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CONJUGATE DISTRIBUTIONS AND VARIANCE REDUCTION IN RUIN PROBABILITY SIMULATION 

Scpren Asmussen 

Institute of Mathematical Statistics, University of Copenhagen, Denmark. 

A general method ~s developed for giving simulation estimates of the probabi­

lity 1J! (u, T) of ruin before time T. When the probability law P governing 

the given risk reserve process ~s imbedded in an exponential family (Pe)' 

one can write 1J! (u, T) = EeRe for certain random variables Re given by the 

fundamental identity of sequential analysis. Using this to simulate from Pe 

rather than P, it is possible not only to overcome the difficulties connec­

ted with the case T = 00, but also to obtain a considerable variance reduction. 

It is shown that the solution of the Lundberg equation determines the asympto­

tically optimal value of e in heavy traffic when T = 00, and some re suI ts 

guidelining the choice of e when T <00 are also given. The potential of the 

method ~n complex models is illustrated by two examples. 

Risk reserve process; ruin probability; simulation; conjugate distributions; 

importance sampling; heavy traffic; fundamental identity of sequential analy­

sis; Lundberg equation. 



1 

1. INTRODUCTION 

Let U(t) be the risk reserve at time t of a risk business (evolving ~n a 

manner unspecified for a while), and assume that the initial reserve is 

u = U (0). In the center of classical risk theory lies then the ,{ish to give 

reasonable precise values of the probabilities 

(1.1) 

(1.2) 

1J;(u,T) =P(inf U(t) <0) , 
O<t<T 

1J;(u) = 1jJ(u,oo) = P(inf U(t) < 0) 
O<t<oo 

of ruin before time T, resp. of ultimate ruin. 

As is well-known, closed forms of even 1J;(u) can only be found ~n models 

which are much to simple to be of any practical relevance. For 1J;(u,T), such 

closed forms hardly exist at all. It is therefore necessary to develop substi-

tutes for theoretical solutions, and tentatively three main types occur: 

Numerical methods), examples of which can be found 1n [21], [23], [28], [29], 

[2 ]; Approximations), one of the classical topics 1n risk theory with surveys 

1n [7] and (more recently) 1n [24], [2]; and finally Simulation) ,the simplest 

example of which would be crude simulation of 1J;(u,T), 1.e. to perform N in-

dependent runs of the risk process 1n the time interval [O,T) and estimate 

1J;(u,T) by the fraction of runs where ruin has occured. 

Without embarking into a comparison of the merits of these approaches, it 

would occur to the author that, as in many other applied probability problem, 

simulation is by no means always preferable, but appealing by its simplicity 

and insensivity to the complexity of the model. Nevertheless, the particular 

aspects of ruin simulation seem to have received extremely little attention 

compared to related fields like queueing problems (e.g. [9],[14],[6] Ch.6) and 

also, the literature (e.g. [20],[4] pp. 91-97, 134-136) does not go deep into 
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the methodology of the subject. Of course, crude simulation is too simple a 

topic to deserve much attention from the theoretician. However, the method 1S 

not immediately applicable in infinite time problems and has some further dis-

advantages. Thus each run may require much computer time and 1n applications, 

the ruin probabilities are typically small so that the relative error on the 

estimates becomes large. 

The purpose of the present paper is to present a general method which over-

comes these difficulties. The idea is quite simple and comes from one of the 

classical tools in risk theory, conjugate distributions. These may be thought 

of as arising from an imbedding of the probability law governing the 

given risk process 1n an exponential family (Pe)' cf. [2], and a given 

~(u,T) can then by means of the fundamental identity of sequential analysis 

be expressed as 1jJ (u, T) = EeRe for certain random variables Re (thus Re 1S 
o 

simply the indicator of ruin before T). The point is that for suitable choice 

of e the Re can be simulated in finitely many steps even when T =00, and that 

their variances are small compared to Re 
o 

Thus the approach relates to two 

topics discussed in the statistically orientated literature on simulation, viz. 

that of simulating infinite time problems (e.g. [8]) and that of variance re-

duction techniques (e.g. [12] Ch.S, [16] Ch.III, [19] Ch.4). From this last 

point of view there is some relation to importance sampling, a concept which 1S 

intuitively appealing but which it so far mainly seems to have been possible 

to implement in idealized textbook situations rather than in real world prob-

lems. 

The paper 1S organised as follows. In Section 2, we present the classical 

Poisson model, which serves as our illustration in most cases, and the above 

mentioned exponential family (Pe) and responses Re' The simulation method 

1S presented in Section 3 and offered some preliminary discussion. We start 

by a simple example and some computer simulations and numerical studies are 
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presented which naturally raise the question of the optimal choice of 8. This 

is resolved in Section 5, where it is shown that in heavy traffic conditions 

the solution y of the Lundberg equation determines the asymptotically opti­

mal value 81 = Y + 80 of 8 if T ==. Also some approximations are derived 

which are of relevance for the case T <00. The asymptotic considerations are 

based on approximations by Brownian motions with drift and their first passage 

time distributions (inverse Gaussians) in the same way as In [25], [2], and the 

relevant preliminaries are given In Section 4. Finally it lS argued in Section 

6 that the approach can be applied in substantially more complex models than 

the classical Poisson one. Two examples are considered, time-dependent intensi­

ties for the arrival of claims and state-dependent premiums. More generally, 

it is our belief that the method has a scope also outside risk theory in cases 

where one lS faced with the evaluation of first passage time probabilities. 

