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Abstract 

This paper studies extreme v~lues in infinite moving average processes 

Xt = L:A cA_tZA defined from an i. i. d. noise sequence" {ZA}, In particular this in­

cludes the ARMA-processes often used in time series analysis. A fairly complete 

extrema1 theory is developed for the cases when the d.f. of the ZA's has a smooth 

tail which decreases appro~imate1y as e~p{ -zp} as z + co, for 0 < p < co, or as a 

power of z. The influence of the averaging on extreme values depends on p and 

the cA's in a rather intricate way. For p = 2, which includes normal sequences, 

the correlation function r t = L:ACA_tC/L:AC~ determines extrema1 behavior while, 

perhaps more surprisingly, for p f= 2 correlations have little bearing on extremes. 

Further, the sample paths of {Xt } near extreme values asymptotically assume a 

specific nonrandom form, which again depends on p and {cA} in an interesting way. 

One use of this latter result is as an informal quantitative check of a fitted 

moving average (or ARMA) model, by comparing the sample path behavior predicted 

by the model with the observed sample paths. 

Keywords: Extreme values, moving averages, ARMA-processes, sample path proper­

ties, distributions of weighted sums. 
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1. Introduction 

Let {X =: L: C Z} be an infinite moving average process, with {c,} given con-
t A-t A I\. 

stants and with the noise sequence {ZA} consisting of independent identically 

distributed (i.i.d.) random variables. Such processes have been extensively 

studied for both practical and theoretical reasons, and, in particular, include 

the ARMA (autoregressive-moving average) processes often used in time series 

analysis (as can be seen by inverting the autoregressive part of the process) . 

In fact also more general, infinite, autoregressions fit into this framework, as 

discussed in Section 9. In the present paper we study extremal properties con-

nected with such processes, for the case when the marginal distribution of the 

noise variables, {ZA}' has a tail which decreases approximately as a polynomial 

times exp{ -z p}, as z -+ 00, for the parameter p ranging over the interval (0,00). 

In the last section, we also comment briefly on earlier results for polynomially 

decreasing tails. 

In addition to extreme values of {Xt } itself, we study their relation to ex­

tremes of the ZA's and of a third related sequence ~1'~2"'" the associated in­

dependent sequence. By definition this is the i.i.d. sequence which has the same 

marginal distribution function (d.f.) as the Xt's. Extremes of the associated 

independent sequence are of course completely determined by the tail of the d.f. 

of ~O' or equivalently of L:C:AZA. Hence, to determine the extremal behavior of 

. {~t}' we have to find accurate approximations for the tails of the d.f. of 

weighted sums, which may be of interest also outside the present context. 

Specifically, writing M = ma:X:{X I , ... , X }, M =: max{zl" .. , Z }, and n n n n 
~ /\ 

A =: max{~l' ... , ~ }, for any p > 0 we find norming constants an' an' an > 0 and 
n n 

b b ~ such that the d. f. of each of a (M - b ), ;. (M - b ), and ~n cAn - ~n) n' n' n' n n n n n n 

converges to the type I extreme value d.f. exp{-e- x}. Here the norming constants 

depend on p and on the cA's in a rather intricate way. In all cases, the b's 



- 2 -

which give the center of the distribution of the maxima are of the order (logn)l/p, 

which tends to infinity with n. The a's are of the order Clogn)l-l/p, which tends 

to infinity for p > 1, thus showing that the scale of extremes decreases in this 

case, while it tends to zero for 0 < p < 1, corresponding to an increasing scale of 

extremes, and remains constant for p = 1. Further, for p > 1, a = ~ ,b = ~ , and 
n n n n 

a and a are of the same order, but b may be significantly different from b Ci. e. 
n n n n _ 

often a Ib -b 1+ (0), and a ,b depends on the weights {c,,} through the quantity l: I c" Iq, nnn nn /\ /\ 

where q is the conjugate exponent to p, defined by l/q + lip = 1. For O<p<l, typi­

callya ,b resemble;' ,b ,while ~ ,~ maybe slightly different, and in this case it is n n n n n n 

the maximum of the cA's which enters into the normings. The case p=l provides intermediate 

behavior. 

The convergence results for maxima are obtained as corollaries to much more 

general point process convergence results for normalized heights and locations of 

extreme values. This point process convergence also has many other corollaries, 

e.g. concerning the joint asymptotic distribution of several extreme order statis-

tics, and convergence of so called record time processes and extremal processes. 

However, these corollaries will not be explicitly stated, and instead the reader 

is referred to [7], Chapter 5, for a detailed discussion. Moreover, the results 

are further generalized to take into account also the behavior of sample paths 

near extremes, showing that asymptotically they assume a specific deterministic 

form, which depends on p and {c)} in an interesting way. E.g. in the simplest 

case, when all the cA's are nonnegative, for p> 1 the suitably normalized sample 

paths around extremes approach the function 

(1.1) - " q/p/" q -y T - L A cA _ T cA L A cA ' T - 0, ± 1, ... , 

and for 0 < p < 1 approach a specific translate of the function 

Cl·2) Y == c / max {c" ; A = 0, + 1 , ... } , T = 0, + 1, ... , 
T -T /\ - -

while the borderline case p = 1 mainly resembles 0 < p < 1. The case of negative 
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c,\' s involves some further complexity. In passing we note that for p:= 2, which 

includes the normal distribution, YT is in fact the correlation function of {Xt }. 

This of course agrees with the well known extreme value theory for normal se-

quences. However, perhaps more surprising, for p f:. 2 the correlation function does 

not se~m to have any bearing on extremal behavior, and the important role is in-

stead played by the function {YT} given by (1.1) or (1.2). 

Some "geometricar'heuristics, which originally suggested the results, are 

illustrated in Fig, 1.1. In the figure it is assumed that co>o, c1>0, 

c) 

Fig ;3.1 

d) 

Level curves exp{ -11 Z Ir~} = n, for n = .1, .01, and .001. Shaded area 

contains most of the probability outside the line cozo + clz l = u. 

a) p=3, cO=l, Cl =2; b) p=l, cO=l, Cl =2; c) p=2/3, cO=I, 

Cl = 2; and d) p = 2/3, Co = Cl := 1. Different scales in different 

figures. 
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that the remaining cA's are zero, and that the d.f. of the ZA's has a density of 

the form exp{-zp} for all sufficiently large values of z. From a) of Fig. 1.1, 

it can be seen that for p> 1 and for large u, most of the probability mass out-

side the line cOz O ::: cl zl ::: u is concentrated in a small region around the point 

where the line is tangent to a level curve of the bivariate density of (ZO,Zl)' 

Thus, in general notation, if XO::: Ic),ZA exceeds u, then with high probability 

( . (q/p q q/p q 
. "'ZO'Zl"") lS close to ... ,ucO IIcA,uc l ILc A, ... ) and one would expect 

that for T close to zero, X lu::: LC, Z,/u would be close to LC cq/p ::: y In 
T J\-T J\ A-T A T 

particular, for p> 1, large values of Xo are hence caused by rare combinations of 

many moderately large noise variables. For 0 < p < 1 and Co < cl' the probability 

mass outside Co Zo + cl zl ::: u is concentrated around the point zO::: 0, zl ::: ul cl' cf. Fig. 

l.lc so that by similar reasoning, if Xo exceeds u for T close to zero one 

would expect X lu to be close to c IcO:::Y' If cO:::,cl , half of the probability 
T -T T 

mass outside cozo + clz l ::: u is concentrated near zO::: u/cO,zl ::: 0, and the other half 

near zO::: 0, zl::: ul cl' as shown in Fig. 1. Id) which leads X/u to be close to c -TI Co ::: 

YT with probability !z and close to cl_/cO ::: YT-l with probability !Z, if Xo exceeds 

u and T is small. Thus, in both cases, extremes of Xo are caused by just one ZA 

being large, but if cO::: cl' it may be either one of Zo and Zl' Again the case 

p::: 1 is similar to 0 < p < 1, but with the added complexity that if, say, cO::: Cl > 0, 

cA ::: 0; A -f 0,1, then large values of Xo may be caused by more than one of the ZA' s 

being simultaneously large, as can be guessed from Fig. l.lb. 

A main part of the proofs for each of the three cases p > 1, p::: 1, and 0 < p < 1 

is to obtain accurate approximations for the tai 1 of the d. f. of LCA ZA' For p > 1 

the proof, which uses methods from "large deviation theory" is rather long. I 

believe this is due to the difficulty of the problem, and in fact this was one of 

the main obstacles to overcome in the present study. For p::: 1 the tail behavior 

is simpler, and the proof is made easier by the possibility to use moment genera-

ting functions rather straightforwardly. Finally, for 0 < p < 1, convolution in-
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tegrals are easy to estimate and give the desired approximation for the tail of 

the d.f. 

Furthermore, for p ~ 1, extremal theory for the moving average process {Xt } 

itself is obtained via Leadbetter's "distributional mixing conditions" as given in 

[ 7], while for the case 0 < p < 1 we use a direct approach related to methods in 

[9]. Finally, the sample path results are obtained via direct calculations, 

which are closely related to the heuristics presented above. 

There is a large literature on general extreme value theory for independent 

and dependent sequences, and in particula~ normal sequences have been studied in 

extensive detail (for a recent survey, see [7 ]), but there is not much written 

on the present subject. Moving averages of stable variables (which have polyno-

mially decreasing tails) are extensively discussed in Rootzen (1978), (see also 

Section 9). Finster (1982) found the asymptotic distribution of maxima of auto-

regressive processes when the noise variables have exponential tails (correspon-

ding to the case p = 1, ex = 0, k = 1 in Section 7) and for noise variables with 
+ 

polynomially decreasing tails. (There is some overlap, apparently not noticed by 

Finster, between the latter result and those of I9 J). Finster's conditions are 

in terms of an autoregressive representation of the process, although many of the 

computations are made after inverting to a moving average representation. This 

seems to make them somewhat less directly connected with the core of the problem. 

Chernick (1981) has exhibited further qualitatively different behavior of extreme 

values of autoregressive processes, which by inversion can be translated to moving 

average processes, for a case when the noise variables have non-smooth tails. 

Finally the extensive literature on normal sequences (see e.g. [7J) of course also 

concerns moving averages, since any normal sequence which has an absolutely con-

tinuous spectral distribution also has a moving average representation. 
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The present paper is an attempt at a rather complete qualitative and quanti­

tative study of extreme values of moving averages of variables with smooth tails. 

As alluded to above, the practical motivation for the study is the importance of 

moving averages (or "filtered white noise") models, and that extreme values are 

inherently important in many of their applications. Further, as a byproduct, 

the results on sample path behavior near extremes may be used as an informal, quan­

titative check of a fitted moving average (or ARMA) model, by comparing the sam­

ple path behavior predicted by the model with the observed sample paths. A 

theoretical motivation is to provide a testing ground for the general extreme 

value theory for dependent sequences and impetus for further development of that 

theory and to provide a mathematically interesting example of some of the quite 

complex ways in which dependence affects extremal behavior. 

The organization of the paper is set out in the list of contents. Each of 

Sections 5-9 starts with a more detailed overview of that section. Sections 5,6 

and 7 and 9 on p> 1, on p::: I, and on 0 < p < I can be read independently of one 

another. 

Much of the work leading to the present paper has been done during two visits 

to the Department of Statistics and the Center for Stochastic Processes at the 

University of North Carolina at Chapel Hill. It is a pleasure to thank the 

department, and in particular Ross Leadbetter and Stamatis Cambanis,for the 

hospitality shown to me during these visits. Further I want to thank Jane Wille 

for her swift typing. 
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2. Definitions and conditions 

For the study of extreme values of the moving average process 

(2.1) t:::O,±l, ... , 

we need conditions on the noise variables {ZA}' conditions on the weights {cA} 

and conditions involving {ZA} and {cA} simultaneously. In addition the conditions 

will depend on the parameter p introduced in (2.2) below, being more stringent 

for p > 1 than for p ::: 1 or ° < p < 1. 

The Z 's will always be i.i.d. random variables, and for convenience of nota­
A 

tion we will let Z be a further random variable with the same distribution as the 

Z\ IS. Throughout, it will be assumed that 

.( 2, 2) 
ex -zp 

P(Z> z) ~ Kz e as z -+ 00 , 

where p,K are positive parameters and ex is a real parameter, and that the first 

moment exists, El Z I < 00, and forp 2: 1 in addition that EZ2 < 00. (Here A( z) ~ B (z) has 

the standard meaning that A(z) /B(z) -+ 1.) For p > 1, (2.2) has to be substantially 

strengthened. We will then suppose that the distribution of Z has a continuously 

differentiable density f which satisfies 

(2.3) 

for ex' ex + p - 1, K' ::: Kp, and that 

(2.4) eczf' (z) is bounded for z E (-00,0], 
p 

for some constant c 2: 0. Moreover, defining D(z) ::: fCzJe z for z 2: 0, and D(z) ::: fez) 

otherwise so that 

{ 
-zp 

D(z)e for z2:0 
(2.5) fez) ::: 

D(z) for z < 0 

with 

(2.6) ex' D(z) ~K'z , as z -+ 00, 

we assume that 

(2. 7) . IZD'(z)1 
hm sup D (z) < 00 • 

z-+oo 



Here of course f' and D' are the derivatives of f and D. The reason for the par-

ticular choice of a' ,K' is that with this choice (2.3) implies (2.2), so that the 

parameters have the same meaning for p> 1 and for 0 < p ~ 1. It may be further noted 

that (2.7) e.g. is satisfied if D(z) for large z is a rational function of z. 

The conditions on the weights are that at least one c~ is strictly positive, 

and that 

(2.8) IcAI =0 (lA 1- 8) , as.A -+ tOO, for some 8 > 1, 

which again has to be strengthened for p> 1, to 

(2.9) for some 8> max(1,2/q), 

where as in the introduction q is the conjugate exponent of p, defined by 

l/p+l/q=1. In particular, the condition (2.8) implies that L:lcAI <00, which 

together with El z I < 00 ensures a. s. convergence of the sums in (2.1), which define 

Xt . In the sequel, some further notation pertaining to the cA's will be needed. 

Let c;=max(o,cA), c~=max(O,-cA), c+=max{c~;A=o,±l, ... }, and c_=ma:ic{c;:;A=O,±l, ... J 

and let 11.+ ,,; {AI' ... '\ } be the set of A'S for which CA = c +' and let 11._ = 
+ 

. {A~, ... , A~ } be defined similarly from· {c~} with fI. _ = Y' if c = O. Further, with 

standard no~ation, we will write 11 c Hq"; {L.: A I CA I q}l/q and 11 c + 11 q ,,; {L.:A Ic~ Iq}l/q, for 

q> 1. 

