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Abstract 

This paper contains an exposition of the by now rather complete central limit 

theory for discrete parameter martingales providing new and efficient proofs. The 

basic idea is to start by proving a central limit theorem under quite restrictive 

conditions (that the summands tend uniformly to zero and that the sums of squares 

CO:rl'Terge uniformly) and then to obtain the most general results by random change 

of time and truncation. The emphasis is on the sums of squares (or squared varia

tion process), and Burkholder's square function inequality plays a crucial role in 

the development. In particular, this approach leads to a very short and direct 

proof of tightness. In the proofs we make rr·uch use of a resul t (Lemma 2.5) which 

is believed to be new and which binds together convergence to zero of sums and of 

sums of conditional expectations. In the final section, the results are extended 

to several dimensions, to mixing convergence, and to convergence to mixtures of 

normal distributions. 

Research supported in part by AFOSR Grant No. F49620 82 C 0009. 



O. Introduction 

The main thesis of the present paper is to view the martingale central limit 

thecrem as basically concerning summands which tend uniformly to zero, and with 

squared variation (sum of squares) converging uniformly, and then to reduce 

the most general situation to this case by (random) change of timescale and by 

truncation. We think that this both appeals to the intuition and leads to quite 

efficient proofs. The purpose of the paper tius is to give a selfcontained expo

sition of the basic martingale central limit theory, using this point of view, 

providing as simple and efficient proofs as possible. A second assertion we 

would like to make is the usefulness of stochastic processes point of vie\\': 

that it is the functional limit results which are impJTtant, and not only their 

one-dimensional versions. There is, of course, a cost associated with this: one 

has to learn at least some elements on convergence of distributions on func-tion 

spaces, but the reward then is both better understanding and easier and shorter 

proofs. One further feature of our development below is an emphasis on the 

squared variation proce~;r; and a systematic use of Burkholder' s square function 

inequality. In particular this makes possible a very easy proof of tightness, 

which in other approaches often requires the main effort. 

The central limit theorem for discrete parameter martingales represents one 

important stage in the development of central limit theory and has in the last 

few years reached what se~ms to be essentially its final form and has also proved 

its value in many applications to statistics and applied probability. The theory 

has also been recast into the language of "the general theory of processes" of 

the Strasbourg school and been extended to the continuous parameter case by the 

work of Rebol1edo [15,16], Lipster and Shirayev [13,14] and others. This has led 

to Cl very satisfying formulation of the results and a rather compl ete extensi on 
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of the theory. Nevertheless it may perhaps also be said that the essential dif

ficulties are present already in the discrete case and that the basic continuous 

parameter results are rather easy to obtain from the corresponding results for 

discrete time, as shown by Helland [9]. 

'3;,cept for the multidimensional result, Theorem 4.3, which is only a small 

step away from the one-dimensional results (although it seems quite useful for 

applications), none of the theorems of this paper is new. However, almost all 

the proofs are new (the main idea was mentioned briefly by the present author in 

[19] and was developed in some detail in mimeographed lecture notes fr.)m the 

Department of Hathematical Statistics, Copenhagen University). In particular 

we would like to point out Lemma 2.5, which is a versatile tool and which is nelv 

formulated in the present generality, although various special cases have been 

used by many authors. 

A related exposition, which starts, however, by assuming known a basic cen

tral limit theorem for bounded martingale differences is given by Helland [9]. 

A further rather different exposition which uses the Skorokhod embedding is 

contained in the recent book by Hall and Heyde [8]. Both expositions contain 

extensive lists of references and accounts of the development of the subject, to 

which we refer the reader. Later papers of interest include work by Klopotowski 

and colleagues [2,12], the articles by Lipster and Shiryaev mentioned above, and 

a series of papers by Jeganathan [10,11]. The approach in [11], which in turn 

was partly inspired by Rosen [20], is somewhat related to this paper and was 

made independently of it. 

The plan of the paper is as follows. Section 1 contains some notation, and 

in Section 2 the results we need from other areas (functional limit theory and 

martingales) are collected, and the basic truncation lemmas (Lemmas 2.5-2.7) are 
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obtained. The functional central limit theorem for martingales is then proved in 

Section 3, starting from scratch, and finally Section 4 contains a somewhat brief-

er discussion of one direction of extension of the results, to several dimensions 

and to convergence to mixtures of normal distributions. 

1. Notation 

Throughout, we will consider doubly indexed arrays {X ., B .; j~l, n~l} 
n,J n,] 

where the X ,'s are random variables or, in Section 4, random vectors, and for 
n, J 

each n, {B ,}~ 1 is an increasing sequence of sigma-algebras, i.e., B .cB . l' n,J J= n ]- n,]+ 

We will never assume that the X . 's are obtained by linearly renormalizing a 
n,J 

single sequence of random variables since that is not the case in many of the ap-

plications but will sometimes assume that the sigma-algebras are nested, i.e. that 

B .:= B l' ,for n,j~l , n,] n+ ,J 

which seems to hold in most cases of interest. Possibly by going over to a pro-

duct space, we will assume that all X .'s and B . 's are defined on the same n,J n,] 

probability space CD,B,P). The array is said to be adapted if X . E B . for 
n,] n,] 

j~l, n~l, and it is a martingaZe difference array (m.d.a.) if in addition 

{X " B .; j=I,2, ... } is a sequence of martingale differences, i.e., if 
n,J n,] 

Elx .1 < 00 and E(X 'll/B .) =Oforj~1. n,J n,J+ n,J 

A stochastic process {T(t)}, defined for t in some interval I is a time-scale 

if it is nondecreasing, has left limits and is right continuous. A sequence h- } 
n 

of time scales is adapted (to {B .}) if for each nand tEl, T (t) is a stopping 
n, J n 

time with respect to 

Let S (t) = \' ~ t] 
n LJ=l 

B l' B 2···· n, n, 

X ,be the [t]th partial sum in the nth row, and let 
n, J 
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{B(t); tEll be a standard Brownian motion. The problem we are concerned with is 

convergence in distribution of time-scaled row-sums S OT to a Brownian motion, 
n n 

or more generally a time-scaled Brownian motion. Here of course S OT is defined 
n n 

by S OT (t) = S (T (t)). For brevity of notation we will usually write SOT for n n n n n 

S OT , and E. Co) for E(o" B .) (with EO=E) when taking expectation of variables n n 1 n,l 

in the nth row. 

A partition of an interval [O,T] is a finite set of points, O=tO<tl< ... <tk=T. 

For a given partition, we will write 

VSOT Cl) = 
n 

!::, = max !::'(l) 
l~l~k 

k 
sup 1 I 

TnCtl_l)<k~Tn(tl) j=TnCtl_l)+1 
x .1 . 
n, J 

Further, indicator functions will be written as lB or i{ }, i.e. lB(w) is one 

if wEB and zero if WEBC, and similarly 1 { } is one if the event in curly brackets 

occurs and zero otherwise. Finally, sums with upper limits which are not integers 

'IX _ dx] 
are defined by L,j=l - I'j=l' i.e. summation is up to the greatest integer which 

does not ecceed the upper Hmi t. 

