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"~ Abstract
This paper studies extreme values in infinite moving average processes
X, = I,¢y 7%, defined from an i.i.d. noise sequence'{Zk}. In particular this in-
cludes the ARMA-processes often used in time series analysis. A fairly complete
extremal theory is developgd for the cases when the d.f. of the ZA'S has a smooth
tail which decreases approximately as exp{—zp} as z > o, for 0<p< ©, or as a

power of z. The influence of the averaging on extreme values depends on p and

the CA'S in a rather intricate way. For p=2, which in;ludes normal sequences,
the correlation function rt==ZAck_tcA/ZAc§ determines extremal behavior while,
perhaps more surprisingly, for p #2 correlations have little bearing on extremes.
Further, the sample paths of’{Xt} near extreme values asymptotically assume a
specific nonrandom form, which again depends on p and {CA} in an interesting way.
One use of this latter result is as an informal quantitative check of a fitted
moving average (or ARMA) model, by comparing the sample path behavior predicted

by the model with the observed sample paths.
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1. Introduction

Let {Xt==ZCA_tZK}Ix3an infinite moving average process, with'{cx} given con-
stants and with the noise sequence‘{zk}'cbnsisting of independent identically
distributed (i.i.d.) random variables. Such processes have been ektensively
studied for both practical and theoretical reasons; and, in particular, include
the ARMA (autoregressive-moving average) processes often used in time series
analysis (as can be seen by inverting the autoregressive part of the process).
In fact also more general, infinite, autoregressions fit into this framework, as
discussed in Section 9. In the present paper we study extremal properties con-
nected with such processes, for the case when the marginal distribution of the
noise Variables,'{ZA}, has a tail which decreases approximately as a polynomial
times exp{-zP}, as z »o, for the parameter p ranging over the interval (0,).

In the last section, we also comment briefly on earlier results for polynomially
decreasing tails.

In addition to extreme values ofA{Xt} itself, we study their relation to ex-
tremes of the ZA'S and of a third related sequence §1’§2""’ the associated in-
dependent sequence. By definition this is the i.i.d. sequence which has the same
marginal distribution function (d.f.) as the Xt's. Extremes of the associated
independent sequence are of course completely determined by the tail of the d.f.
of QO’ or equivalently of ZCAZX' Hence, to determine the extremal behavior of
’{ﬁt}’ we have to find accurate approximations for the tails of the d.f. of
weighted sums, which may be of interest also outside the preéent context.

Specifically, writing Mn==maX{X1,..., Xn}, ﬁn==mak{zl,..., Zn}, and
ﬁn==maX{§1,..., Qn}’ for any p>0 we find norming constants an,gn,gn:>0 and
bn,Bn,Gn, such that the d.f. of each of a (M -b ), a (M -b), and Qn(ﬁn -ﬁn)

: . \ : -X .
converges to the type I extreme value d.f. exp{-e "}. Here the norming constants

depend on p and on the CA'S in a rather intricate way. In all cases, the b's



which give the center of the distribution of the maxima are of the order (logn) l/p,

which tends to infinity with n. The a's are of the order (1ogn)1—l/p, which tends

to infinity for p > 1, thus showing that the scale of extremes decreases in this
case, while it tends to zero for 0<p<1, corresponding to an increasing scale of
extremes, and remains constant for p=1. Further, for p>1, a =3n,bn =Gn’ and

a_ and a_ are of the same order, but bn may be significantly different fromgrl (i./e.
often anlbﬁ'gnl +), anda_,b depends orrlr the weights {c?\} through the quantity Zlcxlq,

| whéreq is the conjugéte eki)onent to f), defined by 1/q+1/p=1. For 0<p<l, typi-
cally an’bn resemble En’gn’ while gn’gn may be slightly different, ;nd in this cése i;is
th.ermaximum of the c)\'s which enters into the normings. The caée p=1 provides intermediate
behavior.

The convergence results for maxima are obtained as corollaries to much more
general point process convergence results for normalized heights and locations of
extreme values. This point process convergence also has many other corollaries,
e.g. concerning the joint asymptotic distribution of several ektreme order statis-
tics, and convergence of so called record time processes and extremal processes.
However, these corollaries will not be ekplicitly stated, and instead the reader
is referred to [ 7], Chapter 5, for a detailed discussion. Moreover, the results
are further generalized to take into account also the behavior of sample paths
near extremes, showing that asymptotically they assume a specific deterministic
form, which depends on p and {C)\} in an interesting way. E.g. in the simplest

case, when all the CA'S are nonnegative, for p>1 the suitably normalized sample

paths around extremes approach the function

- a/p,y 4 _
(1.1) Yo ZACA_TC)\ /ZAC)\ , T=0,+1,...,
and for O0<p<1 approach a specific translate of the function

(1.2) yT=c_T/max{cX;A=O,jl,...} ,T=0,+1,...,

while the borderline case p=1 mainly resembles O0<p<1. The case of negative



CA'S involves some further complexity. In passing we note that for p =2, which

includes the normal distribution, y, is in fact the correlation function of'{Xt}.
This of course agrees with the well known extreme value theory for normal se-

quences. However, perhaps more surprising, for p#2 the correlation function does

not seem to have any bearing on extremal behavior, and the important role is in-
Stead played by the function {yT} given by (1.1) or (1.2).
Some ''geometrical'heuristics, which originally suggested the results, are

illustrated in Fig. 1.1. In the figure it is assumed that CO>’O, c, > 0,

Z1 Z
a) 2 b)
! “1
<) 2, d) : zO
Fig. 3.1  Level curves exp{—Hz|rg}==n, for n=.1, .01, and .001. Shaded area

contains most Qf the probability outside the line cozo+clz1 =1u.

a) p=3, c0=1, c1=2; b) p=1, C0=1, c1=2; c) p=2/3, c0=1,

¢y =2; and d) p=2/3, c0==cl~=1. Different scales in different

figures.



that the remaining c>\'s are zero, and that the d.f. of the Z>\’s has a density of
the form exp{-zp} for all sufficiently large values of z. From a) of Fig. 1.1,
it can be seen that for p>1 and for large u, most of the probability mass out-

side the line CpZp =C1%Z1 =U is concentrated in a small region around the point

where the line is tangent to a level curve of the bivariate density of (ZO,Zl).
Thus, in general notation, if XO = ZCAZX exceeds u, then with high probability

(.. ,ZO,Zl,...) is close to (...,ucg/p/Zc;,uc?/p/Zci,...) and one would expect

- a/p _
that for T close to zero, XT/u ZC)\—TZ)\/u would be close to ZCA_TC}\ =Y. In

particular, for p>1, large values of XO are hence caused by rare combinations of

many moderately large noise variables. For O0<p<1 and Cy <> the probability

mass outside COZO + clz1 =u 1s concentrated around the point ZO = O’Zl =u/c1, cf. Fig.

1.1c so that by similar reasoning, if XO exceeds u for.T close to zero one

would expect XT/u to be close to ¢ T/(:O =y . If CO =cqys half of the probability
I - T

mass outside CZ%p €171 =u is concentrated near Zg = u/c:o,z1 =0, and the other half

near z, = 0, Zy = u/cl, as shown in Fig. 1.1d) which leads XT/u to be close to c_T/c0 =

Y. with probability % and close to 11

/CO =Y. q with probability 4, if XO exceeds
u and T is small. Thus, in both cases, extremes of XFO are caused by just one Z)\

being large, but if Co=°Cq> it may be either one of Z0 and Zl' Again the case

p=1is similar to 0<p<1, but with the added complexity that if, say, ¢H=C1> 0,

c>\=0; A#0,1, then large values of XO may be caused by more than one of the Z)\'S
being simultanéously largé, as can be guessed from Fig. 1.1b.

A main part of the prdofs for each of the three cases p>1, p=1, and 0<p<1
is to obtain accurate approximations for the tail of the d.f. of chz)\. For p>1

the proof, which uses methods from '"large deviation theory" is rather long. I

believe this is due to the difficulty of the problem, and in fact this was one of

the main obstacles to overcome in the present study. For p=1 the tail behavior

is simpler, and the proof is made easier by the possibility to use moment genera-

ting functions rather straightforwardly. Finally, for 0<p<1, convolution in-



tegrals are easy to estimate and give the desired approximation for the tail of
the d.f.

Furthermore, for p>1, extremal theory for the moving average process'{Xt}
itself is obtained via Leadbetter's ''distributional mixing conditions'" as given in
[ 7], while for the case 0<p<1 we use a direct approach related to methods in
[ 9]. Finally, the sample path results are obtained via direct calculations,
which are closely related to the heuristics presented above.

There is a large literature on general extreme value theory for independent
and dependent sequences, and in particular, normal sequences have been studied in

extensive detail (for a recent survey, see [7]), but there is not much written

on the present subject. Moving averages of stable variables (which have polyno-

mially decreasing tails) are extensively discussed in Rootzén (1978), (see also
Section 9). Finster (1982) found the asymptotic distribution of maxima of auto-
regressive processes when the noise variables have eXponential tails (correspon-
ding to the case p=1, a=0, k+ =1 in Section 7) and for noise variables with

polynomially decreasing tails. (There is some overlap, apparently not noticed by

Finster, between the latter result and those of [9]). Finster's conditions are

in terms of an autoregressive representation of the process, although many of the

computations are made after inverting to a moving average representation. This

seems to make them somewhat less directly connected with the core of the problem.

Chernick (1981) has exhibited further qualitatively different behavior of extreme

values of autoregressive processes, which by inversion can be translated to moving

average processes, for a case when the noise variables have non-smooth tails.
Finally the extensive literature on normal sequences (see e.g. [7]) of course also
concerns moving averages, since any normal sequence which has an absolutely con-

tinuous spectral distribution also has a moving average representation.



The present paper is an attempt at a rather complete qualitative and quanti-
tative study of extreme values of moving averages of variables with smooth tails.
As alluded to above, the practical motivation for the study is the importancevof
moving averages (or "filtered white noise') models, and that extreme values are
inherently important in many of their applications. Further, as a byproduct,
the resultson sample path behavior near eXtremes may be used a§ an informal, quan-
titative check of a fitted moving average (or ARMA) model, by comparing the sam-
ple path behavior predicted by the model with the observed sample paths. A
theoretical motivation is to provide a testing ground for the general extreme
value theory for dependent sequences and impetus for further development of that
theory and to provide a mathematically interesting example of some of the quite
complex ways in which dependence affects extremal behavior.

The organization of the paper is set out in the list of contents. Each of
Sections 5-9 starts with a more detailed overview of that section. Sections 5,6
and 7 and 9 on p>1, on p=1, and on 0<p<1 can be read independently of one
another.

Much of the work leading to the present paper has been done during two visits
to the Department of Statistics and the Center for Stochastic Processes at the
University of North Carolina at Chapel Hill. It is a pleasure to thank the

department, and in particular Ross Leadbetter and Stamatis Cambanis, for the

hospitality shown to me during these visits. Further I want to thank Jane Wille

for her swift typing.



2. Definitions dnd conditions

For the study of extreme values of the moving average process

.1 Xe=ho eIy, t=0,41,...,
we need conditions on the noise variables {Z,}, conditions on the weights {c,}
and conditions involving'{zk} and’{ck} simultaneously. In addition the conditions

will depend on the parameter p introduced in (2.2) below, being more stringent

for p>1 than for p=1 or 0<p<1.

The ZA'S will always be i.i.d. random variables, and for convenience of nota-

tion we will let Z be a further random variable with the same distribution as the

Z\'s. Throughout, it will be assumed that
/!

: _p
(2.2) P(z>z2) ~ Kz%e ¥ |, as z-o |

where p,K are positive parameters and o is a real parameter, and that the first
moment exists, E|Z|< o, and for p>1 in addition that E22<<w. (Here A(z) ~B(z) has

the standard meaning that A(z)/B(z) ~1.) For p>1, (2.2) has to be substantially

strengthened. We will then suppose that the distribution of Z has a continuously

differentiable density f which satisfies

v P
(2.3) £f(z) ~K'z2% e™* , as zoo
for a'= a+p-1, K'=Kp, and that
(2.4) eczf'(z) is bounded for z e (-«,0],

P
for some constant c>0. Moreover, defining D(z)==f(z)'eZ for z>0, and D(z) = £(z)

otherwise so that _,P
D(z)e , for zz0

(2.5) f(z) =

D(z) , for z<0 ,
with
1
(2.6) D(z)*’K'za , as z >,
we assume that
. zD' (z) -
(2.7) lim supl—ﬁi)—l < .

7,00



Here of course f' and D' are the derivatives of f and D. The reason for the par-
ticular choice of a',K' is that with this choice (2.3) implies (2.2), so that the
parameters have the same meaning for p>1 and for 0<p<1. It ﬁay be further noted
that (2.7) e.g. is satisfied if D(z) for large z is a rational function of z.

The conditions on the weights are that at least one Cy is strictly positive,
and that
(2.8) ]cA|=O([A[-6), as A > o, for some € > 1,
which again has to be strengthened for p>1, to
(2.9) ICXI =O(|X[—e), as A»z o , for some 6 >max(1,2/q),
where as in the introduction q is the conjugate exponent of p, defined by

1/p+1/q=1. 1In particular, the condition (2.8) implies that Z|ckl<:w, which

together with E|Z|<OO ensures a.s. convergence of the sums in (2.1), which define

Xt' In the sequel, some further notation pertaining to the CX'S will be needed.
+ - + : -
= = - = . = = . = ,':!:1,,.-.‘
Let ¢, =max(0,¢c,), ¢, =max(0,-c,), ¢, max{ck,k 0,+1,...}, and c_ max{cA,A 0

and let A+ = {Al,...,kk } be the set of A's for which cy T cC,, and let A =
+
.y A£ } be defined similarly from’{ci} with A =@ if ¢ =0. Further, with

'{Ai,. ,
standard notation, we will write IICH(li {Zklcqu}l/q and.l[c+lh15 {Zx|c;]q}1/q, for
q>1.

The reason that conditions’involving weights and noise variables simultaneously
are needed is the following. If some of the CA'S are negative then extremes of {Xt}
may be influenced also by the left tail of the distribution of Z, and this influ-
ence is determined by how a combination of'{ci} and the left tail of Z compares
with the corresponding combination of'{c;} and the right tail of Z. There are
three cases of interest, which we will refer to as the case of positive CX'S’ the
case of a dominating right tail, and the case of balanced tails. (0f course, the

results for the potential fourth case, a domimating left tail are immediate con-

sequences of the results for a deminating right tail.) The precise meaning of



the three cases will be somewhat different for O<p<1 and for p>1, and will be

formalized in three conditions, to be called A1-A3 for 0<p<1 and B1-B3 for p>1,

respectively. The conditions for O0<p<1 are

Al (2.2) and (2.8) hold, and all CA'S are n?nnegative;

A2 (2.2) and (2.8) hold, and P(Z< z) =O(e-lzlp/y) as z -, wheré Y Safisfies
c_yl/p<:c+ and

A3 (2.2) and (2.8) hold, and P(Z<<z)va_Zue_|Z|p/X for some constant K >0,
where c_yl/p==c+, and o is the same as in (2.2);

The conditions for p>1 are

Bl p>1, (2.3),(2.4),(2.7), and (2.9) hold, and all CA'S are nonnegative,

B2 p>1, (2.3),(2.7), and (2.9) hold, and in addition f(-z) satisfies (2.3),
(2.7), with p in (2.3) replaced by some p' >p, and possibly with different
D,a',K', and

B3 p>1, (2.3),(2.7), and (2.9) hold, and in addition f(-z) satisfies (2.3),

(2.7) with the same p as in (2.3), but possibly with different D,a',K'.