The reason that conditions involving weights and noise variables simultaneously 

are needed is the following. If some of the CA'S are negative then extremes of {Xt } 

may be influenced also by the left tail of the distribution of Z, and this influ­

ence is determined by how a combination of {c~} and the left tail of Z compares 

with the corresponding combination of· {c~} and the right tail of Z. There are 

three cases of interest, which we will refer to as the case of positive CA'S, the 

case of a dominating right tail~ and the case of balanced tails. (Of course, the 

results for the potential fourth case, a dominating left tail are immediate con-

sequences of the results for a dominating right tail.) The precise meaning of 
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the three cases will be somewhat different for 0 < p :::; 1 and for p> 1, and will be 

formalized in three conditions, to be called Al-A3 for 0 < p:o; 1 and Bl-B3 for p> 1, 

respectively. The conditions for 0 < p:::; 1 are 

Al (2.2) and (2.8) hold, and all cA's are nonnegative, 
~ p 

A2 (2.2) and (2.8) hold-, and P(Z<z) =0(e- 1zl / y) as z+_oo, where y satisfies 

c yl/p < c and 
- + 

A3 (2.2) and (2.8) hold, and P(Z < z) ~K_zae-lzIP/-r: for some constant K_ > 0, 

where c yl/p = c , and a is the same as in (2.2). 
- + 

The conditions for p > I are 

~J p>l, (2.3),(2.4),(2.7), and (2.9) hold, and all cA's are nonnegative, 

Bii p>l, (2.3),(2.7), and (2.9) hold, and in addition f(-z) satisfies (2.3), 

(2.7), with p in (2.3) replaced by some p' >p, and possibly with different 

D ,a' , K', and 

B3 p>l, (2.3),(2.7), and (2.9) hold, and in addition f(-z) satisfies (2.3), 

(2.7) with the same p as in (2.3), but possibly with different D,a' ,K'. 

The main results of this paper, in addition to approximations for the tails of 

the distribution of the weighted sums EcAZA, concern convergence of point processes 

of heights and locations of extreme values of' {Xt }, and of more general "marked" 

point processes which retain information also about the behavior of sample paths 

near extremes. The reader is referred to [7] for definitions and information 

on point process convergence in extreme value theory, and to [6] and [8] for the 

general theory of point processes. Reference [6] only treats locally compact 

spaces; and there "bounded" has the technical meaning 6f being relatively compact, 

while [8] covers general Polish spaces. However, throughout this paper in the cases 

where both approaches apply, they coincide, as readily seen. Specifically, we will 

let N denote the point process in [0,00) x R which consists of the points (j/n, 
n 

a (X. -b )), j=I,2, ... , and will for each p>O find a point process N and choose the 
n J n 

constants an > 0, bn so that Nn converges in distribution to N (denoted Nn ~ N). As 
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discussed in [7], Chapter 5, this implies many asymptotic results, e.g. on the 

joint distribution of the k largest extreme order statistics, on the so called 

record time process and the extremal process. However, we will only explicitly 

note the corollary that, for M = max{Xl , ... , X }, m n 

-x 
-e P (a (M - b ) s x) -+ e , as n -+ 00 • 

n n n 

Next, let 

Y I . C T) = X . /b , j =1,2, ... , 
n,J T+J n 

and 

Y" . CT) = X .IX., j=1,2, ... , 
n,J T+J J 

(defined e.g. to be zero for X. = 0) be the normalized sample path around X., 
J J 

write S =IO,oo)xJR., and let JR.00 = ... xJR.xJR.xJR.x ••• "; h; x= C ... ,x_l,xO,xl , ... )} be 

the space of doubly infinite sequences of real numbers. The processes yI . and 
n,J 
00 

Y" . are then the "marks" and are random variables in the "mark space" JR. , and 
n, J 

the marked point processes NI and N" are just the ordinary point processes in 
n n 

00 
SxJR. which consist of the points ((j/n,a CX. - b )) ,YI .), j=1,2, ... , and of the 

n] n n,] 

points C(j/n,a CX. -b )),Y" .), j=1,2, ... , respectively. As in [8] we will assume n] n n,] 
00 

the mark space JR. is given some 'bounded metric which generates the product topo-

logy and will consider Sx JR. as a Polish space, with the product of this rnetr!~ 

and the ordinary metric in S as metric. In particular, this means that a product 

00 
set Al x A2 in S x JR. is bounded if Al is bounded. 

point in JR.00. Often the limit, say NI, of N~ or N~ is obtained by adjoining the 

mark y to each point of N~ i.e. if N has the points Ct. ,x.), j=1,2, ... , then NI 
J ] 

is defined to be the point process consisting of the points C(t.,x.),y), j=1,2, ... 
J ] 

Further, as in the introduction we will write M = ma:X:{zl"'" Z } and n n 

t\n = maxdl ' ... , ~n}' where ~l' ~2' . .. is the independent sequence associated with 

{Xt }. SimilarlY, for norming constants;',~ >0 and b,~ to be specified below, 
n n n n 
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we let the point processes N ,N' ,Nil and ~ ,~I ,~II be defined from {Z,},· (i ,b } n n n n n n Ann 

and from d } . {~ ~} in the same way as N ,N' ,N" are defined from {It}, {a ,b }. t' n' n n n n . n n 

Finally, some general points of notation. If limits of summation or integra-

tion are deleted, then the summation or integration is always from _00 to +00 and 

summation from a to b, where a and b are not necessarily integers, means summation 

over all integers in the closed interval [a,b]. N(O,O'2) denotes the normal distri­

bution with mean zero and variance 0'2. Often C and y will be generic constants 

whose value may change from one appearance to the next. The indicator function is 

denoted by I, i.e. I{·} is one if the event within curly brackets occurs, and zero 

otherwise. 
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3. Prelimirtaries: Extreme values of moving averages and point process convergence 

For p ~l, convergence of the point process N of heights and locations of ex­
n 

treme values will be proved through verifying Leadbetter's conditions D (u ) and 
r ---n 

D'(u ), as given in [7], p. 107 and 58. In the first part of this section, we 
n 

modify the conditions to forms which are particularly convenient in the present 

context. Then we obtain two lemmas which will be useful for 0 < p < 1 and for the 

marked point process results, respectively. 

The condition D (u ) will be established via the following lemma, which, for 
r ---n 

later reference also, is stated separately here, under general conditions. It is 

given in a rather crude form, which however suffices for our present purposes. 

LEMMA 3.1. Suppose that the moving average process {Xt } given by (2.1) is defined 

by a. s. convergent sums and for some constants a > 0, band nondegenerate distri-
n n 

but ion function G, it holds that 

(3.1) Pea (A -b ) :s;x) -+G(x) , as n-+ oo , n n n 

for each x wi th G ex) > 0, where A is the maximum in the associated independent sequence. 
n 

(i) If for each E, v> 0 

(3.2) 
00 

nP(ani I c).,z;\1 > E) -+0, 
nv 

-nv 
np(anl I c;\z;\1 > E) -+0, 

_00 

satisfies D (u ) for arbitrary rand u == (u (1) , ... , u (r)) 
r ---n ---n n n 

. h (i) / b f b· Wl t u = x. a + , or ar 1 trary xl" .. , x . n 1 n n r 

(ii) If an=O((IOgn)~) for some S, Ic;\1 =oel;\I-8) for some 8> 1 and EZ 2 <oo, then 

(3.2), and hence also D eu ), holds for all {u } of this form. 
r ---n ---n 
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Proof: Ci) We will only verify D (u ) for r = 1, which is the same as to verify r -n 

the condition D eu ) of I7], p. 53. The extension to r> 1 is completely straight­
n 

forward, involving notational problems only, and is omitted. Thus, let u =x/a +b, n n n 

and assume GCx) > 0, since D(u ) trivially holds f G(x) = O. Let 
n 

i si l < •.. < ir < jl < ... < jsS n be integers with jl - i r ;:: 2nv for fixed v> O. For 

brevity of notation, write X. = eX. , ... , x. )? 
_ -~ 11 lr 

X. = CX. , ... , X. ) and similarly 
-2 J l J s 

. Xl - (X' X' ). X" - (X" X'., ), for -i - - i l "'" i r ' -i - j 1 ' ... , J s 

X' = 
t 

nV-l co 

I c;\Z;\+t ,Xt = l. c;\Z;\+t' 
_co . -nv+l 

and in the sequel let an inequality between a real number and a vector mean that 

the inequality holds between the number and each component of the vector. Clearly, 

. . . > 2 . x' d X" . d d t d h f 0 Slnce J 1 - 1 - nv, - . an . are ln epen en ,an ence or £ > , 
r -~ -2 

(3.3) P(X. S u -,X. S U ) S P(X! S u + £)PCX!'s u + E) + PCM' > £) + P(Mn:> £) 
-~ n --1. n -~ n -2 n n n 

S P(X. S u + 2£)P(X. S u + 2£) + 2PCM' > £) + 2P(M" > £) 
-~ n -2 n n n 

n 
S P(X. su )P(X.su) + L P(u <X SU +2£) +2P(M' >E) +2P(M"> E) . 

-~ n -2 n t=l n t n n n 

A corresponding lower bound is readily obtained, and after using stationarity 

and Boole's inequality to estimate the last two terms, this shows that 

t, = Ip(x. su ,X. su) -P(X. su )P(X. su) I 
n ~ n~ n ~ n L n 

Here, the bounds do not depend on the specific choices of ~ and i (subject to 

1 S i l , j s n, j 1 - i ;:: 2nv), and hence, replacing E by E/a and writing u + 2E/a ::l 
srn n n 

(x+2E)/a +b, etc., we have that n n 
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sup 11 :o::nP((x-2E)/a +b <XO:O:: (x+2E)/a +b) n . n n n n 
i,j 

00 -nv 
+ 2nP( an l I cAzAI > E) + 2nP( an l I c:\z;\1 > E) 

nv _00 

The last two terms tend to zero by assumption (3.2), and since furthermore, 

according to (3.1) and [7 J, Theorem 1.5.1, P(XO > x/a +b ) ~ (-logG(x))/n, we have n n 

that 

nP((x- 2E)/a +b <XO:O:: (x+2E)/a +b ) -+logG(x+2E) -logG(x- 2E) 
n n n n 

It follows from (3.1) that G(x) is an extreme value distribution, and hence con-

tinuous , and thus, since G (x) > 0, logG (x + 2E) - logG (x - 2E) -+ 0, as E -+ O. Hence 

sup 11 -+ 0, as n-+ oo , and since v> 0 is arbitrary, this shows that the hypothesis in .. n 
~<L 
Lemma 3.2.1 (ii) of I 7] is satisfied, and thus that Deu ) holds. 

n 

(ii) Let fl == EZ, (}::: VeZ). The assumptions on an and {cA} ~==_oo show that 

a Loo Ic,l-+o as n-+oo, and hence for large n Chebycheff's inequality gives that n nv 1\ ' 

00 00 00 

The assumptions on an~{c;\} are again readily seen to imply that this tends to 

zero. The proof of the second part of (3.2) is identical. o 

The next result shows how D'(u ) may be checked for moving average processes, 
n 

and combining this with the previous lemma gives conditions for convergence of N . 
n 

To avoid the (trivial) complication which arises when G has a finite left end-

'{ -x} point, we only state it for G(x) = exp -e . 

LEMMA 3.2. Suppose that for some constant yE (0,1], and writing n I = [n Y], it 

holds for u = x/ a + b , for any x, that 
n n n 



(3.4) 

(3.5) 

2n' 
nIP (Xo + x > 2u ) -+ 0 
t=l t n 

00 

n2p(an I CA ZA>l) -+ 0 
n'+1 

, as n -+ 00 , 

-n '-1 
n2p(an I C\ZA> 1) -+ 00 

_00 

as n -+ 00, and that 

n' 00 

(3.6) P( L CAZ A > un) = O(l/n) , P( I (\ZA > un) = o (1/n) . 
_00 -n' . 

Then D I (u ) holds for u = x/a + b , for any x. If in addition the hypothesis of 
n n n n 

Lemma 3.1 (i) or (ii) is satisfied, with G(x) = exp{_e·-x} , then for N as defined 
n 

in Section 2, N iN in [O,oo)XlR, where N is a Poisson process with intensity 
n 

measure dt x e -xdx . 

Proof: By [7], Theorems 5.7.2 and 3.5.2 the second part of the conclusion is 

immediate from Lemma 3.1 and the first part, and hence we only have to prove 

D'(U ), i.e. that 
n 

(3.7) 
[n/k] 

limsup n I P(Xo > un,xt > un) -+ 0 , as k -+00 , 
n-+oo t=l 

for any un = x/an + bn · Since P(Xo > un'Xt > un) ~ P(Xo + Xt > 2un) it follows at once 

from (3.4) that 

2n' 
(3.8) n L P (Xo > U ,Xt > u ) -+ 0 , as n -+ 00 • 

t=l n n 

n' 00 
Next write XO' = L:_ooc, Z" X" = L: c Z so .that XO' and X" are independent for t > 2n I • 

A A t -n' A A+t t 

By similar reasoning as in Lemma 3.1 (i), for t> 2n I 

P (XO > U ,X > u ) :;:; P (XO' > u - 1/ a ) P (Xt" > u . - 1/ a ) n t n n n nn 

00 -n'-1 
+ P( ,I 1cA ZA > l/an) + P( I C)..ZA+t> l/an) , 

n + _00 

and hence, using stationari ty, and writing u I = (x - 1) / a + b , we have that n n n 
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00 
2 \' 2 

+ n pea L c'Z/c> 1) +n P(an 
n n'+l A 

Here the last two terms tend to zero by (3.5), and since (3.6) holds for all x, 

it also holds with u replaced by u', so that 
n n 

00 

limsup n I P(Xo > un'Xt > un) :::; c/k -+ ° , as k -+00 , 
n-+oo t=2n'+1 

for some suitable constant c, which together with (3.8) proves (3.7). o 

For ° < p < 1 we will use the characterization of point process convergence in 

terms of "finite-dimensional" distributions, viz. that N .iN in [O,oo)xm. = S if and 
n 

only if 

(3.9) 

as random vectors in mk, for any k and finite rectangles 11 , ... , Ik in S, of the 

form [tl ,t2)x(xl ,x2], with P(N(cH j ) >0) =0, for j=l, ... , k, where dI j denotes the 

boundary of 1.([6], Theorem 4.2, or [8], Theorem 3.1.7). 
J 

LEMMA 3.3. Let N N(l) and N(2) be point processes in (O,oo)xR such that 
'n' n 

(3.10) 

for any rectangle I of the form I = [\' t 2)x (x, 00). Then N~l) .i N if and only if 

N(2) .iN. 
n 

Proof: If I=[tl,t2)x(xl,x2J is a finite rectangle, then for I' =[t l ,t2) x (Xl ,00), 

and I" = [tl' t 2) x (x2 ,00) 

. {N(l) (I) ~ N(2) (I)} C {N(l) er') ~ N(2) er') } U {N(l) (I") ~ N (2) (I") } 
n n n n n n ' 

since N(l) and N(2) are measures, and hence additive. Thus, since (3.10) holds 
n n 

for I replaced by I' or by Ill, it also holds for 1= [t l ,t2)x(xl ,x2J. It then follows 

simply that (3.9) holds with N replaced by N(l) if and only if it holds with N 
n n n 

replaced by N~2), which in turn proves the lemma. o 
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To prove convergence of the marked point processes, a slightly more involved 

description of the sets in (3.9) is needed. Let 1 = r(1) x 1(2) be the product of 

a rectangle 1 (1) = [t l , t 2) x (Xl' x2] in (0,00) x JR = S and a rectangle 1 (2) ::: , .. x JR x 

with 2k + 1 dimensional base, and wi thJ = 
T 

(u ,v ], T = -l, .. "..t. Further let 1 be the class of all sets of this form, for TT _----- ____ _ 

l:2o. With this notation, if N', N' are point processes in S x JRoo , then N' iN' n n 

if and only if 

(3.11) 

for any k and 1"." lkE 1, with P(N'(dI.) >0) =0, j=l, ... , k, by Theorem 3.1.7 of 
1 ] 

[8], since the class of sets 1 E 1 with this property satisfies the requirements for 

the semiring in that theorem. 