Examples are emptiness problems In dams and some special queueing problems. 
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2. THE CLASSICAL POISSON MODEL, EXPONENTIAL FAMILIES AND. THE FUNDAtlliNTAL 

IDENTITY OF SEQUENTIAL ANALYSIS 

Assume that claims arrive according to a Poisson process with ~n-

tensity a, that the claim sizes Yl ,Y2 , ... are independent of {N(t)} and 

i. i.d. with common moment generating function ~ (s) = EesY , and that premiums 

come in at rate p per unit time. That is, the interclaim times Zl,Z2 are 

Li.d. with 
-OI.Z 

P(Z > z) = e ,we can write 

U(t) = u - X(t) where 
N (t) 

X(t) = L: 
n=l 

Y - pt 
n 

and the ru~n probabilities are given in terms of the first passage time 

T=T(u)=inf{t~O:X(t»u} by 

W(u,T) =P(T(U) ~T), w(u) =P(T(U) <00) • 

We shall refer to this case as the classical Poisson model. It plays a pre-

dominant role in the literature and it should be noted that both analytical 

solutions in particular for w(u) and approximations have been extensively 

developed. However, as is also done to a large extent in the literature on va-

riance reduction techniques, it seems reasonable to us to first exploit and 

present the basic ideas in a simple case. We shall therefore not hesitate to 

even frequently to specialize to the Poisson/Exponential (P/E) case 

-By P(Y>y) =e . Let n= (p-OI.EY)/OI.EY denote the safety loading. We consider 

only the case n > 0 which is equivalent to w(u) < 1 for all u. 

As is well-known (e.g. [17], [18J, [22J), this situation has a queue~ng 

analogue as well. If for convenience the time scale is chosen such that p = 1', 

then w(u) =p(V>u) where V is the virtual waiting time in a stationary 

M/G/l queue with arrival intensity 01. and service times distributed as Y. 

Thus OI.EY is the traffic intensity of the queue which is < 1 in view of 

n>O 
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We define the basic exponential family (PS) of risk processes exactly as 

In [2]. We cite only the most basic facts and formulas and refer to [2] for a 

more complete discussion and references. 

We first note that Slnce {X(t)}t>O 

the cumulant generating function of X(t) 

has stationary independent increments, 

is given by 

where 

K(S) = log EesX(l)= a(Hs) - 1) - ps . 

The arrival intensity for Ps lS denoted by as' the m.g.f. of Y by 

~S(s) and the c.g.f. of X(l) by KS(S). These quantities are defined In 

(2.2), (2.3) below and make the distributions of the interclaim time, Yand 

the X(t) conjugates to the given ones (i.e. obtained by multiplying an ex-

ponential function to the density and normalizing). The premium rate lS p 

for all S. The given process corresponds to P = P where 
So 

lS given 

by 

(2.1) K' ( - S ) = a~ , ( - S ) - p = 0 o 0 

(the formulas simplify somewhat if instead one defines the origin by P=P o 
but the present choice lS more convenient for the asymptotic considerations of 

Sections 4-5). For any S such that HS - SO) <00 , we define 

(2.2) Then 

(2.3) 

(the parameter set {S : ~(S - SO) <co} contains always the negative halfline, 

but will typically be bounded to the right except if the tail of Y decrea-

ses very rapidly). It lS seen that K~ (0) ~ 0 
< 

(or equivalently ESX(t) ~ 0) 
< 
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exactly when 8 ~ O. This is well-known to imply that in particular rUln occurs 
< 

a.s.when 8>0. I.e., P8(T(u)<oo)=1 8>0. Besides 80 , a very important 

quantity in risk theory is the solution y > 0 of the Lundberg equation K cn = 0, 

cf. e.g. [7], and we let 81 = Y + 80 

Lemma 2.1 (Fundamental Identity of Sequential Analysis). For any stopping time 

T* w.r.t. {X(t)}t>O and any random variable Y measurable w.r.t. the usual 

stopping time cr-algebra 

all 8',8" that 

(2.4) 

F * T 
and satisfying Y = 0 on 

Letting 8' =8 0 ,8"=8,T*=T(U),Y=I{T(u)<T} we get 

Corollary 2.2 

(2.5) 

{T* =oo}. it holds for 

where 

Note that, as one would expect, R8 = I(T <T). If T =00 and 8 ~ 0, then 
o 

T<OO a.s. so that I(T<T) in (2.5) is vacuous. A further simplification 

occurs if 8 = 8 1 , Then by (2.3) 

K (8 - 8 ) = K(O) - K (8 - 8 ) = 0 - 0 
81 0 1 1 0 

so that 

(2.6) 

A further application of (2.3) yields 

(2.7) I(T < T) 

which is the form of (2.5) which we shall most often be using ln the following. 

Corollary 2.3 If 8~0,8+A~0,K(8+A-80) <co, then 
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(2.8) 

This follows by letting Y=I(T<00),8' =8+)" and 8" =8 In (2.4). Alterna-

tively, this can be proved by a martingale argument, see e.g. [5] Prop. 5.34 

for the discrete time case. 

