Ernst Lykke Jensen Holger Rootzén

A Note on de Moivre's

Limit Theorems: Easy Proofs

Ernst Lykke Jensen ${ }^{*}$ Holger Rootzén

A NOTE ON DE MOIVRE'S LIMIT THEOREMS:

EASY PROOFS

Preprint 1983 No. 3

INSTITUTE OF MATHEMATICAL STATISTICS
UNIVERSITY OF COPENHAGEN

A note on de Moivre's limit theorems: Easy proofs.
by
Ernst Lykke Jensen ${ }^{*}$ and Holger Rootzén ${ }^{* *}$.

We consider the standardized binomial distribution

$$
f_{n}\left(x_{n, j}\right)=\sqrt{n p q}(\underset{j}{n}) p^{j} q^{n-j},
$$

where

$$
x_{n, j}=\frac{j-n p}{\sqrt{n p q}}, j=0,1, \ldots, n ; n=1,2, \ldots
$$

and p is fixed, $0<p<1, p+q=1$. Together with the points $\left(x_{n, j}, f_{n}\left(x_{n, j}\right)\right)$, $j=-1,0,1, \ldots, n, n+1$, we take the lines connecting these points and continue to call this broken line f_{n}. Now let n and j tend to infinity in such a way that $x_{n, j}$ tends to a number x, say. Then the sequence f_{n} has the Gaussian density $f(x)=\exp \left(-\frac{1}{2} x^{2}\right) / \sqrt{2 \pi}$ as 1imit function. This is, of course, wel1known; in fact, it is de Moivre's celebrated 1imit theorem. The proof is usual1y based on Stirling's formula or Fourier transformation. In what follows we give a proof based on the sequence f_{n}^{\prime} of derivatives. We think that a rigorous proof along these lines ought to be available in the literature, but have

[^0]only come across heuristic arguments: hence the present note.

We begin the proof by observing that it is possible to choose the sequence n and corresponding j such that for large n the given x is located between $x_{n, j}$ and $x_{n, j+1}$. Then the derivative $f_{n}^{\prime}(x)$ is equal to the slope of the line segment connecting $\left(x_{n, j}, f_{n}\left(x_{n, j}\right)\right.$ and $\left(x_{n, j+1}, f_{n}\left(x_{n, j+1}\right)\right.$. The relative slope of this line segment is then

$$
\frac{f_{n}\left(x_{n, j+1}\right)-f_{n}\left(x_{n, j}\right)}{\left(x_{n, j+1}-x_{n, j}\right) f_{n}\left(x_{n, j}\right)}=-\frac{n p x_{n, j}+\sqrt{n p q}}{n p+\sqrt{n p q} x_{n, j}+1},
$$

which tends to $-x$, when n and j tends to infinity in the manner described above, and the convergence is uniform on bounded intervals. [A heuristic proof might stop here by noting that $-x$ is also the relative derivative of the Gaussian density at x]. Hence it is enough to show that

$$
\lim _{n \rightarrow \infty} \frac{f_{n}^{\prime}(x)}{f_{n}(x)}=-x
$$

uniformly on bounded intervals, implies f_{n} converges to the Gaussian density.

Since the convergence is uniform, the operations of taking limit and integration can be interchanged, i.e.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{0}^{u} \frac{f_{n}^{\prime}(x)}{f_{n}(x)} d x & =\int_{0}^{u} \lim _{n \rightarrow \infty} \frac{f_{n}^{\prime}(x)}{f_{n}(x)} d x \\
& =\int_{0}^{u}(-x) d x \\
& =-\frac{1}{2} u^{2} .
\end{aligned}
$$

On the other hand, f_{n} is continuous and f_{n}^{\prime} is a step function, so that f_{n} and then $\log f_{n}$ can be recovered from their derivatives by integration. Hence

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{0}^{u} \frac{f_{n}^{\prime}(x)}{f_{n}(x)} d x & =\lim _{n \rightarrow \infty} \int_{0}^{u} d \log f_{n}(x) \\
& =\lim _{n \rightarrow \infty} \log \frac{f_{n}(u)}{f_{n}(0)}
\end{aligned}
$$

and since log is continuous, we have

$$
\begin{aligned}
\log \lim _{n \rightarrow \infty} \frac{f_{n}(u)}{f_{n}(0)} & =\lim \log \frac{f_{n}(u)}{f_{n}(0)} \\
& =-\frac{1}{2} u^{2}
\end{aligned}
$$

i.e.
(1)

$$
\lim _{n \rightarrow \infty} \frac{f_{n}(u)}{f_{n}(0)}=e^{-\frac{1}{2} u^{2}}
$$