The main results of this paper, in addition to approximations for the tails of
the distribution of the weighted sums ZCAZA’ concern convergence of point processes
of heights and locations of extreme values of'{Xt}, and of more general "marked"
point processes which retain information also about the behavior of sample paths
near extremes. The reader is referred to [7 ] for definitions and information
on point process convergence in extreme value theory, and to [6] and [8] for the
Reference [6] only treats locally compact

general theory of point processes.
spaces, and there "bounded" has the technical meaning of being relatively compact,
while [8] covers genefélrgélish spaces. However, throughout this paper in the cases
wheré both approaches apply, they coincide, as readily seen. Specifically, we.will
let Nn denote the point process in [O,W)><Ii which consists of the points (j/n,

an(Xj —bn)), j=1,2,..., and will for each p>0 find a point process N and choose the

constants a_ >0, bn so that N, converges in distribution to N (denoted NhfiN), As
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discussed in [7], Chapter 5, this implies many asymptotic results, e.g. on the
joint distribution of the k largest extreme order statistics, on the so called
record time process and the extremal process. However, we will only explicitly
note the corollary that, for Mm=max{X1, e Xn},

-X
-e
P(an(Mn—bn) <x)>e , as n>o

Next, let

! 3 ‘=
Y0 =X /b §e12,

and
" = 1=
Yn,j(T) XT+j/Xj’ j=1,2,...,

(defined e.g. to be zero for Xj =0) be the normalized sample path around Xj’
write S=[0,0)xR, and let R =...xRxRRX...=1{x; x=(... sX_15X5 X5 D} be
the space of doubly infinite sequences of real numbers. The processes Y1'1 . and

E

- - o
Yr’{ ; are then the '"marks'" and are random variables in the 'mark space'" IR , and

2

the marked point processes N1'1 and Nh’ are just the ordinary point processes in
SxR~ which consist of the points ((j/n,an(Xj -bn)) ’YI’I,j), j=1,2,... and of the
points ((j/n,an(Xj _bn))’YH,j)’ j=1,2,..., respectively. As in [8]. we will assume
the mark space R is given some bounded metric which generates the product topo-
logy and will consider Sx R as a Polish space, with the product of this metric_
and the ordinary metric _in S as metric. In particular, this means that é pfoduct

[ee]

set Ay xA, in Sx R~ is bounded if A is bounded. Let y= {yT}TLOO be a given

point in R* . Often the limit, say N', of NI'l or N;l' is obtained by adjoining the

mark y to each point of N, i.e. if N has the points (tj,xj), j=1,2,..., then N'

is defined to be the point process consisting of the points ((tj,xj),y), j=1,2,...
Further, as in the introduction we will write ﬁn=maX{Zl,.. . Zn} and

Qn = ma'x{ﬁl e Qn} , where &1 ’QZ’ ... is the independent sequence associated with

{X,}. Similarly, for norming constants a ,Q >0 and b ,G to be specified below,
t Y g n’%n LN P
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. ~ o~ AA . : ~ o~
we let the point processes N_,N',N"" and N ,N',Q” be defined from {z,}, {a_,b_}
n’n’ n n’ n’n A n’ n
‘ A : TN . o )
and from {Qt}, {an,ﬁn} in the same way as N ,N!,N» are defined from {Xt},{an, 2

Finally, some general points of notation. If limits of summation or integra-

tion are deleted, then the summation or integration is always from - to +@ and
summation from a to b, where a and b are not necessarily integers, means summation
over all integers in the closed interval [a,b]. N(O,OZ) denotes the normal distri-
bution with mean zero and variance 02. Often C and vy will be generic constants
whose value may change from one appearance to the next. The indicator function is

denoted by I, i.e. I{+} is one if the event within curly brackets occurs, and zero

otherwise.
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3. Preliminaries: Extreme values of moving averages and point process convergence

For p =1, convergence of the point process Nn of heights and locations of ex-

treme values will be proved through verifying Leadbetter's conditions Dr(En) and

D'(un), as given in [ 7], p. 107 and 58. In the first part of this section, we

modify the conditions to forms which are particularly convenient in the present

context. Then we obtain two lemmas which will be useful for O0<p<1 and for the

marked point process results, respectively.

The condition Dr(En) will be established via the following lemma, which, for
later reference also, is stated separately here, under general conditions. It is

given in a rather crude form, which however suffices for our present purposes.

LEMMA 3.1. Suppose that the moving average process {Xt} given by (2.1) is defined

by a.s. convergent sums and for some constants an>0,bn and nondegenerate distri-

bution function G, it holds that

(3.1) P(an(ﬁn-bn) <x)>CG(x) , as n>w ,
for each Xwith G(x) > 0, where Qn is the maximum in the associated independent sequence.

(i) If for each €,v>0
(3.2) nP(anl ZCAZ)\|> £)+0,
nv

-nv
nP(anl_Eooc)\Z)\l >¢) >0,

as n>o, then {X_} satisfies D _(u ) for arbitrary r and u_-= (u(l),..., u(r))
t T —n -0 n n

with u(l) =x./a_+b_, for arbitrary x,,..., X .
n i’ n n 1 T
(ii) If an=0((1ogn)8) for some B, lcxf =0(|>\|_e) for some 0> 1 and EZ° <w, then

(3.2); and hence also D _(u ), holds for all {u_} of this form.
TN |
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‘Proof: (i) We will only verify Dr(gn) for r=1, which is the same as to verify

the condition D(un) of [77], p. 53. The extension to r>1 is completely straight-
forward, involving notational problems only, and is omitted. Thus, let u = x/an +bn,

and assume G(i) >0, since D(un) trivially holds f G(x) =0. Let

1<i <...<i_<j.<...<j_<n be integers with j, -i_>2nv for fixed v>0. For
1 T 1 s - 1 r
brevity of notation, write X.=(X, ,..., X. ), X.=(X, ,..., X. ) and similarly
=i i i =j j j
. = 1 T = 1 S
‘.)_('i'=(Xi oo Xi ), X=XV ,..., X¥), for
— 1 T L 11 Is
n\)Z—l Oyo
X! = c.Z , X= ) ez )
t A TATAst o uel ATA+t

Further, let M{f“’ak{lxl'xi"“" X - X[} and MY =max{|X; - Xy[,..., X -X1]3,

and in the sequel let an inequality between a real number and a vector mean that
the inequality holds between the number and each component of the vector. Clearly,

since j1 - irz 2nv, 2(_1' and K'J' are independent, and hence for €>0,

’ f Al 1> ">
(3.3) P(’z_i_gun’%_g un) < P(Xi Su 4 e)P@ié u + g) + P(Mn €) + P(Mn )

IA

P@i—s u o+ 2€)P(£is u * 2€) + 2P(Mr'l >€) + 2P(MH > g)

IA

n
1 1"
Pqis un)P@is u )+ tzlp(un <X u +2€) + 2P(M! > €) + 2P(M!' > €)

A corresponding lower bound is readily obtained, and after using stationarity
and Boole's inequality to estimate the last two terms, this shows that
= < < - < . <
A lp(zi__un,zi_un) P(X; <u JPY; <u) |

< nP(u -2e<X <u +2€) +2np(|x0-x(')[ > €) +2nP(|XO—X8[ > €)

Here, the bounds do not depend on the specific choices of i and j (subject to
1< il,jS < n,j1 - ir > 2nv), and hence, replacing € by ss/an and writing u+ 2€/an=

(x +2¢) /an + bn, etc., we have that
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isug) An <nP((x - 28)/31n + bn < XO < (x+ 25)/&1n +bn)
© -nv
+2nP(an] ¥ c}\ZA] >€) + ZnP(anl Y C)\Z>\| > €)
nv -
The last two terms tend to zero by assumption (3.2), and since furthermore,
according to (3.1) and [ 7], Theorem 1.5.1, P(XO > x/an+bn) ~ (-logG(x))/n, we have
that

nP((x - 2€)/an +brl < XO < (x + 2¢€) /aLn +bn) +1logG(x + 2€) - 1logG(x - 2¢€)

It follows from (3.1) that G(k) is aﬁ extreme value distribution, and hence con-
tinuous , and thus, since G(x) >0, logG(x +2¢) - logG(x -2¢€) >0, as €~>0. ~ Hence
sup An—>0, as n>, and since V>0 is arbitrary, this shows that the hypothesis in
Loma 3.2.1 (ii) of [7] is satisfied, and thus that D(u ) holds.

(ii) Let u=EZ, o =V(Z). The assumptions on a_ and {cx};\:_m show that

anZ:\)lcxl +0 as n+«, and hence for large n Chebycheff's inequality gives that

nP(anlnz\)c:)\Z)\] >g) SnP(anlnz\)cA(Z)\ —u)l > € -uannz.) Ic)\l)

02a22°° c2
n nv A

< n
-va, 2 e, |
et S )
The assumptions on an;{cx} are again readily seen to imply that this tends to
zero. The proof of the second part of (3.2) is identical. u
The next result shows how D' (un) may be checked for moving average processes,
and combining this with the previous lemma gives conditions for convergence of Nn'
To avoid the (trivial) complication which arises when G has a finite left end-

point, we only state it for G(x) = expf{-e *}.

LEMMA 3.2. Suppose that for some constant ye (0,1], and writing n' = [nY], it

holds for u =X/a +b_, for any x, that
n n n



- 15 -

2n'
(3.4) n ) P(Xy+X >2u) >0 , as n>x,
t=1
2 °° o -l
(3.5) n P(ann'2+1c}\z>\>1)—>0 ,  n'P(a _Zoo CyZy > 1) >
as n—, and that
n' o
(3.6) P(ZCKZA>un) =0(1/n) , P( ) ¢, Zy >u ) =0(1/n)
e -n' .

Then D'(un) holds for un=x/an +bn, for any x. If in addition the hypothesis of

Lemma 3.1 (i) or (ii) is satisfied, with G(x) =e§<p{—e‘_x}, then for N_ as defined

in Section 2, N]r1 51>N in [//O,°°)><]R , wheére N is a Poisson process with intensity

measure dt xe “dx.

Proof: By [7 ], Theorems 5.7.2 and 3.5.2 the second part of the conclusion is

immediate from Lemma 3.1 and the first part, and hence we only have to prove

D‘(un), i.e. that

[nfk]
(3.7) limsup n P(X,>u ,X, >u)~+0, as k+o |
oo =1 0 n’t n

= 1 < 1
for any u, X/an +bn. Since P(XO > un,Xt >un) P(XO +Xt > 2un) it follows at once

from (3.4) that

2n'
(3.8) n Z P(X0>un,Xt>un) +0 , as n>o .,
t=1
n' 0o .
s = " - 1 " > on'.
Next write XO Z_OOCAZK, Xt Z—n'c}\z)wt so that X0 and Xt are independent for t > Zn

By similar reasoning as in Lemma 3.1 (i), for t> 2n'
1 - " -
P(X0>un,Xt>un) SP(XO>Un l/an)P(Xt>un, l/an)

-n'-1

+ P( ) c\Zy > 1/a ) +P( ) ¢ 2y > Ma)
n'+l -0

and hence, using stationarity, and writing uI'1= (x - 1)/&1n +bn, we have that
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[l’lgk] 2 n' o
n ' P(Xy>u ,X >u )< (n7/k) P ) ¢, Zy > ul)P( ) ¢y Zy > ul)
t=2n'+1 ~ © -n'
2 ® 2 - -1
+n P(an 2 CAZ}\ >1) +n P(an z c>\Z>\ >1)

n'+l -0
Here the last two terms tend to zero by (3.5), and since (3.6) holds for all x,

it also holds with u replaced by ur'l, so that

[ee]
limsup n z P(X >u ,X, >u)<c/k>+0, as k>,
0 n’ t n
N> t=2n'+1

for some suitable constant c, which together with (3.8) proves (3.7). O

For 0 <p<1 we will use the characterization of point process convergence in
terms of ''finite-dimensional'" distributions, viz. that NngN in [0,*)xR=Sif and
only if
(3.9) (Nn(Il) seees Nn(Ik)) g (N(Il) ye e N(Ik)) , as n>o,
as random vectors in ]Rk , for any k and finite rectangles Il""’ Ik in S, of the
form [tl,tzj X(xl,xz], with P(N(E}Ij) >0) =0, for j=1,..., k, where BIj denotes the
boundary of Ij([6 ], Theorem 4.2, or [8], Theorem 3.1.7).

LEMMA 3.3. Let N,ngl), and Nr(12) be point processes in (0,©°)xR such that

(3.10) p(NrEl)cI) ;ENTSZ)(I))—>O, as noo |
, (4, . .
for any rectangle I of the form I =[t1,t2)><(x,°°). Then Nn +N if and only if
N2 4y
n
. _ . .. (- )
Proof: If I —[tl,tz) X(xl,xz] is a finite rectangle, then for I [tl,t2)><(xl, )

and I" = [tl,tz) X(X2,°°)
(D) (2) 0y o (D) rey 2 (@) oy (1) rim 230(2)
{Nn (1) #N; (D} {Nn (1) AN (I)}U{Nn (1" #N] (13},

since N(l) and NIEZ) are measures, and hence additive. Thus, since (3.10) holds
for I replaced by I' or by I', it also holds for I= [tl,tz) X(xl,xz]. It then follows

simply that (3.9) holds with Nn replaced by Nr(ll) if and only if it holds with Nn

replaced by NI(I,Z)’ which in turn proves the lemma. [
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To prove convergence of the marked point processes, a slightly more involved

description of the sets in (3.9) is needed. Let I =‘I(1) X I(Z) be the product of

a rectangle I(U = [tl,tz) X (xl,kz] in (0,*) x R= § and a rectangle 1(2) =... xRx

J-ZX ><J0 X ... ><J£>< Rx... in ]Roo ‘with 2k +1 dimensional base, and with 'JT =

(uT,vT], T=-£,..., £. Further let T be the class. of all sets of this form, for

£=20. With this notation, if er1’ N' are point processes in S x ]Roo, then NI'1 -~ N!
if and only if

1 1 1 1
(3‘11) (Nn(:[l)’..', Nn(Ik))_>(N (Il))"': N (Ik)) > as n-—-® >
for any k and Il,..., Ik eI, with P(N'(BIJ.) >0) =0, j=1,..., k, by Theorem 3.1.7 of
[8], since the classof sets Ie I with this property satisfies the requirements for

the semiring in that theorem.

LEMMA 3.4. Let N , {YI‘1 .}, and N! be as definedonp. 2.3 and 2.4. SupposeNngN as

5

n-+e, that N' is obtained by adjoining the mark y= {yT}:____OO to each point of N

and that, for any €>0 and T,

(3.12) P(X >un,,Yr'1’O(T) -y | >€)=o(1/n), as n>e,

0
with u =x/a +b_ , and for any x. Then N' Sl N' as n—~+o, in SXx ]Roo.

n n n 7 . n .
Proof: Let h be the function which maps N into N', and let Nn be obtained by ad-
joining y to each point of Nn’ i.e. let Wn=h(Nn). Clearly, h is continuous, and
hence NngN implies f\fn =h(N) £il>h(N) =N'. Thus, reasoning as in the proof of
Lemma 3.3, using (3.11) instead of (3.9), the result follows if we prove that

(3.13) P(NT'I(I) #Wn(I))—>O , as N>

for any Te T with P(N'(3I) >0) =0.

with y_ ¢J_ . Without loss of
o o
generality we may assume that P(N(I(l)) >0) >0, and it then follows from

To prove (3.13), assume first there is a TO

P(N'(3I) >0) =0 that there is a T with yTéJTUBJT. For that T, let £€>0 be the

distance between Yo and JT. Then clearly Wn(I) =0, and, using stationarity and

(3.12), we obtain that for u =x./a_ +b
n 1" ™n n
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PONI(D >0)s ] PO >uL|Y (0 -y ]>e)

<t<
rlt1 t nt2

< n(ty - tIPOG>w LY (0 -y | >e)
-0, as n~>0 ,
so that (3.13) holds in this case. Similarly, as above, if Yo € Jr for 1=-£,...,2

we may assume that the minimum of the distances between Y. and the complement of

J_, for t=-£,..., £ is €3 0. It is_then readily seen, again with un==x1/an-+bn,

that
ya

P(N! (1) #X (1)) snt1<§£nt2 T}.z PO >uL Y (1) -y | >e)

2
< n(t, - tl)T}_K P(X, >un,|Yn,0(T) -yl >e

-0, as n+>o» |

proving (3.13) also for this case.
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4. Extremes of the noise sequence

By similar calculations as in [ 7], Theorem 1.5.3, it is readily seen that

(2.2) implies

-X
(4.1) Pla (M -b)s<x)>e® , asnso,
for
(4.2) §n=p(1ogn)1‘1/1’

gn = (logn )Up + p'1((on/p)1og logn+logK) (logn) 1/p-1,

Alternatively, by Theorem 1.5.1 of the cited reference, this can be obtained by
checking that, for Zn,En given by (4.2), P(Z:>x/;n-+gn)fve_x/n. It follows imme-
diately, see [ 7], Theorem 5.7.2, that Nnjgﬁ, where N is a Poisson process in
[0,0)xR =S whose intensity measure is the product of Lebesgue measure énd the.measure
with density e * (i.e. in short notation, the intensity measure is dtxe_xdi).

