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By S~ren Asmussen, University of Copenhagen. 

ABSTRACT 

A number of approximations for the probability of rUln before time T are sur

veyed, some new ones are suggested and numerical comparisons with the exact 

values are given for the Poisson/Exponential case. The approximations include 

normal ones and diffusion types. A variant and refinement of the classical dif

fusion approximation is derived and found to have a quite remarkable fit in the 

situations of main interest in risk theory. 



1. INTRODUCTION 

Consider a risk reserve process 

N(t) 
R(t) =u+t- L 

n=l 
Y 

n 

1 

with initial risk reserve R(O) = u, unit premium intensity, claim sizes 

Yl ,Y2, ... which are LLd. with EY= 1 and with claims arriving according to 

a Poisson process {N(t)}O~t<oo with intensity p <1. Thus.the interclaim times 

Zl,Z2'" . ar e i. L d. wi th 
-pz 

P (Z > z) = e and the safety. loading ~s n=(l-p)/p 

We are interested ~n the probabilities 

1{I(u,T)=P( infR(t)<O), 1{I(u)=1{I(u,00)=P( inf R(t)<O) 
O<t<T O<t<oo 

of ruin before time T, resp. of ultimate ruin (for interpretations in queue-

ing and storage theory, see Section 2) . 

Even for the Poisson/Exponeniial (P/E) case P(Y> y) = e -y, the explicit 

expressions for 1{I(u,T) are incomprehensible and their numerical evaluation 

requires some care, cf. e.g. Seal (1972a),(1974) and the concluding remarks in 

Section 7. For more general Y, such explicit expressions can usually only be 

found in terms of double Laplace transforms and their derivation requires much 

ingenuity. See Cramer (1955) for the general case as well as a number of papers 

in the literature for particular examples, e.g. Arfwedson (1953) and Thorin 

& Wikstad (1976). In view of the complications encountered, it ~s not surpri-

sing that approximations have received considerable attention. Some early expo-

sitions are in Cramer (1955) and Segerdahl (1959), whereas one of the main la-

ter developments relevant for the present paper is the introduction of diffu .... , 

sion approximations, see e.g. Iglehart (1969) and Grandell (1977). 

Most approximations (though not all) are suggested by a limit theorem, say 

as u ~ 00, T ~ 00 or p t 1 with the other parameters fixed. This gives some 
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rough guidelines as to when to use a particular approximation but clearly some 

empirical work is required for judging the robustness, i. e. the range in 

which the accuracy ~s reasonable. For examples of such investigations, see 

Cramer (1955) p. 45, Grandell & Segerdahl (1971), Beekman & Bowers (1972), 

Beard (1975) and Grandell (1977). Our aim here is twofold, first to undertake 

a more systematic numerical comparison (emphasizing the finite time problem) 

and next to improve upon some of the approximations studied by using the em

pirical results as guidelines. 

The paper ~s organized as follows. Sections 2-3 contain some preliminaries, 

~n particular a fundamental imbedding of the process in a whole class of pro~ 

cesses defined in terms of an exponential family (i.e. of conjugate distribu

tions or Esscher transforms). In Section 4, normal approximations are discus

sed with Segerdahl (1955) as point of departure. Section 5 deals with diffusion 

approximations. It ~s shown here as one of the main findings of the paper that 

ideas ~n Siegmund (1979), considered here for the first time ~n the risk theo

retic setting, lead to new variants and refinements which seem superior to all 

approximations in the literature and also have an extremely good fit in a very 

wide range of parameters. In Section 6, we briefly discuss a classical formula 

put in its final form by Teugels (1982) and finally, in Section 7 we comment 

upon some of the computational aspects. 

The numerical material for the PiE case has been extracted from two sets 

A,B of tables, which can be obtained in their whole upon request from the 

author. Set A gives ~(u,T) and the corresponding approximations as function 

of T for the set of values given in Table 1. A sample table and some further 

explanation can be found in the Appendix. The Figures 1-8 in the body of the 

paper are based on this set of tables. 
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Table 1 Parameters for Set A of tables 

p 0.2 0.5 0.8 0.9 

n (%) 400 100 25 11 

1jJ(u)(%) 10,2,1,0.2 25,5,2.5,0.5 40,8,4,0.8 45,9,4.5,0.9 

Set B gives the relative error,as defined by 

approximation -=--=------- - 1 , 
exact 

as function of p = 0.50 - 0.98 (i.e. n = 100% - 2%) for the four values of u 

making 1jJ (u) = 50%, 10%, 5% and 1% and corresponding T-va1ues defined so as to 

make approximately 1jJ(u,T)/1jJ(u) 25%, 50%, 75% and 95%. 