When working with the above expressions, it lS also frequently convenient 

to write X(T) =X(T(U» =u+B(u) where B(u) is the overshot. As can be 

seen from [1],[2],[25], one can most often think of u as the dominating 

part of X(T) and of B(u) as a small disturbance which is furthermore asynlp-

totically independent of T (u) . 

We conclude this section by stating the relevant formulas for the PiE case 

-Sy 
P(Y > y) = e which is used in most of our computer illustrations. Here 

(2.9) 

(2.10) 

(2.11) 

80 =- S(l -/a/Sp), y = 8 - 8 = B - alp 1 0 

Furthermore, the requirement ~ (8 1 (1 + 11) - 80 ) <00 lS equivalent to 

8l l1<a/p. The following lemma lS an easy consequence of the lack of memory of 

the exponerttL':ll distribution: 

Lemma 2.4 Consider the PiE case and let 

T(U) and distributed as Y, P8 (B(u) >b) 

8>0. 

-S8b 
= e 

Then B(u) lS independent of 

Combining this with Corollary 2.3 and substituting s = K 8 (A) , one can 

compute the Laplace transform of T. We quote the following formula from [2], 

which assumes the normalization S = p = 1: 



8 

(2.12) E e-ST(U) = e->"u(l-~)' 
8 p • 1 

>.. = >..(s) = [a -1 - S + ;(1- a + s)2 + 4as]/2 

The form of the density or cumulative distribution function lS much more 

complicated and involves Bessel functions. 



9 

3. SIMULATING FROM Pe 

The idea to be exploited 1.n the rest of the paper amounts 1.n its simplest form 

to apply the identity to simulate X( T (u)) (or 

equivalently B(u)) from Pe rather than simulating the event of rU1.n from 
1 

itself. At least one benefit 1.S immediately obtained: Since can 

be simulated in finitely many steps, the difficulties connected with the case 

T =co are overcomed and it 1.sfurthermore possible to apply standard statisti-

ca1 techniques to estimate ~(u) and the error on the observate. The lines 

are standard for this type of experiment: We create N i. i.d. replicates 

by 

Then as N~=, Re 1.S strongly consistent for ~(u,T) 

for VareRe' Furthermore R 1.S asymptotically normal 

I 

N2 (Re - ~ (u, T)) ~ N(O, VareRe) in Pe-distribution 

and 2 
s strongly 

a fact which it is customary 1.n the literature to state 1.n form of asymptotic 

(1 - a) confidence bands of the form 

(3.1) 
- -1 a s - -1 a s 

[ R -<li (1--)- RH (1--)-] e 2 l' e 2 1 • 
N2 N2 

Now of course the difficulties connected with crude simulation in the case 

T == are not unsurmountab1e. E.g., one could use bounds or approximations to 

stop each individual run when either the risk reserve or the time has become 

sufficiently large (we comment on a further alternative, regenerative simu1a-

tion, later on). However, we shall show in this paper that the method of S1.-

mu1ating from Pe also creates a considerable reduction of the variance ob-
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tained from crude simulation. We start in this section by some largely empiri-

cal illustrations and examples, and follow up later on with theoretical ana~ 

lysis. 

We first give a simple example. Consider the P/E case with is = l/EY = l,p = 1, 

a = 0.85 and 
-(l-a)u 

1jJ(u) =ae =5%, Le. u=18.9 (this set of parameters could 

be argued to be typical and will be used repeatedly in the paper). In crude 

simulation, it follows from properties of the binomial distribution that the 

variance on the estimate of ~(u) 

0.05(1-0.05) 
N 

c 

0.0475 
N 

c 

based on N runs ~s 
c 

If instead we create N LLd. replicates of Re ' the variance on Re 
1 1 

becomes 

-2y uv -yE (u) 
e are e 

1 
N N 

0.0~346[0.7391-0.7225] 0.0000575 
N 

(using material of Section 2 for the calculations). Needless to say that this 

is a dramatic reduction. Some further reflection seems to indicate that even 

more is gained. In fact, ~n crude simulation the runs with ruin will have 

about the same length as ~n the Pe -process ([1], slightly adapted) whereas the 
1 

ones without ruin will be longer since we must wait until our stopping cri-

terion is met. Thus if N = N , Pe -simulation should require less computer 
c 1 

time than Pe -(crude) simulation. 
o 

These last considerations are ~n the spirit of a common point of v~ew ~n 
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the literature, that not only the variance VarR on the response is of importance 

but also the computer time IR needed to create one replicate. More precisely, 

it seems reasonable to take IR VarR as a measure of performance of a particular 

method, since the variance obtained within T units computer time will then 

asymptotically be VarR/(T/IR) = T IR VarR. See e.g. [19] p.119. 

In the present case, the time needed to create Re 1S a random variable 

so that IeR should denote the expected value. Inspection of the way IeR 

depends on e suggests that it might be worthwhile to look into simulation 

from also P 's with e e + el • Indeed, it is easy to see that when e'<e", 

then the Pe 11 -distribution of the whole process {X(t) }t~O is stochastically 

larger than its Pe,-distribution (in the sense of the usual ordering in D[O,oo»). 