2. Prerequisites: Functional Limit Theorems. Martingales. Approximation 

For easy reference and because one purpose of this paper is to make a complete 

exposition of the martingale central limit theorem, we will in this section list 

the results on convergence in distribution and on martingales which are needed 

for the proofs. The section furthermore contains three lemmas which are essential 

for the truncation and approximation procedures we will use. 
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Let X, {X } be random variables with values in a complete separable metric 
n 

space (S, p) . With standard terminology and notation, X converges in distribu
n 

tion to X, X 
n 
a X in (S,p), if heX ) a heX) in lR, for all functions h: S -+ lR 

n 

which are bounded and continuous almost surely with respect to the distribution 

of X, and X converges in probability to X, X R X if p(X ,X) a 0. If X has a 
n n n 

standard normal distribution in lRd we also write convergence in distribution as 

d d d 
Xn -+ Nd (0, I) and for d = 1, as Xn -+ N(O, 1). Besides lR, m. , we will be inter-

ested in the metric spaces D[O,T] and D[O,oo) of functions on [O,T] and on [0,00) _. 

which have left limits and are right continuous, with metrics described in [3,21] 

and in the subset DO[O,l] of nondecreasing functions in D[O,l]. Convergence in 

distribution of vectors will throughout be with respect to the relevant product 

metric. 

The first result is a criterion for convergence in D[O,oo). It can be ohtaincd 

as an easy special case of the results of [21, Theorem 2.8] and [3, Theorem 15.5 

amended with the argument of Theorem 8.3]. 

Proposition 2.1. With the notation of (1.1), suppose the following two conditions 

hold: 

(i) (tightness) for each posi ti ve T and E, theTe exists a function f such that 

for any partition of [O,T], 

k 
limsup I 

n-+oo -<'-=1 

where fell) -+ 0, as II -+ 0, and 

f (lI) , 

Ci i) (finite dimensional convergence) if' ~ }oo 1 is a sequence of integers and 
n n= -

X a continuous stochastic process with SOTk 
n 
~ X in DIO,oo) as k -+ 00, it follows 

that X has the same finite-dimensional distributions as B. 

Then SOT a B in D[O,OO), as n -+ oc • 
n 

The next results, on "random change of time" and approximation are phrased 
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in terms of general processes X ,Y and Y in DIO,co) or D[O,ll and timescales {1 }. n n J n 

Proposition 2.2. (i) 
d 

Suppose Y ~ Y in D[O,co) and that {1 (t); tE[O,l]} are 
n n 

timescales such that 

(2.1) P 
1 (t) ~ T(t) 

n 
as n ~ 00 

for each tE[O,l], where T is a non-ra~dom continuous function. Then Y 01 
n n 

d 
~ Y01. 

(ii) Suppose Y ~ Y in D[O,l] and that {X } are random variables in D[O,l], such 
n n 

that 

sup Ix (t)-Y (t) I g ° 
O~t~l n n 

Tht:n X ~ Y in D [0,1 J . 
n 

as n ~ 00 • 

Proof: (i) Since pointwise convergence of increasing functions to a continuous 

limit implies uniform convergence, (2.1) implies that 1n ~ 1 in DO[O,l], and the 

result then follows from [21, Theorem 3.1]. 

(ii) See [3, Theorem 4.1]. 

From martingale theory we will use some simple consequences of the optional 

IJ 

sampling theorem (Proposition 2.3 below), the extension of Kolmogorov' s inequa 1 i ty 

to martingales (Proposition 2.4(i)) and one half of Burkholder's square function 

inequality (Proposition 2.4(ii)). All of this b~longs to the standard fare from 

a first encounter with martingale theory, except perhaps the square function in-

equality. An elementary (albeit pedestrian) proof of this latter result is 

sketched in the appendix for the special case we shall need--an elegant proof 

for the general case is given in [4]. 

Proposition 2.3. Let' {x.,B.; j~I} b3:l sequence of martingale differences, let 
J J 

T~T' be stopping times, and write B for the pre-T-sigma-algebra. Suppose that 
T 

Then 

T' 

E { I 
j=T+l 

x·IIB}=O 
J 1 
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2 x·IIB} . 
J T 

Proposition 2.4. Let {X.,B.} be a martingale difference sequence and let T~TI 
J J 

be stopping times. Then 

Ci) for any integer n and real numbers p~l, E>O, 

k 
PC max I I 

T<k~T'l\n j=T+l 
x.1 ~E) 

J 

T'l\n 
~_l Ell x.I P , 

EP j=T+I J 

Cii) for 

and 

(ii i) 

p>l and C a constant which only 

T' 
El I x.IP ~ 

j=T+1 J 

T' 

P (max I I 
T<k~T' j=T+l 

T' 
X~) p/2 eE( I 

j=T+1 J 

depends on p, 

Proof: (i) is the extension of Ko1mogorov's inequality applied to the martingale 

IT'l\k n { X} and Cii) is one of Burkholder's square function inequalities. j =T+1 j k=l 

Further, combining (i) and (ii) we have that 

PC max 
T<k~T'l\n 

k 
I I x. I ~E) ~ 
j =T+ 1 J 

and (iii) follows by letting n+OO. o 

As will be seen, it is convenient to have an easy means of compari nl the si =c 

of a sum of positive variables with the sum of their conditional expectation. In 

the present context, special cases of the following result ~£s been used by 

several authors, but the resu1 t i tse1f--and its easy proof--is believed to be neh'. 

Lemma 2.5. Suppose {Z ., B .} is an adapted array of positive random variables 
n,l n,l 

and that T is a stopping time with respect to B l' B 2"'" for each n. Then n n, n, 

(i) 

T 
n 

I 
j=l 

P 
E. I(Z .) -+ 0 => 

J - n, J 

T 
n 

I 
j=l 

P 
Z .-+0, 
n, J 
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if {max Z .}oo 1 is uniformly integrable then 
lS;js;T n,] n= 

n 

(i) 

v /IN 
n 

E I 
j=l 

T 
n 

I 
j =1 

P Z . -+ 0 => 
n,] 

T 
n 

I 
j =1 

P 
E. 1 (Z .) -+ 0 . 

] - n,] 

For any stopping time v , letting N tend to infinity in the identity 
n 

7 
~n,j 

N 

= L El{jS;V}Z . 
n n,] j =1 

N 

I 13 {I {j$V }E(Z ." B . I)} j=l n n,] n,]-
= 

v /IN 
n 

= E I 
j=l 

E(Z ." B . 1) , n,] n,]-

shows that 

E 

Let 

v' n 

V n 

Vn 
y 

j =1 

= 

= 

Z . = E n, ] 

inf{k;?:l; 

Cv'-l):\T n n 

Vn 
I E. l(Z .) . 

j=l ]- n,] 

k 
I E.l(Z .);?:I} 

j=l ] - n,] 

and note that v'-l, and hence v , is a stopping time, and clearly PCv h )-+0 n n n n 
T P 

since I. nl E. l(Z .) -+ O. Further, since v S;T , 
]= ]- n,] n n 

Vn 

I E. lCZ .) 
j=l ]- n,] 

v 

P -+ 0 , as n -+ 00 

and 0 s; t n E. l(Z .)s;l, since v S; v'-l, so the sum is uniformly integrable 
Lj=l ]- n,] n n 

and hence 
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E L Z . n, ] = E LE. 1 (Z .) + 0 as n + 00 

j=l j=l ]- n,] 

Thus, for any E>O, 

T 
n 

PC L 
j=l 

V 
n 

Z .>E) S peT iv ) + P( L 
n,] n n . 1 

]= 

Z .>E) + 0 
n, ] 

using Chebycheff's inequality for the last term. 

