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Summary Consider a random time T determined by the evolution of a Markov 

chain X ~n discrete time dnd with discrete state space. Assuming that the 

pre-T and post-T processes are conditionally independent given and 

0< T <00, it is shown that: (i) the pre-T process reversed is Markov and in 

natural duality to X if and only if T is almost surely equal to a modified 

cooptional time; (ii) the pre-T process itself is Markov and an h-transform 

of X if and only if T ~s almost surely equal to a cooptional time with, in 

general, the possible starts for the pre-T process restricted. Also, a result 

is presented characterizing those T for which the reversed pre-T process is 

Harkov in natural duality to X, without the assumption of conditional inde

pendence. 
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Throughout this paper we shall maintain the same setup and notation as 1n Ja-

cobsen and Pitman [2J, hereafter referred to as BDC. Thus a Harkov process with 

infinite lifetime 1S viewed as a Harkov probability on the sequence space 

Q = IN, J denoting a countable state space and N the nonnegative integers, while 

a process with finite lifetime is a Harkov probability on the space Q~ of se

quences in J U {M with the property that once they reach the coffin state ~, 

they remain there forever. vJe shall write x = (X ,n E N) 
n 

for the coordinate 

process on Q and Fn for the a-algebra determined by (Xk ' k;;; n), F for 

the a-algebra generated by all X 
n 

For T a random time, let K = (XO"" ,X l'~'~"") and 8 =(X ,X 1"") T T- T T T+ 

denote the pre-T and poSt-T processes respectively. 

Let P be a Harkov probability on Q. In BDC characterizations were glven 

of the class of regular birth times and the class of regular death times for 

P 

8 
T 

Here e.g. 

and K 
T 

T is a regular birth time for P 

are conditionally independent given 

if 8 
T 

X ,T<OO 
T 

1S again Harkov and 

From the class of regular birth times one subclass is of particular inte-

rest; the regular birth times with the property that 8 
T 

same transition function p as the given Harkov chain P 

1S Harkov with the 

It 1S well known 

and follows easily from the results 1n Section 3 of BDC, that T belongs to 

this subclass if and only if it is P-a.s. equal to an optional time. (See also 

the introduction of [1]). 

Thus in the terminology of Jacobsen [1], the properties of being regular 

birth and preserving the original transition function, amount to an operatio-

nal characterization of optional (or stopping) times. 

The ma1n purpose of this paper is to present two operational characteriza-

tions of cooptional times, Theorems 2 and 3 below. 
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The first characterization is formulated by demanding that K 
T 

reversed 

from T have a transition function in natural duality to p. For the charac-

terization to work it is necessary to assume that K 
T 

and 8 
T 

be independent 

given X 1,0 < T <00, which is the conditional independence property required 
T-

of regular death times. As an intermediate step towards Theorem 2, Theorem 1 

describes what happens, when this conditional independence assumption is drop-

ped. 

Theorem 2 emerges as the natural analogue of the characterization of optio-

nal times mentioned above, see the motivation below following the definition 

of cooptional times. However, it is also possible to obtain a characterization, 

working with K 
T 

1n the forward direction of time. This second characteriza-

tion 1S presented 1n Theorem 3. 

The paper 1S concluded with Theorem 4, an analogue for birth times of Theo-

rem 1. 

From now on, let P be a given Markov probability on ~ with (stochastic) 

transition function p. Define 

~(x) 

00 
I: 

n=O 
P(X = x) 

n 
(x E J) , 

the occupation measure for P. By discarding all states never reached by the 

process, we may and shall as sume that ~ (x) > 0 for all x E J . 

Next, introduce for x,yE{~<oo} 

A -1 
p(x,y) = ~(y)p(y,x)~ (x) . 

We shall call p the transition function in natural duality to p (in standard 

terminology it 1S in duality to p with respect to the occupation measure). We 

remind the reader that if ~ (x) <00 , 
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L p(X,y) S 1 , 
y:~(y)<oo -

Le. p ~s substochastic on {~<co}. 

Recall from BDC, Section 5, that a random time T ~s cooptional (algebraic 

definition) if either of the following three equivalent properties hold: 

(i) 

(ii) 

(iii) 

T = sup{n ~ 1 : 8n- l E F} for some FE ,p 

+ T 0 8 = (T - n) for all n EN 
n 

(T=n+l)=(To8 =1) 
n 

(T=CO) =(To8 ==) 
n 

and 

for all nE N . 