LEMMA 3.4. Let N , {Y' ,}, and N' beasdefinedonp. 2.3 and2.4. 
n n,] n 

n-+ oo , that N' is obtained by adjoining the mark y= {y}oo to T T=_OO 

and that, for any E > 0 and T, 

(3.12) P(XO>u ,Iyr O(T) -y I >E) ==o(1/n), as n-+oo, 
n n, T 

Suppose N iN as 
n 

each point of N 

00 

with u == x/a + b , and for any x. Then N' i NI as n-+ oo 
n n n n' 

in S x JR • 

Proof: Let h be the function which maps N into N', and let N be obtained by ad­
n 

joining y to each point of N, i.e. let N =h(N). Clearly, h is continuous, and 
n n n 

d - d 
hence N -+N implies N =h(N )-+h(N) =N'. Thus, reasoning as in the proof of n n n 

Lemma 3.3, using (3.11) instead of (3.9), the result follows if we prove that 

(3.13) peN' (I) "I N (1)) -+ 0, as n-+ oo , 
n n 

for any 1 E: 1 with peN' (d1) > 0) = O. 

To prove (3.13), assume first there is a TO with y I. J . Without loss of 
TO TO 

generali ty we may assume that P (N(I (1)) > 0) > 0, and it then follows from 

peN' (cH) > 0) = 0 that there is a T with y I. J U dJ. For that T, let E> 0 be the 
T T T 

distance between y and J. Then clearly N (1) ::: 0, and, using stationari ty and 
T T n 

(3.12), we obtain that for u = xl/a + b n n n 
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P(N'(I»O)~ I P(Xt>u ,Iy t(T) -yI>E) n n n, T 
nt1<t~nt2 

-+ 0 , as n -+ 0 , 

so that (3.13) holds in this case. Similarly, as above, if y EJ for T = -I, ... ,I 
T T 

we may assume that the minimum of the distances between y and the complement of 
T 

J T, for T= -I, ... , I is E>O. It is then readily seen, again with u = xl/a + b , . n n n 

that 
I 

P(N'(I) ~N (I)) ~ I I P(Xt>u ,Iy t(T) -y I >E) 
n n T--- 0 n n, T nt1<t~nt2 -{.. 

-+ 0 , as n -+00 , 

proving (3.1~) also for this case. o 
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4. Extremes of the rtoisesequence 

By similar calculations as in [7], Theorem 1.5.3, it is readily seen that 

(2.2) implies 

-x 
(4.1) 

,....., ,....,,....., -e 
P (a (M - b ) ::;; x) + e , as n + 00 , n n n 

for 

(4.2) ~ I-lip 11 =p(logn) . 
n 

~ lip -1 IIp-l b = (log n ) + P ((alp) log log n + log K) (log n) . 
n . 

Alternatively, by Theorem 1.5.1 of the cited reference, this can be obtained by 
I'V ,....., ,.....,,...., -x 

checking that, for a,b given by (4.2), P(Z> x/a + b ) ~ e In. It follows imme-n n n n 
,....., d"" N 

diately, see [ 7], Theorem 5.7.2, that N + N, where N is a Poisson process in 
n 

[a,oo)xR = S whose intensity measure is the product of Lebesgue measure and the measure 

with density e-x (i.e. in short notation, the intensity measure is dtxe-xdx). 

Further, N' .iN' and N".iN' where N' is the point process inSxlRoo obtained n n' 
00 

by adjoining the point YER defined by Y = 1 and y = a T t a to each point of aT' . 

N. This of course corresponds to the obvious fact. that for independent sequences 

extreme values have no influence on neighboring values, and it is easily proved 

(or obtained as a special case) by the same methods as used for {Xt }. 

Similarly, 

~ > a, ~ such n n 

for the {~t} sequence, the only question to be solved is to find 

that P(~ cA - ~ ) ::;; x) + exp{-e -x}, or equivalently such that n n n 
1\" -x P CXa > xl a + b ) ~ e In, as 

n n 
n+oo, since the results for ~ ,~I, and~" then follows n n n 

trivially, in the same way as above. 
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5. Extremes of the associa ted independent sequence for p > 1. 

In this section we study the tails of the distribution of the weighted sums 

LC;\Z;\ for p > 1. The main result is that if Bl or B3 of Section 2 holds then 

pcIc/i.z/i. >.z +x/zP/ q) 
--~~~~~--~--+ 

P(C/i.Z;\ > z) 

for any x, and that if instead B2 is satisfied, then the same result holds, but 

with IIc 11 q replaced by IIc+16 (Lemma 5.6). The Type I domain of attraction for 

maxima of the associated independent sequence follows at once, and in fact that 

-x 
A A ~ -e 

Pea (M -b) ::;x)-+e 
n n n 

, as n -+ 00, 

if ~n satisfies pcLc;\z;\ >~n) ~l/n, and ~n =pl!CII~l(lOgn)l/q or an =pllc+II~Iclogn)l/q, 

according to as Bl or B3 or as B2 holds (Theorem 5.8). The ~ 's are not determined 
n 

uniquely by the assumptions BI-B3, but it is proved that they satisfy ~ = 11 c 11 (logn)l/p 
n q 

+ O((logn)B), where the exponent B < lip is specified in (5.52) if Bl or B3 holds, and 

the same relation with IIcll replaced by Ilc+II if B2 holds (Lemma 5.7). Further, we 
q q 

show how the ~ 's may be explicitly computed for finite moving averages. Finally, 
n 

some of the lemmas of this section are stated in greater generality than needed here, 

for later use. 

For the proofs we will use the "conjugate distributions" introduced by Esscher 

(1932) and further developed by Cramer (1938), Feller (1969) and many other authors 

in the context of large deviations in the central limit theorem. The present situ~-

tion is, however, of a different kind since it involves infinite sums of non-identi-

cally distributed random variables, rather than finite sums of (more or less) identi-

cally distributed variables. Accordingly it requires a somewhat different use of 

conjugate distributions, involving sharp estimates of a "local limit" type. 

The distribution Fh conjugate to a distribution F is defined by 

(5.1) - hz J hy Fh(dz) = e F(dz)/ e F(dy) , 
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for h > 0 such that J ehYF (dy) is finite. Sometimes we will use the notation F<~>Fh 

to denote that Fh is the conjugate distribution of F, and similarly we write 

Z<~>Zh if Z and Zh are random variables such that the distribution of Zh is conju­

gate to the distribution of Z. In particular, if Fh is the distribution of Zh we 

have with this notation that 

(5.2) J - hZ hZ 
g(z)Fh (dz) = Eg(Z)e lEe 

for any measurable function g. The basic facts we will use about conjugate distri-

butions are that the relation (5.1) of course can be inverted, to yield 

(5.3) -hz- J hy F(dz) = e Fh (dz) e F(dy) , 

h 
and, as can be seen by considering characteristic functions, the correspondence <-> 

commutes with convolutions, i.e. if ZA and Zh,A' A = O,±l, ... are sequences of inde­

pendent variables and ZA <~> Zh,A for each A, then 

(5.4) 

provided both sides are well defined. Further, we will make use of the fact that if 

c > 0 is a constant with Ee chx < <Xl, and Z<~>Z , then 
s 

(5.5) 
h -cZ<->cZ ,for s = ch. 

s 

(This follows from (5.2) and the trivial identity 

h(cZ) h(cZ) sZ sZ 
EgCCcZ)) e lEe = Eg(cZ) e lEe , 

which is valid for any measurable g.) 

Throughout the rest of this section and the next section we will use the following 

definitions. The notation above lS specialized to assuming that Zh' and Zh,A are 

defined by requiring that the Zh A' A = O,:t:l, ... are mutually independent and that , 

(5.6) 

with Z and ZA as defined in Section 2. Next, let Z have the moment generating 



function ~, i.e. let 

and define 

(5.7) 

sZ 
~(s) = Ee 
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The following constants will appear repeatedly in the derivations, 

(5.8) 

and 

(5.9) 
-1 -q/p -q 

go = q p , g2 = p (p - 1) P 

For later use, we explicitly note the relation 

(5.10) 

Finally, if Z has the density function f, then Zh has the density ehzf(z)/~(h), 

and thus (Zh-Zh)/Oh also has a density, say fh , which is given by 

(5.11) 
h(ZOh +zh) 

fh(z) = 0he f(zOh + zh)N(h) 

The proofs in this section are long, and it may be useful to start with a summary 

of the main steps involved. Except in the last step it is assumed that the cA's are 

nonnegative. 

1. It is shown that 

as h -+ co , 

and that the density function fh of this quantity has a uniformly bounded derivative. 

Thus, by (5.5), 
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for A = O,±l, ... (Lemma 5.1). 

2. The relation 

whieh holds for any x, is established (Lemmas 5.2-5.4). 

3. We prove that 

L(Zh A - zh A)/Gh Q: N(O'Le~), as h -+- co , 

A" A /I. 

and writing Fh for the distribution of the quantity on the lefthand side and using 

uniform boundedness of fh in an essential way, this is shown to imply that 

/2 00 -h(z-z ) 
lie I ~ I21T Gh h J e h F h (d z) -+- 1, as h -+- 00 , 

zh 

(Lemmas 5.2,5.3,5.5). 

4. It follows from 3 and the inversion formula (5.3) that 

as h -+- 00, and by using 2 and the functional dependence of zh on h, we obtain that 

and the restriction that the cA's are non-negative is then easily removed (Lemma 

5.6) . 

5. The asymptotic behavior of extreme values of the associated independent sequence 

then follows easily (Lemma 5.7 and Theorem 5.8). 

To prepare for the first lemma, we write the density fh given by (5.11), for 

z ~ 0, as 

(5.12) 

for D given by (2.5), and with go = q-lp-q/P as in (5.9) and 
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(5.13) -q{ p -} g(x) = -p (1 + x) - 1 - px . 

Here the quantity in curly brackets is just the remainder term in a first order 

Taylor expansion of (1 +x)p, i.e. 

Ix p-2 
g(x) = g2 0 (y - x) (1 + y) dy, 

with g2 = pep - l)p -q, as before. From this it can be seen that for p > 1 

(5.14) ,asx-+O, 

that to any Xl > 0 there is a constant A > 0 with 

(5.15) 
2 

g(x) < -Ax , for -1:0; x:O; Xl' 

and that if Xl is chosen sufficiently large, and A sufficiently small, then 

(5.16) g(x) :0; -Ax - go' for Xl < x. 

Furthermore, this time using a second order Taylor expansion, we can find B> 0 

such that 

(5.17) 

LEMMA 5.1. Suppose the density f of the 

and as above let t/!(h) = EehZ = I ehzf(z) dz. 

, hqgo 
(i) t/!(h)rvK'/21Tza o: e =K'/21T 

h h 

for fixed x, so that by Scheffe's theorem 

and 

ZA's satisfies (2.3), (2.4), and (2.7), 

Then 

hq 
-Ca'+l)q/p (a'+!z)q/p-!z go 

/ g2 P he, as h -+ 00, 

(iii) the derivative fh (z) of fh Cz) is bounded uniformly in z, h > hO' if hO is 

sufficiently large. 
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Proof. Since f h , given by (5.11) is a probability density, we have that 

(5.18) 
. h(zah+zh) " . 

1jJ (h) = ahJ e f (zah + zh) dz. 

Let Xl > 0 satisfy (5.15), (5 .16) an~ 1etxo E (-1,0). We will evaluate the integral 

in (5.18) by different methods for z in the intervals (_00, xOzh/ah], (xOzh/ah , Xl zh/ah ], 

and (xl zh/ah' 00]. 

First, since ahf(zah + zh) is a probability density 

(5.19) 

Next, for fixed z, using in turn (2.3), (5.12), (5.14), and (5.10), 

(5.20) 
. a' hqgo -1 h(zah+zh) 

(K'5 zh ahe ) ahe f(zah + zh) 

a' hqg(za/z ) 
~ (1/5) (zah/zh + 1) e h h 

2 
+ (1/121;:) e -z /2 , as h + 00. 

Further, by (5.15) this quantity is bounded by a constant times eXP{-Ahq (zah /zh)2} = 
. 2 

exp{ -Az / g2}' for Xo < zah/ zh :::; xl' Thus, by dominated convergence 

(5.21) 

. . 2 

+ JU/l21T)e"'"z /2dz = 1~ as h + co,-

Finally, by (2.3), (5.12), and (5.16), 

(5.22) 



= K' Z~' +1 7 (y + l/~' e -Ah qy dy 

Xl 
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Clearly, part (i) follows from (5.19), (5.21) and (5.22), by choosing Xo sufficiently 

close to -1. 

(ii) This follows at once from (5.20) and part (i). 

(iii) We will instead show that Ifh(x)/fh(O) I is bounded, which together with (ii) 

immediately leads to the desired result. To prepare for the proof, note that 

p -1 
zh = hZh (1- q ), by (5.8), (5.9), and hence 

(5.23) 

and that there then exist Xo E (-1,0) and a constant B > 0 such that 

(5.24) 

By the definition, (5.11), 

(5.25) 

and for Z > 0, using (2.5) and (5 .12); this can be written as 

(5.26) 
hqg(ZO"h/zh) .. -1 

fh(z)/fh(O) = (D(Wh + zh)/(D(zh)))e O"h{h -P(zO"h + Zh)P 

Let -1 < Xo < 0 < x be chosen so that (5.16) and (5.24) hold. We will consider Z in 

various intervals separately. Since we don't have to keep track of constants, and 

except for the central interval, not of powers of h, it is convenient to let C and y 

be generic constants, whose values may ch~nge from one appearance to the next, but which 

do not depend on h or z. 
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For ZOh/zh:O; -1 it follows, using first (2.3) and then (5.24) that for h>hO' 

for any hO > 0, 

(5.27) 

Here, by (2.4) the product of the last two factors is uniformly bounded for h > hO 

if hO is sufficiently large. Further, the remaining product tends to zero as h ~ 00, 

and hence the entire expression tends to zero, uniformly for Z0h/zh :o; -l. Similar 

considerations forthe first part of (5.25) lead to the same conclusion, and hence 

I fh (z) /fh (0) I is bounded for h > hO and Z0h /zh :o; -1. 

Now, suppose -1 < Z0h /zh :0; xo. Since f and fl are continuous, and hence bounded 

on bounded intervals, it follows from (2.3) and (2. 7) that, for h ;::: 0, 

Hence, by (5.25) and (5.24), 

fh (z) 

I f (0) I 
h 

~ 0 , as h ~ 00 

Next, for the central interval, Xo < X0h /zh :0; xl' we have to be more careful. To 

estimate the first part of (5.26), we use (2.6), (5.15), and (5.8)-(5.10) in the 

first step, then Taylor's formula for the second, and the definitions (5.8), (5.9) 

for the last step, 
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-Az 1 g2 

:s; Ce I z I . 
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Similarly, for the second part of (5.26), using the same arguments as in the first 

step above, together with (2.7) we obtain that 

D(Z0h+zh) hQg(Z0h/zh) D'(Z0h+zh) 

D(zh) e Oh ID(Z0h + Zh) I 

which tends to zero, uniformly in XO<Z0h/zh:s;x1' and hence Ifh(z)/fhCO)I is bounded 

also for z in this range. 

To complete the proof it only remains to be shown that Ifh(z)/fh(O) I is bounded 

also for xl < z0h/zh. However, by the same arguments as above 

-+ 0 as h 

uniformly for such z. 

-+00 , 

o 
Remark. For later use, we note here that, as is easily seen, if the integrands in 

(5.19) and (5.22) are multiplied by a power of z, this only changes the bounds by a 

power of h. 