Cii) Define in this 

v' = inf{k~l; 
n 

v = V'I\T n n n 

case 
k 

L 
j=l 

Z .>1}, 
n,] 

v 

as n +00 , 

so that v again is a stopping time, and note that 0 S 
n v 

,n Z . S I + max{Z .; 
Lj=l n,] n,] 

lSjsT}. By the assumption this shows that ,.nl Z . 
n L]= n,] is uniformly integrable, 

and the proof can then be completed in the samE "ay as part Ci). 

The proof of the following frequently used result is left to the reader. 

Lemma 2.6. Let {X } be real random variables, Then 
n 

Ci) Xn r 0 if and only if there exists constants En + 0, such that pQXJ >tn)+O, 

as n +00 , and 

Cii) {Xn}~=l is tight if and only if Xn/an g 0 for any sequence' {an} of constants 

such that a + 00 as n + 00, 
n 

Combining Lemma 2.6(ii) and Lemma 2,5, and noting that {max{Z ,; Is;s1 }}oo I n,] . n n= 

is uniformly integrable implies that {max{Z ./a; lSjST }}oo 1 is uniformly inte-n,] n n n= 

grable if a + 00, leads to the next lemma, 
n 

Lemma 2.7, Let' {Z . ,B ,} and h } be as in Lemma 2,5. Then 
n,] n,] n 

T T 
(i) if {"nl E. l(Z .)}oo 1 is tight then {,.nl Z ,}oo 1 is tight, and 

L]= ]_ n,] n= L]= n,] n= 

T 

Cii) if {max{Z .; lSjST }}oo 1 is uniformly integrable, and{' n Z ,f'" 1 is n,] n n= Lj=l n,] n= 
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3. Functional Central Limit Theorems for Martingales 

Perhaps the most intuitively appealing explanation of the martingale central 

limit theorem is the Levy-Doob-Dubins-Schwarz characterization of the Bro\mian 

motion--a martingale which has continuous sample paths and squared variation 

equal to the identity is necessarily a Brownian motion (see [6J). (However, 

this of course goes both ways: The martingale central limit theorem on the 

other hand throws light on the characterization, and it can be used to provide 

a simple proof of it). We start by proving an approximation version of the 

characterization, informally that if the jumps are uniformly small and the 

squared variation is uniformly close to the identity, then a martingale is ap-

proximately a Brownian motion. In the proof of finite dimensional convergence, 

we use ideas borrowed from Kunita and Watanabe's proof of the characterization of 

Brownian motion but could as well have used the customary proof of finite dimen-

sional convergence, as e.g. in [8], which simplifies considerably in the present 

situation. However, the present proof seems to tie in better with our point of 

view. Once this result has been proved, the most general central limit theorems 

for martingales follow simply by random change of time and truncation. 

Lemma 3.1. Suppose {X .,B .; j~l, n~l} is a m.d.a. and {T (t); t~O} adapted 
n,] n,] n 

timescales, with T (0)=0 such that there exist constants 
n 

T (t) n 
(3.1) Ix ·1 ~ E I L n,] n 

j=l 

for all j,n~l and t~O. Then 

SOT & B 
n 

2 X n,j -tl ~ E n 

as n + 00, in D[O,oo) . 

E +0 satisfying 
n 



-11-

Pr~of: Using the notation of CI.I) and of Proposition 2.3 we will verify the 

hypothesis of Proposition 2.1. 

Ci) Tightness: By applying in turn Proposition 2.4Ciii) for p = 4 and (3.1) 

we obtain that 

Since 

k 

1: 
t=I 

PCVSOT ct) ~E) 
n 

this proves tightness. 

C k 2 
~ - I (to-to +2£) 

£4 t=I ~ ~-I n 

X2 .) 2 
n, J 

(ii) Finite dimensional convergence: We have to prove that if SOTk §. X as n->=, 
n 

where X is continuous, then X has the same finite dimensional distributions as 

B. d For simplicity of notation, we will assume that k =n, so that SOT ~ X. 
n n 

The 

general case is then obtained simply by changing n to k in the comp'l":ations be
n 

low. By the continuity of X, SOT et) ~ X(t), for t~O, so that 
n 

iuSoT (t) . X(t) 
Ee n ~ EelU = ~tCu) , say, 

for each u and each t>O and we only have to show that ~tCu) is the characteris

tic function of BCt) and the corresponding fact for the k-dimensionaI charac-

teristic functions. 

Again with the notation of (1.1), 

(3.2) e 
iuSoT (T) 

n 
k 

1 = L 
t=I 

iusoT (to 1) iu~soT (t) 
n ~- ( n e e 1) 
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3 k 
< U 'i' 
- -3' L 

. t=I 

Thus, using first Proposition 2.4 Cii) with P = 3 and then (3.1) 

3 k Tn(tt) 
E1rnl :;; C3u! L EC. L X2 .)3/2 

t=I J=Tn(tt_I)+1 n,J 

3 and hence, for K = C u /3!, 

C3.3) 

Now, with the obvious identifications, the hypothesis of Proposition 2.3 1S 

satisfied, and hence 

and 

k 
= I 

1=1 

k 
= I 

t=I 

where 

(3.6) IR 1 n 

k iUSOT Ct ) 
= l' E{e n t-I E(MoT Cl)" B Ct ))} 

t;I n n,Tn I-I 

= 0 

k iuSoT (tt 1) 2 
= I E{e n - E(LlsoT (I) 11 B T (t ))} 

I=I n n, n I-I 

iUSOT (tt_I) 
Ee n Llet) + R 

n 

k 
:;; L 

t=I 
X 2 . - ilCt) I 
n, J 
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as n + 00 

Taking expectations of both sides of (3.2), inserting (3.3)-(3.6), and letting 

n + 00 now proves that 

2 k 
I <PT(u) - 1 + ~ L <P (u) I :;:; Kt,1/2 T . 

2 l=l tl_1 

Since the partition O=tO<t1< ... <tk = T 1S arbitrary, this shows that <Pt(u) is 

Rieman integrable in t and that 

u 2 T 
<PT(u) - 1 = - 2' Io <Pt(u)dt 

Since <PO(u) = 1, the only solution to this equation is 
2 u 

<Pt(u) 
-2 t E iuB(t) = e = e . 

To conclude the proof it only remains to prove the corresponding result for the 

multidimensional characteristic functions. However, if USOT (T) is replaced by 
n 

Ib u(t)dSOTn(t), where the function u is assumed to be piecewise constant, with 

only finitely many jumps, then the same calculations show that 

IT IT 2 E exp(i 0 u(t)dX(t)) = exp(-1/2 0 u(t) dt) 

= E exp(iJ~ u(t)dB(t)) n 

The first step in weakening the hypothesis of Lemma 3.1 is concerned with the 

second part of (3.1). 

Lemma 3.2. Suppose' {X .,8 .} is a m.d.a. and' h (t); tdO,l]} are timescales n,] n,] n 

such that 

Ix ·1 :;:; E + 0 
n, ] n 

(3.7) 
as n + 00, and 

T (t) n 
X2 . 