Hence ruin occurs earlier so that le 11 Re ,,< Ie l Re I (whereas it seems less clear 

To illustrate these phenomena, we return to the P/E example a = 0.85, 

1jJ (u) = 5%. Computer simulations were performed for el' and for larger as well 

as smaller e. For each value of e, the computer time allowed was the same, 

one second CPU time. That is, the number Ne of runs was finalized the first 

time the CPU time at the end of a run exceeded one second. The estimates and 

asymptotic 95% confidence bands are depicted in Figure 1. 
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Figure 1 Simulation results from one second CPU time simulation from 

Pel(l+Ll), PiE case, S=p=l, 1/J(u) =5%, Ll=- 0.75(0.25)2.00 

Ne 10 16 23 30 37 44 51 S9 67 75 84 91 

~ -.. potnt estimate Re 

"I- I 95% confidence interval 

.p(u)= 5"/ .. I _T T 
1 ! I 

1% -

J I e o 

It should be noted that the estimates and confidence bands are computed 

exactly as above, i.e, as if Ne were deterministic. That this is immaterial 

for the asymptotic considerations follows by Anscombe's theorem and standard 

results from renewal theory (related remarks are given in [8] p. 54). 

The simulations were carried out in Pascal at the Regional Computing Cen-

ter, University of Copenhagen, on their Univac 1181 Machine. Uniform random 

numbers were produced by N.A.G. routine S05CAF, initialized by S05CBF(I) with 

I = 17 for any single simulation estimate reported in the paper. The algorithm 

(extremely simple) is based on considering the times of claims only as follows: 

1) Put S = ss = 0, N = 0, and initialize the random number generator; 

2) Put X=T=O, N=N+l . 
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3) Generate a claim size Y and an interarrival time z according to 

P 8 Put X = X + Y - pZ, T = T + Z; 

4) If X<u, return to 3). Otherwise let R=exp{(8 0 -8)X-TK 8 (8 0-8)}, 

2 
S = S + R, SS = ss + R; 

5) If less than one second CPU time has elapsed s~nce 1), return to 2). 

We shall now give some preliminary discussion of some of the phenomena 

underlying Fig. 1. First, it is seen as expected that N8 increases with 8. 

Next we note that the parameter set has the form (-00,8) where 8 - 8 o ~s 

the first singularity of ~, i.e. 8 = 80 + S = 80 + 1';;;' 1.07, and we are inte­

rested ~n the range (0,8). The values of 8 = 81 (1 + 11) used for illustration 

are at most 381 ~ 0.22 and thus well inside. However, this only guarantees 

consistency and asymptotic normality will in fact only hold in a much more 

restricted range. To see this, we need the relation 

(3.2) 

which easily follows from (2.7), (2.4). It can then be derived from [27] and 

the fundamental identity that (3.2) ~s only finite when 

which amounts to 11<0.4 (on Fig. 2, 8 denotes the corresponding upper max 

bound on 8). Thus only the first five confidence bands are meaningful and 

we shall hereafter only be concerned with the range (0,8 ). max 

It is seen that in the remaining five cases the width of the confidence 

band is minimal when 8 = 81 , This was found also in other simulations with 
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different sets of parameters and naturally raises the question of a possible 

theoretical investigation supporting the optimality of 81 , This would be 

interesting not only with the simulation application in mind but also for fur-

ther elucidating the role of 81 (or equivalently y = 81 - 80) which is well-

known to be one of the very fundamental quantities in risk theory, and it is 

therefore a question which shall occupy us in some detail. We let T =00 for 

quite a while. 

As a first step, it 1S necessary to put the somewhat unprecise definition 

of I8R8 into a form more suitable for theoretical analysis. A look at the 

algorithm above seems to suggest that the main time consuming factor when gene-

rating a single R8 1S the repetitions of step 3), the number of which is 

n 
n=inf{n~l I: {Yk-pZk}>u} 

k=l 

The time needed for each step is of course machine- and programming language 

dependent but does not significantly vary with 8, and in the following we 

shall therefore insert I8R8 = E8E.' That is, we are concerned with minimizing 

(3.3) 

subject to 81 /:,<8 
max 

The two following formulas, which are easy consequences of Wald's identity 

and T = Zl + ••• + Zn' will be useful in the following: 

We first consider the PiE case where (3.2) can be computed explicitly. 

In fact, if S =p = 1 then 
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and using Lemma 2.4, it follows from (3.4),(3.5) that 

whereas (3.2) can be evaluated using (2.12) Numerical tabulations showed f(~) 

to be convex with the minimum attained at a point ~. which is in general 
m~n 

+ 0 and is tabulated in Table 1 for some selected parameter values. 

Table 1 ~. and variance reduction f(~ . )/£(0) for classical P/E 
m~n m~n 

model «(3 = p = 1) 

Cl, 1)1 (u) (%) ~ . . m~n 

0.25 1 - 0.0202 

0.25 5 - 0.0441 

0.25 20 - 0.1142 

0.55 5 0.0021 

0.55 20 - 0.2036 

0.55 50 - 0.0332 

0.85 5 0.0004 

0.85 20 0.0007 

0.85 50 0.0012 

It is seen that many values of 

f(~ . )/f(O) 
m~n 

0.997 

0.989 

0.958 

1.000 

1.000 

0.997 

1.000 

1.000 

1.000 

~. are so close to zero and the 
m~n 

variance reduction to small that it is strongly suggested that ~n someasympto-

tical sense 81 is optimal. To show this is one of the topics of the next 

sections. 
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4. DIFFUSION APPROXIMATIONS IN HEAVY TRAFFIC 

Various approximation procedures are reviewed 1n [2]. For the present purpose, 

the relevant ones seem to be normal approximations (u~oo) and heavy traffic 

approximations (which all require p";;,aEY in some way). We shall here exploit the last 

point of view, since [2] indicates that it can provide better approximations 

and since it has a natural implementation within the framework of imbedding in 

an exponential family. 