Further, ﬁ;fiN' and N;S;N', where N' is the point process in SxR  obtained
by adjoining the point yeﬂfﬂ defined by y05=1 and y_ =0, T#0 to each pbint of
N. This of course corresponds to the obvious fact that for independent sequences
extreme values have no influence on neighboring values, and it is easily proved
(or)obtained as a special caéé) by the same methods as used for {Xt}.

.Similarly, for the'{ﬁt} sequenc;, the only question to be solved is to find
gn:>0, Qn such that P(Qn(ﬁh-gn)f§x)—>exp{—e—x}, or equivalently such that
P(XO:>x/£n-Fﬁn)~*e—X/n, as n—~>, since the results for ﬁn’ﬁﬂ’ and ﬁﬁ then follows

trivially, in the same way as above.
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5. Extremes of the associated independent sequence for p>1.

In this section we study the tails of the distribution of the weighted sums
ZCAZA for p>1. The main result is that if B1 or B3 of Section 2 holds then

P(JeyZy >2 ,+A>Nc/zP1/q)

P(CAZX>'Z) 4'6XP{-p[|¢H4PX}, as z -+ o ,

for any x, and that if instead B2 is satisfied, then the same result holds, but
with IICHq replaced by’]’cWh (Lemma 5.6). The Type I domain of attraction for

maxima of the associated independent sequence follows at once, and in fact that

P(/a\lﬁ(ﬁn —Gn) < X) e ® , asn - o,

if Gn satisfies P(ZCAZA_>€n)'V1/n’ and gn==plh:H&1(logn)1/q or ah==p|hin1(logn)1/q,

according to as Bl or B3 or as B2 holds (Theorem 5.8). The Gn's are not determined
uniquely by the assumptions B1-B3, but it is proved that they satisfy gn:=|!ch(lognf/p
+ O((logn)g), where the eXponent B < 1/p is specified in (5.52) if Bl or B3 holds, and
the same relation witthHq replaced by Hc+Hq if B2 holds (Lemma 5.7). Further, we
show how the Gn’s may be explicitly computed for finite moving averages. Finally,
some of the lemmas of this section are stated in greater generality than needed here,
for later use.

For the proofs we will use the '"conjugate distributions" introduced by Esscher
(1932) and further developed by Cramér (1938), Feller (1969) and many other authors
in the context of large deviations in the central limit theorem. The present situa-
tion is, however, of a different kind since it involves infinite sums of non-identi-
cally distributed random variables, rather than finite sums of (more or less) identi-
cally distributed variables. Accordingly it requires a somewhat different use of
conjugate distributions, involving sharp estimates of a "local limit'" type.

The distribution Fh conjugate to a distribution F is defined by

(5.1) T, (dz) = e"?F(dz)/feVF(ay),



_2‘1_

for h>0 such that fehyF(dy) is finite. Sometimes we will use the notation F<h>§£

to denote that F, is the conjugate distribution of F, and similarly we write

h
z<h>2' if Z and Z.
h h

gate to the distribution of Z. In particular, if ?h is the distribution of Eh we

are random variables such that the distribution of Zh is conju-

have with this notation that
= hZ ,.. hz
(5.2) fg(z)Fh(dz)==Eg(Z)e /Ee

for any measurable function g. The basic facts we will use about conjugate distri-

butions are that the relation (5.1) of course can be inverted, to yield

(5.3)  F(dz) =e"7F, (d2) ["R(ay)

. . . s . h
and, as can be seen by considering characteristic functions, the correspondence <—>

commutes with convolutions, i.e. if ZA and ho\’ A=0,t1,... are sequences of inde-
b

. h, =
pendent variables and ZA<—$> Zh,l for each A, then

h —
(5.4) 12,<> Zzh’A ,

provided both sides are well defined. Further, we will make use of the fact that if

c>0 is a constant with EeChx<<w, and Z<§>Zg, then

(5.5) cZ<h>cfg , for s=ch.

(This follows from (5.2) and the trivial identity

Eg((c2)) el (¢ /EeM (¢ _ pg(cz)eS2/EeS? |

which is valid for any measurable g.)

Throughout the rest of this section and the next section we will use the following

definitions. The notation above is specialized to assuming that Z_, and 2£ ) are
b4

defined by requiring that the hoA’ A=0,+1,... are mutually independent and that

h —
(5.6) 2<B7,

h__
2

with Z and Zy as defined in Section 2. Next, let Z have the moment generating
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function ¢, i.e. let

U(s) =Ee*% |

and define

hchA
(5.7) ®k(h) = Ee = w(ckh)

®(h) =1 ¢A(h)
A
The following constants will appear repeatedly in the derivations,

5.8z =/mVP, z = ol

7=l = lellds,
and
/p

-1 - -
(5.9) gp=4a P e, g, =p(p-1p a

-4 - -4
o, =h z+a/ (2p), q/pgzz :

For later use, we explicitly note the relation

_ 1-9/2_-%
(5.10) Gh/zh = h g -

Finally, if Z has the density function f, then Zh has the density ehzf(z)/w(h),
and thus (7£-—Zh)/oh also has a density, say f,, which is given by

h(ZO‘h+Zh)
(5.11) £ (z) = g.e £(z0, + 2, ) /¥ (h)

The proofs in this section are long, and it may be useful to start with a summary
of the méin steps involved. Except in the last step it is assumed that the CA'S are
nonnegative.

1. It is shown that
(Z. -z)/0, $N(0,1) , as h >
h "h”""h

and that the density function fh of this quantity has a uniformly bounded derivative.

Thus, by (5.5),
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(fh,)\ - Zh,k)/gh+N(0’C;)’ as h > © ,
for A = 0,+1,... (Lemma 5.1).
2. The relation
o(h +x/hPy ~ @(h)exp{p"q/pllcngx} , as h > o,

which holds for any x, is established (Lemmas 5.2-5.4).

3. We prove that

_ d q "
;(Zh’x -zh,)\)/ah - N(O,;ck), as h -~ ,

and writing F, for the distribution of the quantity on the lefthand side and using

h
uniform boundedness of fﬂ in an essential way, this is shown to imply that
-h(z-z,)
/2 ¢ h |
”(.]E v2m Ohh_zfe Fh(dz)-*l, as h > o |
h

(Lemmas 5.2,5.3,5.5).

4. It follows from 3 and the inversion formula (5.3) that
-hz,
— h /2
P(}Z\ckzx>zh)~®(h)e /(fz'w][c[lg o,h)

as h + o, and by using 2 and the functional dependence of E£ on h, we obtain that

P(ZCAZXZ>2-+X/Zp/q)
A - explepllel| Pxt, as 2 >

p(gcxzk >z)
A
and the restriction that the CA'S are non-negative is then easily removed (Lemma

5.6).
5. The asymptotic behavior of extreme values of the associated independent sequence
then follows easily (Lemma 5.7 and Theorem 5.8).

To prepare for the first lemma, we write the density fh given by (5.11), for

z=20, as
(5.12) £, (2) =D(0,% + z ) explh(g + g(20, /2,0 }/b(h),

for D given by (2.5), and with g = q—lgfq/r)as in (5.9) and
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(5.13) g(x) = —p_q{(l +x)p—1—p5<}.

Here the quantity in curly brackets is just the remainder term in a first order
Taylor expansion of (1 +x)p, i.e.
X -2
g = g,y -0 +»P Ty,

with g, = p(p - 1)p_q, as before. From this it can be seen that for p>1

(5.14) g(x) ~ -g2X2/2 , as x>0 ,

that to any X >0 there is a constant A >0 with

(5.15) g(x) < -Ax2 , for -1< XS X5

and that if X; is chosen sufficiently large, and A sufficiently small, then
(5.16) g(x) < -Ax - gy> for X; < X.

Furthermore, this time using a second order Taylor expansion, we can find B >0
such that

(5.17) lg(x) + g2x2/2 ISle[3 , for -I<x<x;

LEMMA 5.1. Suppose the density f of the Zk'é satisfies (2.3), (2.4), and (2.7),

and as above let Y(h) =EehZ = fehzf(z)dz. Then

q q
h'g 1l o b
(1) O R R Ve Ty L S IR L
2 2
(1) £(x) > e X /27, as h > o,

for fixed x, so that by Scheffe's theorem

_ d "
(Zh—zh)/oh > N(0,1) , as h » o,

and

(iii) the derivative f}'l(z) of fh(z) is bounded uniformly in z, h>h0, if hO is

sufficiently large.

, as h—»®
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Proof. Since fh’ given by (5.11) is a probability density, we have that

h(zo, +z, )
(5.18)  y(h) = o, fe M Mo vz )z

Let x> 0 satisfy (5.15), (5.16) and let %Oe (-1,0). We will evaluate the integral

in (5.18) by different methods for z in the intervals (-, xozh/Gh], (XOZh/Oh’ xlzh/oh],

and (xlzh/c , ],

First, since th(zohi+zh) is a probability density

X02h/ % h(z0,+2,)
(5.19) o {m e £(z0, +2,)dz

Xon/ % |
_f Ohf(zch-+zh)dz

00

hzh(x0+1)
e

IA

. hzh(x0+1)
< e
Next, for fixed z, using in turn (2.3), (5.12), (5.14), and (5.10),
q
h g -1 h(zah+zh)

- .
(5.20) (K'/i%'zh q,e ) o £(zo, +2,)

o ' q
~ (1/%) (Zo'h/zh+l)0{' eh g(ZOh/Zh)

2
> (1/V/2m)e * /2 , as h + o,

Further, by (5.15) this quantity is bounded by a constant times exp{—Ahq(zch/zh)Z} =

exp{-Azz/gz}, for XO<<zoh/zh:;x1. Thus, by dominated convergence .

o hig X2/ %, h(z0, +2,)
(5.21) (K'/fﬁ_zh o, e ) o, f e £(zo, +2,)dz
0%/ %n
o 2, _ .
> [G/v/Zme™® /“dz=1, as h > o,
Finally, by (2.3), (5.12), and (5.16),

“ nl (g, +e(z0, /)

© h(zo, +z o
) e dz

5.22 a f h h)f(zo +z,)dz~K'o [ (zo +z
(5.22) h 2 /o € h h h x.7. /G h "h
*1%0"°h 1%h’°h
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00 ~hazo /z
a' h'"h
K'Oh f (zo. -+zh) e dz

h
X; Zh/Gh

IA

' ° [ q
= K'Z% +1_f(y-+1)a e Ah ydy
*1

q .
o' +1 -4, -Ah Xl)’ as h > o,

0(zy
Clearly, part (i) follows from (5.19), (5.21) and (5.22), by choosing X, sufficiently

close to -1.

(i1) This follows at once from (5.20) and part (i).

(1ii) We will instead show that |f}'l(x) /fh(O)I is bounded, which together with (ii)
immediately leads to the desired result. To prepare for the proof, note that

zﬁ = hzh(l—(fl), by (5.8), (5.9), and hence

P -
(5.23) zho -+zh thh, for zch/a1$ 1,

and that there then ekist X, € (-1,0) and a constant B >0 such that

p N .
(5.24) zhoh-+zh hoh, for 1-<zoh/zhf£xo.

By the definition, (5.11),

h(zoh h) hzh‘
(5.25) fﬁ(z)/fh(0)=(e /f(zh)e ){hOhf(zoh-FZh)-+th'(zoh-+zh)},

and for z >0, using (2.5) and (5.12), this can be written as
hqg(za /zh) p-1
(5.26) f}'l(z)/fh(O) = (D(zo, + zh)/(D(zh)))e oy {h - p(ZOh +2y)
+ D'[zoh;+zh)/D(zoh-+zh)}.
Let -1<x,<0<x be chosen so that (5.16) and (5.24) hold. We will consider z in

0

various intervals separately. Since we don't have to keep track of constants, and

except for the central interval, not of powers of h, it is convenient to let C and Y

be generic constants, whose values may change fromone appearance to the next, but which

do not depend on h or z.
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For zch/th—l it follows, using first (2.3) and then (5.24) that for h>h0,

for any h0 >0,

h (zOh+ zh)

e .. ... . .0.f'(z0.+z,.) zho, +2P
(5.27) ] h h “h’ vy “ThT hy
e | < ch'e £ (20h+zh}|
f(zh)e
1
q "~ zho
< ch'e h!f'(ZOh + zh)f
-1 -1
q hz, q h(zo +z )
= Ch'e he hh '(ZOh+zh)[.

Here, by (2.4) the product of the last two factors is uniformly bounded for h>hO
if hO is sufficiently large. Further, the remaining product tends to zero as h - o,
and hence the entire expression tends to zero, uniformly for zOh/zhs -1. Similar
considerations forthe first part of (5.25) lead to the same conclusion, and hence
’f}; (z)/fh(O)I is bounded for h>hO and zOh/zhé -1.

Since f and f1 are continuous, and hence bounded

Now, suppose -1< zo'h/zh <X

on bounded intervals, it follows from (2.3) and (2.7) that, for h=0,
[hf(zo, +2,.) + ' (z0, +2,) | <cn”.

Hence, by (5.25) and (5.24),

! p
lfh(z) <o zh0h+zh
£, (0)
-Bho.
<chVe O

Next, for the central interval, X, < xoh/thxl, we have to be more careful. To
estimate the first part of (5.26), we use (2.6), (5.15), and (5.8)-(5.10) in the

first step, then Taylor's formula for the second, and the definitions (5.8), (5.9)

for the last step,
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D(z0, +z,) hqg(zOh/zh)

ey o {h - pCag;, + 29771

2

-Az" /g
< Ce 2 ohhll - (z0y /2, + 1)p—1|

—Azz/g

2

< Ce ohmzoh/zhl

—Azz/g2
< Ce |z|

Similarly, for the second part of (5.26), using the same arguments as in the first

step above, together with (2.7) we obtain that

q
D(zo, +zh) h g(chh/zh)O D' (zo +zh)
D(zh) h D(th-th)
2
-Az /gz
< Ce Gh/(zOh-+zh),

which tends to zero, uniformly in x0-<zoh/zh:£x1, and hence Ifﬂ(z)/fh(O)l is bounded

also for z in this range.

To complete the proof it only remains to be shown that lfﬁ(z)/fh(O)[ is bounded

also for x, < zo /zh. However, by the same arguments as above

1

f'(z) o ~An% zOh/z

If,(o)l._c(zc /z +1) e hq/z(zoh/zhjY

+ 0, as h = o,
0

uniformly for such z.

Remark. For later use, we note here that, as is easily seen, if the integrands in

(5.19) and (5.22) are multiplied by a power of z, this only changes the bounds by a

power of h.
The next step is to estimate the first two moments of Z, h 3T
LEMMA 5.2. Suppose f satisfies (2.3), (2.4), and (2.7), assume cy >0, and let 7£ \

and Zh \ be defined as in (5.6), (5.8). Then, for some suitable constant C,
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CC}\ , for c>\<1/h
-z, .| <
h,A

(5.28) |Ezh,k |

C/h , for c>\21/h ?
and

2
Ccy, , for c, <1/h
_ 2 A A
(5.29) E(Z, -2, ) s{.
h,A “h,A ~.q.2

bckgh , for cxzzl/h .