We remark that this covers what has been argued to be the relevant range 

for risk theory, viz. with small safety loading (say n < 20%) and the initial 

risk reserve u so large as to make 1jJ(u) small, say in the range 1% - 5% 

(an important problem left open is, however, T-va1ues so small that 

1jJ(u,T) «1jJ(u» . 

Concerning the presentation of the paper, we finally remark that since the 

point of view is to a large extent empirical, we have sometimes slightly re-

1axed from complete mathematical rigour. The aim is rather to motivate why the 

particular approximations are reasonable, and to present the calculations at 

such level of detail that the values of the constants can be checked. 
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2. SOME PREL IMINARY REMARKS 

It will be convenient to express ~(u,T),~(u) In terms of 

NCt) 
X(t) = R(O) - R(t) = L 

n=l 
Y - t 

n ' 
M= sup X(t) , 

O<t<oo 

M(T) = supX(t), T=T(u)=inf{t?:O:X(t»u} 
O<t<T 

(the dependence of T on u lS most often suppressed for notational conveni-

ence). Indeed, it lS clear that 

(2.1) ~(u,T) =P(M(T) >u) =P(T ~T) , 

( 2 • 2) ~ ( u) = P (M > u) = P (T < 00) , 

so that our risk theoretic problem is equivalent to the first passage time 

problem for the process {X(t)} ·.0' To this end, it is basic to note that t> 

{X(t)}t~O (as a compound Poisson process with a drift term) has stationary 

independent increments, l.e. represents the continuous time counterpart of a 

random walk. This suggests that many random walk results can be converted to 

the present setting. In some cases the translation is a straightforward appli-

cation of the method of discrete skeletons (Kingman, 1963), in other cases 

some additional arguments can be required say to identify the value of cer-

tain constants. Examples abound in the literature and in the next sections. 

We also point out the relation to queueing and storage theory, which at 

one hand shows that the discussion has a wider scepe than just to risk theory 

alone and at the other sometimes is convenient by allowing the application of 

queueing and storage results. Indeed, if Vet) is the virtual waiting time 

(residual work) of an initially empty M/G/l queue with service times Yl ,Y2, ... 
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and arrival intensity p, then 

(2.3) l/J(u,T) =P(V(T) >u), l/J(u) =P(V(oo) >u) 

(with V(oo) referring to the steady state). See Seal (1972b) or Prabhu (1961, 

1980). The process {V(t)}t~O can also be interpreted as the content of the 

infinite dam with compound Poisson input and constant release r-ate. Note that 

(in v~ew of EY = 1) p is simply the traffic intensity of the queue. The time 

for the risk process has been chosen so as to make the connection to the queue 

as simple as possible but the translation to other cases is of course immedi-

ate. E.g. the connection to operational time T op (with claims arriving at 

unit rate, a scaling standard in much of the literature) is simply given by 

T = pT op In particular, the present definition n=(l-p)/p of the safety 

loading n coincides with the usual one for operational time, viz. the pre-

m~ums lip received within one unit operational time minus the expected total 

claims 1. 
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3. EXPONENTIAL FAMILIES AND THE FUNDAMENTAL IDENTITY OF SEQUENTIAL ANALYSIS 

As motivation for introducing the parameters to follow below, we first recall 

two classical approximations, viz. 

(3.1) 
-Yl:u 

1/J(u) ~Ce as u~oo (Cramer-Lundberg) 

(3.2) as 
1/2 

u,T~oo, u=o(T ), 

see e.g. Cramer (1955). To determine first let 

HS) = E exp{ SY}, K(S) = p (HS) - 1) - S = log E exp{ SX(t)} It 

The slope of K at 0 is negative Slnce pEY = P < 1 and K lS strictly 

convex. Hence Yo'Y l > 0 defined as solutions of 

(3.3) 

are necessarily unique. The existence of YO'Yl as well as of certain higher 

order derivatives of at is, however, an assumption on the tail of Y. 

It will be made for the rest of the paper since it is minimal for the main re-

sults to be discussed, but it should be noted that it excludes certain claim 

size distributions encountered in the literature. Examples are the lognormal 

distribution and the Pareto distribution. 