Motivation Before continuing with the build up towards Theorem 2, consider for 

a moment the special situation where P ~s Harkov on n L1 with P (i;; <co) = 1, 

r; = inf{n : X = M denoting the lifetime. Defining ~ on J as above, we have 
n 

~ < 00 and of course X reversed from i;; is Markov with transition function 

p. Suppose now that T Si;; is cooptional. In terms of the reversed process 

X = (Xi;;-l' ... ,Xo' L1, LI, ... ), T becomes an optional time T, so by the strong 

Markov property for X, (X A ,X A , ••• ). ~s Markov (p) But expressing this 
T T+l 

us~ng X is exactly to say that K 
T 

reversed under P ~s Markov (p) Since 

cooptional times are the only ones to become optional under timereversal the 

operational characterization of optional times quoted earlier, g~ves that K 
T 

reversed is Harkov (p) iff T ~s P-a.s. equal to a cooptional time. Theorem 

2 will show that this result carries over to chains with infinite lifetime, 

where direct timereversal is no longer possible. Cl 

In order to formulate Theorems 1 and 2, we shall need to change the defini-

tion of cooptional times slightly, since we shall not be able to say anything 

about the detailed structure of the sets (T = 0), (T ==) . Therefore, call T 

a modified cooptional time if there exists T' cooptional such that 
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(T = n) = (T' = n) (n E N\{O}) . 

Note that T H modified cooptiona1 iff the first half of (iii) holds: 

* (iii) (T=n+1)=(To8 =1) 
n 

for all nE N . 

For T 

visited by 

an arbitrary random time, let 

K 
T 

on (T<oo) 

00 

J 
T 

J = {x E J: 2: P (X = x n < T < 00) > O} , 
T n ' n=O 

denote the states that may be 

and finally define the reverse of the pre-T process as the process Z = (Z ,n EN) 
n 

given by 

on (n< T <00) 

on (T ~ n) U (T = 00) 

The following two conditions will be needed for Theorems 1 and 2. 

(1) 

(2) 

~ (x) <00 (x E J ) , 
T 

xEJ p(y,x»O=:-yEJ 
T' T 

Of course (1) ensures that p makes sense on J x J . Condition (2) states in 
T T 

a precise manner, that using p, which is not defined everywhere, only states 

In J can be reached from J 
T T 

The condition is important because it implies 

the following. 

Lemma Suppose that (1) and (2) hold. Denote by 

determined from p on J , l. e. 
T 

;(m) (x,y) = 2: ~(m-1) (x,z);(z,y) 
zEJ 

T 

the m-step transitions 

(x,yEJ) 
T 

and by 
(m) 

p the m-step transitions determined from p on all of J. Then 
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A(m) (m)-l 
p (x,y) = ~(y)p (y,x)~ (x) 

A -1 
p(y,lI) =p(y)S (y) 

p(y,lI) =1- L p(y,Z),ll(y) =P(XO=y) . 
zEJ 

T 

(x,yEJ) , 
T 

(y E J ) , 
T 

The proof lS very easy and is left to the reader. 

o 

We are now able to state Theorems 1 and 2. In both P lS a given Markov 

probability on !1. The assumption P(O < T <co) > 0 in the two theorems is introdu-

ced of course to make Z a non-trivial process. 

Theorem 1 (a) Suppose T lS a random time with P (0 < T < co) > 0 such that (1) 

and (2) hold. If the reversed pre-T process Z is Markov with transition func-

tion p on J , then there exists a function ~:J-4[O,l] 
T 

such that for all 

(3) P (T = n IF) = HX ) n-l n-l P-a.s. 

(b) Conversely, if P(O<T<OO»O and (3) holds for some ~, then (1) and (2) 

are satisfied and Z is Markov with transition function p on J 
T 

o 

Theorem 2 (a) Suppose that in addition to the assumptions of part (a) of Theo-

rem 1, it lS assumed that K 
T 

and e 
T 

are independent given X 1,O<T<00. 
T-

Then, if Z is Harkov (p). there exists a modified cooptional time T' such 

that T = T' P-a.s. 

(b) Conversely, if T '" T I P-a. s. with modified cooptional, then 

and eT are independent given XT- l ' 0 < T <00 , (1) and (2) hold and Z is 

Markov (p). 