Proof. By definition, CAZ<E>E% 2\’ and hence, according to (5.5), Zh 3 has the same
o - ._ T ’
distribution as CAZS for s-—cxh (notation: Zh,A"Cst)' Further, by (5.8),
U

zh’x--(:)\zh--cxzS and hence
(5.30) EZh’k--zh’A:c)\(EZs —zs),

for s:=ckh. Here,

Ef;==fzeszf(z)dz/feszf(z)dz,

which by standard properties of moment generating functions is bounded in the bounded

interval 0<s =Ckh31- Since also z_ is bounded in this interval, this proves the first

part of (5.28). The proof of the first part of (5.29) is entirely similar.
It also follows at once that the second part of (5.28), with a suitable choice
of C, holds for s in any bounded interval, and similarly for the second part of (5.29),

since cqozzzconstant><ci, for CAhEZl. By the same reasoning as for (5.30)

A h

d —
Zpoa " Phoa - S Eg - 2g)

and hence the second part of (5.28) follows if we prove that

EZ -z
l g, Sl = O(S..IO;]') = O(S—q/z), as s = oo,
S

(5.31)

In the same way the second part of (5.29) will be established if we show that
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Z;-z 2
(5.32) B(—2 5)% = 0(1) , as s + @,

S

1
since CAOS==Constant><cq/2h 2+q/(2p)'

Now, by the same calculations as in Lemma 5.1 (i), using the remark after the

lemma, we have that

7 -7 s(zo _+z )
= 5)2==osjz2e % (a0, + 2 )dz/i(s)

S

(5.33) E(

2
+(1//§E)fzze~z /Zdz,

which proves (5.32).

The proof of (5.31) is more intricate. Let —1<<x0-<0<<x1 be as in Lemma 5.1 (i),

and for brevity write £ =x z /o , u =x.z /O First, from Lemma 5.1 (i) and from
s "0's"’s s 1's" s

(5.10) it follows that
s —u2/2 -ﬂz/z

g. s 2
(5.34) lo D(z )e Olf ze™? /Zdz/w(sj= o(le ° -e 1
S S ﬁ

S

= O(S_q/z).
Next, using first the mean value theorem and then (2.6), (2.7), and (5.10) we have

for ze (u_,£_] and for some z*e (u_,£ ] that
s’7s s*7s

|D(zos-+zs)-D(zS)l = ’ZGSD'(Z*OS-PZS)|

1 * *
D'(z GS+ZS) D(z Os+zs)

- lZIOSID(Z*OS-«-ZS)I D(ZS)

D(zs)

0| zlogz; D(z))

O(|z|s_q/2D(zs))

uniformly for z in the prescribed range. Hence, using again Lemma 5.1 (i),
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q u
s'g. s 2 s 2
(5.35) o e O| sz(ZO +z Je z /zdz - sz(z Je z /zdz|/w(s)
s I s s Vi s
s s
q

sS'g N
0toe Oz s V2 us))

- o(s V%,

Further, according to the remark after Lemma 5.1,

EZ -z U sYg +g(z0_/2.))
= |oS [ ze 0 s 3 D(zas-+zs)dz|/w(s)-+0(s‘q/2)

wn
wn

=

Together with (5.34), (5.35), this shows that

T - ug ~(s%(z0_/z )+2%/2)
(5.36) | Zs = =|05,g z(1-e s 3 )D(z0, + z.)
S
Sq(g0+g(zG-/Z )) ~q/2
x e S STz fpcs) +o(sTV

Here, by (5.10) and (5.17), for,@S< z<u,

lsqg(zos/zs) + z2/2| < sq|g(zOS/zS) + gz(zcs/zs)Z/ZI
< Bg;S/ZS—q/ZIZIS .

Inserting this into (5.36), we obtain that

EZ -Z uS Sq(g +g(zo_ +y )) ) ,
e LG A E R TC IS P S TE DR ICR s P
OS Sy s s
s
Similarly as in (5.33)
u q
S s*(g,+g(zo _/z)) . 2
Os_fz4D(zos-+zs)e 0 s' s dz/W(S)'{I/MZE)f ooz4e-z /Zdz,
£ -
s

and hence (5.31) is satisfied. O

This result at once gives estimates for the mean and mean square of the sum of

LA 1
the Zh,X s
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LEMMA 5.3. Suppose the assumptions of Lemma 5.2 are satisfied and tha’c'{c‘}\}m:_Oo
are nonnegative constants which satisfy (2.9). Then
(i) TIez -z, | <cnt*/e

h,A "h,A" ~ ?
with 0 defined by (2.9), for some constant C', and

Z, A-Z..
(ii) limsup E{ —}%h—’A}Z >0, as h + .
hooo |\ >y h

Proof. (i) Choose D such that CKEZDIAI‘G, for A # 0, and define X¥=[D1/6h1/?] so

that c>\<D[D1/eh1/e]‘e=h-1 for |A| > X. Then by (2.28)

LT 5 -7 5 ={IA%§ lx%ﬁ}lEZhJ -2y 5l

A

<cfex+n/m+n § 279
[A]>X

0(\/h + "Xl'e)

-1+1/6

= 0(h )

(ii) Since the fh A'S are independent,

7. -2 7. .-z EZ, .-z
AR A2 | % vy g Py s
A

Oh 0.

(5.37) E{
>AO h A h

IA%>XO

and by part (i) and the definition of Gh

EZ, .-z -
(5.38) §|__h.%_.h_J| _ o(n1+1/8+5-0/ (2p),
h

_ 0(hl/e—q/Z)
-0, as h » o,
Next, let A be as in the proof of part (i). Then,

since 6 > 2/q by assumption.

using (5.29) instead of (5.28), we have that
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7. -2 7. .-z
(5.39) % V(——————h’g hAy o % E(-—*h’g h,) 2
[x >Xg h | A >Xg h
< cf c§+‘D _lxl'ze/slzl}
I >Ag [AT>X
- q . ..—1-26 -2
) IA%>>\ GO )
0
=C % c%-fo(hl/e_q).
B >Ag

Again by assumption, hl/e_q~>0, as h—-c, and hence it follows from (5.37)-(5.39) that

limsup E{ — =" < C cg
h-e0 | A >y h | A]>)

0

-0, as AO > o |
Next we turn to the asymptotic behavior of the moment generating function & of

ZG}\ZK .

LEMMA 5.4. Suppose the assumptions of Lemma 5.3 are satisfied, and let ®(h) =

HAQX(h) be as defined by (5.7). Then,

(i) oh+ x/nVP) ~oexplp™Plc]|%x} | as h v

for fixed x, and since ¢(h) is monotone for large h, the same result holds if in
the left side x is replaced by x(h), with x(h) »x.

o(h) = explp ¥Pq ke thq /%y

(ii)

where |n|=|n(h)| is bounded by some constant which does not depend on h>0.
— ‘ 6

(iii) Leth(h)'_nn<A®A(h)' Then, for 0<h<n’,

% (h) <exp{C ) c,h},
n nex A

for some constant C which does not depend on n or h, for h in the specified range.

Proof. It is straightforward to see that |w(s) —1|:£constant><s, for s20 in bounded
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intervals, and since ®A(h):=w(ckh) convergence of the infinite product which defines
® is assured by ZlCA|<‘”, which in turn is a consequence of (2.9).

By standard arguments (c.f. Feller (1969))

a1, d o d
EZ, 5 =0 () gp & ()= g log® (W)

and hence

d v d _ Te
(5.40) 5 log o(h) =) T log & (h) = ZEzh’A ,

the interchange of the order of summation and differentiation being permissible since

the EZ£ A'S can be majorized uniformly in bounded h-intervals along the lines of
(5.41) below. From Lemma 5.3 (i) and (5.8)
(5.41) ZEZh’X=Zzh’>\+O(Z|EZh,>\~zh,)\’)

= llelldz, + 0™ L as ho e

Thus, by the mean value theorem there is a h*, with |h - h¥| SIkl/hq/p such that

-1+1/90

1og @ (h# x/hVP) = 10g & (1) +xn"VP(|c]| Iz + 00010

= log @ (h) +p‘q/pllcllgx+o(1) ,ash >,

where we have used the definition of szin the last step. Of course, this is equi-
valent to the result of (i).
(ii) According to (5.40), (5.41) there is a bounded Y =vy(h) such that

d .. - q -1+1/9
Th log @ (h) = ”c”qzh-+yh

b

- p-Ol/Pchghq/P +yh 1¥1/8

and since ®(0) =1, part (ii) follows at once after integration, with n = 6y.
(iii) It follows from (5.28) (as was explicitly used in the proof of that inequality), that

|E—Z—h,}\| <Cc,,

for h in this range. The result then follows from integrating

d
< logd(h)=C ) ¢, ,
dh ey A
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in the same way as for part (ii).

To find the tail behavior of ZCAZX now only a suitable integral of the first

part of the inversion formula (5.3) remains to be estimated.

LEMMA 5.5. Suppose the assumptions of Lemma 5.3 are satisfied and let Fh be the

di i 1 ) 7 = 7 = = q i i 5.6 > 5.8). Then
istribution of Zy th,k andlet z Zzh,% ![chzh, as defined in (5.6), (5.8)

© -h(z-z,)
/7EHCI|3/20hh£_e h F,(dz) >1 , as hoe .

h

Proof. According to (5.5) (cf. the proof of Lemma 5.2)
(5.42) (Z, -2z, J/oO deo 0'1('2— —zS)/O
h,A h,ﬂ h A'sh s s’

fors =cAh,/and since CA050;3==c§/2, it follows from Lemma 5.1 (ii) that

— d q "
(Zh’x-zh’g/ah > N(O,ck) , as h + o |

Hence, since the Zh,x's are independent,
IA%SAO(Zh’A-zh,Q/Oh ->N(0,IX}SXC§) , as h » o |
for any AO' Combining this with Lemma 5.3 (ii) gives (see e.g. Billingsley (1968),
Theorem 4.2) that
(5.43) E(fh I VO $neo, ||, as b+ .
> > q

By Lemma 5.1 (iii), (2; —zs)/OS has a uniformly bounded continuously differen-
tiable density, which has a uniformly bounded derivative, and it then follows from
Zh,A)/Gh has thesame;nnperty for any A with CA3>0. Let A be

(5.42) that (2, 5~

such a value. Then, since Z(Zh,k-zh’k)/oh is the sum of ( h;X-

zmxﬂﬁlmd

_ ) ) ) _ i . 1
ZA%AO(Zh,A Zh,A)/Oh it follows readily that Z(Zh,k Zh,k)/gh has a continuously

differentiable density, T, say, with both ]rh(z){ and Irﬂ(z)! bounded uniformly in

This together with (5.43) can be seen to

z, h>h
L
-zexp{—é?ﬁu

0’ with h0 as in Lemma 5.1 (diii).

imply that 1, (2) converges to IICH;q/2¢(Z/]lCH3/2), as h+o, for ¢(z) = (2m)



5. dBF =
uniformly for z in bounded intervals (here we leave the details of the argﬁment to

the reader).

By a change of variables,

‘—_—r oo _h(z_—z—) o
/ZWIICIIZ/Zth_Z{le ", (d2) - Je Z/é?llcllg/zrh(z/(hoh))dz .

From the uniform convergence established above, /731}c”3/2rh(z/(h0h)) -
v2n¢|e”3/2||cHéq/2¢(O)= 1 uniformly for z in bounded intervals, and for h large

V?ﬁﬂ]cﬂg/zrh(z/(hOh)) is bounded by some constant, say C>0. Hence, for any A>0,

lge_z/ﬁnc]]g/zrh(z/(hch))dz - (j)e'zdz|

A A o0
< Ige_z/ffﬂc||3/2rh(z/(h6h))dz - [e™%az| +(C-+1)fe_zdz
0 A

> (C+1)fe %z , as h » =,
A

and since A is arbitrary and fe~zdz==1, this proves the lemma. 0
Together, Lemmas 5.4 and 5.5 lead to the basic result of this section, to be
stated in the next lemma. In the lemma we also remove the restriction that the CA'S

are non-negative.

LEMMA 5.6. If assumption Bl or B3 from Section 2 is satisfied; then

P(Eclzli>z-+x/zp/q)

+ exp{-plle|| Px} , as z + =,
P(JcyZy > 2) 4

for fixed x, and if instead B2 holds then

P(chzxi>z-+x/zp/q)

> exp{—p]kfﬂépx} , as z > o
P(ZQAZA > z)

. + +.q-,1/q . . . . .
with |k ”q:={2(ck) }*/% as defined in Section 2. By monotonicity, both relations
remain valid if in the left hand sides x is replaced by x(z), with x(z) >x, as z >,

Proof. Suppose first that Bl holds. Then, using first the inversion formula (5.3)
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and then Lemma 5.5, with z defined by (5.8),

(5.44) P(Zc z >zh)-®(h)d[e Fh(dz)
“h
~hz, © -h(z-z,)
-d)e "fe D F, (dz)
h
hz,

- Z
~ ®(h)e /(v”‘}}cuq/ o,h) . ash > .

Let h, be the solution to the equation E£ =E£-+x/§£/q=52h(1-+x/§£), or equiva-
*

lently the solution to

(5.45) hJ/P = h P (1 /(e[ B% D)

Then, writing

P(Zc z >E—-+X/EE/q)

R(h) =
PGCZ>%)

P(Zc Z >zh )

b4

P(Zc Zy > zh)

44) and hOthh*Oh , which is an easy consequence of (5.45), that
*
-h,z
o(h)e
(5.46) R(h) ~ h7 , as h > o |
®(h)e

it follows from (5.

It follows from (5.45) that

hq/p(h*-}ﬂ =hq{(1+.x/(HcH§qp'qhq))P/q-.1}

> P as h » o,

>

Bagd ) P

Since similarly

- -~ _.-q9/p 9.9 1.9
h*zh*-hzh-p ]|c”q‘h* -h™)

, as h > o

> p Pl 3 Y ] Px
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it follows from Lemma 5.4 (i), after writing h, in the form h*==h-+hq/p(h* -h)/hq/p
that (5.46) can be written as

7 +x/zP/4

P(leyZy > 2y + /2"

P(ZCAZA:>E£)

= R(h)

~ exp{p_q/pHcthq/p(h* -h) - (h,z, -hz)}

+ exp{—pI!cHépx} , as h » o |

Since Eh tends continuously to infinity as h tends to infinity, we may replace E£
by z in this relation, and this completes the proof for the case when B1 holds.

Next, assume that B3 is satisfied. Let
o' (h) =T, () , @7(h) =170, (n) ,
where II" and I~ signifies products over A for which cAZ:O and CA<<0’ respectively.
By Lemma 5.4 (i),

(5.47) o (h+ x/hYP) ~ 6" ) explp VP | ST L as b

and since for cA<<O we may write CAZA:=(_CA)(_ZA) =CA(-ZX)’ and since the density

f(-z) of -Zk is assumed to satisfy the hypothesis of Lemma 5.4 (i), it also holds
that
(5.48) ™ (h + x/hYP) ~ 6™ (h) expl p‘q/PHc'Hgﬂ , as h + o.

Since @(h) =& (h)® (h) and Hc+|[3+ ”c_”3= ][cllg, it follows that

(5.49) @(h-+x/hq/p)'~®(h)exp{ p_q/plh:ng} , as h > o,

Similarly, with Z+ and Z_ denoting summation over A with CAQEO and CA‘<0, re-

spectively, we have that, as in the proof of Lemma 5.5,

+ = +11q
ANV VEAE S CH oI

U@ - 20/% 4 N(o,”c-”g) Cash o .
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Thus, by independence

_ . )
L 5~ 2,00 /%, Sl*N(O,IICIIq) ,as h >,

4 .

The remainder of the argument of Lemma 5.5 can now be repeated to show that the
same conclusion holds also in the present situation. Thus, since this and (5.49)
were the only results needed in the proof of the first part of the present theorem,

it follows that the result also holds wunder assumption B3.

Finally, if B2 is satisfied, then again (5.47) holds, and (5.48) holds with p
replaced by p' >p and q replaced by q' = (1 —l/p')—1<<q, so that
- "/t -
8" (h +x/hYP) = o= (he(xn? P VP p APy LoT(h) L as h o+ o .
Hence, again using that @(h)==®+(h)®_(h),
8(h +x/hYPy ~ a(n) exp{p"q/Pllc"Hgﬁ L as h > o,

Similar reasoning shows that the conclusion of Lemma 5.5 holds, with lchq replaced

by |k+Hq, and the validity of the result under assumption B2 now follows in the same

]

way as above.

The type III limit for maxima for i.i.d. variables’{ﬁt} with the same marginal
d.f. as ZCAZA now follows readily. We first prove a lemma which gives some infor-

mation on the choice of norming constants. The lemma is stated in a slightly more

general form than needed for the present purposes.