Examination of the expressions In Cramer (1955) for the remaining constants 

In (3.1), (3.2) reveal that these are given In terms of the moments of certain 

conjugate distributions associated with YO,Yl . We shall here use the entire 

corresponding exponential family, which will be described in terms of probabi-

lity measures Pe governing risk processes with arrival intensities and claim 

slze distributions given by 
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Thus our initial process corresponds to P=P with 8 =-y and this 
80 0 0 

choice of origin ensures that the probability P8 (T <00) of ultimate ruin is 

< 1 when 8<0 and =1 when 8> 0 (this is because of precise-

ly when < 
8 > 0). The exponential family interpretation follows from 

1..e. 

(3.4) 

See also Kuchler & Kuchler (1981) and the references there. 

The following relation will be crucial 1.n the remainder of the paper: 

Lemma 3.1 Let B(u) =X(T(U» -u be the overshot. Then for all 8',8" 

(3. Sa) 

(3. Sb) ( 8 '-8 ") e U,Ee" [exp {(8 '- 8" )B(u) - T[p (H8 '+YO) -~ (8" + YO»-(8 '-8 II)]};T ~T] 

Proof According to the fundamental identity of sequential analysis it holds 

for any stopping time T* and any event F c;,: h* <co} in the usual pre-T*-cr-

algebra that 

Indeed, the discrete time case is treated at a number of places 1.n the lite-

rature (e.g. Siegmund, 1979; see also von Bahr, 1974, and Asmussen, 1982) and 

the continuous time case follows easily by discrete approximations. To obtain 

the lemma, let T* = T, F = h ~ T} and note that X(T) = u + B(u) . o 
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Corollary 3.2 Let e1 = eO + Y1 with Y1 > 0 defined by (3.3). Then 

(3.6) 
-Y u 

1/J(u,T) =1/J e (u,T) =e 1 Ee [exp {-Y1B(u)};T~T] . 
o 1 

Proof The coefficient to T 1ll (3.5 b) vanishes if e I = eO' e" = e1 . o 

The formula (3.6) is the starting point for vonBahr (1974), Siegmund (1975) 

and Asmussen (1982). It should be noted that in these and a number of other 

references the exponential family used ~s the one generated by Y - Z, i.e. 

obtained by replacing X(t) by Y - Z ~n (3.4). What regards the definitions 

of Po and which are the most important P 's e this can be checked to 

be immaterial. 

To apply formulas (3.5), (3.6), it is crucial to have some information on 

B(u). An important fact is the existence of a limiting distribution, con-

venient1y expressed by introducing a random variable B(oo) such that for any 

e ~ 0 B(u) -t B(oo) as u-t oo ~n Pe-distribution. This follows because the pro

cess X(t) can only ~ncrease at the time t of claims where the values are 

the consecutive values of the random walk 

process is simply the overshot process of {S }, for which the existence of a 
n 

limiting distribution is well-known. In view of the exponential distributi:on of 

Zk it is even possible to evaluate the Pe-distribution of B(oo) explicitly, 

cf. Feller (1971) Ch. XI. We shall not give the somewhat complicated expres-

sions, since we shall only need simple functiona1s which can easily be eva1u-

ated directly. E.g. Feller (1971) pp. 377-378, 411, uses such an approach to 

compute the Cramer-Lundberg constant 

(3.7) 
1-p 
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(the first equality is a consequence of (3.6) and the last of Feller's expres-

sions and integration by parts) . 

We conclude this section by considering the PiE case P(Y > y) = e -y, 1. e. 

HS) = (1 - S) -1, where it follows by elementary calculus that 

(3.8) 

I I 

(3.9) 
_ 2 _p2Z 

Po (Y > y) = e p y, Po (Z > z) = e • 

(3.10) -Py -z 
Pe (Y > y) = e ,P e (Z > z) = e 

1 1 

The exponential family approach leads here to even simpler expressions for 

the ruin probabilities. Indeed, from properties of the exponential distribution 

it is clear that if e > 0 , then B (u) is independent of T with 
-b/EeY 

Pe(B(u) >b) = e In particular, Corollary 3.2 yields at once the follow-

ing result: 

Corollary 3.3 In the PiE case 

(3.11) 
-(l-p )u 

1/J(u,T) =1J'e (u,T) =pe Pe (T~T) • 
o 1 

That is, the problem of computing 1/J(u,T) 1S here equivalent to the study 

of the Pe -distribution of the first passage time T(U). As will be seen, a 
1 

similar point of view for the general case underlies much of the present pa-

per, the foundation being Corollary 3.2 and certain asymptotic independence 

properties of B(u) and T(U). 
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4. NORMAL APPROXIMATIONS 

