there exists U)E(XO==a,Cab)

and n€N+ such that Yn(w) = (d,c) . o

~

Let p be a substochastic transition function on J such that PX(;<G$=1

for all x€J.

~

(4.14) . Definition T 1is transition reproducing for p 1if (a,b)pr(p)(c,d)

. . . - - Zc ~ ~ _ “c
implies that either Cab:)ccd P -a.s. or Cachd-—¢ P -a.s. Here
(a,b)pr(p)(c,d)  means that

oo A A

s P?(C_.,Y =(d,c))>0. G

9
n=1 ab’ ' n
i
(4.15). Example Let (Tag) be an arbitrary collection of sequences of terminal

events and define
n _ * 'n
T = (Y €V, ,1sk<n,T )
where
~

b3 A~
Vap = 1(x7) CabDCxY}

n . . . . .
Then I’=(Tab) is a transition reproducing collection of sequences of terminal

events. [w}

(4.16) Definition Let DTR denote the class of random times T of the form
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(4.17) T(w)=sup{n€N+ :wET?n(w),en_lw€F} ,

where FEF and T= (sz,(a,b) €J2,n€N+) is a transition reproducing collec-

tion of sequences of terminal events. o

(4.18). Proposition Suppose T belongs to the class DTR. Then T 1is a CI-

death time for any Markov probability P.

If t 1is given by (4.17) and P 1is transient, then

U
Y= (a,b) =P%(+c ) ,

P(RoK € -
T

~

where p 1is the transition function in natural P-duality to p. o

(4.19). Example The class of random times T of the form (4.17) with T as

in Example 4.15, is the class DO first introduced in [5]. The times T and T

from Example 3.18 both belong to DO. m]

~

Let now G be a measurable subset of QO and consider the random subset

of N given by
(4.20) L={n€N:RoKn+1€G} .

Sets of this form appear as the duals of homogeneous random sets. Of spe-

cial interest to us is the situation where (Tab) is a collection of sequences

~

of terminal events, Cab is as in (4.9) and

PN

(4.21) G= U (Y

(a,b)€J2 - (b22),0€C,
5

)

1 b

. ‘ n
Then n€L(w) iff wETYn(w)

With G given by (4.21), Gc(z>1) and from now on, when considering L

of the form (4.20), we shall always assume the G there to be a subset of

(z>1) . Then O€EL 1is impossible.
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With this assumption in force, given L of the form (4.20), define random

times (Oi,i€N+) on § by letting g, = on (i =°°),oi=0 on (ILl <1)

and by writing L ={o ,...,01} on (ILI =4£) with Op<eee<O) . Also define

W.=(X_,X ) on A.:=(0<0.<®) and let H. denote the o—-algebra of
i Gi oi-l 1 1 1

subsets of Ai generated by eoi-l and oj-oi for j<i.

~

As usual, in the theorem below, p denotes the transition function in

natural P-duality to p.

(4.22) Theorem (a) Let P be Markov and transient and let L be a random

set of the form (4.20) with Gc (g >1) . Suppose each o is a CI-death time

for P with respect to Hi such that the transitions for RoK0 given Hi do

not depend on i, i.e. for all i, (a,b) ,
P(RoK_ €-|A,,H) =02
0. i’7i ab
i
on (A.,W.=(b,a)), where Qa1 is Markov on with transitions ¢ not
1 ab 0 ab
depending on i and initial state a . Then there exists a collection
of sequences of terminal events, transition reproducing with respect

n
T—(Ta

~

to p such that

b’

L={n€N+:RoKn+1€G'} P-a.s. on (1Ll <) ,
where G'= U (Y1=(b,a),e€Cab) .
(a,b)

(b) Let T-= (sz) be a transition reproducing collection of sequences of
terminal events and let L denote the random set given by (4.20) with G as
in (4.21). Then GiEDTR for all 1, in particular o is a CI-death time

for any Markov probability P, and if P is transient,

e e
P =P Cyy)

P(RoK_ €-
(¢

. A0
1

.=
1

on (Ai’wi =(b,a)) .
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Suppose the conditions in (b) are satisfied. Rather than considering the
full set L (in which case nothing interesting is said when working on
(ILI ==)) one may consider the part L* of L preceding a given cooptional
time. Defining (G’E,iEN_F) from L* as the o, were defined from L, the

conclusions in (b) remain valid with o, replaced by O‘*i.

As a final remark, note that under the assumptions in (b), (wi’i€N+) is
a Markov chain with respect to any Markov probability P and if P is tran-

sient the transitions are given by

Py, = (@)W = (b,2) =P = (@,0)[Cyy)

>

where 1t 1is defined on QO by

(4.23) T=1nf{n€N+:6n_l€G} .
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5. PATH DECOMPOSITIONS WITH MARKOVIAN EXCURSIONS

We shall briefly discuss what kind of path decompositions obtain when the re-

sults from Sections 3 and 4 may be combined.