We shall consider the same limiting procedure as in [25],[2] Sect. 5. That 

18, we think of Po (i.e. of p,aO'~O) as the fixed parameter and consider 

the limit 

(4.1) So t O,u t 00 1n such a way that SOU~-I; 

for some I; > 0 (note that in [2] we write SOU~ I; with I; < 0) . As explained 

in [2] (the argument is essentially the same as in [10],[11],[25]), it holds 

subject to (4.1) that 

(4.2) 

where 

1n Ps -distribution 
o 

1S the time of first passage of Brownian motion with unit variance 

and drift I; to level 1 (thus TI; is defective when I: < 0). The distribution 

of 1S the so-called inverse Gaussian distribution and has density, cumu-

lative d.f., resp. moment generating function 

(4.3) 1 -3/2 1 2 
get;!;) =- t exp{1: - Ht + I; t)}, t > 0 , 

I2rf 

(4.4) 

(4.5) { 

00 

exp{ I; - ~2 - 2A} 
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See [26] Ch.7 or [15] Ch.15 for more detail. 

We quote some consequences of (4.1),(4.2) from the above references. First 

(4.6) 

(4.7) 

Next, since So < O,Sl > 0 are connected by KO(SO) = KO(Sl) , it follows by 

Taylor expansion that (4.1) is equivalent to 

(4.8) 

From this relations similar to (4.7) for the PSl (l+~)-distribution of 

fo How by replacing - E;, by E;, (1 + /':,). Furthermore: 

T 

Lemma 4.1 Subject to (4.8), it holds that B(u) ~B(oo) l.ll Ps -distribution. 
1 

Here B(oo) has the limiting Po-distribution of B(u) as u~oo, vu. 

(4.9) 

Furthermore E AB(u) E AB (00) 
S e ~ Oe 

1 
~n a neighbourhood of zero. 

Indeed, the first statement ~s contained in [25], the formula (4.9) in the 

proof of Lemma 5.1 of [2] whereas the last statement as well as some further 

estimates to be used in the sequel requires some uniform integrability argu-

ments. As example of how to carry out these, we give the proof of the follow-

ing Lemma: 

Lemma 4.2 Subject to (4.8), it holds that 
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{
= co ul timately 

2 2 
Ee exp{hpOEOY /u } ,..-;:-__ 

1 -+ exp{ 1;; _ ~2 - 2A} 

(we have not investigated the case A = 1;;2/2) . 

Proof Since T-+T1;; in Pe -distribution, the result is trivial for A~O, 
1 

for 0<A<1;;2/2 it suffices by standard uniform integrability arguments to 

show 

(4.10) 

for some A I > A. Choose A I < 1;;2/2 and let E:,p,q satisfy O<E:<l,p>l, 

1/p + 1/q = 1, A' < (2E: - E: 2) 1;;2 /2p < 1;;2/2. Since 

(4.11) 

we can then bound (4.10) by 

(4.12) 

Here by (2.8), whereas 

Hence (4.12) ~s finite by Holder's inequality. 

and 
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Suppose finally A> [,2/2 and let 

Then ultimately and as remarked 1n Section 3, whenever 

o 
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5. ASYMPTOTIC CRITERIA FOR CHOOSING 8 

We can nm.r easily obtain the limiting behaviour of (3.3): 

Proposition 5.1 Subject to (4.1),(4.8), it holds that f(il) =00 ultimately if 

il>I2-1 (i.e. il 2 +2il>1) . ..!.! - 1<il<I2-1, then 

(5.1) 

More precisely it holds for il = 0 that 

(5.2) 

Clearly, this result contains the asymptotic optima1ity of 81 SLnce { ... } 

vanishes for il = 0 and is necessarily always ~ 0 as limit of non-negative 

quantities (this is also easily proved directly). Proposition 5.1 contains, 

however, some further information: Since 2 f(il)/f(O) '::'cu for il * 0, the 

difference between 81 and 81 (1 + il) becomes more and more marked as the 

traffic increases. 

Proof of Proposition 5.1 We first note that 

(5.3) 
E81 (1+il)T 

n=----..... 
- E8 1 (l+il)Z 

2 
u 

(the estimate for ET requires some uniform integrability argument along the 

lines of Lemma 4.2. We omit the details). In the remaining factor (3.2), 

".(u)2"'=e-4l; b (4 6) h 0/ Y . . Furt ermore 
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(5.5) 

Therefore 
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(2y + 8l i1)X(T) ~8l (4 + i1) (u+ B(oo» ~ (4 + i1)~ 

exp{ - (2y+8 l L1)X(T) +TKe (8 l i1)} ~ 
1 

2 2 
exp{ - (4 + i1)~ + (i1 + 2i1)~ /2' T~} 

cL (4.11) . 

ln distribution. By Lemma 4.2 and standard results on weak convergence, the 

expectations converge as well with limit 

exp{ - (4 + i1) ~ + ~ - ~A. - i1 2 - 2M 

given by (4.5). Combining the above estimates, (5.1) follows. 