The next step is to estimate the first two moments of Zh A - zh A' , , 

LEMMA 5.2. Suppose f satisfies (2.3), (2.4), and (2.7), assume cA >0, and let Zh A , 
and zh A be defined as in (5.6), (5.8). Then, for some suitable constant C, , 
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(5.28) 
for cA < llh 

for cA ~ llh 

and 

(5.29) 

Proof. By definition, cAZ<~>Zh'A' and hence, according to (5.5), Zh,A has the same 

distribution as cAZs for si = cAh (notation: 

zh,A = cizh = cA Zs and hence 

for s = cA h . Here, 

- J sz J sz EZ = ze fez) dzl e fez) dz, s 

Further, by (5.8), 

which by standard properties of moment generating functions is bounded in the bounded 

interval O:O;'s = cAh:O;l. Since also Zs is bounded in this interval, this proves the first 

part of (5.28). The proof of the first part of (5.29) is entirely similar. 

It also follows at once that the second part of (5.28), with a suitable choice 

of C, holds for s in any bounded interval, and similarly for the second part of (5.29), 

q 2 2 since cA ah ~ constant x cA' for cA h ~ 1. By the same reasoning as for (5.30) 

Z -z 
= c a s s 

A s a 
s 

and hence the second part of (5.28) follows if we prove that 

(5.31) 

In the same way the second part of (5.29) will be established if we show that 



(5.32) 
z -z 

E (s s) 2 = 0 (1) , as s 
a 

s 
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-+00 , 

since cA a s = constant x cq/2h -!z+ql (2p) . 

Now, by the same calculations as in Lemma 5.1 (i), using the remark after the 

lemma, we have that 

(5.33) 
Z -z 2 2 s(za +z ) 

s s f s s E( ) =a ze f(w +z)dz/llJ(s) 
ass s 

s 

2 
r.=c:: f 2 -z 12 -+(l/v2n) z e dz, 

which proves (5.32). 

The proof of (5.31) is more intricate. Let -1 < Xo < 0 < xl be as in Lemma 5.1 (i), 

and for brevity write l = xoz la , u = xl z la . First, from Lemma 5.1 (i) and from 
s s s s s s 

(5.10) it follows that 

(5.34) 

Next, using first the mean value theorem and then (2.6), (2.7), and (5.10) we have 

for z E (u ,l ] and for some z* E (u ,l ] that 
s s s s 

ID(za +z)-D(z)1 = IzaD'(z*a +z)1 s s s s s s 

= o(lzla z-ID(z )) 
s s s 

= o(lzls-q/ 2D(Z )) s 

D (z ) 
s 

uniformly for z in the prescribed range. Hence, using again Lemma 5".1 (i), 
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(5.35) 

q 
5 go /2 = 0(0 e D(z )5 -q N(s)) 

5 5 

= 0(s-q/2). 

Further, according to the remark after Lemma 5.1, 

u 
EZ -z 5 

551=10 J o 5 

sq(go+g(ZO /z )) 2 
ze 5 5 D (Z0 + z ) dz 1 /1.)! (5) + 0 (5 -q/ ) 

5 5 
5 t 

5 

Together with (5.34), (5.35), this shows that 

(5.36) 

sq(go+g(ZO /z )) 2 
x e 5 5 d z I N (5) + 0 (5 - q/ ) 

Here, by (5.10) and (5.17), fort <z:o;u, 
5 5 

< B -3/2 -q/2, ,3 - g2 5 z. 

Inserting this into (5.36), we obtain that 

EZ -z 2 Us 4 sq(go+g(ZO +z )) . 2 
,5 sl=o(s-q/o JzD(zo+z)e ss dz/1.)!(s))+O(s-q/). 

Os 5 t 5 5 
5 

Similarly as in (5.33) 

and hence (5.31) is satisfied. o 
This result at once gives estimates for the mean and mean square of the sum of 

the Zh,;\'s 



LEMMA 5.3. Suppose the assumptions of Lemma 5.2 are satisfied and that {CA} ~=_oo 

are nonnegative constants which satisfy (2.9). Then 

(i) 

with 8 defined by (2.9), for some constant Cl, and 

Z. -z. 
1 · E·{ f h,A h,A}2 0 h lmsup -+ ,as -+ 00. 

h-+oo lA >AO ah 
(ii) 

Proof. (i) Choose D such that CA $ D I A 1-8, for A 'f. 0, and define I = [D I / 8h 1/8] so 

that cA < D [D I / 8hI / 8] -8=h -1 for I A I > I. Then by (2.28) 

L I EZh A - zh A I = { J. _ J. _} I EZh A - zh A I 
, , IAT$A IAT>A " , 

$ C { (2 I + 1) /h + D J. A - 8} 
IAT>I 

= o (I/h + II-8) 

= 0 (h -1 + 1/ 8) . 

(ii) Since the Zh A's are independent, , 

(5.37) 

and by part (i) and the definition of ah 

(5.38) 

-+ 0 , as h -+ 00, 

since 8 > 2/q by assumption. Next, let I be as in the proof of part (i). Then, 

using (5.29) instead of (5.28), we have that 



(5.39) 

Again by assumption, hl / 8-q -+O, as h-+ co , and hence it follows from (5.37)-(5.39) that 

-+ 0 , as AO -+ co • o 

Next we turn to the asymptotic behavior of the moment generating function ~ of 

LEMMA 5.4. Suppose the assumptions of Lemma 5.3 are satisfied, and let ~(h) = 

TIA~A(h) be as defined by (5.7). Then, 

(i) 

for fixed x, and since Q?(h) is monotone for large h, the same result holds if in 

the left side x is replaced by x(h), with x(h) -+ x. 

Cii) 

where 1 n 1 = 1 n Ch) I is bounded by some constant which does not depend on h > O. 
J. 

Ciii) Let W Ch) = IT , Q?, Ch) . 
n n</\ /\ 

8 Then, for 0 < h < n , 

~ Ch)~exp{C L c,h}, 
n n<A /\ 

for some constant C which does not depend on n or h, for h in the specified range. 

Proof. It is straightforward to see that 11jJ(s) -11 ~ constant x s, for s ~O in bounded 



- 34'-

intervals, and since <PA (h) = 1/J (cA h) convergence of the infinite product which defines 

<P is assured by IlcAI <00, which in turn is a consequence of (2.9). 

By standard arguments (c.f. Feller (1969)) 

and hence 

(5.40) 

the interchange of the order of summation and differentiation being permissible since 

the EZh A's can be majorized uniformly in bounded h-intervals along the lines of , 
(5.41) below. From Lemma 5.3 (i) and (5.8) 

= Ilcl/qz +0(h- l +l / 8), as h-+-oo 
q h 

Thus, by the mean value theorem there is a h*, with Ih -h*1 ~ I~I/hq/P such that 

10g<P (h;f;i x/hq/ P) =log<P (h) +xh-q/ P (I/cl/ qz +0(h- l +l / 8)) 
qJt 

= log <P (h) + p -q/p /I c ,,~~ + 0 (1) , as h -+- 00 , 

where we have used the definition of zh~in the last step. Of course, this is equi­

valent to the result of (i). 

(ii) According to (5.40), (5.41) there is a bounded y = y(h) such that 

d~ log<p(h) = Ilcl/~zh+Yh-l+l/8 

= P-q/P"cl/~hq/P +Yh- l +l / 8 , 

and since <peO) = 1, part (ii) follows at once after integration, with n = fly. 

(iii) It follows from (5.28) (as was explicitly used in the proof of that inequali ty) , that 

for h in this range. The result then follows from integrating 
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in the same way as for part (ii). 

To find the tail behavior of LCAZA now only a suitable integral of the first 

part of the inversion formula (5.3) remains to be estimated. 

LEMMA 5.5. Suppose the assumptions of Lemma 5.3 are satisfied and let Fh be the 

distribution of Zh = LZh,A andlet 2h = 2Zh,A = !lcll~zh' as defined in (5.6), (5.8). 

00 -h (Z-2 ) 
I2TIll c ll q/ 2ohhl e h Fh(dz) +1 , as h+oo . 

q z 
h 

Proof. According to (5.5) (cf. the proof of Lemma 5.2) 

(5.42) 

-1 q/2 ( ) h fors = cAh, and since CAosOh = CA ,it follows from Lemma 5.1 ii t at 

Hence, since the Zh,A's are independent, 

/AJ.<A (Zh A -zh ~/O, +N(O, y. c~) ,as h +00, 
T - 0' ,n I A T ~A 

o 

for any AO' Combining this with Lemma 5.3 (ii) gives (see e.g. Billingsley (1968), 

Theorem 4.2) that 

(5.43) 

By Lemma 5.1 (iii), CZ - Z )/0 has a uniformly bounded continuously differen­
s s s 

tiable density, which has a uniformly bounded derivative, and it then follows from 

(5.42) that (Zh A - zh A) /Oh has the same property for any A with CA > O. Let X- be , , 

such a value. Then, since L(Zh,A - zh,A)/Oh is the sum of (Zh,X-- zh,X-)/Oh and 

LAfA (Zh A - zh A)/Oh it 
0' , 

follows readily that L CZh A - zh A) /oh has a continuously , , 
differentiable density, rh' say, with both Irh(z) I and Irh(z) I bounded uniformly in 

Then 

z, h>hO' with hO as in Lemma 5.1 Ciii). This together with (5.43) can be seen to 

imply that rh(z) converges to IIclI~q/2<jJcz/llcll~/2), as h+oo, for <jJ(z) = (2/T)-!zexp{-l/2}, 



uniformly for Z in bounded intervals (here we leave the details of the argument to 

the reader). 

By a change of variables, 

/ "" -h(z-z) 00 

ftiTI/cll q 2CJhhJ e h Fh(dz) =!e-Zl2TIllcllq/2rh(z/(hCJh))dZ 
q z 0 q 

h 

From the uniform convergence established above, v'27T11c11~/2rh(z/(hCJh)) -+ 

I2TI1I c 11 q/211 c II-q/2</.>(0) = 1 uniformly for z in bounded intervals, and for h large 
q q 

I21TII c 11 ~/2rh (z/ (hCJh)) is bounded by some constant, say C > 0-. Hence, for any A> 0, 

00 

-+ (C+l)f~-zdz , as h -+ 00 

A 

and since A is arbitrary and f e -zdz = 1, this proves the lemma. 

Together, Lemmas 5.4 and 5.5 lead to the basic result of this section, to be 

o 

stated in the next lemma. In the lemma we also remove the restriction that the cA's 

are non-negative. 

LEMMA 5.6. If assumption Bl or B3 from Section 2 is satisfied; then 

for fixed x, and if instead B2 holds then 

with Ilc+ 11 q = {I(c;)q}l/q, as defined in Section 2. By monotonicity, both relations 

remain valid if in the left hand sides x is replaced by x(z), with x(z)-+x, as z-+oo. 

Proof. Suppose first that Bl holds. Then, using first the inversion formula (5.3) 



and then Lemma 5.5, with zh defined by (5.8), 

(5.44) 

-hz 00 -h(z-z ) 
hJ·. h = <I>(h)e e . Fh(dz) 

zh 

-hz 
'" <I> (h) e hi (12TI1I C 11 ~/2Ghh) , as h + 00 • 

Let h* be the solution to the equation zh = zh + x/ih/q = zh Cl + xIZi), or equiva-
* 

lently the solution to 

(5.45) 

Then, writing 

h~/p = h q/p (1 + xl ( 11 C 11 ~~ -qh q) ) 

P(LCAZA > zh + x/ih/q ) 
R(h)=----------------

p(IcA ZA > zh) 

p(IcAZA > zh) 
= ------

peI CA ZA > zh) 

it follows from (5.44) and hGh"'h*Gh ' which is an easy consequence of (5.45), that 
* 

-h z 
<I>(h*)e * h* 

(5.46) R(h) '" , as h + 00 • 

<I>(h)e-hZh 

It follows from (5.45) that 

Since similarly 

h*Zh* -hzh =p-q/pIlCII~(h~-hq) 

+ p-q/Pllcllqpl+qllcII-pqx , as h + 00, 

q q 



it follows from Lemma 5.4 (i), after writing h* in the form h* = h + h q/p (h* - h) /h q/p 

that (5.46) can be written as 

= R(h) 

Since zh tends continuously to infinity as h tends to infinity, we may replace zh 

by z in this relation, and this completes the proof for the case when Bl holds. 

Next, assume that B3 is satisfied. Let 

+ where IT and IT signifies products over A for which cA ~ 0 and cA < 0, respectively. 

By Lemma 5.4 (i), 

(5.47) 

and since for cA < 0 we may write cA ZA = (-CA) (-ZA) = c~ ( -ZA)' and since the density 

£(-z) of -ZA is assumed to satisfy the hypothesis of Lemma 5.4 (i), it also holds 

that 

(5.48) 

Since qJ(h) =qJ+(h)qJ-(h) and IIc+ll q + IIc-lI q = IIcll q, it follows that 
q q q 

(5.49) qJ(h + x/hq/ P) '" qJ(h) exp{ p -q/p" c 11 qx} , as h + 00. 

q 

Similarly, with rand r denoting summation over A with cA ~ 0 and cA < 0, re­

spectively, we have that, as in the proof of Lemma 5.5, 

, as h + 00 • 



Thus, by independence 

The remainder of the argument of Lemma 5.5 can now be repeated to show that the 

same conclusion holds also in the present situation. Thus, since this and (5.49) 

were the only results needed in the proof of the first part of the present theorem, 

it follows that the result also holds under assumption 83. 

Finally, if 82 is satisfied, then again (5.47) holds, and (5.48) holds with P 

-1 replaced by p' > p and q replaced by q I = (1 - lip ') < q, so that 

Hence, again using 

<I> - (h + x/h q/p) = <I>- (h+(xh q I /p I -q/p) /h q I /p ') ,.., <I>- (h) 

+ -that <I>(h) = <I> (h) <I> (h), 

<I>(h +x/hq/ P) ""<I>(h)exp{p-q/Pllc+llq~} , as h + 00. 

q 

, as h + 00 • 

Similar reasoning shows that the conclusion of Lemma 5. 5 holds, wi thll c 11 replaced 
q 

by Ilc+11 , and the validity of the result under assumption 82 now follows in the same 
q 

way as above. o 

The type III limit for maxima for i.i.d. variables {~t} with the same marginal 

d.f. as LCAZA now follows readily. We first prove a lemma which gives some infor­

mation on the choice of norming constants. The lemma is stated in a slightly more 

general form than needed for the present purposes. 

LEMMA 5.7. Suppose that 81 or 83 holds. Then 

(i) 

for Y =p/C8q), and for any constant D > 0 this is uniform in all {cA} satisfying 

1 cA 1 ~ D 1 A 1- e, A F o. 

(ii) If {u } satisfies 
n 

for some T > 0, then 



(iii) If instead B2 is satisfied, then the conclusions of (i) and Cii) are still 

valid if IIcll is replaced by I~+II and if y is defined as y=pmax Cl/(8q),q'/q), 
q q 

for q' = (1 _l/p,)-l, with p' given by B2. 

Proof. (i) Assume Bl holds. By (5.44), the definition of Gh , and Lemma 5.4 (ii) 

we have that 

-hZh /2 
PcLC>,ZA > zh) '" <I> (h) e / (v'27TII c II ~ hGh) 

= exp{-hzh +p-q/Pq-lllcll~hq+0(hl/8)} , as h -+ 00 • 

It follows from the definition (5.8) of zh that hZh =p(zh/llcllq)p, that P-q/Pq-lllcll~hq= 

pq-l(Zh/llcllq)p, and that h l / 8 =0(Zf:/(8q)), as h -+ 00, and thus, replacing zh by z, 

= exp{- (z/ lie 11 )p + O(z y)} , as z -+ 00 • 
q 

The claimed uniformity can be verified by inspection of the proof. The proof under 

B3 is similar. 