P 
I + T(t) 

j=l n,] 
as n + 00 , 
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for all n,j~l and tE[O,l], where T is non-random 3.:1d continuous, then 

(3.8) 

Proof: 

SOT ~ B 
n 

Define, 

net) = n 

for 

t 
I 

j=l 

as n -+ 00 in D[O,oo). 

t~O 

X2 
n, j 

-1 . f{ } n (t) = In s~O; n (s»t , 
n n 

(where we, without loss of generality, assume that n et) a~s. 00 , as t -+ 00) so 
n 

that {n } and {n -l} -1 are timescales and nn in addition is adapted. 
n n 

n -1 (t) 
n 

t < I 
j=l 

Clearly 

-1 & [ and hence S on Bin D 0,00), by Lemma ':-.l. 
n n 

Since furthermore {n OT } are 
n n 

timescales, and 

T (t) 
n p 

n OT (t) = 
n n I -+ t as n -+ 00 , 

j=l 

for tE[O,l], by assumption, Proposition 2.2 (i) implies that 

-1 d S on on OT -+ BOT n n n n 

It is easily seen that moreover 

in D [0,1] . 

sup 
O:5;t:5;l 

ISOT (t) - son-Ion OT (t) I :5; 
n n n n n 

sup Is (k)-S on-Ion (k), 
k~l n n n n 

as n -+ 00 , 

and, by Proposition 2.2(ii), this proves (3.8). n 

In a Sf!r se, Lemma 3.2 says all there is to say about the central limit theorem 

for martingales, since if SOT converges to Brownian motion, then the maximum of the 
n 
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x .'s has to tend to zero, which (more or less) leads to the first part of n, ] 

(3.7), and then the second part, with T(t) = t is minimal. However, we will 

derive further conditions, which may be easier to check. The first result 

applies not only to m.d.a. 's, but to arrays which are asymptotically close to 

m.d.a. 's in an appropriate way. 

Theorem 3.3. Suppose that {X .,B .; j~l, n~l} is an adapted array and {T et): n,] n,] n . 

tE[O,l]} are adapted timescales such that, for some a>O, 

(3.9) 

T (t) 
n 
I lE. lex .Hlx ·I$a}) I ~ 0 

j=l ]- n,] n,] 

T (t) 
n 
I 

j =1 

2 P 
X . -+ T(t) 
n,] 

as n -+ 00 , 

for tE[O,l], where T is non-random and continuous. Then 

(3.10) SOT 
n 

d 
-+ as n -+ 00 , in D[O,l]. 

Further, if (3.9) holds for one a>O, then it holds for all a>O. 

Proof: It is easily seen that the second part of (3.9) implies that 

max{IX . I; l$j$T (l)} ~ 0, and thus, by Lemma 2.6(i), there exist constants n,] n 

E -+ 0 such that 
n 

(3.11) P( max Ix. I > E ) -+ 0 
l$j$T (1) n,] n 

n 

as n -+ 00 • 

Hence 
T (1) 
n P I Ix . Il{a~lx ·I>E 1 -+ 0 
. 1 n,] n,] n 
J= 

as n -+ 00 , 

since all the summands are zero on the set {max I X .1 $E }, and then, according 
l$j$T (1) n,] n 

to Lemma 2.5(ii), 

(3.12) 

T (1) 
n 
I E. l(lx ·1I{a~lx ·I>E}) ~ 

j=l]- n:,J n,] n 

n 

o as n -+ 00 • 
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Thus, using the first part of (3.9), 

(3.13) 

T (1) 
n 

T (1) 
n 

Z lE. l(X .1{Ix ·I::;s}) I ::; 
j=l J- n,J n,J n 

Z lE. lex .i{Ix ·I::;a})I 
j=l J- n,J n,J 

T (1) 
n 

+ ! E. 1 ( I X . I i {a~ I X . I > S }) 
j=l J- n,] n,J n 

g 0 as n -+ 00 • 

Now, put 

X' . 
n, J 

y . 
11, J 

X .Hlx .I::;s} 
n,] n,] n 

= x' . - E. 1 eX' .) n,J J- n,] 

X" . = X . 
n,] n,J 

S 'aT (t) = 
n 

X' . 
n, J 

T (t) 
n 
Z y . 

. 1 n,l J = -

Then by (3.11) and (3.13) 

T (1) 
n 

sup ISOT (t) - SlOT (t) I ::; 
O::;t::;l n n 

I I X" . I + 
. 1 n, 1 J= -

g 0 as n -+ 00 , 

and thus, according to Proposition 2.2(ii), the conclusion (3.10) will follow if 

we prove thatS'oT satisfies the conditions of Lemma 3.2. Clearly {y .,B .} is 
n n,l n,] 

a m.d.a., and Iy . I ::; 2s , so it only remains to be shown that 
n, J n 

T (t) 
n 

y2 p 
(3.14) Y -+ T(t) as n -+ 00 

j =1 
n, j 

for all tE[O,l]. Here 
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T (t) "': (t) 
n 
L y2 . = 

j=l n,] 

1 (t) 
n 
L (X' .)2 

j=l n,] 

n 
2 L X' .E. lex' .) + 

j=l n,]]- n,] 

T (t) 
n 
I E. lex' .)2 

] - n,] 
j =1 

where 

T (t) 
n 
I (X I .) 2 = 

j=l n,] 

T (t) 
n 
I X2 . 

j=l n,] 

T (t) 
n 
I (X".) 2 

j=l n,] 

p 
+ T(t) - 0 = T(t) , as n + 00 , 

since the X" . I S are zero on {max I X . I:;:;E}. Further, by (3.13), 
n,] 1:;:;j:;:;1 (1) n,] n 

T (t) 
n 

n 

1 I x' .E. lex' .) I :;:; E 
j=l n,]]- n,] n 

g 0 

and similarly 

1 (1) 
n 
I IE·l(X' ·)1 
·1 ]- n,l ] = -

as n -+ 00 , 

T (t) 
n 

1 (1) 
n 

lE. 1 (X' .) 2 
j=l ]- n,] 

:;:; ELl E. 1 (X' .) i 
n j=l ]- n,] 

1: 0 as n -+ CX) , 

by (3.13) and thus (3.14) holds. 

Finally for the last assertion of the theorem, if a<a', say, using that 

max{IX . I; 1:;:;j:;:;1 (I)} R 0, we have 
n,] n 

T (1) 
n 

I L E. l(X .1{1~~ ·I:;:;a}-
j=l ]- n,] n,] 

1 (1) 
n 
L E· 1 (X .Hlx ·I:;:;a'})I 

j=l ]- n,] n,] 

T (1) 
n 
L E· 1(lx ·li{a<IX ·I:;:;a'}) 

j=l]- n,] n,] 

R 0 as n -+ 00 , 

by the same argument as for (3.12). [l 
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As an easy corollary, we will now obtain conditions which insure that norming 

with sums of squares and with conditional variances is asymptotically equivalent. 

Coro 11 ary 3.4. Let {X .,B .} be an adapted array, andh (t); tE[O,I]} adapted 
n,J n,J n 

timescales. 