K 
T 

o 

Remark For (3) to hold for some ~ defined on J, it lS important only what 

happens on J 
T 

since obviously 

Proof of Theorem 1 (a) That z 

~=O works on J\J 
T 

18 a Markov (p) chain on J 
T 

(with finite 

o 
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lifetime) means that for n> 1 , x O' ••• ,x E J = n T 

which using the definition of Z translates into 

(4) P(X l=xO""'X l=x, n<T<=) T- T-n- n 

P(X l=xO""'X =x 1,n-l<T<=)p(x l'x) T- T-n n- n- n 

Also as a consequence of the Markov assumption, we have that for 

o < n < k, xo' ... ,x E J = n T 

A (k-n) 
= P (X 1 = xo' ... ,X 1 = x ,n < T < =) f (x , t:,) , T- T-n- n n 

where i(m) (x,t:,) lS the probability that a Markov chain with transitions p 

and state space J U{t:,}, 
T 

given that it starts at xEJ 
T 

dies (reaches 

for the first time) at time m ~ 1. Since we are assuming that (1) and (2) 

hold, the lemma applies and a simple computation gives 

A (m) A(m_ 1 ) A 
f . (x,t:,) = 2: p ~ (x,y)p(y,t:,) 

yEJ 
T 

(6) 
-1 

= ~ (x)p (X 1 = x) 
m-

(m> l,x E J ) . = T 

Using (5) as it stands, and with n replaced by n - 1, (4) may be written 

(7) 

_ _ _ ;(k-n+l) 
P(Xk l-xO"",Xk I-X ,T-k)J. (x l't:,) - -n- n n-

A (k-n) A 

P (X_ 1 = x O' ' .. ,X_ = xl' T = k) f (x ,t:,) p (x l' x ) --k- --k-n n- n n- n 

Suppose now that P (Xk - l = x O' ... ,Xk - n - l = xn) > O. In particular then 

P(Xk l=x) >0, P(Xk =x 1) >0, p(x ,x 1) >0, and (6) enables us to -n- n -n n- n n-

write (7) as 
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vary, it follows that 

P-a.s. on (Xj EJT, O~j <k). Because of (2), this set equals (Xk- l EJT) 

P-a.s. and since both sides of (8) vanish on (Xk- l EEJT) , (8) holds P-a.s. 

everywhere on Q. To obtain the stronger conclusion (3) consider (4) with n = 1 

and use (5) to rewrite it as 

(9) 

for k ~ 2 ,l ~ 1, xO,xl E J T . Think of Xo as fixed and suppose that k ~ 2 ,l ~ 1 

are chosen so that P(Xk- l = xO) > 0, P(Xl - l = x O) > O. Then choose xl so that 

P(Xk- l = xO,Xk _2 = xl) > 0 and use (6), (8) to reduce (9) to 

~n other words, for each x E J , the conditional probability 
T 

peT =kIXk _l =x) 

does not depend on k so we may write 

with cp=O on J\J , and (3) follows. 
T 

(b) With cp given so that (3) holds, we get for 

00 

= L P(~-l = x o ' ... '~-n-l = Xn,T = k) 
k=n+l 

CX) 

n EN, xO' ••• ' x E J n T 
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(10) 

Now, if xEJ 
T 

it ~s possible to find n , xO' . . . ,x 1 E J ,x = x so that 
n- T n 

this probability ~s > O. Choosing k so that the k'th term in the sums is 

> 0, it emerges that 
x 

n 
P (Xl = xn- l '· .. ,Xn = xO) > 0, HxO) > 0, wherefore (l0) 

forces E; (x) = E; (x ) < 00 
n 

It is then immediate that Z is Markov (p). 

It remams to establish (2). Introducing the potential kernel (which may be 00) 

00 

u(x, y) = L p (n) (x, y) 
n=O 

(x,yEJ) , 

it ~s easy to deduce from (3) that 

P(n<T<ooIF)=W(X) , 
n n 

where U ~s the potential operator: 

Uf(x) = L u(x,y)f(y) , 
yEJ 

~n particular Ucp <oo . But then zEJ 
T 

iff 

= 
o < L P (X = z, n < T < oo) 

n=O n 
E; (z)Ucp (z) 