(ii) Again, suppose Bl holds. Then, according tofue assumption and part (i), 

T/n"'P(Lc 1 Z1 >u) =exp{-(u /IIcll )P+O(uY)} , 
• fI. fI. n n q n 

and thus 

-logn= -(u /lIcll )P+O(uY) 
n q n 

This shows that u = O((log n)l/p), so that 
n 

= IIcll (logn)l/p+ O((1ogn)y/p-l/q), as. n -+ 00 

q 

(iii) The proof of part (i) has now to be modified along the same lines as the 



last part of the proof of Lemma 5.6. Since this is completely straightforward, we 

omit the details. The proof of part (ii) under B2 is the same as above. o 
We now define norming constants ~ > 0, ~ by 

n n 

(5.50) 
{
PIICII-l(lOgn)l/q 

A q 
a = . 
n + 1 1/ 

P IIc 11 - (log n) q 
q 

if Bl or B3 holds, 

if B2 holds, 

and by requiring that 

(5.51) 

It thus follows from Lemma 5.7 (ii) that 

(5.52) 

llell (log n) lip + O((log n) 1/ (8q) -l/q) if Bl or B3 holds, 

~ = { q 

n Ilc+II (logn)l/p + 0((logn)max(1/(8q),q'/q)-1/q) , if B2 holds. 
q 

We can now state the main result of this section, on the maxima A of the associated 
n 

independent sequence {~t}. 

Theorem 5.8. Suppose that one of Bl-B3 is satisfied, and let {~ ,~} be as defined 
n n 

above. 

(5.53) 

Proof. 

(5.51.4) 

Then 

P(~ (A - ~ ) :::; x) +exp{_e-x} , as n + 00 

n n n 

It is readily seen that (5.53) is equivalent to 

as n + 00 , 

(cf. [7], Theorem 1.5.1). Suppose Bl holds. Then, according to Lemma 5.6, since 

x~p/q/~ +xllcIIP/p , as n + 00, 

n n q 

= exp{-x} , as n + 00 , 
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so that (5.54) holds. The proofs under B2 or B3 are the same. o 
In concrete situations it would be desirable to have more precise estimates for 

~ than (5.52), and one might perhaps be tempted to think that the appearance of the 
n 

"big 0" term is due to inaccuracies in the estimates. In a sense this is however., 

not the case, since it can be seen that the assumptions Bl-B3 only determine ~ up 
n 

to terms of this order. 

. J,' 
t·1 

Nevertheless, there are cases when ~n can be explicitly computed. If the ZA's 

are normal with mean one and variance ~, so that fez) = exp{-z2}1v'TF, then one possible 

choice is 

(5.55) 

Further, we will below show that if only finitely many, say k> 0, of the CA'S are 

non-zero, and if Bl holds, then 

(5.56) 

with 

(5.57) 

" PcL;'CAZA>Z)"'~(z/lIcllq)aexp{-(z/lfcllq)p} , as z -+ ()(), 

&=k{(a' +~)-p/(2q)} -p/2 

~ = (K,)k(21T/g2) (k-l)/2p id (1 -~) (a' + 1) -~} 

x II(c /Ilell )(a'+~)q/p-~. 
A A q 

P 
2 

As in Section 4 it then follows that ~ may be chosen as n 

(5.58) 

If instead B2 or B3 are satisfied, then (5.56)-(5.58) are replaced by slightly more 
, -~' 

compl icated expressions, which we 1 eave to the reader to derive. However, in the special 

case of B2 when fez) is symmetric, (5.56) -(5.58) remain unchanged and in particular 

~ 
in the normal case discussed above, with K=n- 2 a=O, (5.58) reduces to (5.55), as 

it should. 

The relation (5.56) can be proved directly, e.g. by partial integration in con-
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volution formulas, but it is also simply deduced from the method used to prove 

Lemma 5.6, in the following way. By Lemma 5.1 (i), 

Hence, writing K=K l h7T/g2 P-(a l +l)q/P and Y= (OI.l +~)q/p-~, 

Thus, by (5.44) 

as h +00. (5.5.6.) then follows by "substitution," in the same way as in Lemma 5.7 (i). 

Finally, even if ~ seems to be difficult to compute analytically in general, n 

numerical computation should not be difficult. 
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6. Extremes of the moving average process for p> 1. 

Using the results of Section 3 and 5 we in this section show that the maximum 

Mn of the moving average process· {Xt LCA_tZA} behaves asymptotically in the 

same way as A. This is proved as a consequence of the more general result that 
n 

the point process N of heights and locations of extremes converges to a Poisson 
n 

process N in the plane with intensity dt xe-xdx (Theorem 6.1) in the same way as 

A 
for N . 

n 
However, of course the sample path behavior of {X } and of {~ } near ex-

t t 

tremes differ markedly. Let 

(6.1) 

with sign (cA) equal to one if cA 2': 0, and to minus one otherwise, and let N' be obtained 

by adjoining the mark y to each point of N. 

2, N' iN' Nil -+ N I (Theorem 6.3) . 
n 'n 

Then, for N' ,N" as defined in Section 
n n 

For these results, the norming constants are the same as for the associated 

independent sequence, i.e. we may use 

(6.2) 
A 

a = a n n' b = ~ n n' 

with ~,~ given by (5.50)-(5.52). n n 

Theorem 6.1. Suppose that one of Bl-B3 is satisfied, let a ,b be as in (6.2) , and n n 

let Nn be as defined in Section 2. Then Nn iN, as n -+ 00, in [0,00) x 1R, where 

N is a Poisson process with intensity measure dt x e-xdx. In particular, 

-x 
(6.3) -e P(a(M -b):::;x)-+e ,asn-+ oo • 

n n n 

Proof. We will prove (3.4)-(3.6). Since the other assumptions of Lemma 3.2 

clearly are satisfied (using Theorem 5.8 for (3.1)), this is sufficient to prove 

that N ~N. 
n 

Suppose now, to fix ideas, that Bl holds. The proofs under B2 and B3 proceed 
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similarly, as in Theorem 5.8 and will be left to the reader. According to 

Minkowski's inequality, (L:(cA + cA_t )q)l/q <2/lcI6, for t f. 0, since ~ always holds 

and since equality would mean that {CA} and' {cA_t } are proportional, which is im­

possible. Further, clearly (L:(cA + CA_t )q)l/q -+ 21/ QllcII Q, as t-+± 00. Thus there 

exists a yl > 0 such that 

(6.4) 211cII 1(L:(c, +c, )q)l/q~l+y' , for ti-O. 
q fI. fI.-t 

Let y satisfy 0 < y and 1 + Y <: (1 +yl)P, and, as in Lemma 3.2, write nl = [nY] 

and u = xl a + b . n n n 

By Lemma 5.7 (i) and (6.4) 

P(XO + Xt > 2un) = P(L(cA + CA_t)ZA > 2un) 

u 
~ exjJ{-(l+y')P C n )P(1+0(1))} , as n -+ 00, 

rlc Ilq 

uniformly for t f. o. Since by (5.50) and (5.52), u Irrcrr ::: (logn)l/p(l +0(1)) and 
n Q 

since 1 + Y < (1 + yl)P, it follows that 

l+y 
P(XO+X >2u) =o(n ), as n -+ 00, 

t n 

and hence (3.4) is satisfied. 

Let ~n I (h) = EexjJ {hL:n '< A CA ZA} = ITn I < A cl>A (h) so that by Lemma 5.4 (iii) and (2.9), 

with C a generic constant, 

- '{ \' } , { 1-8 } cl> I (h) ~ exp C L CA h ~ exp C (n I) h , 
n nl<A 

8 
for h~. (n I) . 

To prove the first part of (3.5), we will insert this into Bernstein's inequality 

P( L CAZA>Z) ~~ I (h)exld-hz} , 
nl<A n 

8 
z = 11 a , h = (n I) . 

n 
for 
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It follows that 

P (I c).,Z)/ 1/ a ) :0:; exp {Cn' - (n') e / a } 
n '<A n n 

-2 = 0 (n ) , as n + 00, 

and hence the first part of (3.5) holds. The second part is completely similar. 

Next, for the first part of (3.6), define h by u =p-q/PL:n'cqhq/ P so that 
n n _00 An' 

(6.5) h ~ cons.tant x (logn) l/q , as n + 00 , 
n 

by (5.50) and (5.52). It is straightforward to check that (5.44) applies also to 

(6.6) 

n+ oo , 

by a further application of (5.44). Since p(A >u ) +exp{-e-x} it follows that 
n n 

([ 7 ], Theorem 1. 5.1) . Further, by (6.5) and 

(2.9) exp{hqL;oo, 1 c~}+exp{O} = 1, as n+ oo , and similarly, from Lemma 5.4 (iii) 
n n + I\. 

we have that <Ji ,Ch )+1, as n+ oo . Together with (6.6), this proves the first n n 

part of (3.6). Again, the second part is the same as the first one. This con­

d 
cludes the proof of (3.4)-(3.6), and hence of N + N, as n+ oo . 

n 

Finally, this implies in particular that NnCCO,I] x (x,oo)) .i N((O,I] x (x,oo)), 

and hence 

Pea (M - b ) :0:; x) = peN ((0,1] x (x,oo)) = 0) 
n n n n 

+ P(N((O,I] x (x,oo)) = 0) 

= 1 x exP{- Joo e -zdz} 
x 

= exp{_e-x} , as n + 00 , 

so that (6.3) holds. 0 



The major step in finding the sample path behavior of" {Xt } near an extreme value 

is contained in the following lemma, which makes precise the "geometrical" heuristics 

in the introduction. 

LEMMA 6.2. Let AO be a fixed integer, let E > 0 be arbitrary, and suppose that 

u'/u-+1, as u-+ oo • If Bl or B3 is satisfied, then 

(6.7) 

and if B2 is satisfied then 

(6.8) 

Proof: For notational convenience we will assume AO = O. By independence the result 

is obvious if Co = 0, so we may further assume that co:f O. First suppose that B1 

holds, so that in particular Co >0. Let 

8 = 

Then (6.7) (for AO = 0) is equivalent to the two relations 

P(ZO >u'8c6IP/llcllci,LcAZA > u) 

P(tcAZA>U) 
(6.9) -+ 0 

and 

(6.10) 

as u -+ 00. Since the proofs of (6.9) and (6.10) are similar, we will only verify 

(6.9) . 

The result follows readily if co/llcllq = 1 (e.g. from Lemma 5,.6) and hence we 

may assume that 0 < COl 11 C IIq < 1, and then without loss of generality that 

1 < 8 < 11 c 11 cil c6' Thus is we let f3 be a constant with 1< f3 < 8, and define 
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then CA ;:: 0 for all A. It is straightforward to check that 

Since u'/u -+ 1 by assumption, uS < u'6 for all sufficiently large u, and hence for 

such u, using (6.11) for the second step and Lemma 5.7 (i) for the third step, 

~ P(Lc;XZA >ullclI~/llcll~) 

ullcllq 
= exp{-( q )P(l +Q(l))}, as u -+ 00. 

IIcll~llcllq 

Since P(ICAZA>U) = exp{-(u/llcllq)P(l+O(l))}, (again by Lemma 5.7 (i)) it follows 

that 

(6.12) 
P(Z >u'scQJ17ncll q LC Z >u) o . 0 q' A A 

Here 

= spcq/llcll q + (1- Scq/llcllq)p/(l- cq/llcllq)p-l o q 0 q 0 q 

and since elementary calculations show that the function g(S,x) =S~+ (1-Bx)P/(1-x)p-l 

is strictly greater than one for 0 < x < 1 and 1 < S < l/x, we have that Ilcllq/ 11 c 11 q > 1, 
q q 

and (6.7) follows at once from (6.12). 

(For a geometrical interpretation of this proof, see Fig. 6.1 below.) 
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Zo 
Fig. 6.1. Probability of shaded area is approximated by probability of area out~ 

side dashed line. The curves are level curves of exp{-lIzll~}· 

Next, suppose that instead B3 holds. Then, replacing CA by IcAI and ZA by 

ZAsign(cA} in the previous computations, the same result again ensues. 

If B2 hOlds,thenp(LCAZA>U) =exp{-(u/l~+lIq)P(l+o(l))}bYLemma5.7 (i:i.i) , and 

P(ZO<-su') = exp{(su')p' (l+o(l))} = o(exp{-Cu/llc+llq)p(l+O(l))}) since p'>p, and hence 

(6.13) P(Zo<-su'IIcAzA > u) -+ 0, as u -+00. 

and hence, similarly as above, 

(6.14) 

Together (6.13) and (6.14) prove (6.8) for the case Co < O. Finally, if Co ~ 0, 

(6.18) follows from similar calculations as for hypothesis Bl, after replacing 

IIcll and IIcll by IIc+1I and IIc+1I throughout (with obvious notation). 0 
q q q q 

We will only prove convergence of sample paths near extremes under the hypotheses 

B2 and B3. The corresponding result surely holds also if BI is satisfied, but it 
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seems a proof of this would require further complications in an already long proof. 

Theorem 6.3. Suppose that B2 or B3 holds, and let N' and NI! be as defined in sec-
n n 

tion 2 with an,bn given by (6.2). Then N~.i N' and N~ Q: N', as n -+ co, in SXRco , where 

NI is the point process obtained by adjoining the mark y given by (6.1) to each 

point of the Poisson process N in [O,co) xR= S, with intensity measure dtxe-xdx. 

Proof. According to Lemma 3.4, to prove N' Q: N' it is sufficient to prove (3.11). 
n 

Let u =x/a +b for fixed x so that b /u -+ 1, as n -+ co, by (5.50), e5.52) and 
n n n n n 

-x P eXO > un) == P (1:cAZ),,>un) ~ e /n, as noted on p. 6.3 . Suppose B3 holds. Then by 

Lemma 6. 2 wi th u = u u' = b for any s > 0 and AO' 
n' ,n' 

pex >u ,IZ, - b Ic, Iq/Psignec, )/I!cl!ql >sb) =o(1/n) , as n -+ co, 
o n AO n Aa AO q n 

It readily follows that, for any X 2:: 0 and s > 0, 

p({xo>u}n u {IZ,- b Ic,l q / psign(c,)/lIcll q l >sb }) =0 (1/n), 
n IAI:::T A n A A q n 

as n -+ co, and then that, for fixed T, 

(6.15) P(Xo>Un,lb~lIAt::;;1"CA_TZA - IAt::;;XcA_TlcAlq/Psign(cA)/llcll~1 > s) =o(1/n). 

Now for fixed s > 0, choose X large enough to make 11: I A I >~A- TI cA I q/p signeeA) I < sll c 11 ~ 
and O::IAI>x1cAlq)1/q < sl!cll q , Then, using the definitions of Y~,OCT) and YT 

(6.16) P(Xo>u ,Iy' O(T) - y I> 3s) n n, T 

::;; pexo >Un ' Ib~lIcA_TzA -IAr::;;IcA-TlcAlq/P/"c"~1 > 2s) 

::;; peXO>u ,Ib- l 1. _c'_TZ,- I 1. _c'_Tlcllq/p/l!cllqql > s) 
n n lA T::;;A A A AT::;;A A A . 