(i) If 

T (1) 

(3.15) 
n 2 P L E. I(X .i{lx ·I>d) -+- 0 
j=l J- n,J n,] 

as n -+- 00 , VE>O , 

T (1) 2 T (1) 2 
and if either {t.nl E.l(X .)}oo 1 or {t. nl X .}oo 1 is tight (which in par-

LJ= J- n,J n= LJ= n,J n= 

ticular holds if either sum converges in probability) then 

T (t) 
n 

T (t) 
n 2 

sup I I 
O$t$l j=l 

X2 . _ 
n, J 

LE. 1 (X .) I ~ 0 as n -+- 00 • 

j=l J- n,J 

(ii) The hypothesis (3.15) is equivalent to the assumption that (3.15) holds for 

one fixed E>O, and that max{IX . I; l$j$T (I)} ~ O. n,J n 

Proof: Write X . = X .1{lx .I>l}. 
n,J n,J n,J 

Tn(1) ~? P 
Then by (3.15), I· 1 E. l(X- .) -+- 0, J= J- n,] 

(i) 

T (1)? P 
and it follows from Lemma 2.5(i) that t n X- -+- 0, so we may in the nroof 

Lj=l n,j t 

assume that Ix . I $ 1, for n,j~l. 
n, J 

. , Tn (1) 2 00 T (1) 2 
Then both {t. 1 E. I(X .)} 1 and' {t.nl X .}oo 1 are tight, by the assump-

LJ= J- n,J n= LJ= n,J n= 

tion combined with Lemma 2.7. Further, (3.15) implies that 

(3.16) M = 2 g 0 max E. I(X .) as n -+- 00 , 
n l$j$T (1) J- n,J 

n 

and by Lemma 2.5(i), that 

T (1) 
n 2 P I X .1{lx . I>E} -+- 0 
j';;l n,J n,J . 

which in the same way gives that 

as n -+- 00 VE>O , 



(3.17) M = 
n 

max X2. R 0 
l:s:j:S:T (1) n,] 

n 
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as n -+ 00 • 

Clearly, {y . = X2 . 
n,] n,] 

E. lx2 .} is a m.j.a. with Iy . I :s: 2, and since 
]- n,] n,] 

T (t) 
n I y2 . 
j=l n,] 

T (1) 
n 

:s: :2 { I x4 . + 
. 1 n,] 
]= 

:s: 2M 
n 

T (1) 
n 
I X2 . 

. 1 n,] 
]= 

T (1) 
n 2 2 

\' (.) } L E'_ l X 
j=l] n,] 

+ 2M 
n 

T (1) 
n 2 I E·_1(X .) 
j=l] n,] 

R 0 as n -+ 00 , 

by tightness and (3.16), (3.17), and the Corollary then follows from the theorem 

(with T(t)::: 0). 

(ii) From (3.17) follows that (3.15) implies that max{lxn,j I; l~j~Tn(l)l f n. 

The other implication follows in the same way as the last assertion of the t~co-

rem. n 

We can now prove the general functional central limit theorem for martingales. 

Of course, the most important special case of it is when T(t) ::: t, and the limiting 

process is an ordinary Brownian motion. 

Theorem 3.5. Suppose {X .,B .} is a m.d.a., h (t); tdO,l]} are adapted time-n,] n,] n 

scales and T(t); tE[O,l] is a continuous, non-random function and suppose that 

one of the following three sets of conditions hOlds: 

(3.18) 

or 

E max I X . I -+ 0 ,as n -+ 00 , 

l:s:j:S:T (1) n,] 
n 

T (t) 
n ? p 

)' X- . -+ T(t) 
j";l n,] 

as n -+ 00 for tE [0,1] , 



(3.19) 

or 

(3.20) 

Then 
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T (1) 
n 2 P I E. l(X .i{lx ·I>d'-+ 0 
j=l ]- n,] n,] 

as n -+ 00 VE>O 

T (t) 
n 2 P I E·_1(X .) -+ T(t) 
j=l] n,] 

as n -+ 00 for tE[O,l] , 

(3.19) holds for one E>O, and max Ix. I g 0 
l$j$T (1) n,] 

d SOT -+ BOT as n -+ 00 
n 

n 

in D[O,l] . 

as n -+ 00 • 

Proof: Assume first (3.18) is satisfied. Then { max Ix .I}oo_ is uniformly 
l$j$T Cl) n,] n-1 

integrable and n 

T (1) 
n P I Ix ·IHIx ·1>1}-+0 
j=l n,] n,] 

as n -+ 00 • 

Since {X .} is a m.d.a., it follows, using Lemma 2.S(ii) that 
n, ] 

T (1) 
n 
I lE. 1 CX .1 { J x . I $1}) I = 

j=l J- n,] n,] 

T (1) 
n 
LIE· 1(X .i{lx ·1>1})1 

j=l ]- n,] n,] 

T (1) 
n 
L E· 1clx ·li{lx ·1>1}) 

j=l]- n,] n,] 

as n -+ 00 , 

and thus the conditions of Theorem 3.3 are satisfied, and SOT -+ BOT , as required. 
n 

Next, assume (3.19) holds. By Corollary 3.4, it follows that 



T (t) 
n 
I x2 . g T(t) as n ~ 00 

j=l n,) 
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for tE[O,l] , 

and, again using that {X .} is a m.d.a., 
n, ) 

T (1) 
n 
I lE. lex .Hlx ·I$I}) I $ 

j=l )- n,) n,) 

T (1) 
n 
I IE·l(X ·l{lx ·I>I}) I j=l )- n,) n,) 

T (1) 
n 

I 
j=l 

E. 1(X2 .i{lx .I>I}) )- n,) n,) 

p 
~ 0 , 

by assumption, so again the conditions of Theorem 3.3 are satisfied, and 

d SOT ~ BOT. n 

Finally, by Corollary 3.4(ii), the conditions (3.19) and (3.20) are equivalen~ 

so the result holds also under (3.20). 

Corollary 3.6. Suppose {X .,B .} is a m.d.a. and for each n, T is a stopping n,) n,) n 

time with respect to B l' B 2"" and suppose one of the following three sets n, n, 

of conditions holds: 

E max Ix .1 ~ 0 , as n ~ 00 , 

l$j$T n, ) 
n 

(3.21) 

T n 
X2 p 

I ~ 1 , as n ~ 00 , 

j=l n, j 

or 

T n 
E. 1 (X2 . I{ I X . I >d) 

p 
I ~ 0 as n ~ 00 , 'Vt:>O , 

j =1 )- n,] n,) 

(3.22) T n 

I 2 P 
E. 1 (X .) ~ 1 as n ~ 00 , 

j=l ) - n,) 

o 



or 

(3.23) 

Then 
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(3.22) holds for one E>O, and 

T 
n 

max Ix .1 Ra. 
l::;j::;T n,J 

n 

(3.24) I x .!tN(a,l) n,J as n -+ CX) • 

j=l 

Proof: To prove the result assuming (3.21), define adapted timesca1es 

'{Tn(t); tE[a,l]}:=l ~imilar to n~l(t) in the proof of Lemma 3.2) by 

k 
X2 T (t) = inf{k; I .>t}AT for Oh<l n 

j =1 n, J n 

T (1) = T n n 

It is easily seen that' h (t)} satisfies the condition (3.18) of the theorem (cf. n 

the proof of Lemma 3.2), so in particular SOTn (1) !t B(l), which is just another 

way of writing (3.24). 