LEMMA 5.7. Suppose that Bl or B3 holds. Then
(i) P(ECAZXZ>Z)==exp{-(z/[h:”q)p-+0(zy)} , as z >
for y=p/(0q), and for any constant D>0 this is uniform in allv{ck} satisfying
e, =DA% 2 £ 0.
(ii) If'{un} satisfies
P(chZA:>un)'VT/n ,asn-—> oo,

for some T >0, then
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Uy = ||<=Hq(10g n)l/p+ 0((10gn)Y/p_1/q) , as n > @,
(iii) If instead B2 is satisfied, then the conclusions of (i) and (ii) are still
valid if |]ch is replaced by ||c+||q and if vy is defined as Y=pmak (1/(69),q'/q),

for q'=(1- l/p')_l, with p' given by B2.

Proof. (i) Assume Bl holds. By (5.44), the definition of o, , and Lemma 5.4 (ii)

we have that

_ —hzh /2
P(feyZy >7)~ d(h)e /(/z_w||c|]3 ho,)

= exp{—h?h+p—q/pq-1|]c’|3hq+0(hl/e)} , as h > = .

It follows from the definition (5.8) of z_ that h?h =p(Eh/Hch)p, that p—q/pq—lﬂcllghq=

pq_l(zh/Hch)p, and that h1/6=0(;£/(6q)), as h » ©, and thus, replacing —Z—h by z,
-1
P(Je,2, > 2) = expl-(p-pa ) (2/[[e]| )P + 02y}

= exp{-(z/|lc||q)p+0(zY)} , as z > @ |
The claimed uniformity can be verified by inspection of the proof. The proof under

B3 is similar.

(ii) Again, suppose Bl holds. Then, according to the assumption and part (i),
t/n~P(Vc,z, >u ) = exp{-(u /||c]] )P +0oN)}
TATA T Tn n q n -’

and thus

-logn-= —(un/Hch)P+0(uZ)
This shows that un=0((1og n)l/P), so that
u, = llell Ctogm*P1+ (ogm oc10g m /D))
= llell (1ogm P+ oc(r0g n) P, as >

(iii) The proof of part (i) has now to be modified along the same lines as the
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last part of the proof of Lemma 5.6. Since this is completely straightforward, we
omit the details. The proof of part (ii) under B2 is the same as above. 0

. . A
We now define norming constants a > 0, Qn by

p||c”(;1(logn)l/q if Bl or B3 holds,
(5.50) Qn = { |
pHc+H(;1 (log n)l/q if B2 holds,
and by requiring that
-1
(5.51) P(Eckzk>ﬁn) n o, asn-> oo,

It thus follows from Lemma 5.7 (ii) that

lell  (Log Py 0((1ogm Y CD -1/ £ p1 or B3 holds,

(5.52) Gn - {

Hc+]|q(log n)l/p+ 0((log n)max(l/(eq),q'/q)—l/q) , if B2 holds.

We can now state the main result of this section, on the maxima l<>ln of the associated

independent sequence {ﬁt}.

Theorem 5.8. Suppose that oneof B1-B3 is satisfied, and let {gn’gn} be as defined
above. Then
(5.53) P(Qn(f/\ln -Qn) <x) »expi-e X} , as n » o .

Proof. It is readily seen that (5.53) is equivalent to

A -X
(5.54) nP(ZC}xZ)\>X/an+Gn) +e ", as n>ro
(cf. [7 ], Theorem 1.5.1). Suppose Bl holds. Then, according to Lemma 5.6, since
/a,A
XQE q/a}}—»x”cllg/p , as n > o,

P(ZC)\Z}\ > Qn + (ng/q/gn) /Gﬁ/q)

nP(ZcAZx > X/Qn + Gn) ~
P(Jeyzy > b))

> eXP{-P”CH(;pX”C”g/P}

= exp{-x} , as n + o,
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so that (5.54) holds. The proofs under B2 or B3 are the same. 0
In concrete situations it would be desirable to have more precise estimates for

Gn than (5.52), and one might perhaps be tempted to think that the appearance of the

"big 0" term is due to inaccuracies in the estimates. In a sense this is however .

not the case, since it can be seen that the assumptions B1-B3 only determine ﬁn up

to terms of this order.

Nevertheless, there are cases when Gn can be explicitly computed. If the ZA'S
are normal with mean one and variance %, so that f(z)==exp{-zz}/¢%; then one possible

choice is
(5.55) Gn= Hc”z(logn)%-Ichz(loglogrl+1og4w)/(4(logn)%).

Further, we will below show that if only finitely many, say k>0, of the CX'S are

non-zero, and if Bl holds, then

A
(5.56) P(2£X2A3>z)'vﬁ(z/]|ch)uexp{—(z/||ch)p} , as z > o ,
with
(5.57) a=k{(a' +%)-p/(2q)} - p/2

- ’ Do _Py _ P
'ﬁ==(K')k(2ﬂ/g2)(k l)/ZPk{(J p)(a +1) 2} 5

(a'+4)q/p -%
eyl .

As in Section 4 it then follows that Qn may be chosen as

(5.58 3n= Hch(logn}l/p-+Hc]h;p—l((&/p)log15gn:+1ogﬁ)/(logn}l_1/p

If instead B2 or B3 are satisfied, then (5.56)-(5.58) are replaced by slightly more
complicated expressions, which we leave to the reader to derive. However, inrdiespecial
case of B2 when f(z) is symmetric, (5.56)-(5.58 remain unchanged and in particular

1
-3

in the normal case discussed above, with K=7 °, o.=0, (5.58 reduces to (5.55), as

it should.

The relation (5.56) can be proved directly, e.g. by partial integration in con-
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volution formulas, but it is also simply deduced from the method used to prove

Lemma 5.6, in the following way. By Lemma 5.1 (i),

, vz (e g
Cb)\(h) =1p(c>\h)~K'/71?/_é_2_p'@ +1)q/P(h'c>\) (a "'%)Cl/P"lze A 0

, as h=+oo

1

— . (!
Hence, writing K=K'v/2/g,p (a'+1)q/p and v = (o' +%)q/p - %,

a llelldg nd
o(h) ~—I€kHcKhYke 70 ash s,
A
Thus, by (5.44)

— ko vyvk . -q/p -1 _ 2
P(ZCAZK >z,) ~K Ec;\(h‘( exp{p q/pq Hcthq —hzh}/(/'z—ﬂlcllg/ o, h)

as h >~ o, (5.56) then follows by '"substitution," in the same way as in Lemma 5.7 (1).
Finally, even if Gn seems to be difficult to compute analytically in general,

numerical computation should not be difficult.



_44_

6. Extremes of the moving average process for p>1.

Using the results of Section 3 and 5 we in this section show that the maximum

Mn of the moving average process {Xt = Zcx_tzx} behaves asymptotically in the

same way as Qn' This is proved as a consequence of the more general result that
the point process Nn of heights and locations of extremes converges to a Poisson
process N in the plane with intensity dt xe Ydx (Theorem 6.1) in the same way as

for I/\\In. However, of course the sample path behavior of {Xt} and of {Qt} near ex-

tremes differ markedly. Let
a/p; .
(6.1) ;CX_T|C>\| 51gn(c>\)/||c[|q , 1f Bl or B3 holds ,

YT=

+4/P, ) d s
;CA-T(CA) /I3, if B2 hods
with sign (c:}\) equal to one if cy 2 0, and to minus one otherwise, and let N' be obtained

by adjoining the mark y to each point of N. Then, for NI'l,NH as defined in Section

2, NT'I ii NT, NH_>N' (Theorem 6.3).

For these results, the norming constants are the same as for the associated

independent sequence, i.e. we may use

(6.2) a =a,b =b
n n n n

with Qn,ﬁn given by (5.50)-(5.52).

Theorem 6.1. Suppose that one of B1-B3 is satisfied, let an,bn be as in (6.2), and
let Nn be as defined in Section 2. Then Nn Q N, asn - «©, in [0,®) x R, where
N is a Poisson process with intensity measure dt x e ¥dx. 1In particular,

-X
-e
(6.3) P(an(Mn - bn) <x)>e , as n->o,

Proof. We will prove (3.4)-(3.6). Since the other assumptions of Lemma 3.2

clearly are satisfied (using Theorem 5.8 for (3.1)), this is sufficient to prove

that N gvN.
n

Suppose now, to fix ideas, that Bl holds. The proofs under B2 and B3 proceed
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similarly, as in Theorem 5.8 and will be left to the reader. According to
Minkowski's inequality, (Z(c}\+ C)\-t)q) 1/q <2HCIL1’ for t # 0, since < always holds
and since equality would mean that {C)\} and {C)\—t} are proportional, which is im-
possible. Further, clearly (Z(c)\+c>\_t)q)1/q - 21/q||c||q, as t+2% o, Thus there
exists a Y' > 0 such that ’ |
(6.4) 2llcll /2Ces ey IHY A2 1441 | for t#0.
q A A=t

Let v satisfy 0 <y and 1 + v < Cl +Y')p, and, as in Lemma 3.2, write n' = [ny]
and u = 3'</an +bn.

By Lemma 5.7 (i) and (6.4)

P(X,+X >2u ) = P(E(ck vey JZ,>2u)
2u

exp{-( . P2 +0(1))}
(Zleyre, 0BT

1

IA

u
enﬁ41+vaeﬁh)Pu+oan}, as n + ,
C
q

uniformly for t#0. Since by (5.50) and (5.52), un/llc”q= (1ogn)1/p(1 +0(1)) and

since 1+7vy <(1 +y')p, it follows that
P(XO + Xt > 2un) = o(n1+y) , as n > o,

and hence (3.4) is satisfied.

Let 6n,(h) =Eexp{h2n,<)\c>\z>\} =TI, .y % (h) so that by Lemma 5.4 (iii) and (2.9),

with C a generic constant,

® ,(h) <expiC ) c}\h}Sexp{C(n')l—eh} ,
n n'<i

for h< (n')e.

To prove the first part of (3.5), we will insert this into Bernstein's inequality

P() c,2,>2) <3, (h)exp{-hz} ,
N AT n

for z = 1/an, h= (n')e.
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It follows that

P( ) CAZX>1/an):£exp{Cn'-(n')e/an}
n'A

= o(n_z) , as n > o,
and hence the first part of (3.5) holds. The second part is completely similar.

Next, for the first part of (3.6), define hn by un==p_q/p2?;c§hg/p, so that

(6.5) hn'~<:onstar1t><(logn)l/q , as n > o |

by (5.50) and (5.52). It is straightforward to check that (5.44) applies also to

n' . - .
Z-wckzx’ and hence, replacing 2y by u in (5.44)
nl nl n' 1/
. ~ » - q ) q‘\
(6.6) P(_Emcxzx >u ) A=H_ wé)\(hn)exp{ hnun}/(/z_ﬂ '(_zoock) Ghnhn)

% ‘1o oo-a/p v q.a/p
~ P(Ec zZ.>u) I & (h) “expth P Z c,h M E}
ATA T Tn \=n'+1 At n n a1 A'n

(o] .
- . -1 dp-9/P q o
= P(ZCAZX:>un)®n'(hn) exp{th Z ck}, as n>o
n'+1
by a further application of (5.44). Since P(Qh:>un)—>exp{—e_x} it follows that

P(ZCXZ >1ﬂ9 =P(§O:>un)"“efx/n ([7], Theorem 1.5.1). Further, by (6.5) and

A

(2.9) exp{hgz: c;l}»exp{o}:l, as n+«, and similarly, from Lemma 5.4 (iii)

141
we have that @n,(hn)-+1, as n+«, Together with (6.6), this proves the first
part of (3.6). Again, the second part is the same as the first one. This con-
cludes the proof of (3.4)-(3.6), and hence of Nn 4 N, as n=oo,

Finally, this implies in particular that Nn((0,1]><(x,w)) Q N((0,1] x (x,%)),
and hence

Pa (M -b)<x)=PN_ ((0,1]x (x,2)) =0)

> P(N((0,1] x (x,2)) =0)

1><exp{—fz e %dz}

= exp{-¢e ™}, as n > » ,

so that (6.3) holds. O
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The major step in finding the sample path behavior of'{Xt} near an ektreme value
is contained in the following lemma, which makes precise the 'geometrical' heuristics
in the introduction.

LEMMA 6.2. Let AO be a fixed integer, let € > 0 be arbitrary, and suppose that

u'/u>1, as u>», If Bl or B3 is satisfied, then

(6.7) P(|Z>\o- u'|CAOIq/psign(cko)/HCHZISQU'|2c>\Z>\>u)—>1 , as u—>o,

and if B2 is satisfied then
+
(6.8) P(IZAO—lﬂ(cxo)q/p/Hc+”3IS€u'|EKCAZA>10'+1 , as uro |

Proof: For notational convenience we will assume AO =0. By independence the result

is obvious if = 0, so we may further assume that o #0. First suppose that Bl

holds, so that in particular 5 >0 . Let

e/ Pllell ;e

_ e
cd/Ple]l 0

q/p -q
ca/Pllell ;%-e

q/p -q
ca/Pllell;

Then (6.7) (for )\0=0) is equivalent to the two relations

Pz, >wBed/P/lc)|d,Ieyzy > )

(6.9) 5 -0
P(Zcxzx>u)
and
P(ZO <_u'§c8/.p/ H.c,H_q, ZCAZX >u)
(6.10) _.,. 9 >0
P(JeiZy > )
as u * %, Since the 'proofs of (6.9) and (6.10) are similar, we will only verify
(6.9).

The result follows readily if cO/Hch =1 (e.g. from Lemma 5.6) and hence we
may assume that 0 < c0/||c|lq <1, and then without loss of generality that

1<B< Hcﬂg/cgL Thus is we let B be a constant with 1<B<B, and define
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cosp/q Lif A =0

C, = q q
A 1-Bc/|lc
R AL R

M 1ecg/llell]
then Ex > 0 for all A. It is straightforward to check that
(6.11) '{zo>uscg/P/||ch‘1,ZcAZA>u} < Iz >ullelylleligh
Since u'/u - 1 by assumption, uf < u'B for all sufficiently large u, and hence for

such u, using (6.11) for the second step and Lemma 5.7 (i) for the third step,

p(z0>uv§cg/13/||cl|§l,zckzk>u) < P(ZO>u8c8/||c|lg,2c)\z>\>u)

< P52, >ullEl Y llelld
alfe))

__L)P (1 +0,[1'):)} , as u > o,

= exp{-(
q J—
NEER

Since P(chzk>u) = exp{—(u/lchq)p(l-+o(1))}, (again by Lemma 5.7 (i)) it follows

that

=.9/pp 14 —n4a
P(z,>u'Be el ) e, z,>w) ‘ cll
(6.12) 0 'Beg Mellgpleytyr) 0(expl-(——P (—L - D (1+0(1))}).
P(JeyZyow lell, el
Heré
I<h® 1-8cd/|le]|?
L= (8Ped+ (————DP(llell] - ch/llell]

q 0 q q
lellg 1/l

= e/ llelld + 1 - se/llellDP/ct - ey llel D

‘ P -
and since elementary calculations show that the function g(B,x) =fx+ (1 -Bx)p/(l-x)p 1

is strictly greater than one for 0<x<1 and 1 < g < 1/x, we have that |ﬁﬂ|3/|}c”33>1,
and (6.7) follows at once from (6.12).

(For a geometrical interpretation of this proof, see Fig. 6.1 below.)
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Fig. 6.1. Probability of shaded area is approximated by probability of area out-

side dashed 1ine. The curves are level curves of exp{-Hz||g}-

Next, suppose that instead B3 holds. Then, replacing cy by |CAI and ZA by
stign(ck) in the previous computations, the same result again ensues.
If B2 holds, then p(ZcAqu) = exp{-(u/Hc*Hq)P(uou))} by Lemma 5.7 (iii), and

P(ZO<*€U')==eXP{(€u')p'(l+0(1))} =o(exp{—(u/|k+Hq)p(1+o(1))}) since p'>p, and hence

(6.13) P(Z,< —€u'|2c>\z>\ >u) >0, as u > o,
Further, if c, <0, so that‘{ZO > eu'} = {—COZ > [coleu'}, then

P(ZOI>€u‘,ZcAZAZ>u) < P() cKZA:>u4—|cO[8u')

A£0
7 u+|c0]€u' p
= exp{-(——— 1 +o} ,
el
q

and hence, similarly as above,
(6.14) P(ZO:>€u'IZCAZX >u) >0, as u > o,

Together (6.13) and (6.14) prove (6.8) for the case <y < 0. Finally, if o >0,
(6.18) follows from similar calculations as for hypothesis Bl, after replacing

IIch and HE“q»by Hc+Hq_and HE+Hq_throughout (with obvious notation). 0

We will only prove convergence of sample paths near extremes under the hypotheses

B2 and B3. The corresponding result surely holds also if Bl is satisfied, but it
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seems a proof of this would require further complications in an already long proof.
Theorem 6.3. Suppose that B2 or B3 holds, and let Nr'l and NI'{ be as defined in sec-
tion 2 with an’bn given by (6.2). Then NI'1 4 N' and N]'q' d N', as n - o, in S X IROO, where
N' is the point process obtained by adjoining the mark y given by (6.1) to each
point of the Poisson process N in [0,©) x R= S, with intensity measure dt x e Xdx.