Le. iff UHz) > O. Therefore, if xEJ ,yEJ with p(y,x»O 
T 

that 

= = 
L P(X =y,n<T<oo) > L P(X =y,X 1 =x,n+l<T<oo) 

n = n n+ 
n=O n=O 

E;(y)p(y,x)UHx) >0 , 

so that yE J . 
T 

it follows 

o 

Proof of Theorem 2 (a) The additional assumption implies that (see Lemmas 3.12 

and 5.5 of BDC) there exists F EF n-l n-l for n> 1 and G E F such that 

(11) (T = n) P-a.s. 
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for n > 1, whence 

with hex) = pXG . Introducing H = {h > o} it H readily checked that 

so we may and shall assume that F 1 c eX 1 E H) P-a. s. III which case (12) n- n-

gives 

D : = (P (T = n I F 1) > 0) = F l' n n- n-

From Theorem 1 (a) we know that (3) holds so that also 

D = (Hx 1) > 0) n n-

Thus F 1 = (tP eX 1) > 0) P-a. s. and inserting this III (11) gives 
n- n-

(T = n) = (8 E G') 
n-1 

P-a.s. 

where G'=(tP(XO»O)G. But for nEN\{O},thesets (T=n) aremutuallydis-

joint, hence ignoring a P-nu11 set, so are the sets (8 n - 1 E G'), wherefore it 

follows that if T' lS the cooptiona1 time 

T' =sup{n>1:8 EG'} = n-1 ' 

we have (T =n) =(T' =n) P-a.s. for nEN\{O}, which is exactly to say that T 

lS P-a.s. equal to a modified cooptiona1 time. 

(b) Find T" cooptiona1 so that (T' =n) = (T" =n) for nEN\{OL From 

Section 5 of BDC it is known that T" is a regular death time for P, in par-

ticu1ar K" and 8 11 are independent given X 11 l' 0 < T 11 < 00. But of course 
T T T -

then the same conditional independence holds with TIT replaced by T. To com-

p1ete the proof, merely observe that 



10 

peT =nlF ) =P(T' =nlF ) n-l n-l 

=P(T'o8 =llF ) n-l n-l 

X n-l 
=P (T'=l), 

~.e. (3) holds. Now apply Theorem 1 (b). o 

Example We shall present a Markov probability P and a random time T such 

that (3) holds but T ~s not P-a.s. equal to a modified cooptional time. 

The state space is J = {x,y,a} and P ~s determined by some initial di-

stribution \llith P(XO = a) < 1 and the transition matrix 

x y a 

1 1 1 
x 4" "4 2 

1 1 1 
Y "4 "4 2 

a 0 0 1 

Define T by 

(T = 1) = (Xl =x,er = 2) 

(T = n) = (er =n + 2) 

and T = 0 otherwise, where er = inf{n > O:X = a} = n 

a. 

~s the time to absorption ~n 

Since the sets (T = n) and (T 0 8 1 = 1) for n> 2 are different with ren-

spec t to P, there is no modified coopt ional T I such that T = T' P-a. s . 

On the other hand (3) is satisfied because 

o 

on (Xn- l E {x,y}) 

on (X 1 = a) n-
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for n ~ 2, and 

Xo 1. 1. 1. 
P (Xl = x, (5 = 2) = 4 • 2 = 8 on (XO E {x, y} ) 

o on (XO = a) . 

o 

We shall now discuss what are the characteristic properties of the forward 

killed proces s K , when T 
T 

~s cooptional. Before stating Theorem 3, we need 

the following definition. 

Let p be a (in general substochastic) transition function on J, let 

J' cJ and let q be a (substochastic) transition function on J'. 

Definition The pair (q,J') ~s an h-transform of p if there exists a p-

excess~ve bounded function h:J ~ [0,00) with h> 0 on J' and h = 0 on 

{x E J\J' L 
yEJ' 

u(y,x) >O} such that 

-1 
q(x,y) =h (x)p(x,y)h(y) (x,y E J') . 

Remarks Normally one would allow h to be unbounded, but in this paper we 

o 

shall only encounter bounded excessive functions. Recall that h is p-excess-

ive if 

L p(x,y)h(y) ~h(x) (x E J) • 
yEJ -

The set where h ~s demanded to vanish ~s of course the collection of states 

outside J', that may be reached from J' using p-transitions. 

If T ~s a random time, denote by 

given Markov probability P: 

00 
J 

T 

00 
00 

J = {x E J: L P (X = x, T > n) > O} • 
T n=O n 

the state space for K 
T 

o 

under the 

Theorem 3 Suppose T ~s a regular death time for P and let q be the tran-
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00 

sition function for KT' Then (q,JT) lS an h-transform of p if and only if 

there exists He J, T' cooptional such that P-a, s. 

