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A note on de Moivre's limit theorems: Easy proofs.

by
* _ k%
Ernst Lykke Jensen  and Holger Rootzén .

We consider the standardized binomial distribution
f (x .)=vn n igni s
nGq, ) =7ePd (pg

where

X j=;:ILP_ , j=0,1,...,n; n=1,2,.. ,
’ Vnpq

£ (x_ ),

and p 1is fixed, O<p<l, p+q=1. Together with the points (x_ ., .
7 n,i’n T, j
j=-1,0,1,...,n,n+1, we take the lines connecting these points and continue to
call this broken line fn. Now let n and j tend to infinity in such a way
that x_ . tends to a number x, say. Then the sequence fn has the Gaussian
5
density f(x)==exp(—-éx2)/ V21 as limit function. This is, of course, well-
known; in fact, it is de Moivre's celebrated limit theorem. The proof is usual-
ly based on Stirling's formula or Fourier transformation. In what follows we

give a proof based on the sequence f; of derivatives.We think that a rigo-

rous proof along these lines ought to be available in the literature, but have
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only come across heuristic arguments: hence the present note.

We begin the proof by observing that it is possible to choose the sequence

n and corresponding j such that for large n the given x 1is located be-

tween x_ . and x el Then the derivative fg(x) is equal to the slope of
S 3

the line segment connecting (Xn,j’fn(xn,j) and (Xn,j+l’fn(xn,j+l)' The re-
lative slope of this line segment is then

fn(Xn,j+l).-fn(Xn,j) _ np'X'n,j.'- npq

— b
(Xn,j+1 Xn,j)fn(xn,j) np + vnpq X j-+1
9

which tends to -x, when n and j tends to infinity in the manner described

above, and the convergence is uniform on bounded intervals. [A heuristic proof
might stop here by noting that -x is also the relative derivative of the
Gaussian density at x]. Hence it is enough to show that

£f'(x

1)

lim —— = -x ,
™ fn ()

uniformly on bounded intervals, implies fn converges to the Gaussian density.

Since the convergence is uniform, the operations of taking limit and inte-—

gration can be interchanged, i.e.

£'(x) £1(x)
-f—n'(—TdX:fu 11mf—nﬁdx
n X 0 nwoo n'*

lim fu
n->o 0

=fu(—x) dx
0

2

u B

N

On the other hand, fn is continuous and fé is a step function, so that fn

and then logf]1 can be recovered from their derivatives by integration. Hence



u 52 u
lim /* —— dx = 1lim / dlogf (x)
f (x) n
n->o (0 n n->c (
n-> o n
and since log is continuous, we have
tog Tim 2 1in og o
8 £ (0) BT (0
== % u2 s
i.e.
f (u) 2
. n - 2 u
(1) llm’f_?67 e
n-»oo n

Since the convergence in (1) is uniform on bounded intervals, it follows that

f (w f (w
. b n _ b .. n
(2) lim fa E’Z@S’du"fa lim RO du
n—> oo n n—->oc n
2
-1
=fb e 2% du
In particular,
a fn(u) a -1 u2
(3) lim lim f° ——— du=1lim /° e 2~ du
-a £ (0) -a
a—> oo nN—->co n a—> oo

= /21

Since fn is a probability density for a random variable with expectation and
variance tending to the expectation and variance, 0 and 1 respectively, of the

standardized binomial distribution, an application of Tchebycheff's inequality

yields



1 .. a . a
- < .
1 5 < lim inf f—a fn(u)duH=11m sup f_afn(u)du <1

a n - o n - o
Hence from (3)
(4) lim —— = /21
£ (0)
nooe n

and the assertion now follows from (1).

In a short-hand notation,we have proved de Moivre's first result

. 2
_(-np)
j n—j 1 2
Mpld" e P4
] V2mnpq

where the symbol ~ means that the ratio between the left-hand side and the

right-hand side tends to 1.

It is easily seen that

x
j:agxn .<b V/npq

b

differs from

fz fn(x)dx

by at most max fn(xn j)/Vnpq. Hence, using (2) and (4), we have de Moivre's

J
second result,

b n, j n—-j b 1 -lx2
T (.)pJq I~ fa — e ? dx
j=a' J V2m
for
a'-np a, b'-np b .
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