Proof. According to Lemma 3.4, to prove Nr‘1 g N' it is sufficient to prove (3.11).

Let u =x/a_+b_ for fixed x so that b /u_ - 1, as n + », by (5.50), (5.52) and
n n n n’ n

P(X >u ) -P(Zcx }\>u )~ _X/n, as noted on p.6.3. Suppose B3 holds. Then by

Lemma 6.2 with u=u, u' =bn, for any € > 0 and >\0’

P(XO >un,|Z>\O— bn[cxolq/psign(cko)/HCH;{I >€bn) =o(1/n) , as n > o,

Tt readily follows that, for any A > 0 and € >0,

| /Py q -
Pc{x0>>un}r1|kTéx{lzk- by ley [P signey)/lell o] > eb, 1) =0 (1/m),

as n > o, and then that, for fixed T,

(6.15) P(X0>un’lbr~11p}<—xc>\—”fz}\ |)} K )\_T!c:)\[q/pﬂon(c )/Hc”q| > €) =o0(1/n).

Now for fixed € > 0, choose A large enough to make IZ|>\|>XC>\—TlCk'q/pSign'(c}\)! <€HCH3

and (Z[>\|>XIC>\|q)1/q < g][ch. Then, using the definitions of YI'l’O(T) and y_

(6.16) P(Xy>u Y (D) -y | > 3€)
-1 . /
= P(XO>un’|bn ZC)\-TZ}\- I)\LXC)\ Tlcxlq p/”CHSI > 2€)
< pOu 07t T e ze T e e VRl > e
< R |>\%sX A-T A I)}S_X A-T' A q
+ Z, |>b_€)

P(]
|A%>x AT

O(l/n)+P(||% )\T)\|>b€),asn—>oo,
>\

by (6.15). It follows from Lemma 5.7 (i) and (5.52) that
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b e ‘

6.17) - é( c >b_ €)= exp{-( o P (1+0(1))}
( ) IA%>X'X-T%“ n C _Jcqu)l/q
[A]>X
{-logn Iellye P (1+0(1))}
= -lo ) +0
exp gn ( _l c)\ I q) 1/q
[A]>X

o(1/n) , as n > o ,

T 1 ..
since A was chosen to make ||ch€/(Zlkl>X4cAlq) /Q) > 1. Similarly

(6.18) P(ch_TzA <-b €) =o(l/n) , as n > <.

Thus, by (6.16)-(6.18), for any € > 0 and T
(6.19) P(XO:>un’|Yﬁ,O(T)"yT|:>3€) = 0(1/n) , as n > » |

which proves (3.11) and hence that Nﬁ Q N' if B3 holds.

Further, since y0==1 and Yﬁ O(O) =X0/bn’ it follows from (6.19), replacing 3e
by €, that

P(XO:>un,[X0/bn —]J >€g) =0(1/n) , as n + o |
and then by easy arguments that, for € > 0 and T fixed,
" - > = o
P(X03>un,[Yn’0(T) yTl €) =o(l/n) , as n > o,
. . d
1] " 1 1"
By Lemma 3.4, with Nn replaced by Nn’ and Yn,O by Yn,O”thls shows that NH > N',

as n > o, if B3 holds.

The proof under assumption B2 is similar, and is left to the reader. 0
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The extremal behavior and the technique needed to study it is less complex for
p=1 than for p>1, although there is an interesting extra diversity of behavior
when the weights'{cx} assume their maximum for more than one value of ). We will
therefore be briefer than in the previous sections, leaving arguments to the
reader and eicluding some cases which could be treated by similar methods, but at
the cost of further complications.

In each of the cases Al-A3 we will find the appropriate norming constants
Qn’gn for the maximum ﬁn of the associated independent sequence'{Xt} (Theorem 7.3).
The corresponding results for the maximum Mn of the moving average process, and
for the point process Nn will, for a> -1 also be proved in all three cases, but
for o < -1 only when k+ =1 and in the cases Al and A2 of positive weights and of a
dominating right tail, respectively (Theorem 7.4). In those cases, as for p>1,
the normiﬂg constants and limits are the same as for'{ﬁt}. Similarly, proofs con-
cerning sample paths near eitremes are only given for cases Al and A2 with k+ =1
(Theorem 7.5). Some of the remaining cases, which more resemble 0<p<1, are
discussed at the end of the section, without proofs:er'ﬁore complete treatment of
these cases will be giveﬁ in a separate paper. -

The first lemma of this section contains some straightforward estimates of

convolution integrals and will, again quite straightforwardly, lead to the tail

behavior of ZCXZX for p=1.

LEMMA 7.1. (i) Suppose the random variable Y, satisfies (2.2), with p=1, and is

independent of Y, which satisfies
BY,
Ee <o  for some B> 1.

Then
Y2 o -Z
(7.1) P(Y1-+Y2:>z)~'KEe z e , as z = o
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Furthermore, for fixed Yl’ C>0, and B>1 the relation (7.1) is uniform in

Y, e {Y;EeBYSC}

(ii) Let Y1 and Y2 be as in (i). Then

(7.2) limsup P(|Y; - z| >A]Y1+Y2>z) >0 , as A+,

700

1 and Y2 are independent and satisfy (2.2) with p=1, but

(iii) Suppose that Y
with K,0 replaced by Kl,oc1 and Kz,ocz, respectively. Then if -1 >oc1 =0, =0, say,

Y2 Yl o -z
(7.3) P(Y,+Y, >z)~ (K.,Ee “+K,Ee )z e , as z>o |
1 2 1 2
and if 051>-1, 0L2>—1, then
-1 a1+a2+1 _y
(7.4) P(Yl+Y2>z)~K1K2F(oc1+l)r(oc2+1)P(oc1+cx2+2) z e , as z->o

for T(a) = fcg yoc_le_ydy , (00>0).

Proof. (i) Let vy be a fixed number, with 1/8 <7y <1, and let F1 and F2 be the

distribution functions of Y1 and Y2. Then

P(Y1 + Y2 >z) = fP(Y1 >z - x)Fz(dx)

o -z V? P(Y1>z—x) 0
= Kz'e f — Fz(dx) + fP(Y1>Z—x)F2(dx)
- Kz'e Yz
BY

Here, since P(Y2 >vyz) < Ee 2e_BYZ by Bernstein's inequality ,

i P(Y,>2-X)F,(dx) < P(Y, >7z)
Yz

- 0(e”P%

o(z%e™?) , as z>o
since By >1. Further, by (2.2) and dominated convergence
z P(Y.>z-x)

1 i
| ——=—F,dx) ~ [ (- x/z )anFZCdx)
- Kz e )

> feXsz(x) , as z—>oo |
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since the integrand tends pointwise to ex, and, for zz=1, is bounded by a constant

times (1-+[x|&)ex, which is integrable (since P(Y2:>x)==0(e—ex)). This proves

(7.1), and the uniformity is then obtained by inspection of the proof.
(ii) Clearly

P(|Y, -z >AY, +Y, > 2) =fP(|Y1 -z| >A,Y; >z - X)F,(dx)

-A .

< P(Y, >z +A)P(Y, > -A) + i P(Y,>2- x)Fz(dx)+f P(Y, >z - )F, (dx)
_o0 A

Reasoning as in (i), we have that

P(Y, >z - x)F,(dx) ~Kz%e ? { e F_(dx)
2 2
X|ZA

|x{2A 1

and hence, using (2.2) to estimate P(Y1:>z-+A) and part (i) to estimate P(Y1-+Yé >z),

that

limsup P('|Y - z] >A]Y +Y,>z) < {e—A+ f e*F (dx) }/feXF (dx) .
1 1 2 2 2
ZH00 x|z A

Clearly the right hand side tends to zero as A > «, which proves (ii).

(iii) It is readily seen that

z/2 z/2
(7.5) P(Y;+Y,>2) = / P(Y; >z - )F,(dx) + {O P(Y, > 2 - X)F; (dx)

-0 -

+ P(Y1 >fZ/2)P(Yé > 2/2)

z/2 z/2 a1+a2 7
= | P(Y; >z - x)F,(dx) + fP(Y2>z—x)F1(dx)+0(z e ) , as zvo,

~00

by (2.2). Here

z/2 o /2 o
(7.6) fP(Y1>z—x)F2(dx)~Klz e~ _j;o(l— x/z ) Te'F,(dx)

-00
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and if Oy <-1,

z/2 v o A
(7.7) [ (- x/2) 1F a0 > [ (d) , as 20w,
by dominated convergence. Together with the same computations for the last in-
tegral in (7.5), the relations (7;5){7‘7) prove (7.3).
If oc2> -1,7 then ffo/oz (1- x/z)aleXFz(dx) tends to infinity, while
f(_)oo(l.— x/z)oclesz (dx) is bounded, and thus, using partial integration in the second

step, and (2.2) in the third one, we have that,

z/2 o

z/2 o
1 [ (- x/z) e'E (a0
0

[ (- x/z) éxpzcdx)~

=1

' O
-0l 2/2 I o ,
= 1-F,(0) -2 1e-2/2(1 . Fo(z/2)+ [{(1-x/2) - (a;/2) (1 - x/2) ! e™ (1-F,(x)) dx}
0
z/2 . Oy O

~K, [ (1- x/z) 'x dx

0 .

a,+1 % o, o
=Kz’ [ -y Yy fay , as ave

0

Now, insert this into (7.6), and then the result into (7.5), together with the

corresponding formula for the last integral in (7.5) to yield that

0 @y OgFanl

1
P(Y1+Y2>Z)NK1K2 (J)‘(l—y) y “dyz e , as z—+o© |

o, o
and since fé(l -y Yy Zay = T(ay + DT (o, +1)/T(a, +a, +2) this is the sameas (7.4). [

Here, in part (iii) we have for simplicity not included the case oy =a, = -1,
which could be treated similarly, but with further complications involving loga-

rithmic terms. Below we will accordingly exclude such cases.
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To state the next lemma, on the tail behavior of chzk, some further notation

is needed. With c,.C_, A, A_, k+ and k_ as defined in Section 2, let

+
k if Al or A2 holds,
+

k =

k+-+k_ if A3 holds ,

and let

A if Al or A2 holds,

A= ¥

A+UA_ if A3 holds.

With this notation, define

Q>
n

ka+k -1, if a > -1
(7.8)

o o < -1,
and

(7.9) ( KkP(a-+1)kF(k(a-+1))_1Eexp{ ) cyZy/e,}, if Al or A2 holds and o> -1
. AL AT+

Kk+(K yq/PfLF(a-+1)krck(q-+1))'1Eexp{ ) CAZA/C+},if A3 holds and o > -1
T AEN

R= kK(Ee ) Eexp{ ) cyZy/c } , if Al or A2 holds and o < -1
A A *

k -1 | -
kel T e O - v g P el e O

x Bexp{ ) CAZA/C+} , if A3 holds and a < -1 .
AT

LEMMA 7.2. Suppose that one of the assumptions Al-A3 is satisfied, with p=1 and

0#-1. Then, with &,ﬁ given by (7.8), (7.9)

A
(7.10) P(ZCKZA>’Z)“’ﬁ(Z/C+)ae—Z/C+ , as z ~ o,

Proof, Since P(ZCXZA3>Z) =P(2{CA/C+)ZA:>Z/C+), we may without loss of generality

assume that c¢_=1. Suppose first Al holds, with a#-1. Let c=max{ A £ AT <1,
Clearly w(h) = Eexp{hZ} is finite for 0<h<1, and y(h) =1+h EZ (1 +0(1)), as h+0, and

for any B <1/c it follows from (2.8) that HA¢A+Ee%p{BCAZA}:=HA¢A+(14'BCA EZ (1+0(1))

is convergent, and hence
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(7.11) Eexp{8 ) c¢,Z,}= T Eexp{Bc,z,} < .
Wi, M Do, 22

The result then follows immediately by writing ZCAZA=ZA1+"'+ Z)\k + ZML CAZA,
+
and first applying Lemma 7.1 (iii) repeatedly to evaluate the tail of the distri-

bution of Zy *oet Iy o, and then Lemma 7.1(i), using (7.11) for some Be (1,1/c), to
1 k

establish (7.10) (remeﬁber that in this case k=k,, A=A4).

If instead A2 holds, (7.10) again follows by the same argument, but with ¢

defined as E=ma§<{c;,c;\/c_; AéAY.

Finally, the case A3 follows similarly, after writing C)\Z)\ as ciyl/p(—y_l/pz)\)

for negative c)\'s, after noting that, by A3, P(—yl/pzk > z)~K7YOL/pZOLe’Z , as z> o, []

The type I limit for Ioln, the maximum of the associated independent sequence is

an immediate consequence of (7.10), by the same argument as for (4.1). Let
A
(7.12) an=1/c:+ ,
B =c,10gn+c, (4loglogn + 1ogh
, = C+logn ¢4 (0loglogn + 1ogK) .
Theorem 7.3. Suppose that one of Al1-A3 is satisfied, with p=1 and a# -1 and let

Qn,ﬁn be given by (7.12). Then

-X
P(gn(ﬁn—ﬁn) <x)>e® , as nreo . d

The behavior of extremes of the moving average process {Xt =Zc>\_tz>\} is gualita-
tively different when o > -1 and o < -1. Here we will only treat the cases
o > -1 and a < -1, k=1 formally, with k as defined above . The remaining case,
o <-1, k >1 is similar to the case p <1, but with some added complekity. It
will be treated separately in a later paper, as an example of a general convergence
theorem, and will only be commented on briefly here.
Theorem 7.4. Suppose that one of Al-A3 holds, with p=1, and that in addition
either o > -1 or o < -1 and k=1. Further let an=g ,b ={)\n be given by (7.12)
and let Nn and Mn be as defined in Section 2. Then Nn-clN, as n+e, in [0,°) xR,

where N is a Poisson process with intensity measure dt x e ¥dx. In particular
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-X
-e
P(an(Mn—bn)Sx)—>e , as n-> oo,

Proof. By Lemma 3.2 we only have to establish (3.4)-(3.6), similarly as for
Theorem 6.1. Furthermore as before we will, without loss of generality, assume
that c. =1 so that also anE 1.

Suppose now that Al holds, with k=k_ =1. Then c =maxt21max>\(c>\ + Ck-t) <2,

and we may choose 8 > % with cB < 1 and hence with Eexp{B(ck ¢y ) ZA} =

w(B(C}\+C}\-t)) well defined for t=1 and all A. For such t,

(7.13) Eexp{B(X, + X)) =Eexp{}B(c, +¢, )Z,]
e (B NI By }
= v(B(ey +c I p(Blcy +cy_I)J .
- e Ty AT At

Here ¥'(h) = EZexp{hZ}is bounded, and {(h) is bounded away from zero, for O<h<cB so that
C=sup{|P'(h+x)/W(h)[; 0<h+x<cB, h>0, x>0} <. Hence, by the mean value theorem,

W(hy +hy) <(h,) (1+Ch,) for 0<h ,h, and hy +h,<cB. Thus

[e/2] [t/2] [t/2] |
I By +ey )<t I $(Be)I T (1+CBey I}
- [t/2] -[t/2]

<{ I w(ch)}{ I (1+chA)}

which is bounded, uniformly in t, by (2.8). Together with a similar computation
for the second product in (7.13) this shows that Eexp{B(XO +Xt)} is bounded, uni-
formly in t21. Choose y>0 with 1+7vy <28, and for fixed x let un=x/an +bn So

that u, - logn, as n+. Then, by Bernstein's inequality

P(X,+ X, > 2u ) < Eexp{B(X, +X,) }e~2Bun
0(e2Flny
=o(n (1+Y)) as n>® ,
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uniformly in t=>1, which proves (3.4).