It was shown by Segerdahl (1955) that the time T to ruin is asymptotically 

normal given {T <oo} as u~oo. The parameters are 
2 

(Au, w u) where 

(4.1) 1 2 3 2 3 2 
-;----:-=--::----=- w = A p Ee Y = A (p + Yl ) Ee Y 
(p+yl)Ee Y-l ' el 1 1 

1 

In conjunction with Cramer's estimate (2.1) for the probability of the con-

ditioning event this suggests the approximation 

(4.2) 
-"(U 

1 T-Au 
1jJ(u,T) = peT ~ T) ,:::,Ce cp(-,-) 

- - wu 2 

For queueing analogues, see Asmussen (1981,1982) and for a generalization 

to renewal arrivals of claims, von Bahr (1974). It should be noted that 1n 

these cases the determination of C presents a complicated random walk problem, 

1n contrast to the simple expression (3.7) available here. An alternative proof 

of (4.2) was given independently by Siegmund (1975) and Asmussen (1982). The 

idea is to appeal to (3.6) and show that (T,B(u» are asymptotically indepen-

dent w.r.t. Pe with the asymptotic distribution of T as above. Letting 
-Y 1 B (00) 1 

C = E e then yields (4.2). el 

The numerical comparisons for the piE case of (4.2) with the exact values, 

as given 1n Set A of tables, shows as expected that the fit improves as u 

increases. However, the fit is quite poor for the small value p = 0.2 (see 

e.g. Figure 1 below). For p = 0.5, 0.8 and 0.9 the situation is better, but 

not here either are the deviations negligible for even quite large u. Three 

examples are given in Figures 1-3, depicting 1jJ(u,T) and the approximations 

as functions of T. 
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Figure 2 
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\!l(u) = 0.9%- - - - - - - - - - - - -~.;r--------

Figure 3 

p = 0.9, \!l (u) = 0.9% 

Exact 
(4.2) 
(4.7) 

T=1000 

In order to arrive at a deeper understanding of the normal approximation, 

it is necessary to look closer into the dependence of the distribution of 

T = T (u) on u: 

Lemma 4.1 In the P/E case, 

(4.3) E e-8T (u)=e-Au (1_l:.) 
el p 

l.n a neighbourhood of 8 = 0, where A = A(8) = (p -1- 8 + l(l"""p +8)2 + 4p8)/2 . 

Proof By the continuous time analogue of a standard random walk result 

(Neveu, 1972, IV-4) it follows that for A real 

yet) = exp{AX(t) - tKe (A)} 
1 

l.S a Pe -martingale and that 
1 
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1 = E yeT) = E exp{AX(T) - TKe (A)} . 
el el 1 

Writing X(T) = u + B(u) and using the independence of T and B(u) yields 

(4.4) -Au A Ee exp{-TKe (A)}=e (1--) 
1 1 p 

Hence substituting (3 = Ke CA) = AI (p - A) - A, the result follows (the sign of 
1 

y. . . is + S1nce Ke (A) 1S monotonely increasing at A = 0) . 0 

1 

The formula (4.3) has a simple probabilistic interpretation. The factor 

-Au 
e 1S the Laplace transform of a member H 

u 
of a convolution semigroup 

whereas 1 - Alp 1S the Laplace transform of a distribution K inde-{H)u;;;a 

pendent of u. H ,K 
u 

can be identified as follows. Consider a process X*(t) 

evolving as X(t) but started at an exponential distributed initial value 

x*(a) with mean lip and the corresponding first passage times T*(U). 

Conditioning on T(a) shows that 
D 

T(U) = T(a) + T*(U) where the terms are 1n-

dependent. Similarly T*(ul + u2) 1S the independent sum of random variables 

distributed as T*(ul ), resp. T*(U2) and it follows that Hu(t) =Pe (T*(U)~t), 
1 

K(t) =Pe (T(a) ~t). 
1 

Differentiating the transforms of H ,K, it follows by elementary calcu
U 

lations that 

Corollary 4.2 In the piE case 

(4.5) 
p 1 2p l+p 

E T - U + Var T = U + 3 e - -1- -1-' e 3 
1 -p -p 1 (l-p) (l-p) 

(4.6) 

That the fit of the normal approximation is not entirely satisfying may 

now be understood from the two following considerations: 

The asymptotic normality of the distribution of T , V1Z. H *K, stems from: 
U 
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the central limit theorem for the convolution semigroup {HU}U~O • Besides the 

rate of convergence, it is also important that K should be small c,?mpared to 

H . A simple way to check this ~s to compare the means of Hand H *K as u u u 

given by (4.5), cf. Table 2 based on the same parameters as Table 1. 