For (5.2), we need to estimate Var R =Var e-YX(T) more precisely. How-81 81 81 

ever, 

Hence by Lemma 4.1 

But according to (4.9), 

Combining with (5.3), (5.2) follows. Finally the assertion for 
2 i1 + 2i1 > 1 is 

an easy consequence of (5.4), (5.5) and Lemma 4.2. o 

We shall make two further comments on Proposition 5.1. 

First, the discussion of [25], [2] suggests that the approximations given 
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in Section 4 and underlying Prop. S.l are not terribly accurate until the term 

of next order (O(u~l» are added. Presumably such refinements in the asyrnp~ 

totic form of f(~) could be made and thereby provide a better approximation 

to ~. than just ~. = O. We have not carried this out since Table 1 
m~n m~n 

suggests that the resulting variance reduction would be small. 

Next, we make some illustrations relating to a question which the reader 

familiar with queues may have posed a long while ago. Indeed, the relation to 

the virtual waiting time Vet) in the M/G/l queue given in Section 2 immediate­

ly suggests to apply regenerative simulation, cf. [8],[9],[19] Ch. 6. This 

amounts to simulating a two-dimensional response variable R = (R (1) ,R (2» with 

components 

R (1) = inf{ t > 0 : V( t) = 0, V( s) > 0 for some s < t}, 

R (1) 

J I(V(t) >u)dt 
o 

and estimate W(u) by R(2) /R(l) (asymptotic expressions for the variance 

and the confidence intervals can be found in the above references). To compare 

these two approaches, we performed Pe -simulation and regenerative simulation 
1 

in each one second CPU time for various sets of parameters and obtained the 

following results: 
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Table 2 . . l' t" t f "'(u) obta~ned with-Empirical var~ance on s~mu at~on es ~ma es 0 0/ ~ 

in one second CPU time. S = p = 1 

a I}J (u) (%) Regenerative Pe Ratio 
1 

0.50 5 1.610 - 4 1.810 - 6 91.8 

0.50 50 2.010 - 4 6.210 - 5 3.2 

0.85 5 9.810 - 4 2.210 -6 436 

0.85 50 2.810 -3 3.210 -5 86.4 

0.85 85 5.010 -4 3.410 - 5 14.6 

I ._-

This indicates that in a broad range of parameters Pe -simulation is 
1 

widely superior. We have not looked into theoretical support for this, but con-

jecture that as the traffic increases, then the measure of performance similar 

to IR VarR for the regenerative method tends to infinity so that by (5.2) the 

difference becomes more marked. 

We now turn to the finite time problem T <00 • 

Whereas Re has been found already in Section 2, we need to redefine 

IeRe Since simulation goes on until the risk reserve becomes negative or 

time T has passed, the appropriate choice appears to be IeRe = Ee.!!:".!!.T where 

.!!.or = in£{ n ~ 1 
n 

L Zk > T} 
k=l 

We then have the following extension of Proposition 5.1: 

Proposition 5.2 Suppose that subject to (4.1),(4.8). 

Then for all 6 > - 1 , 

(5.6) where 



24 

(5.7) 

(5.8) 

It should be noted that it is no longer required that lJ.2 + 2lJ. < I. This is 

simply because T I; when restricted to hI; < TO} is bounded and hence has ex­

ponential moments of all order. A slight simplification in (5.8) occurs, how-

ever, if 
2 

lJ. + 2lJ. < 1 ~n view of the formula 

(5.9) 

which is immediate by an exponential family argument. We have not been able 

to find closed expressions if S> 1;2/2 . 

Proof of Proposition 5.2 If C(T) ~s the waiting time until the next claim 

following 

(5.8) 

Clearly, 

T , then 

TI\T=ZI + ..• +Znl\n -C(T)I(Err~E:.) • 
--T 

-aec 
Pe (C (T) > c) = e • Therefore the las t term in (5.8) vanishes m 

the limit and we get 

Ee (1+lJ.)E:.I\Err-:;;,Ee (1+lJ.)TI\TjEe C1+lJ.)Z-:;;, 
III 

2 
u 

proving (5.4). Obviously (5.7) ~s equivalent to 
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(5.9) 

Now the class of distributions of T l; given {T l; < TO} form ,an exponential 

family with canonical parameter )l = _l;2 /2 and densities 

1 -3/2 _It 
(O<t<TO) w.r.t. --t e 2 dt 

12; 

Hence ([3] Th.S.l) 

iQ~ 
dl; d)l 

G(TO;l;) 

Using (4.4), it LS easily verified that 

and SLnce l;=1-2)l, we have d~/d)l=- l/l; and (5.5) follows. 

In (5.6), we get from (4.7) that 

and (5.6) now follows immediately from (5.4), (5.5) SLnce 

Ee exp{ - (2'1 + elLl)X(T) + TKe (e l Ll)}I(T < T) ';;; 
1 1 

T (Ll2+2Ll)l;2/2 
exp{-(4+Ll)l;}Ee l; I(Tl;<TO) 

In the same way as for T = 00, we are concerned with finding the value 

Ll. of Ll for which mLn 

o 
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~s minimized. 