+ pcl 1. _cA_TZAI>b s) 
I AT >A n 

== 0 (l/n) + pe I 1. c, z, I > b s) 
I AT >1" A-T A n 

, as n -+ co , 

bye6.l5). It follows from Lemma 5.7 (i) and (5.52) that 
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(6.17) -. P( ;'C, Z>bE}.::exp{-( n 1/ f(1+o(l))} 

I AT >\ I\-'CA.\ n ( J. I c Iq) q 
IAT>X A 

IIcll E p 
= exp{-logn( q l/j (l+o(1))} 

( I -' c Iq) q 
IAT>A A 

= o(l/n) , as n + 00 , 

since X was chosen to make IIcllqE/(L:IAI>xlcAlq)l/q) > 1. Similarly 

(6.18) P(\'c Z, <-b E) = o(l/n) , as n + 00. 
L A-'f 1\ n 

Thus, by (6.16)-(6.18), for any E > 0 and T 

(6.19) P(X >u Iy' (T) -y I >3E) = o(1/n) , as n + 00 , o n' n,O T 

which_proves (3.11) and hence that N~ & N' if B3 holds. 

Further, since YO = 1 and y~, 0 (0) = XO/bn , it follows from (6.19), replacing 3E 

by E, that 

and then by easy arguments that, for E > 0 and T fixed, 

P(XO>u ,Iy" O(T) -y I >E) = o (1/n) , as n + 00. n n, T 

By Lemma 3.4, with N' replaced by N", and Y' by Y" .this shows that N" & N' 
n n n,D n,O' n' 

as n + 00, if B3 holds. 

The proof under assumption B2 is similar, and is left to the reader. 0 
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7.· Extremes forp '::; 1, 

The extremal behavior and the technique needed to study it is less complex for 

p = 1 than for p> 1, although there is an interesting extra diversity of behavior 

when the weights {cA} assume their maximum for more than one value of A. We will 

therefore be briefer than in the previous sections, leaving arguments to the 

reader and excluding some cases which could be treated by similar methods, but at 

the cost of further complications. 

In each of the cases AI-A3 we will find the appropriate norming constants 

~,~ for the maximum ~ of the associated independent sequence {Xt } (Theorem 7.3). n n n 

The corresponding results for the maximum M of the moving average process, and 
n 

for the point process N will, for Cl> -1 also be proved in all three cases, but 
n 

for Cl < -1 only when k = 1 and in the cases Al and A2 of posi ti ve weights and of a 
+ 

dominating right tail, respectively (Theorem 7.4). In those cases, as for p >1, 

the norming constants and limits are the same as for {~t}' Similarly, proofs con­

cerning sample paths near extremes are only given for cases Al and A2 with k = 1 
+ 

(Theorem 7.5). Some of the remaining cases, which more resemble 0 < p < 1, are 

discussed at the end of the section, without proofs. A more complete treatment of 

these cases will be given in a separate paper. 

The first lemma of this section contains some straightforward estimates of 

convolution integrals and will, again quite straightforwardly, lead to the tail 

behavior of LCXZ A for p = 1. 

LEMMA 7.1. (i) Suppose the random variable Y 1 satisfies (2.2), wi th p = 1, and is 

independent of Y2 which satisfies 

SY2 
Ee < co , for some S > 1. 

Then 

(7.1) 
Y 

2 Cl -z 
P (Y 1 + Y 2 > z) ~ KEe z e ,as z ~ co • 
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Furthermore, for fixed Y l' C > 0, and S > 1 the relation (7.1) is uniform in 

Y2 E {Y;EeSY ~ C} 

(ii) Let Yl and Y2 be as in (i), Then 

(7.2) limsup p(IYl - zl >AIYl +Y2 > z) -+0 , as A-+oo. 
z-+oo 

(iii) Suppose that Yl and Y2 are independent and satisfy (2,2) with P = 1, but 

withK,a replaced by Kl,al and K2 ,a2 , respectively, Then if -1 >al =a2 :;a, say, 

(7.3) 

and if a l > -1, a 2 > -1, then 

(7.4) 

Joo a-I -y 
for rea) =0 y e dy, (a> 0) . 

Proof. (i) Let y be a fixed number, with liS <y < 1, and let Fl and F2 be the 

distribution functions of Yl and Y2 , Then 

yz P (Y l>z-x) 00 

= Kzae- z J a -z F2 (dx) + !P(Yl >Z-X)F 2 (dx) 
- 00 Kz e yz 

SY2 S 
Here, since P(Y2 >yz) ~ Ee e- yz by Bernstein's inequality, 

00 

J P(Yl >z-x)F2 (dx) :s; P(Y2 > yz) 
yz 

= 0 (e -SYz) 

a -z 
= o( z e ) , as z -+ 00 , 

since Sy> 1. Further, by (2.2) and dominated convergence 

as z -+ 00 
" , 
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since the integrand tends pointwise to eX, and, for z;::: 1, is bounded by a constant 

times (1 + IxIO')eX, which is integrable (since P(Y2 > x) = O(e-Sx)). This proves 

(7.1), and the uniformity is then obtained by inspection of the proof. 

(ii) Clearly 

pclYl-zl >A'Yl +Y2 >z) =Jp(IY1-zl >A,Yl >z-x)F2(dx) 

-A 00 

:s; P(Yl > z +A)P(Y2 > -A) + f P(Yl > z - x)F2(d~) + f P(Y1 > z - x)F2 (dx) 
_00 A 

Reasoning as in (i), we have that 

and hence, using (2.2) to estimate P(Yl>z+A) and part (i) to estimate P(Yl +Y2 >z), 

that 

limsup pcIYl-zl>AIYl +Y2 >z):;;{e-A + f eXF2(dx)}/fexF2(dx). 
z-+oo I x I;::: A 

Clearly the right hand side tends to zero as A+ 00, which proves (ii). 

(iii) It is readily seen that 

z/2 z/2 
(7.5) P(Yl +Y2 >z) = f P(Yl >z-x)F2 (dx) + fp(Y2>z-X)F l (dx) 

_00 _00 

+ P(Y1 > ,;r,/2)P(Y2 > .'1,/2) 

z/2 z/2 a1+a2 -z 
= f P (Y 1 :> z - x) F 2 (dx) + f P (Y 2 > z - x) F 1 (dx) + 0 (z e), as z + 00 , 

_00 _00 

by (2.2). Here 

(7.6) 
z/2 al z/2 a l x 
f P (Y 1 > z - x) F 2 (dx) '" K1 z e - z f Cl - x/ z) e F 2 (dx) , 

_00 _00 
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and if 01.2 <-1, 

(7.7) 
z/2 01. 

f (1- x/z ) lexp2(d~) ~ fexP2(dx) , as z~()(), 
-()() 

by dominated convergence. Together with the same computations for the last in-

tegral in (7.5), the relations (7~5)-(7,7) prove (7.3). 

z/2 01.1 x 
If a2 >-1,then Loo (1-x/z) e P2(dx) tends to infinity, while 

a 
f~oo(l_- x/z) lexP2(dx) is bounded, and thus, using partial integration in the second 

step, a::nd (2.2) in the third one, we have that, 

z/2 ai a 2 
'" K f (1 - x/ z) x dx 2 . 

o 
a2+l ~ al a 2 

= K2Z f (1 - y) y dy, as ~ ~ ()() 
o 

Now, inse~t this into (7.6), and then the result into (7.5), together with the 

corresponding formula for the last integral in (7.5) to yield that 

1 a l a 2 
and since fo(1- y) y dy = real + 1)r(a2 + l)/r(al + a2 +2) this is the same as (7.4). 0 

Here, in part (iii) we have for simplicity not included the case a l = a2 = -1, 

which could be treated similarly, but with further complications involving loga-

rithmic terms. Below we will accordingly exclude such cases. 
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To state the next lemma, on the tail behavior of ZcAZA, some further notation 

is needed. With c+,c_, A+, A_, k+ and k_ as defined in Section 2, let 

if Al or A2 holds, 
k= 

if A3 holds , 

and let 
if Al or A2 holds, 

A= 

if A3 holds. 

With this notation, define 

(7.8) 

and 

(7.9) 

A 
a= { :a + k - 1, if a > -1 

\.h a < -1 

k k -1· { '\' } K f(a + 1) f(k(a + 1)) Eexp L c,Z,/c ' 
. AtA A A + 

, ,if Al or A2 holds and a> .,.1 

kK(Eez)k-lEexp{ I c,Z,/c } 
MA A A + 

, if Al or A2 holds and Cl, ~ -1 

. {k K(Eez)k+ -1 (Ee--zYc_)k- +k_l<tya/p(EeZ)k+(Ee-Z/C_)k_-l} 
+ 

x Eexp{ I c, Z,/c } 
AiA A A + 

, if A3 holds and a < -1 . 

LEMMA 7.2. Suppose that one of the assumptions Al-A3 is satisfied, with p = 1 and 

a'f -1. Then, with &,~ given by (7.8), (7.9) 

(7.10) -+ 00. 

Proof. Since P(ZCAZA> z) = PCZ'(CA/C)ZA > z/c), we may without loss of generality 

assume that c + = 1. Suppose first Al holds , with a'f -1. Let e = ma:ic{ CA; Ai lA) -< 1, 

Clearly lP(h) = Eexr{hZ} is finite forO:o::h<l, and lPCh) =l+hEZ (1+0(1)), as h-+ O, and 

for any S <lie it follows from (2.8) that IIA,iI\.+EexP{Sc),ZA} =IIMA+ (1 + SCA EZ (1 + 0(1)) 

is convergent, and hence 
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(7.11) 

The result then follows immediately by writing L:c),ZA =ZA + ... + ZA + L:V/4 cAZA' 
1 k+ 

and first applying Lemma 7.1 (iii) repeatedly to evaluate the tail of the distri-

bution of ZA + ... + ZA ,and then Lemma 7.l(i), using (7.11) for some SE (l,l/e), to 
1 k+ 

establish (7.10) (remember that in this case k = k+, 11. = 11.+) . 

If instead A2 holds, (7.10) again follows by the same argument, but with e 

defined as e = max{c;, c~/ c _; MA}. 

Finally, the case A3 follows similarly, after writing cA ZA as c;>l/p (_y-l/PZ),) 

lip . alp ex . .,..zP 
:for negative cA's, after noting that, by A3, P(-y ZA > z)~K.."y· z e ,as z+oo. 0 

The type I limit for A , the maximum of the associated independent sequence is 
n 

an immediate consequence of (7.10), by the same argument as for (4.1). Let 

(7.12) 

Theorem 7.3. Suppose that one of Al-A3 is satisfied, with p = 1 and a':f -1 and let 

~,~ be given by (7.12). Then n n 

-x 
A A f\ -e 

Pea (M -b) ::;;x)+e , 
n n n 

as n+ oo • o 

The behavior of extremes of the moving average process {\ = L:cA_tZA}' is qualita­

tively different when a > -1 and ex < -1. Here we will only treat the cases 

a> -1 and ex < -1, k=l formally, with k as defined above The remaining case, 

ex < -1, k > 1 is similar to the case p < 1, but with some added complexity. It 

will be treated separately in a later paper, as an example of a general convergence 

theorem, and will only be commented on briefly here. 

Theorem 7.4. Suppose that one of Al-A3 holds, with P = 1, and that in addition 

either ex > -1 or ex < -1 and k=1. Further let a =~ ,b =~ be given by (7.12) 
n n n n 

and let N and M be as defined in Section 2. Then 
n n 

where N is a Poisson process with intensity measure 

Nn §.N,as n+ oo , in [O,oo)x]R, 

-x dt x e dx. In particular 



- SB -

.-x -e P ( a (M - b ) s x) -+ e as n -+ 00 • 
n n n 

Proof. By Lemma 3.2 we only have to establish (3.4)-(3.6), similarly as for 

Theorem 6.1. Furthermore as before we will , without loss of generality, assume 

that C+ = 1 so that also a :: 1. n 

Suppose now that Al holds, with k = k+ = 1. Then c = maxt~l maxA (CA + cA_t ) < 2, 

and we may choose B > ~ with cB < 1 and hence with Eexp{B(cA + CA_t)ZA} = 

1/J (B (CA + cA_t )) well defined for t~ 1 and all A. For such t, 

(7.13) 

Here 1/J' (h) = EZexp{hZ} is bounded, and l/!(h) is bounded away from zero, for OshscB>so that 

C = sup{ Il/!' (h + x) N(h) I; 0 s h + x s cS, h> 0, x> O} < 00. Hence, by the mean value theorem, 

1/J(hl + h2) s 1/J(hl ) (1 + Ch2) for 0 s hI ,h2 and hI + h2 s cS. Thus 

[t/2] 
[t/2] [t/2] . 

IT 1/J(S(cA + cA_t )) ::;; { IT 1/J(ScA)}{ 11 (1 + CBcA_t )} 
_00 _00_00 

[t/2] -[t/2] 
s' { 11 1/J(BcA)H 11 (1 +CBcA)} 

_00 _00 

which is bounded, uniformly in t, by (2.8). Together with a similar computation 

for the second product in (7.13) this shows that Eexp{B (XO + \)} is bounded, uni-

formly in t ~ 1. Choose 'Y > 0 with 1 + 'Y < 2B, and for fixed x let u = x/a + b so n n n 

that u '" logn, as n-+so. Then, by Bernstein's inequality 
n 

= o(e-2Bliu) 

( -(1.+,)')) = 0 n , as n -+ 00 , 



uniformly in t::?: 1, which proves (3.4). 

To prove (3.5) it is by the same inequality sufficient to show that e.g. 

. . 3 00 . { 3 -n' -1 } flY] Eexp{logn I:n '+l c)..Z)Jand Eexp 10gn I:_oo c)"ZA are bounded as n-+ OO or n' = n . 

However, this follows readily from (2.2) and (2.8), since 1Ji(h) -l ..... hEZ, as h-+oo. 

Finally, by the same arguments as in Lemma 7.2, 
A 

using the uniformity in Lemma 

n' t:.. ex, lL P(I: c,\Z,\>u) ..... Ku e--n , as 
_00 I\. I\. n n n -+ 00 , which, by the choice 7.1 (i), it follows that 

of u proves the first part of (3.6). The second part is the same, so this con­
n 

cludes the proof for the case when Al holds and k = 1 (= k+). 

The proof when A2 holds and k = 1 is similar, while A3 and Al,A2 for Y > -1, 

k > 1 leads to an additional complication in the estimation of P(XO + X~ > 2un), 

for small t. However, we omit the details of this. o 

The behavior of sample paths near extremes is simplest if Al or A2 holds, with 

k = k+ = 1. For these cases, let the limiting marks y';{y }oo_ be defined by T T-_OO 

(7.14) 

Theorem 7 .5. Suppose that Al or A2 holds with k = 1, and 

fined in Section 2, with a = ~ , b = ~ given by (7.12). 
n n n n 

00 

let N' and Nit be as de-
n n 

Then N' ~ N' and n 

N" §. N' 
n ' 

as n -+ 00, in S x JR. , where N' is the point process obtained by ad-

joining the mark y given by (7.14) to each point of the Poisson process N in 

-x [0,(0) x JR.= S, with intensity measure dtxe dx. 