The proof unde~ (3.22), or the equivalent condition (3.23) is similar; one 

just has to replace X2 . by E. 1(X2 .) in the definition of T (t). D 
n,J J- n,J n 

We conclude this section with several comments on the results. 

(i) In reasonable circumstances the conditions are also necessary for the func-

tiona1 martingale central limit theorem. In fact, if {max{IX . I; l::;j::;T Cl)}} 
n, J n 

is uniformly integrable, and if "T takes all relevant values" (see [19] for a n 

definition--this holds in particular if T (t) only has jumps of size one, as 
n 

e.g. when T Ct) = [nt]), then SOT ~ BOT implies (3.18), see [19]. Easy examples n n 

show that neither uniform integrability nor "T takes all relevant values," can be 
n 

entirely dispensed with in this statement. 
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T (1) 
n 2 

Similarly, if limsup E\'. 1 X . ~ 1 
LJ= n,] 

Jl-+OO 

, then SOT implies (3.19) and the equi
n 

valent condition (3.20), see [7], [19]. Furthermore, {max{IX . I; lSjST (l)}}oo 1 
n,] n n= 

then is uniformly integrable, and (3.18) follows from (3.19) and f3.20) by Corol-

lary 3.4. 

(ii) One important special case of the theorem is the degenerate one, when 

T(t) :: 0. From the theorem, if {max{IX . I; lSjST }oo 1 is uniformly integrable, n,] n n= 
T 

and l n X2 . 
j=l n,] 

! 0, for some sequence' {Tn}:=l of stopping times, then 

(3.25) 
k 

sup 1 I X ·1 
lsksT j=l n,] 

n 

p 
-+ 0, as n -+ 00 

and conversely, if (3.25) holds, and {max{IX .1; lSj$T }00_1 is uniformly integ~a-n.J n n-_ 
T 2 p 

bIe, then lln X . ~ 0. 
n, ] 

T 

Similarly, if Ij~l 2 P E. l(X .) -+ 0, then (3.25) holds, and conversely, (3.25) 
] - n,] 

T 
limsup E ,.nl X2 . 

L]= n,] and 
T 2 P 

< 00 implies that I'~l E. l(X .) -+ 0. 
]- 1- n,l n-+oo 

(iii) If the X . 's in each row are independent, and the T (t) 's are non-random, 
n,] n 

then for B . = a(X l""'X .) the second part of (3.19) just says that the 
n,] n, n,] 

T et) 
that the normalization is such that vel n X2.) -+ T(t), and the first part is 

j=l n,' 

Lindeberg's condition. 

(iv) There is another important special case in which the conditions of the theorem 

are particularly easy to check: if the X . 's are obtained by normalizing a single 
n, J 

stationary ergodic sequence ".X_I' XO' Xl"'" 

x . = n, J 

X. - E(x·1I B. 1) 
] ]]-

a In 

with B. = B . 
J n, J 

2 = a( ... , X. l' X.) and a 
J - ] 

? 
= E(X. - E(x.IIB. 1))- assumed to be 

J ] J-
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strictly positive and finite, then, for T (t) = [nt], it follows at once from 
n 

the ergodic theorem that (3.19) holds and hence 

[nt] 
L (X. - E(x·11 B. 1))/ In § aBet) . 

j =1 J J J-

In nonstationary cases, the conditions of the theorem often have to be checked 

by computing higher moments, e.g. the first parts of (3.18), (3.19) follow if 

T (1) 
n 

E L 
j=l 

lX.-+o 
n, J 

as n -+ 00 for some 0'.>2 , 

and the second pa~ts of (3.18), (3.19) may be obtained by computing means and 

variances of the sums on the left hand sides. 

Cv) Throughout, we have (implicitly) assumed that T (1), and hence T (t) for t<l, 
n n 

is finite a.s. However, a small further argument, using (ii) above shows that 

this can be dispensed with, and that the theorem (and the corollary) holds also 

if T (1) (or T ) are extended stopping times which may be infinite with positive n n 
T (1) 

probabilities provided \ n X. converges with a probability which tends to 
l.j=l n,] 

one (this is automatic under (3.19), (3.20)). 

(vii) It is obvious from the proo~ of Proposition 2.2Ci) that the SeCOTI0 

Tn (0) 2 d . 
that I._l X . -+ TCo) 1n Dn[O,l], 

]- n,] . 
of (3.18) can be weakened to requiring with 

T(O) non-random, but possibly discontinuous, and similar remarks apply to C3.19) 

and (3.20). 

4. Hixing and ~ful tidimensional Processes 

In this section, the convergence in the previous results will be strengthened 

to RAnyi-mixing--which in turn will make it possible to remove the condition that 

T(t) is non-random--anrl mul tivariate versions of the resul ts will be obtained. 
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While the purpose of the previous sections is to provide complete proofs, 

starting from scratch, of the basic results of martingale central limit theory, 

the intention of the present section is only to indicate one possible direction 

for developing the results further--examples of other directions being provided 

by limit theory for continuous parameter martingales and diffusion approximations--

and we will accordingly give a more sketchy development, sometimes leaving details 

of arguments to the reader, and referring to results from other areas as they are 

needed, rather than explicitly collecting them at the beginning. 

Some further notions are needed for the results. As in Section 2, let X, 

{Xn}:=l be random variables in a complete separable metric space (S,p), and in 

addi tion assume that all the X's are defined on the same probability space 
n 

(D,B,P). Then {X } is Renyi-mixing (or just mixing) ~ith limit X, X 1 X (mixing) 
n n 

if X 1 X in (S,p), with respect to the conditional probability P("/B), for any 
n 

BEB with PCB»O. Further,' {X } is Renyi-stable (or just stable) if X converges 
n n 

in distribution to some limit, with respect to P(o/B), for any BEB with PCB»O. 

Thus a mixing sequence is stable, and conversely if a stable sequence has the 

same limh with respect to p(oIB), for all B, then it is mixing. Loosely 

speaking, a sequence is mixing if it converges in distribution and is "asymp-

totically independent" of any fixed events. Prominent examples of sequences 

which are stable but not mixing is given by sequences which converge in proba-

bility, or almost surely, to a non-degenerate limit. Some indication of the use 

and interest of mixing is given by the following result. 

Proposition 4.1. The following three assertions are equivalent: 

( i) 

Cii) 

X -+ X (mixing), 
n 

x 1 X as n -+ 00 

n 
with respect to PCo/B) for all BEBO with PCB»O 

for some algebra BO which generates oCX l , X2 ' ... ), and 
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(iii) if Y, {y }oo 1 are random variables in another complete separable metric 
n n= 
d d space, with Yn ~ Y, as n ~ 00, then (Xn,Yn) ~ (X,Y). 

Sketch of proof. Clearly (i) is equivalent to 

(4.1) Eh(Xn)lB ~ Eh(X)P(B) as n ~ 00 

for any bounded continuous function h: S ~ lR and event BEB, and similarly for 

(ii), with B replaced by BO' Clearly (i) implies (ii). Further, to any E>O and 

BEB there exists a BEEBO with P(B6B E) < E, cf. [5], p. 606, and hence if [hI ~ C, 

then 
[Eh(X )lB - Eh(X)l [~CE 

n n BE 

This is easily seen to imply (4.1), 

hence (ii) implies that (4.1) holds 

if Eh(X)l ~ Eh(X)P(B E), for all £>0, and 
n BE 

for B to o(X l ,X2 , ... ). The case of general 

BEB then follows by a further small argument, as in [1 J . 