As the first ma~n consequence of Proposition 5.2, it ~s immediately ob-

served that it ~s no longer true that f:.. • = 0 
m~n 

That is, one can do better 

than to apply P8 -simulation. 
1 

To find closed forms for f:... does not look easy. A tabulation of g(f:..) 
m~n 

(using (5.9) when possible and otherwise numerical integration) seemed to indi-

cate that indeed a well-defined minimum of g(f:..) exists. Some values of ~ 

and TO which ,.;re consider typical were selected, and f:.. • 
m~n 

computed numeri-

cally, cf. Table 4. 

Table 3 f:.,. as function of selected values of ~,TO 
m~n 

~~ o " 
0.5 1 2 5 

0.5 2.717 1.395 0.636 0.148 

1 2.067 0.927 0.332 0.038 

2 1.640 0.614 0.148 0.005 

5 1.306 0.356 0.033 0.000 

It is seen that for T small is f:... not only significantly different 
m~n 

from zero but also larger than the value Ii - 1 which is critical when T = 00 • 

As expected, f:.,. approaches zero as TO~oo with ~ fixed. 
m~n 

For a comparison of simulations with 8 = 8 
1 

or 8 = 81 (1 +f:.. • ) 
m~n 

it ~s 

straightforward to compute g(f:., • ) /g(O) 
m~n 

and we obtain the following table of 

the asymptotic variance reduction: 
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Table 4 Asymptotic variance reduction g(lI . ) /g(O) 
m~n 

~ Tot;, 0.5 1 2 5 

0.5 0.15 0.21 0.35 0.69 

1 0.15 0.27 0.49 0.87 

2 0.14 0.32 0.66 0.98 

5 0.08 0.40 0.87 1.00 

It is also of interest to compare the two parameters to crude (8 = 80) simula-

tion. Here 

and it follows exactly as above that 

Combining with (5.7), one can thus compute 

2 
g = lim 18 R8 Var8 R8 /u 
cOO 0 0 

Now 

and the following tables give the corresponding asymptotic variance reductions 

g(O) /g • resp. g(lI . ) /g when passing from 8 = 80 to 8 = 81 , resp. 
c' m~n c 

8 = 81 (1 + II . ) : 
m~n 
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Table 5 Asymptotic variance reduction g(O)/gc 

f", 
T;~~ 0.5 1 2 5 

0.5 4.410 - 2 4.1 10 -2 2.310 -2 3.5 10 -3 
i 

1 1.910 -2 1.610 - 2 6.4 10 '- 3 3.410 - 4 

2 3.010 - 3 2.610 -3 6.410 - 4 6.310 - 6 

5 8.610 -6 7.810 - 6 7.210 -7 9.010 - 11 

Table 6 Asymptotic variance reduction g(lI . )/g 
m~n c 

~ 0.5 1 2 5 

0.5 6.510 - 3 8.610 -3 8.010 -3 2.410 - 3 

1 2.9 10 -3 4.410 -3 3.210 - 3 2.910 -4 

2 4.310 - 4 8.310 - 4 4.310 - 4 6.110 - 6 

5 6.910 -7 3.110 - 6 6.210 - 7 9.010 -11 

It is seen that 81 ~s much preferable to 80 , In some cases the further 

variance reduction by passing on to 81 (1 + 1I • ) is considerable, in others 
m~n 

not. 

As an illustration of how results of the above type may be applied in prac-

tice and of the accuracy of the approximations, we shall give a final example. 

Consider again the P /E case with S = p = 1, a = 0.85 and let u = 15, T = 100. 

1 
Here y=O.15, 81 =a 2 -a=O.072 so according to (4.8) we let i;=81u=1.079. 

2 2 1 2 
Finally let TO=T~OEOY/u =2T/a 2 u =0.964 

It was found numerically that 1I • 
m~n 

0.8408. Simu1ations were performed 
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wi th 8 = 80 , 8 = 81 and 8 = 81 (1 + t:" • ), each 8 - mln allowed 5 seconds CPU time 

and the results can be summarised as follows 

Table 7 Simulation estimates and empirical and asymptotic variances obtained 

by 5 seconds CPU time P -simulation. PiE model, i3=p=l, u=15, T=lOO 
8 

s2/N in % 
- 2 of 80-value asymptotical (%) R s /N 

crude 0.068 3.110 - 4 100 g /g = 100 c c 
8=8 

0 

Lundberg 0.064 6.410 - 6 2.0 g(O)/g =1.4 c 8 = 8 
1 

optimal 0.059 3.110 -6 1.0 g(t:" • )/g =0.4 mln c 8 = 81 (1 + t:" • ) 
nun 

As a comparison, approximation (5.8) of [2] gave ~(u,T) =0.062 where 

according to the numerical evidence of [2] all figures should be correct. 

It is seen that our theoretical results are supported qualitatively from 

Table 7: is much preferable to 80 and 81 (1 + t:" • ) 
mln even somewhat better. 

The quantitative agreement of the empirical and theoretical results (i.e., of 

the two last columns) occurs also reasonable at least when absolute (rather 

than relative) deviations are considered. 
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6. EXAMPLES OF MORE COMPLEX MODELS 

It is often argued in the literature that sophisticated var1ance reduction me-

thods become increasingly hard to apply in practice when the model 1S made more 

realistic and thereby more complex (possible exceptions are extremely simple 

ideas like antithetic variables or common random numbers). We therefore cons i-

dered it worthwhile to point out that the method developed here is in this re-

spect quite insensitive, and to substantiate this claim by some worked out 

examples. 