Proof. To establish that N' §. N it is by Lemma 3.4 and Theorem 7.4 sufficient 
n 

to prove (3.11). Suppose that Al holds and k = k+ = 1. As usual we may assume 

that c + = 1, so that cA < 1 for A f:- Al' Let u = x/a + b , for x fixed, and let 
n n n 

E > 0 be given. For A> 0, using independence in the second inequality, we have 

that 
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(7.15) P (Xo > u ,I Y' 0 C T) - y I > E) ~ PC Xo > u ,I z, - u I > A) n n, T n 1\.1 n 

+ PC I z, - u I ~A, I L:c, Z, - b c, I > Eb ) 
1\.1 n I\.-T I\. n 1\.1 -T n 

~ P(XO>u ,Iz, - u I >A) +pclz, - u I ~A)PCI L C, Z,I>Eb -A-Ixl). 
n 1\.1 n 1\.1 n Af.A I\.-T I\. n 

1 

Here, by (2.2) and the choice of u , nP( I Z, - ul ~ A) tends to a finite constant 
n . 1\.1 n 

as n -+ 00 

that the 

and P( I L:Al.A cA_TZA I > Ebn - A - I xl) -+ 0, since bn tends to infinity, so 
1 

last term in (7.15) is 0 Cl/n) as n -+ 00. Furthermore, writing 

Xo = ZA + L:VA CA ZA' the assumptions of Lemma 
1 1 

and Y 2 = LVA CAZ A' by Lemma 7.2. Thus, since 
1 

7.1 Cii) are satisfied, for Y 1 = ZA 
1 -x P CXO > un) ,...., e In, as n -+ 00 , (by 

Theorem 7.3 and [7], Theorem 1.5.1) 

limsup n P(XO>un,lzA - u I >A) =e-xlimsup pcl ZA - u I >Alxo>u) 
n-+oo 1 n n-+oo 1 n n 

-+0 , as A -+ 00. 

By (7.15) this proves that 

np(xO>u,IY' OtT) -y I >E) -+0 , as n-+ oo , n n, T 

i.e. (3.11) holds, and hence N' ~ N'. 
n 

The proof that N" ~ N' then is the same as 
n 

for Theorem 6.3, which proves the result when Al holds and k = 1. 

The proof when A2 holds, with k = 1, consists of a minor variation of the same 

argument. o 

The cases when A3 holds br Al or A2 holds with k> 1 and when y > -1 are more 

complicated since then large values of' {Xt } are caused not by one but by k large 

ZA-values. As an example we will, omitting proofs, briefly discuss what happens 

when A3 holds and y> -1, in the particular case of a symmetric underlying distribu-

tion, Le. when PCZ > z) = P(Z <-z), for z ~ o. Let Ul , ... , Uk _l be random variables 

in [0,1], with joint density function 

u ) = r(kCa+l)) ex 
f(ul ,···, k-l rCex+l)k u1 

ex 
~-1 ' 



for O~u.~ 1; i=l, ... , k-1, and 
1 

ZA::. = Uk +1"" Z),~ = Uk _1 , ZA-
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. 1 + "K -1 k 
- "-" 00 

Now define a stochastic process Y = {y } by T T=_OO 

Y = I C i Z, , T = 0, ± 1, ... , 
T I\.-T I\. 

and let y (1 ) ,y(2) , ... be independent copies of y, which are also independent of 

-x the Poisson process N with intensity measure dt x e dx. Let the point process 

00 

N' in S x JR be defined by "adjoining independent marks Y to each point of N," i.e. 

if N has the points {Ct.,x.), 
1 1 

Ci) {CCt.,x.), Y ); i=1,2, ... L 
1 1 

i~1,2, ... }, then let N' have the points 

Then with N' and N" as defined in Section 2 NI.cl N' 
n n ' n 

and N~ i N', as n + 00, in S x JR~ but the proof of this is more complicated tha,n the 

proof 6f the previous theorem. 

Finally, as mentioned above, the sample path behavior for Cl, < -1 is simila.r to 

that for p < 1, but with some interesting extra complications. This will be discussed 

in another publication. 
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8. Extremes for 0 <p < 1 

For 0 <p < 1, as for p = 1, et < -1, extreme values of weighted sums are caused by 

just one of the summands being large. However, in this case the scale of extremes 

increases instead of being constant, as for p = 1, or decreasing, as for p >1, 

which allows for some further simplification. In the proofs we will use a direct 

approach, similar to the methods of Rootzen (1978). 

Thtls in the present case it is fairly straightforward to find the tail behavior 

of the distribution of ~CAZA' by estimating convolution integrals, and then the 

limiting distribution of the maximum ~ of the associated independent sequence 
n 

(Theorem 8.3). For 0 <p < 1, the limit of the point process N of heights and loca­
n 

tions of extreme values of' {Xt = ~CA_tZA} is not a simple Poisson process but, if 

Al or A2 holds, obtained from a Poisson process by replacing each point by k points 
+ 

at the same location (Theorem 8.5). If instead A3 holds, then each point is replaced 

randomly by either k or k points. This is just as expected: e.g. in cases Al or 
+ 

A2, if an extreme value of' {Xt } is caused by just one big ZA' say Z~, then Xt should 

be large at the k + time instants ~ - AI' ... , ~ - \ ' when the factor before Z~ in 
+ 

~CA_tZA equals c+. This behavior is further described in the limit results for the 

marked point processes NI and NI! (Theorem 8.6) . 
n n 

We start by proving a counterpart of Lemma 7.1, estimating convolutions of two 

random variables. 

LEMMA 8.1. (i). Suppose the random variables YI and Y2 are independent and satisfy 

(2.2) with the same et and p (0 <p <1), but with K replaced by KI and K2 for Z replaced 

by YI and Y2 respectively. Then 

(ii) Suppose that YI satisfies (2.2) with p E (0,1), for Z replaced byYI , and is 
et -zP-

independent of Y2 which satisfies P(Y2 > z) = o(z e ), as z +00. 

Then 

et -zP 
P (Y 1 + Y 2 > z) '" Kz e ,as z + 00 
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(iii) Suppose {Z):OO are independent random variables such that for some C, Zo > 0 

and pE (0,1), 

a -zP 
P(ZA > z):o;Cz e , for z>zO' A=O,:!:l, ... , 

and that {cA}:oo are constants with 0 <CA <1 and ilogcAi > 8, for all A, and 

LCA ilogCA il / p < 1. Then 

= 0 (e -2ZP) , as Z + 00. 

Proof. (i) We will use (7.5). By (2.2), 

z;/2 P z/2 P P 
f P(Y 1 > Z - x) F2 (dx) '" Kl zae-z f (1 - x/z' )aez - (z-x) F2 (dx) , 

_00 _00 

(8.1) 

as z + 00. Here the last integrand tends pointwise to one, and is bounded for 

1 1- . 
_00 <x:o; z -P, and z~l, since zp_(z-x)P:o; constant x x/z P, for O:o;x:O;z/2, and 

hence 

(8.2) 

As before, let C be a generic constant, whose value may change from one appearance to 

the next. It then follows from partial integration and (2.2) that 

(8.3) 

P l-p P p_p2 z/2 P pp. 
:0; C{za(l-p) e Z -(z-z ) -z + za J e Z -(z-x) -x dx}. 

zl-p 

As a function of x, zP - (z - x)p - xP is decreasing for 0 <x < z/2, so replacing the 
2 

last integrand by its maximum value, and using that zP - (z - zl-p)p - zP (1-p) = -zp-p 

(1 + '0(1)), it follows from (8.3) that 
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2 

(8.4) CC a(l-p) a+l) -zp-p (1+0(1)) 
::;; z + z e 

~ 0 , as z ~ 00 • 

Hence, from (8.1), (8.2), and (8.4) 

, as z ~ 00 , 

and similarly 

, as z ~ 00 

Since furthermore P(Yl > z/2)P(Y2 > z/2) = 0(z2ae~p{_zP(2-P+ 2-P)})= O(zaexp{-zp}), part 

(i) now follows by insertion into (7.5). (ii) follows by similar arguments as in 

part (i). 

(iii) By the assumption LcAllogcAI1/P<1 and Boole's inequality 

(8.5) p(IcAZ? z)::;; P(l.CAZA > IcAllogcA/1/pz) 

::;; Ip(1.> /10gCA/1/Pz) . 

Here, for z>zO' also [10gcA/1/Pz>zo so that 

and hence, since xaexp{-xp }::;; constant x exp{-xp /2} for x> zo' and using that 

/logcA[ zP /2 = /logcA/ zP /4 + /logcA/ zP /4 ~ /logc;>... / + 2zP , for zP > 4 and /logc;>... / > 8, we 

have that, for some Cl > 0 and such z, 

-/10gC;>.../zP/ 2 
P(ZA> /logcA/ z) ::;; Cl e 

-2zP -[logc;>... I 
::;; Cle e 

l/p Now, insert this into (8.5) to show that, for z >max(zO,4 ), 
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, as z + co . D 

It is now easy to find the asymptotic form of the tail of the distribution of 

L:cAZA· 

LEMMA 8.2. Suppose that one of Al-A3 holds, with 0 < P < ~. Then 

A a (z/c)P 
P(LCAZA>Z) "'K(z/c+)re- + ,as z+co, 

where ~ = k K if Alar A2 holds, and ~ = k K + k K ya/p if A3 holds. 
+ + --

Proof. Assume that Al holds and, as usual without loss of generalit~ that c = 1. 
+ 

From (2.2) and Lemma 8.1 (i) used k -1 times it follows that 
+ 

a -zP 
P (ZA + ... + ZA > z) '" k + Kz e ,as z + co . 

1 k+ 

Similarly it then follows from repeated uses of Lemma 8.1 (ii) that if ~ is large 

enough to make I A. I :5:~, for i = 1, ... , k then 
1 + 

(8.6) , as z + co . 

which is possible since (2.8) is assumed to hold. It then follows from Lemma 8.1 

Ciii) and (2.2) that 

, as z + co , 

and this together with (8.6) is by Lemma 8.1 (ii) sufficient to establish that 

a zP 
PC I CAZA> z) = pc 1. _CAZA + 1. _CAZA> z) "'k+Kz e - ,as z + co. 

I AT:5:A I AT >A 

The result follows similarly under hypothesis A2 and also underA3 after writing 

cAZAas c~yl/p(_y-l/Pz)) for-negative CA'S, in L:cAZA again noting that 
D 

PC _y-1/PZA > z) "'K_ ya/pzae -z-, asz +co, by A3. D 

Hence, the appropriate norming constants for the maximum of the associated in-

dependent sequence are 
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(8.7) A -1 I-lip 
an=c+ p(logn) , 

b = c (logn) lip + (c Ip)( (alp) logl~gn + log~) I (logn) I-lip 
n + + 

with 

~ = {k+K , if Al or A2 holds, 

k+K+k_K_yalp , if A3 holds. 

Theorem 8.3. Suppose that one of AI-A3 is satisfied, with 0 <p < 1, and let ~ ,~ n n 

be given by (8.7). Then 

-x 
p (~ (~ - ~ ) ::; x) -7 e -e as n -7 00 • 

n n n o 

However, for 0 < p < 1, the norming constants a ,b for the moving average process 
n n 

. {Xt = L:cA._tZ,J are the same as for the noise variables, (provided c + = 1, and if Al or 

A2 holds) and not as for p> 1, those of the associated independent sequence. Thus 

let 

(8.8) 

and 

(8.9) 

a = 
n 

-1 I-lip 
c+ p (logn) , 

. lip I-lip 

{
c (Iogn) + (c Ip)((alp) logIogn + IogK) I (Iogn) , if Al or A2 holds 

+ + 

bn = c+(Iogn) lip + (c+/p)((a/p)logIOgn+log(K+K_yalp))/(logn/-I/p, if A3 holds. 

(However, it may be noted that the difference between the various norming constants 

is not large, e.g. if Al or A2 holds and c+ = 1, then 

a (M - b ) = 'i (M - b ) 
n n n n n n 

= ~ (M - ~ ) + log~/K n n n 

= ~ (M - ~ ) + 10 gk . ) 
n n n + 

The next lemma is the first step in making precise the notion that large values 

of Xt = L:cA._tZA. are caused by just one large ZA.. 

LEMMA 8.4. Let a and b be given by (8.8) and the first part of (8.9), with c = 1, n n + 

(or equivalently, let a ='i ,b =b with';i' ,b given by (4.2) with K> 0 a fixed n n n n n n 
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arbitrary constant). Let E > 0 and x be fixed, and write E = E/a and u = x/a + b . 
n n n n n 

(i) Suppose Y 1 and Y 2 are as in Lemma 8.1 (i). Then 

(8.10) nP (Yl ~ u - E , Y2 ~ u - E , Yl + Y2 > u ) + 0 , as n + 00 • 
n n n n n 

P 
(ii) If Yl is as in part (i) and is independent of Y2 , with P(Y2 >z) =o(zae-z ), 

as z + 00, then 

(iii) Let Yl , ... , Yk be independent and satisfy (2.2) with the same a and pE (0,1) 

but possibly with different K's, for Z replaced by Y., i=l, ... , k. Then 
1 

k 
nP (Yl ~ u - E , ••• , Yk ~ u - E, L Y. > U ) + 0 , as n + 00 • 

n n n n i=l 1 n 

Proof: (i) Similarly as for (7.5) we have that 

(8.11) 

u /2 
n 

+ f P(Y2 > un - x)F l (dx) + P(Y 1 > un /2) P(Y2 > un /2) . 
E 
n 

By the choice of a,b, it holds that uaexp{-uP}=O(l/n). Hence, using in turn 
n n n n u /2 

(2.2), this, and E + 00, as n + 00, and estimating f nl (I - x/u )aexP{up - (u - x)P}F2(dx) 
n -p n n n 

as in 
u 

Lemma 8.1 (i), it follows that n 

un /2 p u /2 
J -u n 

E P(Yl >un - x)F 2 (dx) "'Klu~e n f (1-
n E 

= O(l/n) 

loOp 
u 

n 

f F2 (dx) + o(l/n) 

= o(l/n) , as n + 00 • 

n 

-1 
Similarly, the second integral in (8.11) is 0 (n ), and since P (Y 1 > un/2) P (Y 2 > un /2) = 

-1 o(n ) as in Lemma 8.1 (i), it follows from (8.11) that (8.10) holds. 

(ii) This follows similarly, (cf. Lemma 8.1 (ii)) after replacing (8.10) by 
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+ J P(Y2 > un - x)Fl (dx) + P(Y 1 > un/2)P(Y2 > un/2) 
_00 

(iii) It is readily seen that 

k 
. { I Y. > u ,Yl :::; u - E , ... , Yk :::; u - E } 

i=l 1 n n n n n 

k-l 
c' { \' } L. Y. > u - E /k, Yl :::; u - E , ... , Yk 1:::; u - E 

i=l 1 n n n n - n n 

k k-l 
u{ L Y. >u, L Yl:::;u -E /k,Yk:::;u -E} , 

i=l 1 n i=l n n n n 

and repeating the procedure shows that 

k 
. {L Y. > u , Yl :;:; u - E , ... , Y :;:; u - E } 

i=l 1 n n n k n n 

i i-I 
ku . { \' \' I) } c L Y. > U - ((k - i) /k) E , L. Y.:;:; u - ((k + 1 - -t,) /k) E , Y I) :::; u - E . 

i=2 i=l 1 n n i=l 1 n . n -t, n n 

Hence 

k i i-I 
:::; L P( L Y. >u - CCk-i)/k)E , L Y.:;:;u - ((k+l-i)/k)E ,YI):;:;u - ((k+l-i)/k)c: ) 1)2.11 n n. l l n n-t, n n -t,= 1= 1= 

and the result follows from applying part (i) to each term in the sum, with the obvious 

identifications, since Ef-lYi satisfies the requirements put on Yl in part (i), by 

Lemma 8.2. o 

As discussed above, it will presently be shown that if Al or A2 holds, then each 

large ZA-value, say Z~, leads to precisely k+ large Xt values at fixed distances from 

~ and with heights approximately equal to c+Z~. Similarly if A3 holds, a large (posi­

tive) ZA causes k+ large (positive) Xt-values, and a large negative ZA causes k_ 

large (positive) Xt-values. Thus, taking into account the effect of time and height 



scaling in N , its limit is of the following form. Let N,N , and N be Poisson 
n + 

processes in [0,00) xli.with intensities dtxe-xdx, dtxK(K+K_lt/p)-le-xdX, and 

dt x K _ ya/p (K + K _ ya/p) -1 e -xdx , respectively, and define the point process N by 

holds. 
(8.12) {

k N(B) 
N(B) = +", '" 

k N (B) + k N (B), if A3 
+ + - -

if Al or A2 holds 

For the proof that N ~ N we will directly use the structure of extremes discussed 
n 

above. The basic idea of the proof is quite simple, and the calculations are elemen-

tary, but does involve some long expressions. 