(13) (T = n) = (Xo EH, T I = n) 

Remark If (13) holds, T lS a regular death time for P, see Theorem 5.2 

and the preceding remark of BDC or the statement following (4.1) of [1]. 0 

Proof The eaSler part consists In showing that (13) implies that 

an h-transform. Define x g(x) =P (T' >0). 

P (X = x, T > n) > 0 and deduce from 
n 

00 

If xEJ , find n 
T 

P(X =X,T >n) =P(XOEH,X =X,T' 0 e > 0) n n n 

so that 

lS 

that g(x) > O. Next, let A 
T 

denote the part of J\JOO which can be reached 
T 

from 
00 

J 
T 

by p-transitions: 

A = {x E J\Joo
: L u(y,x) > O} 

T T EJoo 

Y T 

00 

If x EA, 
T 

find yE J , n 
T 

such that 
(n) 

p (y,x) > O. Also find m 

P(X =y,T>m) >0. Then look at 
m 

P(X =y,X =x,T>m+n) =P(XOEH,X =y)p(n)(y,x)g(x) m m+n m 

Since 
00 

x ~ J , 
T 

the left side is 

P(XOEH,Xm=Y) >0, hence g(x) =0. 

00 

o. But the choice of m forces 

Thus g> 0 on J , g = 0 on A , 
T T 

and it only remains to show that 

excessive, which follows from 

x x x x 
g(x) =P (T' > 0) ~P (T' > 1) =P (T' 0 e > 0) =P g(Xl ) , 

and to observe that 
-1 

q(x,y) =g (x)p(x,y)g(y) 
00 

for x,yEJ 
T 

so that 

g lS 

For the converse, let T be a regular death time for P, such that with 
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q the transition function for 
00 

K , (q,J ) 
T T 

~s an h-transform of p. By Theo-

rem 5.2 of BDC and the remark preceding it, there exists HcJ, VcJ x J and 

FE F such that P-a. s. where 

with TVF = sup{l ~ n ~ TV : 8n - 1 E F}, TV = inHn ~ 1 

writing g(x) = pX( TVF > 0), VC = (J x J)\ V, 

(X l'X) EV}. Furthermore, n- n 

(14) 

and g> 0 

-1 
q(x,y) =1 c(x,y)g (x)p(x,y)g(y) 

V 

00 

on J 
T 

00 

(x, yE J ) 
T 

As above, we let A 
T 

denote the states ~n J\JOO that may be reached from 
T 

00 

J using p-transitions. 
T 

By assumption there exists h bounded and p-excessive with h> 0 on 

00 

J , h = 0 on A such that 
T T 

(15) 
-1 

q(x,y) = h (x)p(x,y)h(y) 
00 

(x,y E J ) 
T 

We shall first show that without loss of generality it may be assumed that 

(16) 

(17) 

(18) 

00 

HcJ 
T 

00 00 c 00 00 
{p>O}n(J xJ)cV n(J xJ) 

T T T T 

To establish (16), define 
00 

H'=HnJ. 
T 

For 

because HI cH. But the opposite inclusion holds P-a.s. because of the defi-

nition of 
00 

J and because P-a.s. 
T 

co 
As for (17), from (15) we see that x,yE J , p(x,y) > 0 

T 

so that by (14) also 
c 

(x,y)EV . 

forces q(x,y) > 0, 
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Defining 
00 

F' =F(X EJ) o T' 
clearly and s~nce 

00 00 

00 

P-a.s., where by the definition of J , the last event has P-measure 0, we get 
T 

THVF,=THVF P-a.s. and (18) is proved. 

To complete the proof, assume that (16) - (18) hold, introduce 

and define a random time by 

We shall show that Tl = THVF P-a. s. Clearly THVF ~ T 1 and P-a. s. using 

(16) and the definition of 

00 

where, writing B =J UA , 
T T T 

A 
T 

To see that PC = 0, consider (x,y) E V with (x,y)EB xB ,p(x,y»O. 
T T 

00 00 

Then (x,y) E J x J is impossible by (17). Also, s~nce h ~s excessive and 
T T 

00 

= 0 on A , from A only transitions to {h = O} can occur, so (x, y)EA xJ 
T T T T 

~s impossible. Therefore necessarily yEA , but then Py (T r > 0) = 
T 

00 

Py U (8 E F) = 0 because of (18) and the fact that 
n=O n 

00 

J cannot be reached 
T 

from A , and an application of the strong Markov property now gives PC = 0 
T 

Remark In the theorem we considered h-transforms for· excessive h vanishing 

on A . It would be nicer of course, if only h vanishing on all of J\Joo 

T T 

o 

were needed, but that is not possible: if T satisfies (13), as we have seen 



15 

x g (x) = P er I > 0.) 18 exceSS1ve. But the function g I defined by g I (x) = g (x) 