It is straightforward to see that (iii) holds if and only if (X ,Y) 1 (X,Y) n . 

~or any fixed random variable Y in (S',p'), and this in turn is equivalent to 

(4.2) Eh(X )l{YEB} ~ Eh(X)P(B) 
n 

as n ~ 00 

~ 

for any continuous bounded h; S ~ lR and any V-continuity set B, cf. [3], p. 20. 

Obviously (i) implies (4.2), and conversely, for an arbitrary event BEB, taking 
~ 

Y = lB and B = 0/2,3/2), say, (4.1) follows from (4.2). Hence (i) and (iii) are 

equivalent. 

Additional interesting properties of R~nyi-mixing is that it is preserved 

unaer absolutely continuous change of measure, and that it implies that the sample 

paths fluctuate strongly, see [1,17,19J. Furthermore it should be noted that, 

with obvious changes only, Lemma 4.1 holds also if mixing convergence is replaced 

by stability. Using Pro')osition 4.ICii) it is easy to see that the limits of the 

previous section are mixing. 
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Theorem 4.2. If the 0-algebras {B .} are nested , i. e. if B . cBI ., fOT n,] n,] n+ ,] 

all n,j, then the conclusions of Theorems 3.3 and 3.5 can be strengthened to 

mixing convergence, i.e., under the same hypotheses, SOT ~ BOT (mixing), and 
n 

similarly for Corollary 3.6. 

Proof: the proofs under the different hypotheses are all similar, so we will 

only give one as an example, say the first part of Theorem 3.5. 

Thus, we will assume (3.18) holds. According ~~ Proposition 4.1 it is suf-

ficient to show that if B is a fixed event in the algebra u >1 .>1 B . with 
n_ ,] - n,] 

P(B»O, then 

d (4.3) SOT -+ BOT 
n 

as n -+ DO in D[O,l] , 

with respect to p(oIB). Since B E u B. , there are no,jo with 
n~l,j~l n,] 

BEB ., and since the B . 's are nested and increasing, it follows that 
nO']O n,] 

B E B " n, ] for n ~ nO' ]" > 1· - "0 

T (t) 
Let X' . = X .1{j~jO} and write S'OT (t) 

n,] n,] n 
= \' n X' 

l'j =1 n, j Then 

sup 
O~t~l 

ISOT Ct) - S'OT (t) I ~ 
n n Ix ·1 ~ n, ] jo mRX I X "I 

l~j~T (1) n, J 
n 

-+ 0 

in P-prcbability, and thus, as is immediately seen, in PCoIB)-probability. Hence 

by Proposition 2.2(ii), C4.3) follows if 

C4.4) 
d S 'OT -+ BOT 

n 
as n + DO in D[O,l] , 

under PC olB) . Clearly, {X' ", B .; n~nO' j~l} is a PCoIB)-m.d.a. , n,] n,] 

E C max I X' "11 B) 
l~j~T (1) n,] 

n 

~ _1_ E max 1 X . 1 
PCB) l~j~T Cl) n,] 

n 

-+ 0 as n -+ DO , 
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and 
T (t) T (t) 
n n 
I (X I .) 2 = I x2 . 

j=l n,] j=l n,] 

+ T(t) - 0 = T(t) , 

in P--and hence in PC·IB)-probability, and thus C4.4) follows from the first part 

of Theorem (3.5). applied to' {X' .,8 .}. , n,] n,] 

For the extension to several dimensions it will be useful to have a slightly 

different description of the limit process BOT, and to emphasize this we will 

change notation and will in the sequel write BT instead of BOT. Clearly, BT can 

be characterized as the normal process which has mean zero, variance function 

T(t) and independent increments. Further, of course, B = BOT makes sense also 
T 

o 

if T is a stochastic process, and, in particular, if T is independent of B, which 

we will assume throughout, then B can be described by saying that conditional on 
T 

T, B is normal, with zero mean, variance function T(t), and with independent in
T 

crements. Similarly, given a nonnegative definite, nondecreasing matrix valued, 

possibly random, function T(t) = (T. k(t); l$j,k$d), we define ad-dimensional J, , 

process BT = (B(l) , ... ,B(d)) by requiring that conditional on TCt) it is a normal 
T T 

process with mean zero, variance matrix V(B (t)" T) = T(t), and with independent 
T 

increments. We then have the following extension of Theorem 3.5. (Theorem 3.3 

has the analogous extension--this is, however, left to the reader). 

Theorem 4.3. Suppose' {X .,B .} is ad-dimensional m.d.a., i.e., that X . = 
n,J n,J n,J 

(1) (d) T .. '{ (k) eX ., ... ,X .) are d-dlmenslonal random vectors, such that X .,B .} is a 
!l,J n,J n,] n,] 

m.d.a., for k = 1,2, ... ,d, that {T (t); t€[O,l]} are adapted timescales, and 
n 

that T(t) = (T. k(t); l$j,k$d) is a continuous, possibly random, matrix function. 
J, 

(i) If one of the following three sets of conditions holds, 

as n + 00 for k=l, ... ,d, 
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or 

(4.6) 

or 

(4.7) 
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T (t) 
n T P I x .X . -+ T(t) 
j=l n,J n,J 

as n -+ 00 for tE[O,l] 

T (t) 
n T P 

I E. l(X .X .) -+ T(t) 
j=l J- n,J n,J 

as n -+ 00, V £:>0, and for k=l, ... ,d, 

as n -+ 00 for tdO,l] , 

(4.6) holds for one £:>0, and max IX(k~1 R ° 
l~j~T (1) n, J 

as n-+oo, for k=l, ... ,d, 

n 

and if in addition the a-algebras {B .} are nested, then 
n, ] 

d SOT -+ B as n -+ 00 in D[O,l]d , 
n T 

and the convergence is stable: If Y R y 
n 

in (S',p'), then (SOT ,Y) ~ CB ,V) 
n n T 

in D[O,l]d x S', where the distribution of CB ,V) is determined by the require
T 

ment that Band Y are independent, and that the distribution of (T,Y) is the 
T Ce) T (e) 

limit of the distributions of cI'~l X .XT., Y ) or of (I'~l E. l(X .XT .),Y ), ]- n,] n,] n J-]- n,J n,J n 

respectively. 

(ii) If in (i) the limit T(t) is non-random, then the hypothesis that the Bn,j 's 

d k are nested can be deleted, and it still follows that SOT -+ B in D[O,l] , but 
n T 

the convergence is not necessarily stable. 