Consider first the case where the rate a of arrival of claims varies with 

time, a = a(t). A typical case would be seasonal fluctuations so assume that 

a is periodic, say aCt +r) =a(t) and let 

_ 1 T lr 
a = lim"T! a(t)dt =:;:J a(t)dt 

T~oo 0 0 

be the average arrival rate. Assume further that the premium rate p and the 

distribution of claims Y are constant with time and that aEY < p It is then 

easy to see that 1/J(u)<l for all u and for simplicity, we shall only con-

sider simulation of 1/J(u) and not 1/J(u,T). 

The main idea is to get an input process with stationary independent incre-

ments by passing to operational time T ,which is connected to physical time 
op 

T by 

dT T 
dToP=a(T), T =!a(t)dt=aT+o(T) 

op 0 

where 
T -

has period Similarly o(T) =!o(a(t) -a)dt r. 

where E 

1 
T=- T + E(T ) - op op , 

a 

has period 
-1 

r 

8(T ) 1 
o(T) op a 

In the operational time scale, the input process 
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I(TOp ) u compound Poisson with unit rate and jumps distributed as Y. The 

premiums q(T ) 
op received before T are given by op 

q (T ) = pT =.E. T + pE:(T ) 
op a op op 

Hence if we let XCT ) = I(T ) - p/C;. T ,then our ruin probability u op op op 

1/J(u)=P( sup {I(T )-q(T )}>u) 
O<T <co op op 
= op 

= P (X (T ) > u + pE: (T ) for some T ) op op op 

= P(T(U) <co) where 

T(U) =inf{T >0 :X(T ) >u+pE:(T )} . 
op = op op 

Thus if we compute the solution y of the Lundberg equation for the X pro-

cess, it holds according to Lemma 2.1 that 

In summary, this suggests the following procedure 

1) Pass from the glven periodic model to a classical Poisson model X by 

considering operational time and the average premium rate. 

2) Solve the Lundberg equation for X. 

3) Simulate X from Pe until at time T(U) the periodic boundary 
1 

u + pE: (T(op» 1S hit and observe the response Re . Replicate the experiment 
1 

a suitable number of times. 
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The preceding part of the paper strongly suggests that this yields reason-

able tight confidence intervals. Of course, some arbitrariness is inherent by 

the choice of which premium rate to subtract from I(T ) op before solving the 

Lundberg equation. The present choice pia appears sensible by long-run con­

siderations if T(U»> r -1 , whereas otherwise modifications may be required. 

In our second example, we assume that the premium rate p ~s a function of 

the current risk reserve v=lJ(t), say p=p(v). This appears sensible s~nce 

an ~nsuranc€ company would want to take some action, typically by increasing 

the premiums, if the risk reserve approaches exhaustion. An example of the 

paths of the risk reserve process {U(t)}t>O ~s given in Figure 2 for the case 

where p has only two values PO> Poo ' P (v) = Po when v;; v 0 and p(v) = p 
00 

when 

Figure 2 
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/ 1 
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The assumptions on the input process I(t) are as for the classical Poisson 

model. As a reasonable set of general conditions on p = p(v) , assume that p 

is non-increasing with limits PO <oo, poo>aEY as v -} 0, resp. v too. Clear­

ly, the risk reserve process satisfies the storage equation 

T 
VeT) =u-I(T) +!p(V(t»dt 

o 

as ~n [13J, and the ruin probability ~s 

1jJ(u) = P(T(U) <oo), T(U) = inHt;:: O:V(t) < O} 

Since p(v) ;::p(oo) >aEY, P(T(u)<oo)<l for all n andcrudesimulationdoesnot 

apply (neither is it immediately clear how to apply regenerative simulation ~n 

this case). Instead we note that T(U) ~s a stopping time not only w.r.t. 

{Vet)} but also w.r.t. {I(t)} and hence w.r.t. where 

X(t) = I(t)-pt with some arbitrary choice of p. This suggests the following 

procedure. 

1) Choose pE [Poo,POJ and consider the classical Poisson model X(t) = I(t)-pt 

2) Solve the Lundberg equation for X 

3) Simulate I from Pe 
1 

and keep track of both v and X. Stop when at 

time t = T (u) V ( t) < 0 and observe the response R =e-YX(T(U» (see Fig. 2 
el 

for an illustration). Replicate the experiment a $uitable number of times. 

Again, an arbitrariness ~s inherent in the choice of p. It ~s less ob-

vious whether here in fact Pe (T (u) <oo) = 1 no matter p so we shall sketch 
1 

a proof of this. Since ae Ee Y> p ~ Poo ' 
1 1 

we can find p* < ae Ee Y and vo 
1 1 

such that p(v)~p* when v;:: vO' Thus when V comes above it increa-

ses less than the classical Poisson model p*t - ICt) which drifts to - 00 

Pe -a.s. 
1 

Hence [O,v J 
o 

~s a Pe -recurrent set for the Harkov process 
1 
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{V(t)} and s~nce it B readily seen that for some T <= 

in v~ew of 

inf Pe (T(u);=;T/V(O)=v»o 
v;=;vo 1 

Po <=, Pe (T(U)<=)=1 
1 

follows by standard criteria like [5] 

Exercise 5.10. 
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