Table 2 Comparison of the mean of the normal approximation with the true value 

p 1/1 (u) (%) AU Ee T(U) 
1 

0.2 10.0 0.21 1.46 

0.2 2.0 0.71 1.96 

0.2 1.0 0.94 2.19 

0.2 0.2 1.44 2.69 

0.5 25.0 1.39 3.39 

0.5 5.0 4.61 6.61 

0.5 2.5 5.99 7.99 

0.5 0.5 9.21 11.21 

0.8 40.0 13.9 18.9 

0.8 8.0 I 46.1 51.1 

0.8 4.0 ! 59.9 64.9 
, 

0.8 0.8 92 .1 97.1 

0.9 45.0 
I 

62.4 72.4 

0.9 9.0 207 217 

0.9 4.5 270 280 

0.9 0.9 414 424 

It is seen that, in particular for p small, K is by no means negligible com-

pared to H . A comparison of (4.2) and (4.5) shows that the normal approxi
u 

mation on the average expects ruin to occur earlier than is actually the case. 

A striking illustration of these phenomena can be found in Figure 1, where the 

approximation is always larger than the true value and the deviation of the 

means considerable both absolutely and in units of the standard deviation. 

The fit of the normal approximation for H 
u 

~s well-known to depend heavi-

lyon the higher cumulants. The third one is given by the first term of (4.6) 
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and a similar numerical study as ~n 10 shows that it ~s not negligible either. 

Whereas we have no immediate suggestions for circumventing 10 (or even put 

the problem ~n a precise form for general claim size distributions), it seems 

obvious for 20 to invoke the higher cumulants of T and use an Edgeworth ex-

pansion (cf. Gnedenko and Kolmogorov, 1954, pp. 192-193 for the non i.i.d. 

case) to produce correction terms for ~(.) in (4.2). We shall only consider 

the first-order correction, which suggest a formula of the type 

(4.7) 

In fact: 

-Y u 
1jJ(u,T)-;:Ce lU(T(U)) 

T-E T el 
T(u) = V are T 

1 

2 
(1-T(u)2) 1 e-T(u) 12} rn 

Corollary 4.3 In the PiE case (4.7) ~s valid as U~OO up to terms which are 

-Ylu 1·· 
o(e lu 2 ) 

This follows simply by writing 

replace 

'-Y1U OO 
1jJ(u,T) = Ce J H (T - k)dK(k) , 

o u 

H (T - k) 
u 

by the first order Edgeworth expansion and use Taylor's 

formula. We omit the details. 

It should be noted that for general claim size distributions the dependence 

between T and B(u) presents an additional problem, so that it is not even 

immediately clear here whether the constants in (4.7) are the proper ones. 

The numerical results show that (4.7) improves somewhat upon (4.2), see 

again Figures 1 - 3. Generally, the agreement is quite good for intermediate 

values of T whereas discrepancies remain at the tails Try O. T ~oo • The fit 
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does not significantly change as p varles from 0.5 to 1, as illustrated ln 

Table 3 of the relative error. 

Table 3 Relative error (%) of (4.7) at the 50% fracti1e of (4.2) 

---- et,=1J! (u) 50% 10% 5% 1% 

p ~ 
0.50 100 - 6.4 4.1 2.1 

0.60 67 65 5.1 3.6 2.0 

0.70 43 24 4.6 3.3 1.9 

0.80 25 17 4.3 3.2 1.9 

0.85 18 15 4.2 3.1 1.9 

0.90 11 14 4.2 3.1 1.8 

0.92 8.7 14 4.2 3.1 1.8 

0.94 6.4 14 4.1 3.0 1.8 

0.96 4.2 14 4.1 3.0 1.8 

0.98 2.0 14 4.0 3.0 1.8 

This is to be understood as follows: For a given value of et, =50% •...• 1% and 

p = 0.50, ... ,0.98 we choose first u = u(p) to make 1/J(u) = et, and next 
! 