Consider a homogeneous random set M= {nEN+ : en—l €G} with G given by

(3.8) and (= (Cab) a transition reproducing collection of coterminal events.

With M={T1,T2,...} as in Section 3, we saw in Theorem 3.26 (b) that each

T is a CI-birth time for any Markov probability P . Writing =Ty the

post T-process splits into the Markov chain (Zi) = (YT ) and the sequence
i

(ei,i €N+) of skew excursions where

€7 (XT.’XT.+1’ °t "XT. -1) :
i i

There may be finitely or infinitely many excursions according as (Zi) has
finite lifetime or not. All excursions have finite lengths except the last

one in the case where there are only finitely many excursions.

It follows immediately from the results in Section 3, that given
(Zi,i €N+), (which includes conditioning on the lifetime of the Zi—chain)
the excursions are, with respect to any Markovian P, conditionally independent
with the distribution of e, mot depending on i but only on how e; is

conditioned to start and end. More specifically, with ng =Pb(~ ICab) s

Ple; €12, = (a,b),24,1 = (,d)) = Qo (R €+[2; = (e, )

1
P(eiE . Zi= (a,b), 1 is the lifetime of (Zj))
=P (elr =
= Qg (tlTy==) .

In general the conditional excursions will of course not be Markov. How-

ever, if =t =T is a CI-death time for each Q:b , then certainly all the

finite excursions are Markov, and if in addition (T1=°°) is sz-a.s.

equal to a coterminal event, then also the last infinite excursion will be
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Markov.

Without aiming for complete generality, we shall discuss a simple example

involving Markovian excursions.

. .o . 2 . .
Suppose given a transitive relation >on J and invariant events

(CZb o2 (a,b) €J2) compatible with > in the sense that
b

* *
(a,b) >(c,d) =>Cab,°°:> ccd,oo .

Defining
= *
(5.1) Cab ((a,b) >-Yk,k€N+,Cab’°°) ,
Cab is coterminal and (= (Cab) is transition reproducing. (This setup pro-

vides an alternative description of the class BO from Example 3.18, see Pro-

position 3.31 in [5]).

With this choice of (C one finds

n-1 n
(5.2) (T =n,YT = (a,b)) = [kfll K=1Li+l(Yk:I>-Y£)] n (Yn = (a,b) ,6n€ Cab)

writing (x,y) »(u,v) if it is not true that (x,y) >(u,v) .

Suppose now in addition that the relation 3 is also transitive. We claim

that then
(5.3) (t =n,Y,E = (a,b)) = (Yk +(a,b),1 §k<n,Yn= (a,b),6n€ Cab)

To see this, suppose Tt(w) =n, YT(w) = (a,b). From (5.2) it follows
(for k=n-1) that _Yn_l(w) ¥ (a,b). Suppose it has been shown that
Yz(w) +(a,b) for k<f<n. Then Yk_l(w) $(a,b) follows because by (5.2) ,
Yk_l(w) :}-Yﬂ(w) for some 4£,k<£<n, by assumption Yz(w) ¥ (a,b) , hence
Yk_l(w) #(a,b) since 3} is transitive. So an Induction argument yields (5.3)

from (5.2).
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But comparing (5.3) with (4.6) it is clear that T 1is a CI-death time for
any Markov probability. So by the preceding discussion, with ( given by
(5.1), > and ¥ transitive as described above, we obtain a path decomposition

with the excursions (ei) being independent and Markov given (Zi).

We have here discussed path decompositions induced by certain homogeneous
random sets. But it is of course also possible to obtain decompositions based

on the dual homogeneous sets L considered in Theorem 4.22 (b).

Finally, there are examples of path decompositions which are perfect in the

following sense: suppose L is as in Theorem 4.22 (b) with the % from (4.23)

of the form (4.6) (relative to QO), suppose M .is as in Theorem 3.26 (b) with

T=1y of the form (4.6), and suppose that the beginning tT=inf M of M

equals the end sup L of L. Then because T and T are always CI-death
times the given Markov chain P may be decomposed as follows: choose a ran-
dom variable U==Zl==ﬁ1 with distribution the P-distribution of YT, and

by interchanging the two components of the transition U==W1.

~

define Wl

Given U, construct two independent Markov chains, (Zi) and (Wi) with di-
stributions matching those of the (Zi) and (Wi) of Sections 3 and 4. Final-
ly, given U, (Zi) and (Wi), establish two independent sequences of mutual-
ly independent Markovian excursions (ei) and (fi) , where the (ei) to—-

gether with (Zi) are to constitute the post—-T process OT as described

above, while the (fi) and (Wi) are to yield in a similar manner the pre-t

process KT.

We leave it to the reader to check that with tT=71 or T (Examples 3.18

and 4.19), examples of such perfect path decompositions are obtained.
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