To prove (3.5) it is by the same inequality sufficient to show that e.g.

ATA
However, this follows readily from (2.2) and (2.8), since Y¢(h) - 1~hEZ, as h->.

. o) . -n'-

Eexp{logngzn,+1 CAZA}‘and Eexp{lognsz_g 1 ¢ 7.} are bounded as n+ for n'=Tn'7,

Finally, by the same arguments as in Lemma 7.2, using the uniformity in Lemma

. . n' ﬁé\c—un . .

7.1 (1), it follows that P(Z-wckzx>un)'v u e , as n > o | which, by the choice
of u_  proves the first part of (3.6). The second part is the same, so this con-
cludes the proof for the case when Al holds and k=1 (=k).

The proof when A2 holds and k=1 is similar, while A3 and A1,A2 for vy > -1,
k > 1 leads to an additional complication in the estimation of P(XO-+X£3>2un),

for small t. However, we omit the details of this. 0

The behavior of sample paths near extremes is simplest if Al or A2 holds, with

[e0]

k=k,=1. For these cases, let the limiting marks y'=='{yT}T=_Oo be defined by

(7.14) YT::CAi—T/C+’T:=O’i1""

Theorem 7.5. Suppose that Al or A2 holds with k=1, and let Nﬁ and N; be as de-
fined in Section 2, with a =4 , b =ﬁ given by (7.12). Then N! i N' and

n n’ n n n
NE ¢ N', as n >, in S x Efo, where N' is the point process obtained by ad-
joining the mark y given by (7.14) to each point of the Poisson process N in

. . . -X
[0,) x R= S, with intensity measure dtXe ~dx.

Proof. To establish that NA ¢ N it is by Lemma 3.4 and Theorem 7.4 sufficient

to prove (3.11). Suppose that Al holds and k=k,=1. As usual we may assume
that ¢ =1, so that ¢, <1 for A#X,. Let u =x/a +b , for x fixed, and let
+ A 1 n n n

€ > 0 be given. For A>0, using independence in the second inequality, we have

that
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{ _ -
(7.15) P(X, >, |Yn,0(w) yTI > €) sp(><0>un,|zAl unl > A)
+ P(lle— unl <A, IZCA-TZA —bnc)\l—TI >¢eb )
1
< P(Xy>u L ]Zy - u [>A0) +P(]z, - u [<NP(] ] c}\_TZA|>€bn—A— Ix]).
1 1 )\,{Xl
Here, by (2.2) and the choice of us nP(}Z)\ - un| <A) tends to a finite constant
, 1
as n » o and p(lzxﬂlqule >€bn -A- |xl) -0, since bn tends to infinity, so
that the last term in (7.15) is o(1/n) as n-+«. Furthermore, writing
XO =Z}\1 + ZX#)\IC)\Z)\’ the assumptions of Lemma 7.1 (ii) are satisfied, for Y1 =Z)\1
~ . o X
and YZ—Z)\#XICKZW by Lemma 7.2. Thus, since P(X0>un) e “/n, as n+o (by
Theorem 7.3 and [ 7], Theorem 1.5.1)

-X
limsup n P(X, >u ,IZ -u I>A)=e limsup P(IZ -u |>A|X >u )
I 0 n )\1 n I )\1 n 0 n

-0, as A > o,
By (7.15) this proves that

nP(XO>un, lYn',O(T) -yTl >g)>0 , as n>»,

i.e. (3.11) holds, and hence Nl'1 g N'. The proof that NH gl N' then is the same as
for Theorem 6.3, which proves the result when Al holds and k=1.

The proof when A2 holds, with k=1, consists of a minor variation of the same

argument. 0

Thé cases when A3 holds or Al or A2 holds with k>1 and when vy > -1 are more
complicated since then large values of {Xt} are caused not by one but by k large
Zx—values. As an example we will, omitting proofs, briefly discuss what happens
when A3 holds and 'y >-1, in the particular case of a symmetric underlying distribu-
tion, i.e. when P(Z>2z) =P(Z <-z), for z20. Let Ul" . Uk-l be random variables
in [0,1], with joint density function

- I'(k(a+1)) e’ o

f(u,,..., u ) 1
1 k-1 I’(0L+1)k 1 k-1
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for 0<u.,< 1; i=1,..., k-1, and zk'lu. <1, and define z, = U.,... Z. =U
i 1 A A
_ R B k 1 = B + .
ZAZT_Uk TR ZA‘ =Uy 1> Z)\~ =1 —Zl U;, and let =0 for A¢ A = h uh_.

_-1 -

Now define a stochastlc process Y {YT}T__Oo by

and let Y(l),Y(z),... be independent copies of Y, which are also independent of

the Poisson process N with intensity measure dt x e_xdx. Let the point process
N' in Sx R be defined by "adjoining independent marks Y to each point of N," i.e.

if N has the points {(t X. ), =1,2,...}, then let N' have the p01nts

vy, d

i=1 ...}. Then with N' and N” as defined in Sectlon 2, N' N!

,

(CCexp). Y
and NH ¢ N', as n = o, in S><I{ but the proof of this is more compllcated than the

proof of the previous theorem.

Finally, as mentioned above, the sample path behavior for a < -1 is similar to

that for p< 1, but with ébméginteresting extra complications. This will be discussed

in another publication.
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8. Extremes for 0 <p <1

For 0 <p <1, as for p=1, a < -1, extreme values of weighted sums are caused by
just one of the summands being large. However, in this case the scale of extremes
increases instead of being constant, as for p = 1, or decreasing, as for p>'1,
which allows for some further simplification. In the proofs we will use a direct
approach, similar to the methods of Rootzén (1978).

This in the present case it is fairly straightforward to find the tail behavior
of the distribution of ZCAZA’ by estimating convolution integrals, and then the
limiting distribution of the maximum Qn of the associated independent sequence
(Theorem 8.3). For 0<p <1, the limit of the point process Nn of heights and loca-
tions of extreme values of'{Xt = ch_tZA} is not a simple Poisson process but, if
Al or A2 holds, obtained from a Poisson process by replacing each point by k+ points
at the same location (Theorem 8.5). If instead A3 holds, then each point is replaced
randomly by either k+ or k points. This is just as ekpected: e.g. in cases Al or
A2, if an extreme value of'{Xt} is caused by just one big ZA’ say ZX3 then Xt should
be large at the k_ time instants XZ-XI,..., XZ-Xk , when the factor before ZX-in
ch—tzk equals c_. This behavior is further desc;ibed in the 1limit results for the
marked point processes Nﬁ and‘NH (Theorem 8.6).

We start by proving a counterpart of Lemma 7.1, estimating convolutions of two
random variables.

LEMMA 8.1.(i). Suppose the random variables Y1 and Y2 are independent and satisfy

(2.2) with the same a and p (0 <p <1), but with K replaced by K1 and K2 for Z replaced

by Y, and Y2 respectively. Then

1
P(Y, +Y,>z)~ (K, +K )zOLe_Zp as z > ©
177 BT TR » :
(ii) Suppose that Y1 satisfies (2.2) with p € (0,1), for Z replaced by Yl’ and is
independent of Y2 which satisfies P(Yé >2z) =o(zoce_Z ), as z oo,

Then
o -zP
P(Y1-+Y2> z) ~Kz"e , as z > o,
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(iii) Suppose {ZA}O_OOO are independent random variables such that for some C,ZO >0

and pe (0,1),
a -zP
P(zk>z)SCze , for 2>Z, A=0,+1,.

and that {CA}O_OOO are constants with 0 <¢y <1 and ]10gc>\| > 8, for all A, and
1
Zc“logcx{ /p<1. Then
_2,P
P(ZCAZA>Z) = 0(e 2z ) , as z + o,

Proof. (1) We will use (7.5). By (2.2),

z/2 P z/2 , P
(8.1) fp(Y >z - X)F,(dx) ~K 2 G~ f (1- x/z )%7% ~(2%) F,(dx)
as z > o, Here the last integrand tends pointwise to one, and is bounded for
o < x < zl_p, and z>1, since zP - (z - x)? < constant x x/zl_p, for OSXSZ/Z, and
hence

Z17P ,P C \P o
(8.2) f (1- x/z )ue -(z-x) Fz(dx) —>fF2(dx) =1, as z = o,

As before, let C be a generic constant, whose value may change from one appearance to

the next. Tt then follows from partial integration and (2.2) that

z2/2 z/2 . p AP
(8.3) (1o xyny%7 -0 @) < ¢ [ eF T o
1-p I-p
Z Z
P 1-p.p z/2
<cl® "0 DV ar et Py s J /- 01”0 9)ax)
p

Z

(Z_Zl—p)p_zp-p+ o 22 2P (2-x)P-xP

f

P
c{z*(1-P) 2 - dx}.

IA

of x, P - (z —k)p -xP is decreasing for 0 <x <z/2, so replacing the
g g

As a function
2
P_ (g PP _,PU-P) _ PP

last integrand by its maximum value, and using that z

(1 +0(1)), it follows from (8.3) that



- 64 -

. 2
o 2(P) , o+l PP (1o (1))

IA

p P
(8.4) [ - xz %% - F, (dx)

+~ 0, as z > o,
Hence, from (8.1), (8.2), and (8.4)
z/2 ’ P -
fI%Y >z—x)F(dm Kz e , as z > © |

and similarly

z/2 o -zP
f P(Y >>z-x)F (dx) ~ K z'e , as z > ®

Since furthermore P(Y, >2/2)P(Y,>z/2) = O(zzaekp{—zp(2_p+ 2 P = o(%exp{-zP}), part
(1) now follows by insertion into (7.5). (ii) follows by similar arguments as in

part (1).
(iii) By the assumption ZCAIIOgcA|1/p«<1 and Boole's inequality

(8.5) P(Zc Z z) < P(Ec > chllogckll/pz)

1
< JP(z> |10gc>\l /P
Here, for z>>zo, also Ilogckll/pz >z SO that

1/p P
‘ —(Ilogc | z)
P(ZA>IlbgckP/R@sC(|10gckﬂ®ﬁxe A

and hence, since fxexp{—xp}féconstant><exp{—xp/2} for x3>ZO, and using that
}logck|zp/2==llogcxlzp/44-|10gcxlzp/42:]10gcx|-PZZP, for zP >4 and llogcxli>8, we

have that, for some C, >0 and such z,

1
Ilogck[zp/z

P(ZA,> llogc |z) < C e

P ~l1oge, |
< C,e e

1

p
_ -2z
= Cle Cy -

4Py

Now, insert this into (8.5) to show that, for zi>max(zo
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P
-2z
P(ECAZA >z) < ZCle <

_2,P
=0(e22),asz—>°°. 0

It is now easy to find the asymptotic form of the tail of the distribution of
ZCAZA‘
LEMMA 8.2. Suppose that one of Al-A3 holds, with O<p<1. Then

- P
e (z/¢4) , as z >,

P(ZCXZA >z)~ ﬁ(z/cﬂq

where ﬁ=k+1< if A1 or A2 holds, and ﬁ=k+1<+k_1<_yO‘/P if A3 holds.

Proof. Assume that Al holds and, as usual without loss of generality, that c, = 1.

From (2.2) and Lemma 8.1 (i) used k+—1 times it follows that

o -zP
PCZ}\ +...+Z>\ >z)~k+Kze , as z > o
1 k

-+

Similarly it then follows from repeated uses of Lemma 8.1 (ii) that if X is large
enough to make |>\i| <A, fori=1,..., k, then

o -z
_CyZy >z) =P(Z, +...+Z, + Z, >z)~k Kz'e , as z - ®
S}\AX )\1 Xk A +

(8.6) P( c
ot !
Now, let X be large enough to make |1ogc>\| > 8 for [M >\ and ZI)\|>XC>\ |1ogc>\|1/p< 1,

which is possible since (2.8) is assumed to hold. It then follows from Lemma 8.1
(iii) and (2.2) that

ATA

P
P( _CyZy>1z) = 0(ze ) , as z >,
Al>A

and this together with (8.6) is by Lemma 8.1 (ii) sufficient to establish that

P( ) c¢y2Z,>2) = P( CyZy + N/ >z)~szOLe—Zp as z > o

The result follows similarly under hypothesis A2 and also under A3 after writing
- 1/p, -1/p . Vo s . .

c)\Zxas Y (-v Z)\) fornnegatlve c,'s, in chz)\ again noting that

P(—y—l/pzx >z)~ K_Yoc/pzone—z- , as z—>w, by A3, 0

Hence, the appropriate norming constants for the maximum of the associated in-

dependent sequence are
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A -1 1-1
(8.7) an=c+ p(logn) /p ,

b, = ¢, (logn /P4 (¢, /p) ((a/p) 10glogn + 10gh) / (10gn) /P

with
k+K , if Al or A2 holds ,

R = N
k K+k K y™P | if A3 holds.

e A
Theorem 8.3. Suppose that one of Al1-A3 is satisfied, with 0 <p <1, and let an’én

be given by (8.7). Then

-X
P(gn(ﬁn - ’Sn) <x)»e® ,asn->o . 0

However, for 0<p<1, the norming constants an’bn for the moving average process

CA—tZA} are the same as for the noise variables, (provided c+==1, and if Al or

A2 holds) and not as for p>1, those of the associated independent sequence. Thus

{Xt=Z

let

_-1 1-1/p
(8.8) a = ¢p (logn) s
and

' 1/p, 1-1/p .
(8.9) c+(logn) +(c+/p)ﬁa/p)loglogn-k1ogK)/(1ogn) , if Al or A2 holds
b =
n

c+(1ogn)1/p-+(C+/P)((d/p)1oglogn-+log(K-+K_yu/p))/(logn)1_1/p, if A3 holds.

{However, it may be noted that the difference between the various norming constants

is not large, e.g. if Al or A2 holds and c, =1, then

)

~

an(Mh"an =ah(Mh'"bn

a_ o -6 )+ logh/x

A
a (M - Gn) +logk, .)
The next lemma is the first step in making precise the notion that large values

of X are caused by>just one large ZA'

£ = I
LEMMA 8.4. Let a and bn be given by (8.8) and the first part of (8.9), with c, =1,

(or equivalently, let a =a ,b =b with Z{H,En given by (4.2) with K>0 a fixed
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arbitrary constant). Let € > 0 and x be fixed, and write en =€/an and un =x/arl +bn.

{i) Suppose Y1 and Y2 are as in Lemma 8.1 (i). Then

(8.10) nP(YISun—€n,Y2£un—€n,Y1+Y2>un)—>O , as n > o

p
)

(ii) 1If Y1 is as in part (i) and is independent of Y2, with P(Y2 >z) =o(zoce—Z

as z > o, then

- > 0o
nP(Y1£un en,Y1+Y2 un)+0 , as n > .

(iii) Let Yl"' ., Yk be independent and satisfy (2.2) with the same o and pe (0,1)
but possibly with different K's, for Z replaced by Yi’ i=1l,..., k. Then
k
- - > &)
nP(Y1Sun en,..., YkSun €n’ izl Yi un)—>0 , as n>® .,

Proof: (i) Similarly as for (7.5) we have that

un/2
(8.11) P(Y;<u -e,Y,<u -e .Y +Y >u)< ef P(Y; >u - x)F,(dx)
n
un/2
+ ef P(Y,>u - x)F;(dx) +P(Y; >u /2)P(Y,>u /2).
n

By the choice of a_,b , it holds that ugexp{—ug} =0(1/n). Hence, using in turn
u /2

. - - . . n _ A, P AP
(2.2), this, and € > o as n > o, and estimating ful_p(l x/un) exp{un (un X) }Fz(dx)

as in Lemma 8.1 (i), it follows that n
u /2
nf o -ug "n/? o uﬁh(un'x)p
€nP(Y1 >u - X)Fz(dx) ~K1une Sf (1- x/un ) e Fz(dx)
n

ul P

n
0(1/n) [ F,(dx) +o(1/n)
€

n

o(l/n) , as n > ® .,
Similarly, the second integral in (8.11) is o(n_l), and since P(Y1>un/2)P(Y2>un/2)=
0(n~1) as in Lemma 8.1 (i), it follows from (8.11) that (8.10) holds.