T=T(u(p),p) to make <1?«T-Au)/wu 2 ) =50%. Thus 1/J(u,T)N(u)~50% and 

1/J (u, T) N (u) -+ 50% et, -} O. The reason for choosing the T-fracti1e approximate 

according to (4.2) and not exact is just computational convenience. However, it 

is clear from properties of (4.2) discussed so far that in some extreme cases 

T is quite far from the tru.e median. E.g. the missing values for p = 0.5,et, = 50% 

are due to the fact that here u(p) = 0 so that also T = AU = 0 . 

We shall leave the normal approximation at this place, not because we think 

that the topic has been exhausted but because ideas of the next section turn 

out to be what appears a rather more fruitful approach to the general problem 

of finding useful approximations for the ruin probabilities. 
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5. DIFFUSION APPROXIMATIONS 

Our starting point is Grandell's (1977) paper (see also Bohman, 1974, and Gran-

dell, 1974, for discrete time analogues). In the notation of the present paper, 

the idea is to first observe that if {W I; (t)} O~t< = 
unit variance and drift 1;, then as u~oo 

(5.1) 

is Brownian motion with 

~n the sense of weak convergence in function space, cf. Billingsley (1968), 

Lindvall (1973) or Whitt (1980). Appealing to the operational time interpre-

tation, the distribution of the l.h.s. of (5.1) is independent of p. Hence, 

if we fix the distribution of Y, let p t 1 (i. e. the safety loading n -I- 0 ) 

and utoo ~nsuchawaythat nu~I;E(O,oo), then 

(5.2) 1 2 
{ 2 X(tu /p)}O<t<oo ~ {W 2 (t)}O<t<00 

u ill' = -1;/ ill' = 

Recalling that the time of the first passage of WI; to level c has di

stribution function 

(5.3) G ( t ; I; , c) = P (max W I; ( s) > c) 
O~s~t 

cf. Skorohod (1965) p. 171, it follows from properties of weak convergence 

that 

l/J(u, tu2/p) = PC max X(s) > u) ~ G(t; _~ _1_) 
0~s~tu2/p ill' ' /RY2 

so that (using the relation 
2 

G(t;l;,c) =G(t/c ;I;c,l» this suggest the approxi-

mation 

(5.4) 
2 

l/J(u,T) ~G(TE~ p . _ (l-p)u 
u ' PEy2 

l)=G(T~" (O)p ._(l-p)u ) 
2 'p~" (0) ,1 , 

u 

cf. Grandell (1977) p. 52" As remarked by Grandell, the validity of (5.4) for 
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T = 00 requires an extra argument. This ~s given ~n Grandell (1978) so that ~n-

deed 

(5.5) 
2 

1/J(u) ~G(oo, - (1-p~u ,1) = e -2(1-p)U/pEY 
pEY 

From the point of v~ew of queues, this is simply the well-known heavy 

traffic approximation, see e.g. Whitt (1974). 

Based upon a deeply interesting paper by Siegmund (1979), we shall now 

suggest first a variant of (5.4), (5.5), viz. 

(5.6) 

(5.7) 
-2'1 u '" a 1/J (u) = e 

Tp ~" ('1 ) a 
;-Yau ,l)=G( 2 ;-Yau ,l), 

u 

and next a refinement of these approximations, 

(5.8) 

Tp~" ('1) ~"'(y) y 1u ~"'(y ) o + 0 a 
=G( 2 3u~" ('1 ) ; - -2-' 1 + 3u~" ('1 ) 

u 0 a 

(5.9) 
-'1 1 ~ III ('10) / 3~" ('1 a) -'11 u 

e e 

The conditions are of just the same flavour as for (5.4), (5.5), but need 

a slight twist from the mathematical point of view. In fact, we think of the 

Pa-distribution in the exponential family of Section 2 (i.e. of ~a and Pa) 

as fixed and consider the limit 

(5.1a) 80 t 0, ut= ~n such a way that 8au+~ 

with ~ E ( - 00 , a) • Note that 
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I.e. the conditions for (5.6) - (5.9) as well as for (5.4), (5.5) both re-

quire that ut 00 , n + 0 in such a way that nand l/u remain of the same 

order. The difference lies in the sets of other fixed and variable parameters. 

Relations of the form (5.6) - (5.9) are highly expected from the random 

walk analogy and from Siegmund (1979). However, it is not obvious what the con-

stants should be and to obtain the correct values, the calculations therefore 

have to be adopted to the present case. 

We first note that as eO to, 

Using ~his relation, it 1S easy to deduce that 

1n Pe -distribution [we do not understand the corresponding step in Siegmund's 
o 

proof; a formal proof may proceed by checking the conditions in He11and (1982)J. 