on J= U {g = O} 
T 

and = 0 on C = J\ (JX> U {g = O}) need not be excessive since it 
T T 

may be possible to have p-transitions from C 
T 

into = J 
T 

o 

Remark For the theorem to be true, it is essential that 1n the definition of 

h-transforms only h which are p-excessive on all of J are considered: 1et 

1 c J and introduce 

T = in£{ n ~ 0 : Xn E 1} 

In general T certainly does not satisfy (13) P-a.s. But T 1S a regular 

death time for P with, obviously, J= c J\1, so the transitions for K be-
T T 

come 

q(x,y) = p(x,y) = (x,yEJ ) , 
T 

which looks exactly as an h-transform with 

course, that 1 1S exceSS1ve on all of 
= 

J 
J 

T 
= impossible which J are 1n case P-a.s. 
T 

T = sup{n ~ 1 : Xn- l E J\1} 

1n agreement with the theorem. 

hex) = 1 (x). The point 1S of 
= J 
T 

iff p-transitions from 

Remark With Theorem 3 in mind, a natural question to ask 1S whether all h-

to 

o 

transforms (for bounded h) can be obtained by killing at cooptional times. The 

answer 1S no. To see this consider the example following the proof of Theorem 

2. The important point now is that the state space is finite and that there is 

an absorbing state which is reached with certainty, since, as 1S easily seen, 

this implies that there is a countable collection G of F-measurable sets, 

such that for x E J, FE F, pXF > 0 1S possible only if FE G. Consequently, if 

FEF\G, P(8n- l EF) =0 for all n>l and sup{n~l 8n-,.1 EF}=O P-a.s., i.e. 
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up to P-equiva1ence there are only countab1y many cooptiona1 times. But it ~s 

readily verified, that even after normalizing with hex) = 1, h(a) = 0 , there 

are uncountab1y many bounded, excessive h. o 

Remark If , ~s given by (13) with ,I cooptiona1 of course the transition 

functions for K and K, are the same: only the initial laws for the two , , 
killed processes are different. But w"hi1e K, , reversed has transitions p , 

the transitions for K reversed are , 

00 

(x, yE J ) , , 

where t;H(z) 2: P(XO E H,Xn = z) 
n=O 

Using Theorem 2 and the fact that , does 

not have the homogeneity property (iii)* of all modified cooptiona1 times, it 

is not difficult to see that on J x J , , iff on J , 

Although somewhat out of line with the ma~n context of this paper, we shall 

o 

conclude with a discussion of birth times that preserve the original transition 

function p without having the conditional independence property demanded of 

regular birth times. 

Theorem 4 (a) Suppose , B a random time with peT <00) > 0 such that given 

, within (, <00), the post-, process e , is Markov (p). Then 

(19) peT =nje ) =P(, =nlX ) 
n n (n E N) • 

(b) Conversely, if peT <00) > 0 and (19) holds, then given , within (, <00) , 

e ~s Markov (p). , 

Proof That 8, given , ~s Markov (p) amounts to saying that 

for all n ~ 0, m ~ 1, x O' ••• ,x E J . - - m Rewriting the left as 
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P (X = xo, ... ,X + = x ) P (T = n! X := xO' ... ,X = x ) , n n m m n n+m m 

and the right ~n a similar fashion, it ~s clear that 

P(T=niX , ... ,X )=P(T=n!X , ... ,X 1)' n n+m n n+m-

and (19) follows. The converse ~s just as easy. o 

Remark There does not appear to be any reasonable characterization of the T 

that makes 8 Markov (p) without conditioning on the value of T. If (19) 
T 

holds, then certainly 8 
T 

~s Markov (p), but the converse is not true: con-

sider the example from p. 439 of BDC, 

T = in£{ n > 1: (X ,"', X k) (XO' ... ,Xk)} . = n n+ 

As pointed out there, if P is recurrent, 

to see that (19) does not hold in general. 

8 ~s Markov (p). But it ~s easy 
T 

o 
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