Theorem 8.5. Suppose that one of Al-A3 is satisfied, and let N be as defined in 
n 

Section 2, with a,b given by (8.8),(8.9). Then N ~ N as n + 00, in (0,00) Xli., n n n 

with N given by (8.12). In particular 

-x -e Pea (M - b ) ::;; x} + e as n + 00 . n n n 

Proof: Assume Al holds, and as usual without loss of generality, that c = 1. Let 
+ 

I =[s,t) x (x,oo) be a fixed rectangle in tro,oo) x:rn., write u = x/a +bn , and d-efine 
n n 

Xt = AL. zA.+t1 {zA+t > un} , 
+ 

and let Nn and Nn be defined from' {Kt} and' {:Kt} in the same way as Nn is defined 

from' {\}, and let Nn be similarly defined from' {Ztl. We will prove that 

(8.13) peN (l) f:: k N (I)) +0 , as n+ oo , 
n + n 

(8.14) peN (I) f:: N (I)) + 0 , as n + 00 , 
n n 

and that 

(8.15) P (N (I) f:: N (I)) + 0 , as n + 00 . 
n n 

~. d '" '" d '" d As noted in Section 4, N + N as n + 00, and hence obviously k N + k N = N, and N + N n + n + n 

then follows from (8.13)-(8.15) by applying Lemma 3.3 three times. 



-'l0 -

It is readily seen, that for 

it holds that 

(8.16) . {N (I) ~ k N (I)} ~ {Z, > u for some A E [ns - A,ns + A] u [nt - A,nt + A]} 
n +.n A n 

u' {Z, >u ,Z, >u for some AE [ns,nt) and 1.1 with 1.1~0 and 11.11 ::;A}. 
A n A +1.1 n . 

Here, by Boo1e's inequality and stationarity 

(8.17) P(ZA > un for some A E [ns - A,ns + A] u [nt - A,nt + A]) 

::; 2 (2A.+ 1) P (Z > u ) 
n 

-+ 0 , as n + 00 , 

and similarly 

(8.18) • P(Z, > u ,Z, > u for some A E [ns,nt) and 1.1 with 1.1 ~ 0 and 1).1 I::; A) 
A n A +1.1 n 

2 
::; net - s)2AP(Z > u ) n 

+O,asn+ oo , 

since P(Z>u ) "'Kuctexp{-up } =O(l/n), by the choice of a ,b. Now (8.13) is an im-
n n n n n 

mediate consequence of (8.16)-(8.18). 

Next, fix £:>0, define I = [s -£, t+£) x [x-£, x+£] and write £ =£/a. It 
£ w n n 

can be seen tn~t for large n 

(8.19) , ill (I) df (I)} ~ rn (I ) > O} U {Z"\ > u , Z, ::; - £ /k , 
n n n £ A n A +1.1 n + 

for some A E [ns - A,nt + A) and 1.1 ~ 0 with 11.11::; A} , 

and that 

(8.20) . {N' (I) > N (I)} c!. {N er ) > O} u' {I Z "\:> u , 
n n n £ l\. 1.1+A n 

1.1E + 

Since the ZA'S are independent, it follows from Boo1e's inequality and stationarity 

that 

• 
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(8.21) P(Z, >u ,Z, :';-E: /k for some AE [ns-A,nt+A) and ].1~0 with 1].11 :,;A) 
/I. n /1.+].1 n + 

:,; (n(t - s) + 2A) P (Z > u ) P (Z < -E: /k ) 
n n + 

+ 0 , as n + 00 , 

since P(Z>u) =O(l/n), as noted above, and since E: +00, and hence P(Z <-E: /k )+0, n n, n + 

as n + 00. Moreover, a similar argument, together with Lemma 8.4 (iii), shows that 

(8.22) P( I Z ,>u ,z, ,:';u - E: , ... , Z, :';u - E: , for some AE [ns,nt)) 
].1E1\. ].1+/1. n /1. 1+/1. n n /l.k +1.. n n 

+ + 

~ n(t-s)P( I Z>u ,z, :';u -E: , ... , Z, :,; u -E:) 
].1E 1\. 11 n /1.1 n n /l.k n n 

+ + 

+ 0 , as n + 00. 

'" d '" Since N + N, it follows from (8.19)-(8.22) that n 

limsup peN (I) ~ N (I)) ~ limsupP(N (I ) > 0) = 
n n n E: n+oo n+oo 

'" P(N(I) >0), 
E: 

and since the latter quantity tends to zero as E: + 0, this proves (8.14). 

Finally, (8.15) follows in a similar manner. In fact, with the same notation, 

(8.23) {N (I) ~ N (I)} c {N (I ) > O} 
n n n E: 

u' {X, > u ,X, ~ u - E: , for some A E [ns,nt)} 
/I. n /I. n n 

u' {X, ~ u ,X, > u + E: , for some A E [ns,nt)} 
/I. n /I. n n 

- d '" Lemma 3.3 together with the already proved relations show that N + k N=N, and 
n + 

thus in particular that 

peN (I ) > 0) +P(NCI ) > 0) 
n E: E: 

which as before tends to zero as E: +0. Since \ = xt + l,Ai1\. cA ZA' where the two 
+ 

terms are independent and satisfy the hypothesis of Lemma 8.4 (ii), according to 

Lemma 8.2, it follows as in (8.22) that the probability of the next to last event 

in (8.23) tends to zero. Further,{Xo~un,Xo>un+E:n}c{l,Ai1\. cAZA <-E:n'XO>un+E:n }, 
+ 

and since l,Ai1\. cAZA and Xo are independent, it follows, as in (8.21), that also the 
+ 

probability of the last set in (8.23) tends to zero. Now, (8.15) follows in the 
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same way as (8-.14), which completes the proof of the theorem for the case when Al 

holds. The proofs for hypotheses A2 and A3 follow similar lines. o 
Next, define points 

Y (i)(~) = c Ic 
L A. -T + 

1 

for T = 0, ±l ~ . . .• and i = 1, ... , k , 
+ 

y_(i)(~) = cif Old' 1 k L - A - -T C _ , or T = , ± , •.. , an 1 = , •.. , 
i 

'" Further, let N, Nand N be as defined just before Theorem 8.5. The limit N' 
+ 

of the marked point processes N' and ~' is then, if Al or A2 holds, defined by n n 

requiring that to each point (t,x) of N there corresponds k+ points 

(1) (k+) 
((t,x),y ),oo., ((t,x),y ) 

of N'. If instead A3 holds, then N' is defined from the independent Poisson pro-

cesses 

points 

of N' 

of N'. 

'" '" N and N by requiring that to each point (t ,x ) of N there corresponds + + + + 

(1) 
(k ) + 

((t+,x+),y), ... , ((t+,x+),y ) 

'" and to each point (t_,x) of N there corresponds the k points 

(1) (k ) 
((t ,x ),y_ ),oo., ((t_,x),y_ - ) 

The convergence of N' Nil can now be obtained by direct approximation, by n' n 

k 

similar arguments as for Theorem 8.5. Since no new ideas are involved in this, we 

omit the proof. 

Theorem 8.6. Suppose that one of Al-A3 is satisfied, let N' be as defined above, 

and let 

N' i N' 
n 

N' Nil be as defined in Section 2, with a,b given by (8.8), (8.9). n' n n n 

and Nil i N I as n -+- ()() in S x lR ()() . n' , 

Then 

+ 
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9. Remarks on polynomial tails; 'autoregressiveprocessesartd the conditions. 

This section contains some comments on (i) noise variables with polynomially 

decreasing tails, (ii) how the results apply to autoregressive (AR) and autoregres-

sive-moving average (ARMA) processes, (iii) the conditions on the weights' {cA}' and 

(iv) the conditions on the distribution of the noise variables {ZA}. 

(i) 'P61Y'nomialtai!s. Formally, this is the case when p = 0 in (2.2), i.e. when 

(9.1) a P(Z>z) ...... Kz ,as z -+ 00, 

for some a E (-00,0). Special classes of moving averages \ = L:cA_tZA which satisfy 

(9.1) are studied in Rootzen (1978) and Finster (1982). As for O<p<l, an extreme value 

of the moving average process for p = 0 is caused by just one large noise variable ZA. 

In particular, if Z satisfies (9.1), and if the same relation holds, but with K 

replaced by K , if Z is replaced by -Z, this leads to a type 11 limit for the maximum, 

(9.2) P (a (M - b ) ~ x) -+ e-x 
n n n 

-Ial 

for x ~ 0, if a ,b e.g. are chosen as 
n n 

b = O. n 

Thus extremes increase much faster for p = 0 than for p > 0, and in addition scale 

and location are of the same order, so that it is possible to choose b = O. In 
n 

contrast to 0 <p <1 this also introduces a random amplitude into the behavior of 

sample paths near extremes. Specifically, for the case when the ZA's have a (non­

normal) stable distribution - which then satisfies (9.1) with lal E (0,2) - this 

is discussed at length in [9], in a somewhat different point process formulation. 

Rather loosely described, it is shown there that e.g. for positive cA's the norma­

lized sample path a X near an extreme value at, say, zero has the same distribution n "[ 

as a random translate of the function 

Y'=u'c Ic' "[-0+1 "[ -"[ + ' -, - , ••• 
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where U' is a certain pareto distributed random variable. Furthermore, sample paths 

near different separated extreme values are asymptotically independent. It then 

follows that XT/XO has a similar form, i.e. it approaches a translate of 

y~ = U"c_T ' T = O,:!:l, ... , 

where the random variable U" only assumes the values ... :!:l/c_ l , :!:l/cO' :!:1/c1 , .... 

Thus for p = 0, the limits of N' and N" are not the same, but have a similar, deter-n n 

ministic form, except for a random amplitude and time translation. 

In [ 5], the limit (9.2) is obtained for general Z's which satisfy (9.1) (and 

indeed also for a slightly more general case when the Z's belong to the domain of 

attraction of the type II extreme value distribution, or equivalently when the right 

hand side of (9.1) may include a further slowly varying factor). The conditions in-

clude Co > IcAI for A I o. As noted in [~] the methods in that paper work also for 

such general Z's, the only supplementary fact needed is a bound for the tail of the 

d.f. of LC"ZA' which in turn e.g. can be obtained:, in the same way as for 0 <p <1. 

(ii) Autoregressive and autoregressive-movingaverage processes. A stationary pro-

cess' {Xt } is an infinite ARMA-process if it satisfies the difference equation 

(9.3) Xt + dlXt +l + d2Xt +2 + ... = Zt + elZt +l + e2Zt +2 + ... , for t = O,±l, ... , 

for some constants' {dA}; and {eA};' If all the eA's are zero, then Xt is an AR-pro-

cess. Here we only consider the case when the noise variables' {ZA} are independent 

and identically distributed. Rather generally, under weak conditions on' {dA}, such 

processes can be "inverted", i.e. written as infinite moving averages. Let z be 

a complex variable and introduce the generating functions D(z) = 1 + dl z + d2z2 + ... 

2 and E(z) = 1+ elz + e2z +... . If the coefficients' {cA} defined by E(z)/D(z) = 

2 00 

Co + cl z + c2z + ... make L:cA ZA convergent then inversion to Xt = LA=OcA zA+t is possible, 

and if in addition the cA's satisfy (2.8) or (2.9), as required, the results of 
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SectioffiS-8 also give the extremal behavior of the ARMA-process (9.3). 

From complex function theory it follows that if D(z) and E(z) converge for 

Izl ::: 1 + E, for some E > 0, and Dez) has no zeros in Izl::: 1 + E, then the CA'S de­

crease exponentially and (2.8) and (2.9) are trivially satisfied, but of course 

these conditions are by no means necessary. In particular if {Xt } is a finite 

ARMA-process (i.e. if only finitely many of {dA,eA} are non-zero), and if D(z) f. 0 

for Izl ::: 1, as is usually assumed, then (2.8) and (2.9) hold (since D(z) only has 

finitely many zeros, so that D(z) ~ 0 for Izl ::: 1 + E, for some E > 0). 

The results of Finster (1982) on exponential and polynomial tails are proved 

for infinite AR-processes, subject toI~=lldAI < 1. Since {CA} then can be obtained 

recursive1y from Co = 1 and cn = -(d1cn _l + ... + dncO) , it is easy to see that this 

implies that IcAI < 1 for A f. 0, and that I71 cAI ::: I7I dAI/Cl- I7IdAI). Thus IcAI <cO 

for A f. 0 and I~lcAI < 00, but the CA'S do not have to satisfy any condition of the 

type IcAI = 0(IAI-8), for any 8 > O. 

(iii) The conditions on the weights· {cAl- In a sense the main restriction (2.8) on 

the c 's A (which is the same as (2.9) for 1 <p::: 2) that IcAI = 0(IAI- 8) as A -+ ± (Xl, 

for some 8 > 1 is quite weak, being close to the requirement that ICA is convergent, 

which in turn is necessary for convergence of ICA ZA if EZ f. O. However, if EZ = 0 

2 and EZ < 00, then 

(9.4) 
2 \' c < 00 

L A 

is sufficient for convergence, and there is more room for weaker conditions. It is 

known that, at least in the normal case, some further condition beyond (9.4) is 

needed for the extrema1 results of this paper to hold, since if the noise variables 

are normally distributed and e. g. limt-+oologt IA cA_t CA = y> 0 then the limit distri­

bution of M is different from the one in corollary 6.5 (see e.g. [7], Section 6.5). 
n 

However, Berman (1983) shows that if the ZA'S are normal and 



(9.5) 
00 

logn 1. c~ + 0 , as n + 00 , 

InT<A 
then the conclusion of Corollary 6.5 is still valid, and thus (2.9) can be substan-

tially weakened in this case. In fact, it follows easily from Lemmas 3.1 and 3.2 

that if (logn)2E1nl <\c~ + 0, then the result of Theorem 6.4 holds, and some further 

work shows that this also is true under the weaker condition (9.5). 

(iv) The conditions on the noise variables. The condition (2.2) defines the scope 

of the present investigation. However, of course all the results trivially extend 

to the case where instead of Z some location-scale transformation a(Z-b) of it satisfies 

(2.2) (for 0 < psI) or (2.3), (2.4), and (2.7) (for i < p). Further the methods 

probably also work if zP in (2.2) (or (2.3)) is replaced by some suitable polynomial 

PI Pk a 
dl z +. .. + dkz ,and for 0 < psI the factor z can be replaced by L(z), where 

L is regularly varying with index a. For p>l, in addition to (2.2) we have imposed 

the smoothness restrictions (2.3), (2.4), and (2.7). These conditions were intro-

duced in the proofs for technical reasons an certainly should be possible to relax 

to some extent. Nevertheless, it does not seem likely that the results for p> 1 

hold in general without any further restrictions beyond (2.2). 
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