Hence 

(5.11) 

which yields (5.6) by substituting 2 
T = tu . (5.7) now follows heuristica11y 
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by letting T~oo. We omit the formal verification. 

The derivation of (5.8) is much more technical. First note that in Laplace 

transform formulation (5.11) may be rewritten as 

(5.12) 

The idea is now to improve upon (5.12) by invoking terms which are O(u-l ) . 

By Lenuna 3.1 we have for 8> 0 that 

1 = P (T < 00) 
8 

Replacing 8,80 by 8/u, ~/u yields 

so if we let 
rv 2 1 
8 = (2A + ~ ) 2 = h(A,~) + ~ and use the relation 

we get up to O(u- l ) terms that 

(5.13) e 
-h(A,O 

To proceed from (5.13), we now need two Lenunas, the first of which shows 

that one of Siegmund's constants can be obtained in a more explicit form in the 

present case: 

Lenuna 5.1 The B (u) ,u ~ 0, are uniformly integrable w. r. t . PO' Furthermore, 



E y3 

lim EOB (u) = EOB (00) = 0 2 
U-HlO 3EOY 
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Proof Recalling the random walk interpretation of the B(u) , cf. Section 3, 

it is well-known that 

00 
1 

EOB(oo) = E B(O) J bPO(B(O) > b)db 
o 0 

~"(O) 
21'(0) , 

where 1(13) = EoeSB(O). Since the descending ladder variable of 

is exponential with mean -l/PO' we have by Wiener-Hopf factorisation (Feller, 

1971, p. 400) that 

so that by l'Hospital's rule 

d2/dS2(S~O(S) -~O(S) +1) I 
1 ' (0) = p ------,:------:-----

o d2jdS2(S2)S=0 

p ~" (0) o 0 
2 

Differentiating once more, it follows in a similar manner by a threefold appli-

cation of 1 'Hospital's rule that ·1" (0) = P E y3/3 o 0 so that indeed EOB(oo) 

as asserted. By renewal theory, EOB (u) ~ EOB (00) and uniform integrability 

follows. 

lS 

Cl 

Lemma 5.2 Subject to (5.10), it holds for all continuous functions f,g with 

f(oo) = 0, g(b) =O(b) that 
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Proof For 80 + 0 (rather than 80 to) and g bounded this is just the continu

ous time analogue of Lemma 3 of Siegmund (1979) (similar arguments can be found 

in Siegmund (1975) and Asmussen (1982». The case 80 t 0 can be treated in a 

similar manner by a conditioning argument or by invoking 81 and Corollary 3.1. 

We omit the details. That the conclusion also holds for g(b) = O(b) now follows 

by the uniform integrability in Lemma 5.1. 0 

Returning to (5.13), the r.h.s. behaves like 

(5.14) 

using Lemma 5.2. The last term lS approximately 

(5.15) 

Combining (5.13) - (5.15) we get the desired refinement of (5.12), 

(5.16) 

E y3 
+ 1. _0 __ 

u 6E y2 
o 

3 
1 EOY 

exp{ - h(;\, 0 Cl + - 2)} 
u 3E Y o 
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To arr~ve at (5.8), let 

(34) from (33) in Siegmund (1979) pp. 712-713. Again, (5.9) follows by letting 

T ~ 00 and a formal verification is omitted. 

We now turn to the comparisons with the exact values for the PiE case, 

examples of which are given in Figures 4 - 6. 

Figure 4 
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Considering first (5.4), (5.5), Grandell (1977) shows that the fit of (5.5) 

is best for u not too large (i.e., l/J(u) not too small), but even then his 

numerical results are rather disappointing. The present investigation of (5.4) 

substantiates this. The fit is quite unacceptable if p = 0.2, p = 0.5 or u lS 

large, somewhat better if p = 0.8 or 0.9 and u is moderate. The best agree-

ment in the entire set of values considered is the one in Figure 6. The rate of 

convergence of the error of (5.4) to zero as p tl lS given in Table 4 and is 

very slow. 