Since the convergence in (1) is uniform on bounded intervals, it follows that
(2)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{a}^{b} \frac{f_{n}(u)}{f_{n}(0)} d u & =\int_{a}^{b} \lim _{n \rightarrow \infty} \frac{f_{n}(u)}{f_{n}(0)} d u \\
& =\int_{a}^{b} e^{-\frac{1}{2} u^{2}} d u
\end{aligned}
$$

In particular,
(3)

$$
\begin{aligned}
\lim _{a \rightarrow \infty} \lim _{n \rightarrow \infty} \int_{-a}^{a} \frac{f_{n}(u)}{f_{n}(0)} d u & =\lim _{a \rightarrow \infty} \int_{-a}^{a} e^{-\frac{1}{2} u^{2}} d u \\
& =\sqrt{2 \pi} .
\end{aligned}
$$

Since f_{n} is a probability density for a random variable with expectation and variance tending to the expectation and variance, 0 and 1 respectively, of the standardized binomial distribution, an application of Tchebycheff's inequality yields

$$
1-\frac{1}{a^{2}} \leqq \lim _{n \rightarrow \infty} \inf \int_{-a}^{a} f_{n}(u) d u \leqq \lim _{n \rightarrow \infty} \sup _{-a}^{a} f_{n}(u) d u \leqq 1
$$

Hence from (3)
(4) $\quad \lim _{n \rightarrow \infty} \frac{1}{f_{n}(0)}=\sqrt{2 \pi}$.
and the assertion now follows from (1).

In a short-hand notation, we have proved de Moivre's first result

$$
\binom{n}{j} p^{j} q^{n-j} \sim \frac{1}{\sqrt{2 \pi n p q}} e^{-\frac{(j-n p)^{2}}{2 n p q}}
$$

where the symbol \sim means that the ratio between the 1 eft-hand side and the right-hand side tends to 1.

It is easily seen that

$$
\sum_{j: a \leqq x_{n, j} \leqq b} \frac{f_{n}\left(x_{n, j}\right)}{\sqrt{n p q}}
$$

differs from

$$
\int_{a}^{b} f_{n}(x) d x
$$

by at most $\max _{j} f_{n}\left(x_{n, j}\right) / \sqrt{n p q}$. Hence, using (2) and (4), we have de Moivre's second result,

$$
\sum_{j=a}^{b^{\prime}}\binom{n}{j} p^{j} q^{n-j} \sim \int_{a}^{b} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} d x
$$

for

$$
\frac{a^{\prime}-n p}{\sqrt{n p q}} \rightarrow a, \frac{b^{\prime}-n p}{\sqrt{n p q}} \rightarrow b
$$

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, 2100 COPENHAGEN $\emptyset, ~ D E N M A R K$.

No. $\quad 1$ Holmgaard, Simon and Yu, Song Yu: Gaussian Markov Random Fields Applied to Image Segmentation.

No. 2 Andersson, Steen A., Brøns, Hans K. and Jensen, Søren Tolver: Distribution of Eigenvalues in Multivariate Statistical Analysis.

No. 3 Tjur, Tue: Variance Component Models in Orthogonal Designs.

No. 4 Jacobsen, Martin: Maximum-Likelihood Estimation in the Multiplicative Intensity Model.

No. 5 Leadbetter, M.R.: Extremes and Local Dependence in Stationary Sequences.

No. 6 Henningsen, Inge and Liest $\quad 1$, Knut: A Model of Neurons with Pacemaker Behaviour Recieving Strong Synaptic Input.

No. 7 Asmussen, S申ren and Edwards, David: Collapsibility and Response Variables in Contingency Tables.

No. 8 Hald, A. and Johansen, S.: On de Moivre's Recursion Formulae for Duration of Play.

No. 9 Asmussen, Søren: Approximations for the Probability of Ruin Within Finite Time.

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, 2100 COPENHAGEN Ф, DENMARK.

No. 1 Jacobsen, Martin: Two Operational Characterizations of Cooptional Times.

No. 2 Hald, Anders: Nicholas Bernoulli's Theorem.
No. 3 Jensen, Ernst Lykke and Rootzén, Holger: A Note on De Moivre's Limit Theorems: Easy Proofs.

[^0]: *The Copenhagen School of Economics \& Business Administration,
 *Institute of Mathematical Statistics, Copenhagen University.