(ii) This follows similarly, (cf. Lemma 8.1 (ii)) after replacing (8.10) by
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un/2
P(Ysu -€ Y +Y,>u) < €fP(Y1>un—x)F2(dx)
n
un/Z
+ foo P(Y,>u - x)F (dx) +P(Y,; >u /2)P(Y,>u /2)
(iii) It is readily seen that
ok
{.Z Y, >u LY Suo-e L., Yksun_en}
i=1
k-1
c {izl Yi>1%1_€n/k’ylglﬁ1—En""’ Yk-1S1ﬁ1_€n}
ok k-1
U {.Z Yi>un’.z Ylﬁun—en/k,YkSUH—en} s
i=1 i=1
and repeating the procedure shows that
-k
{'Z Yi>un,Y1£un—€n,...,YkSun—en}
i=1
X . £ £-1 ‘
c v {) Y. >u -((k-z)/k)en,Z YiSun—((k+1_£)/k)gn,Y£Sun—.€n}.
L=2 i=1 n i=1
Hence
k
P(‘E Y, >u LY, Su e L., Y Suo-€)
i=1
k 4 £-1
< KZ P( ) Y, >u - ((k=-B)/K)e, J Yy <u - ((k+1-0)/K)e Y, <u - ((k+1-£)/K)e )
=2 i=1 i=1

and the result follows from applying part (i) to each term in the sum, with the obvious
identifications, since Zf-lYi satisfies the requirements put on Y1 in part (i), by
Lemma 8.2. 0

As discussed above, it will presently be shown that if Al or A2 holds, then each
large ZA—value, say Z+—, leads to precisely k+ large Xt values at fixed distances from
X and with heights approximately equal to C+an Similarly if A3 holds, a large (posi-

tive) ZA causes k+ large (positive) Xt—values, and a large negative ZA causes k_

large (positive) Xt-values. Thus, taking into account the effect of time and height
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scaling in Nn’ its 1limit is of the following form. Let ﬁ,ﬁ+, and N_ be Poisson

processes in [0,®) x Rwith intensities dt><e_xdx, dt><K(K-+K_Ya/p)_le_xdx, and

dt x K Yd/p(K-+K Ya/p)-le-xdx’ respectively, and define the point process N by

k,N(B) , if Al or A2 holds

(8.12) NB) =1 T N
k N (B) +k N (B),if A3 holds.

+

-+
For the proof that Nn g N we will directly use the structure of extremes discussed

above. The basic idea of the proof is quite simple, and the calculations are elemen-

tary, but does involve some long expressions.

Theorem 8.5. Suppose that one of Al-A3 is satisfied, and let Nn be as defined in

Section 2, with an,bn given by (8.8),(8.9). Then Nn 4 N as n~> o, in (0,®) XR,

with N given by (8.12). In particular

-X
-e
- <
P(an(Mn bn)_.x)—+e , as n > o,
=1. Let

Proof: Assume Al holds, and as usual without loss of generality, that c,

I =[s,t) X (x,9) be a fixed rectangle in [0,9) xR, write un==x/ah-+bn, and define

Y = Z (A = 2 5
togen At )\e/\+z>‘+t

+

=) z, 1{z,  >ul,
t >\€A+ A+t A+t n

and let Nh and ﬁ; be defined from'{if} and'{il} in the same way as N_ is defined

<

from'{Xt}, and let Nn be similarly defined from'{Zt}. We will prove that

('8.13) p(ﬁnm # k+ﬁn(1))+o , as n>o |
(8.14) P(N_(D) # ﬁn(l))w ,asn > o
and that

(8.15) P(N_(T) # N‘n(I))—>o ,asn >,

~

As noted in Section 4, Nn g N as n - »_ and hence obviously k+ﬁn +—k+ﬁ==N, and Nn > N

then follows from (8.13)-(8.15) by applying Lemma 3.3 three times.
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It is readily seen, that for

A = max{[X]; Aeh } ,

it holds that

(8.16) ' {N:n(I) #k+§n(1)} c {Z)\ >un for some Ae [ns - A,ns +A]u [nt - A,nt +A]}

u {Z>\>un,Z>\+u‘>un for some )\ e [ns,nt) and p with p#0 and |p| <A}.

Here, by Boole's inequality and stationarity

(8.17) P(Z)\ > u for some Xe [ns-A,ns +A]u [nt -A,nt +A])
< 2(2A+1)P(Z>u )

-0, asn>oo |

and similarly

>un for some A€ [ns,nt) and u with u#0 and Iu] <A)

(8.18) P(Z>\>un,Z>\+Ll

L

< n(t - s)2AP(Z >un)2

-0, asn-> oo,

since P(Z >un) ~Kuzexp{—u£} =0(1/n), by the choice of a_,b . Now (8.13) is an im-
mediate consequence of (8.16)-(8.18).

Next, fix €>0, define I€= [s-€g, t+€) x[x-¢€, x+éj and write €n=€/an. It

can be seen that for large n

(8.19) {NH(I) <Nn(I)} S {Nn(IE) >0} {Zx>”n’zx+u5 - /k_,
for some Ae[ns-A,nt+A) and u#0 with [p[ <A},

and that

(8.20) ' {N_n(I) >Wn(I)} c {Nn(Ie) >0}u {UZA ZU+>\ >u
+

Z>\1+>\Sun ~E s Zkk¥>\£un_€n’ for some A e [ns,nt) } .
+

Since the Z)\'S are independent, it follows from Boole's inequality and stationarity

that
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(8.21) P(Z>\>un,Z>\+us —en/k+ for some Ae [ns -A,nt+A) and u#0 with lpl <A)
< (n(t-s) +2A)P(Z> un)P(Z <—€n/k+)

-0, asn~>oo ,
since P(Z>un) =0(1/n), as noted above, and since €7, and hence P(Z <—-€n/k+) >0,

as n + «, Moreover, a similar argument, together with Lemma 8.4 (iii), shows that

—8,...,Z>\ su -€, for some X e[ns,nt))

(8.22) P() Z ,>u,zZ <u
WA )\1+)\ ho! k++7\

u€A+
< n(t -s)P( 2 Zu’>un,Z>\ Sun-en,..., Z>\ < un—en)
ue/\+ 1 k+

-0, as n > o,

Since ﬁn 43X, it follows from (8.19)-(8.22) that

limsup P(N_(1) #ﬁn(l)) < limsupP(N_ (1) >0) = P(ﬁ(xg) >0),
n—>oo n—->c°

and since the latter quantity tends to zero as € - 0, this proves (8.14).

Finally, (8.15) follows in a similar manner. In fact, with the same notation,

(8.23) {Nn(I) #N_H(I)}c {N“n(xg) >0}
u {X}\ >un,Y>\ <u -e€_, for some e [ns,nt) }

' < X, >
U {X)\ u Xy > +e for some )\ e [ns,nt) }

Lemma 3.3 together with the already proved relations show that Nn ¢ k+ﬁ=N, and

thus in particular that
P(Nn(I-g) >0) —>P(N(I€) >0)

which as before tends to zero as € -0. Since Xt=Xt +Z}\4A+C>\Z>\’ where the two

terms are independent and satisfy the hypothesis of Lemma 8.4 (ii), according to

Lemma 8.2, it follows as in (8.22) that the probability of the next to last event
s : o
u + sn} c {ZA¢.A+C>\Z>\ <-e X, >u + en},

and since ZMA C)\Zk and YO are independent, it follows, as in (8.21), that also the
+

in (8.23) tends to zero. Further, {Xogun,XO

probability of the last set in (8.23) tends to zero. Now, (8.15) follows in the
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same way as (8.14), which completes the proof of the theorem for the case when Al

holds. The proofs for hypotheses A2 and A3 follow similar Ilines. U

Next, define points - y(i) =’{y(i)(f)}:=_m and y(i) ='{yfi)(T)}:=_m in R by

1}

(1) _ -
y () = c)\i_T/c+ E for T = 0,+1,..., and i=1,..., k+,

0,#1,..., and i=1,..., k

Yfi)(T) = _CA;-T/C-’ for T

Further, let ﬁ, ﬁ+ and ﬁ_ be as defined just before Theorem 8.5. The limit N'
of the marked point processes Nﬁ and N; is then, if Al or A2 holds, defined by

requiring that to each point (t,x) of N there corresponds k  points

(x,)
ey, e,y )

of N'. 1If instead A3 holds, then N' is defined from the independent Poisson pro-

cesses ﬁ+ and ﬁ_ by requiring that to each point (t+,x+) of ﬁ+ there corresponds k+

points

. (k+)
(Ctx ™), (e x)uy )

of N' and to each point (t ,x ) of ﬁ_ there corresponds the k points

k )
e Lx )y, ex Ly, )

of N'. The convergence of Nﬁ, NH can now be obtained by direct approximation, by

similar arguments as for Theorem 8.5. Since no new ideas are involved in this, we

omit the proof.
Theorem 8.6. Suppose that one of Al-A3 is satisfied, let N' be as defined above,

and let Nﬁ,NH be as defined in Section 2, with an’bn given by (8.8), (8.9). Then

Nﬁ 4 N' and NH 4 N', as n + ®, in SXTR .
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9. 'Remarks on polynomial tails, autoregressive processes and the conditions.

This section contains some comments on (i) noise variables with polynomially
decreasing tails, (ii) how the results apply to autoregressive (AR) and autoregres-
sive-moving average (ARMA) processes, (iii) the conditions on the weights'{cx}, and

(iv) the conditions on the distribution of the noise variables'{ZA}.

(1) Polynomial tails. Formally, this is the case when p=0 in (2.2), i.e. when

(9.1) P(Z>z)~sz , as z > © |

for some o € (-~,0). Special classes of moving averages Xt==Zcx_tZA which satisfy
(9.1) are studied in Rootzén (1978) and Finster (1982). As for 0<p<1, an extreme value
of the moving average process for p=0 1s caused by just one large noise variable ZA'
In particular, if Z satisfies (9.1), and if the same relation holds, but with K
replaced by K , if Z is replaced by -Z, this leads to a type II limit for the maximum,

| -|a]
(9.2) P(a (M -b)<x) > e™

for x=20, if an,bn e.g. are chosen as

an==(Kng+ K_J?%"l/laln-l/ldl

Thus extremes increase much faster for p = 0 than for p > 0, and in addition scale
and location are of the same order, so that it is possible to choose bn = 0. In

contrast to 0 <p <1 this also introduces a random amplitude into the behavior of
sample paths near extremes. Specifically, for the case when the ZA'S have a (non-
normal) stable distribution - which then satisfies (9.1) with |u| e (0,2) - this

is discussed at length in [ 9], in a somewhat different point process formulation.

Rather loosely described, it is shown there that e.g. for positive CK'S the norma-

lized sample path anXT near an extreme value at, say, zero has the same distribution
as a random translate of the function

y% = U'c_T/c+‘ , T=0,+1,...
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where U' is a certain pareto distributed random variable. Furthermore, sample paths

near different separated extreme values are asymptotically independent. It then

follows that XT/X0 has a similar form, i.e. it approaches a translate of
y% = U"c_T , T =0,#1,...,

where the random variable U" only assumes the values ...jl/c_l, fl/co, tl/cl,.
Thus for p=0, the limits of Nﬁ and NH are not the same, but have a similar, deter-
ministic form, except for a random amplitude and time translation.

In [ 5], the limit (9.2) is obtained for general Z's which satisfy (9.1) (and
indeed also for a slightly more general case when the Z's belong to the domain of
attraction of the type II extreme value distribution, or equivalently when the right
hand side of (9.1) may include a further'slowly varying factor). The conditions in-
clude ¢, > ]CXI for A # 0. As noted in [9 ] the methods in that paper work also for
such general Z's, the only supplementary fact needed is a bound for the tail of the

d.f. of ZCAZX’ which in turn e.g. can be obtainedﬁ in the same way as for 0 <p <1.

(ii) Autoregressive and autoregressive-moving average processes. A stationary pro-

cess'{Xt} is an infinite ARMA-process if it satisfies the difference equation
(9.3) Xt'Fd1Xt+1'+d2Xt+2 +... = Zt-+e12t+1-+e22t+2 +..., for t=0,+1,...,

A1T

cess. Here we only consider the case when the noise variables'{ZA} are independent

for some constants'{dl}i and {e,},. If all the e,'s are zero, then X, is an AR-pro-

and identically distributed. Rather generally, under weak conditions on'{dx}, such |
processes can be "inverted'", i.e. written as infinite moving averages. Let z be

a complex variable and introduce the generating functions D(z) =1-+dlz-+d2z2 oo
and E(z) =1*+elz-+e222-b... . If the coefficients'{ck} defined by E(z)/D(z) =

2 ) . o
Co*tCpZteyz + .. make ZCsz convergent then inversion to Xt'-zk=0ckzk+t

and if in addition the CA'S satisfy (2.8) or (2.9), as required, the results of

is possible,
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Sections 5-8 also give the extremal behavior of the ARMA-process (9.3).

From complex function theory it follows that if D(z) and E(z) converge for
|z| <1 + €, for some € > 0, and D(z) has no zeros in |Z| <1+¢e, then the c,'s de-
crease exponentially and (2.8) and (2.9) are trivially satisfied, but of course
these conditions are by no means necessary. In particular if'{Xt} is a finite
ARMA-process (i.e. if only finitely many of'{dk,ek} are non-zero), and if D(z) # O
for |z| < 1, as is usually assumed, then (2.8) and (2.9) hold (since D(z) only has
finitely many zeros, so that D(z) # 0 for [z] <1+ ¢, for some € > 0).

The results of Finster (1982) on exponential and polynomial tails are proved

(ee]

for infinite AR-processes, subject to ZA=1

]dA[ <1. Since'{cx} then can be obtained

recursively from cO==1 and cn==--(d1cn_1 +o.LF dnco), it is easy to see that this

implies that lck] <1 for A # 0, and that ZTICxl < ZTldkl/(l'_ZT!dkl)' Thus ICXI <¢,

for A # 0 and ZT]CA| < o, but the CA'S do not have to satisfy any condition of the

type chl = O([A]_e), for any 6 > 0.

(iii) The conditions on the weights'{cjl: In a sense the main restriction (2.8) on

the c¢,'s (which is the same as (2.9) for 1<p<2) that lckl = O(lkl_e) as A > + o,

A

for some 6 > 1 is quite weak, being close to the requirement that ch is convergent,

which in turn is necessary for convergence of ZCAZA if EZ # 0. However, if EZ=0

and E22 < o  then

2
.4 <
(9.4) XSy
is sufficient for convergence, and there is more room for weaker conditions. It is
known that, at least in the normal case, some further condition beyond (9.4) is

needed for the extremal results of this paper to hold, since if the noise variables

are normally distributed and e.g. llmtéwlogt chk—tck = y>0 then the limit distri-

bution of Mn is different from the one in corollary 6.5 (see e.g. [7 ], Section 6.5).

However, Berman (1983) shows that if the ZA'S are normal and
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(9.5) logn ci -0, as n >
In <A
then the conclusion of Corollary 6.5 is still valid, and thus (2.9) can be substan-

tially weakened in this case. In fact, it follows easily from Lemmas 3.1 and 3.2
that if (1ogn)ZZ]n]<ac§ -+ 0, then the result of Theorem 6.4 holds, and some further

work shows that this also is true under the weaker condition (9.5).

(iv) The conditions on the noise variables. The condition (2.2) defines the scope

of the present investigation. However, of course all the results trivially extend

to the case where instead of Z some location-scale transformation a(Z-b) of it satisfies
(2.2) (for 0<p<1) or (2.3), (2.4), and (2.7) (for 1<p). Further the methods

probably also work if P in (2.2) (or (2.3)) is replaced by some suitable polynomial
Py
dlz oL, de

L is regularly varying with index a.

p
k, and for 0<p<1 the factor 2% can be replaced by L(z), where
For p>1, in addition to (2.2) we have imposed

the smoothness restrictions (2.3), (2.4), and (2.7). These conditions were intro-

duced in the proofs for technical reasons an certainly should be possible to relax

to some extent. Nevertheless, it does not seem likely that the results for p >1

hold in general without any further restrictions beyond (2.2).
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