Proof: Suppose first that d=l and that (4.5) holds. Without loss of generality 

we may as in Lemma 3.2 assume that the m.d.a.· {X .,B .} satisfies E maxlX ·1-+0 
n,J n,J l~j n,] 

as n -+ 00, and that Ik X2. a+s. 00, as k -+ 00 for each n. We will now proceed as 
j=l n,J 

in Lemma 3.2, defining 
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n (t) = 
n 
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t 

I 
j =1 

It follows at once from Theorem 4.2 that son- l § B (mixing) in D[O,l]. Clearly 
n 

Theorem 4.2 can be immediately translated to D[O,T], for any T>O, and it follows 

that son-l § B (mixing) in D[O,T], for any T>O, which in turn implies that 
n 

-1 d Son ~ B (mixing) in D[O,oo), cf. [2lJ. By assumption, 
n 

n OT 
n n = 

T (t) 
n 
I X2 . 

j=l n,] 
P 
~ T(t) 

and if in addition Y R Y , then by Proposition 4.1, 
n 

-1 cl 
(Son ,n OT , Y ) ~ (B,T,Y) , 

n n n n 

where B is independent of (T,Y). By a minor extension of Proposition 2.2(i), it 

follows that 

and then since 

-1 d (Son on OT , Y ) ~ (B , Y) , 
n n n n T 

sup 1 SOT (t) - Son -Ion OT (t) 1 :0: 
O:o:t:o:l n n n n 

R ° as n ~ 00 

maxlX .1 
l:o:j n,] 

the desired result follows, that 

(SOT , Y ) ~ (B Y) 
n n l' 

as n ~ 00 , 

this time by a small extension of the second part of Proposition 2.2 . 

Still assuming (4.5), {SOT} is tight also for d>l, since by what just has 
n 

been proved its components converge in distribution, and hence are tight. Thus, 

similarly for convergence in D[O,l]d as in D[O,l], it only has to be shown that 
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the finite dimensional distributions converge. Equivalently, as is easily seen 

by considering multidimensional characteristic functions, it is sufficient to 

prove that 

(4.9) J u ( t) dsoT (t) ~ J u (t) dB (t) , 
n T 

as n -+ co, if u(t) is non-random, piecewise constant and with only finitely many 

jumps (this is just the Cramer-Wold theorem, [3], p. 49). However, clearly the 

left hand side of (4.9) is a sum of martingale differences and the convergence 

follows easily--though with some notational qualms--from what has been proven 

for the case d=l. 

The proof of part (i) under the hypotheses (4.6) or (4.7) differs from the 

-1 above in only one place--instead of defining n ,n by (4.8) it is convenient to 
n n 

use 

n (t) = 
n 

t 2 
I Ei 1 (X .) 

j=l -- n,J 

Finally, the one-dimensional version of part (ii) is just Theorem 3.5, and 

the multidimensional version is then obtained in precisely the same way as above. ~ 

Corollary 4.4. Suppose {X .,B .} is ad-dimensional m.d.a.,' {T } is a sequence 
n,J n,J n 

of stopping times, and T = (Tj,k; l~j,k~d) a, possibly random, matrix. 

( i) 

T , 
n 

If one of the conditions (4.5)-(4.7) holds, with T (1), T (t) replaced by 
n n 

and T(t) replaced by T, and if the o-algebras {B .} are nested, then 
n, J 

'" 

T 
n 

I 
j=l 

X . .1 B as n -+ co 
n,] T 

where conditional on T, B is normal with mean zero and variance matrix T. If 
T 

furthermore T is strictly positive definite a.s. and the modified version of 

(4.5) holds, then 

T 
n 

( I 
j=l 

X .XT .) -1/2 
n,J n,J 

T 
n 

I 
j=l 

d 
X . -+ Nd(O,I) 
n, J 

as n -+ co , 
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and if the modified version of (4.6) or (4.7) holds, then 

T 
n (I E. cx .XT .))-1/2 

. 1 J-1 n,J n,J J= 

T 
n 

I 
j=l 

as n -+ co • 

Cii) If T is non-random, then the hypothesis that the 0-algebras are nested can 

be deleted. 

Proof: The first part of Ci) follows from the theorem in a similar \-,ay as Corol-

lary 3.6 follows from Theorem 3.5, after reducing the problem to the case d=l by 

'd . l' f . 1 \,d \,Tn XCi) conSl erIng lnear unctIona s, Lk-l U L'-l . (the Cramer-Wo1d theorem). The 
- K J- n,J 

second part is then immediate after noting that stability implies that, e.g. under 

the modified version of (4.5), there is joint convergence, 

and hence 

T 
n 

C I 
j =1 

T 
n 

C I 
j =1 

T 
n 

T X .X . , 
n,J n,J 

I X .) 
j=l n,] 

~ (T,B ) 
T 

X .xT .) -1/2 
n,J n,] 

T 
n 

I 
j =1 

d -1/2B X . -+ T 
n, J T 

The proof of part Cii) is similar. 

Clearly the remarks (iii)-Cvii) after Corollary 3.6 apply, 

also to the present situation. Further, as a final remark, considering e.g. d=l 

and Condition 4.5, the requirement that the sums of squares converge in probabil-

ity, and not only in distribution 

so that the marginal convergences 

vergence 

(4.10) 

T (.) 
n 2 

C I X ., 
j=l n,] 

is only used to insure asymptotic independence, 
T (.) 

\' n X2 -+ T and sonn- l -+ B imp11.T joint con-Lj=l n,j -

as n -+ co , 

where T and B are independent, and hence convergence in probability can be re-
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placed by any weaker condition which still insures (4.10). One set of such con-

ditions is given in Theorem 3.4 of Hall and Heyde [8]. 

APPENDIX 

Here we will prove the simple special case p=4 of the Burkholder inequality 

stated in Proposition 2.4(ii), which is the only case needed for this paper. In 

fact the proof of finite dimension~l convergence, p. 12, f 4 also uses p=3, but 

that might as well have been reduced to p=4 by first using the Liapunov inequality. 

Thus let {X.,B.} be a martingale difference sequence. We will start by as-
J J 

suming that Doob's inequality 

(A .1) 
k 4 

E max I I Xi I 
l:s:k:S:n j=l -

n 
:s: C'E( I 

j =1 

is known, and prove that then 

(A.2) 
n 

E(Ix.)4:s: 
j=l J 

n 2? 
CE ( I X.)-

j =1 J 

where C' and C are universal constants. 

Let S(n) = I~=l Xj and M(n) = max{II~=1 Xj I; l:s:k:s:n}. By the martingale dif

ference property, ES(j)\. 1 = E{S(j)3E(X. 111 B.)} = 0, so that, expanding S(j+I)4= 
J+ J + J 

(S(j)+X. 1)4 we have 
J+ 

ES(j+l)4 _ ES(j)4 = EX4 4ESC')X3 + 6FSCJ·)2X2. 1 '1+ 1'1 -J+ - J+ J+ 

nd thus, summing over j, 

CA.3) ES(n)4 = 
n n 3 n 2 2 
L EX~ + 4 I ESCj-1)X. + 6 I ES(j-1) X. 

j=l J j=l J j=l J 

Inserting the obvious inequali ti es I SO ~l) I ::; M(n) and I x. I :s: 2M(n) into (A. 3) 
J 

we obtain 

(A.4) 
2 n 2 

:s: (4+8+6)E(M(n) I x.). 
j =1 J 
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Now, by the Cauchy-Schwarz inequality and by (A.l) 

and inserting this into (A.4) and dividing through by {ES(n)4}1/2 we obtain (A.2) 

with C = 182C' (which is not the best possible value of C, cf. [4]). 

The general assertion of Proposition 2. 4( ii), for p=4, now follows easily by 

replacing X. by X.i{T<X.~T'} in (A.2) and letting n tend to infinity, using 
J J J 

Fatou's lemma on the left hand side. (In fact the proof works not only for p=4, 

but for any even integer p.) 
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