Table 4 Relative error (%) of (5.4) at the 50% fractile of (4.2) 

--- a=l/J(u) 50% 10% 5% 1% 

p ~ 
0.50 100 - 368 471 896 

0.60 67 307 236 302 541 

0.70 43 120 147 185 311 

0.80 25 59 83 102 160 

0.85 18 39 58 70 106 

0.90 11 24 36 43 63 

0.92 8.7 19 28 33 48 

0.94 6.4 14 20 24 34 

0.96 4.2 8.7 13 15 22 

0.98 2.0 4.2 6.3 7.5 10 

These findings are in agreement with similar studies of heavy-traffic 

approximations for queues. E.g. de Smit (1982) reports that the relative error 

of an approximation in a similar spirit forthemeanwaitinacertainmulti-server 

queueing system is still 10% for the value p = 0.99 of the traffic intensity, 

which is quite unrealistically close to one. 

The approximations (5.6), (5.7) behave much better. This may be somewhat 

surprising, since one might feel that they are not much more than a variant of 

(5.4), (5.5). We have no really satisfying explanation for this, but one might 

remark that the relevancy of the Po-distribution for large deviation results 
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~s well-known, cf. e.g. Bahad.ur & Ranga Rao (1960). The fit is still quite un-

satisfactory for p = 0.5, but rather good for p = 0.8, 0.9 and at least some 

values of u. Concerning tail behaviour, note that the ratio of (5.7) to the 

exact value is 

(5.17) 
! ! 2 

-2(1-p2)u -(l-p)u -(1-p2) u 
e /pe =e /p 

That is, roughly the approximations give slightly too large values for u small 

and much too small values for u large. However, from this point of view all 

u-values considered in our examples are moderate. 

The rate of convergence of the error to zero as p t 1 ~s illustrated by 

Table 5. 

Table 5 Relative error (%) of (5.6) at the 50% fractile of (4.2) 

~ Cl =ljJ (u) 50% 10% 5% I 1% 

p ~ I 
0.50 100 - 80 46 - 1.9 

0.60 67 270 47 28 - 3.7 

0.70 43 95 28 17 - 3.8 

0.80 25 43 15 9.0 - 3.1 

0.85 18 28 11 6.2 - 2.4 

0.90 11 16 6.5 3.8 - 1. 7 

0.92 8.7 12 5.0 2.9 - 1.4 

0.94 6.4 8.9 3.7 2.1 - 1.1 

0.96 4.2 5.7 2.4 1.4 - 0.7 

0.98 2.0 2.7 1.2 0.7 - 0.4 
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The improvements (5.8), (5.9) have in contrast on quite outstanding fit. 

For p = 0.8.0.9 they are hardly discernible from the true values and also for 

p = 0.5, which one feels is quite far from the underlying condition (5.10), the 

agreement is very good. These claims are further substantiated by an examina-

tion of Table 6. 

Table 6 Relative error (%) of (5.8) at the 50% fractile of (4.2) 

--- et = lj! (u) 50% 10% 5% 1% 

p ~ 
0.50 100 - 1.9 2.6 4.1 

0.60 67 - 1.0 1.0 1.5 2.3 

0.70 43 - 0.2 0.5 0.7 1.2 

0.80 25 - 0.1 0.2 0.3 0.5 

0.85 17 - 0.1 0.1 0.2 0.2 

0.90 11 0.0 0.0 0.1 0.1 

0.92 8.7 0.0 0.0 0.0 0.1 

0.94 6.4 0.0 0.0 0.0 0.0 

0.96 4.2 0.0 0.0 0.0 0.0 

0.98 2.0 0.0 0.0 0.0 0.0 

The fit does not significantly change with u, which can be understood by for-

ming the ratio analogous to (5.17) which for the general case is 

(5.18) 

where C lS the Cramer-Lundberg constant. That lS, the functional dependence 

on u lS asymptotically correct and the degree of accuracy to be expected for 

lj!(u) small can be judged to some extent by comparing the r.h.s. of (5.18) to 

one. 

These highly promising results for the Poisson/exponential case motivate, 

of course, strongly to look into general claim size distributions, at least for 

T = = . We shall here only treat one example, viz. the gamma case 
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(5.19) <P (13) = (1 - bS) -l/b 

considered by Grande11 & Segerdah1 (1971). For b = 10,100 and n = 10% (i.e. 

p = 1/1.1 = 0.9l) some comparisons can be found in Tables 7 - 8. 

Table 7 1fJ (u) and approximations for n = 10% and (5.19) with b = 10 

exact,C-L 
u and (5.9) (5.5) (5.7) 

100 0.17668 0.16232 0.19015 

200 0.03530 0.02635 0.03616 

300 0.00705 0.00428 0.00687 

400 0.00141 0.00069 0.00131 

500 0.00028 0.00011 0.00025 

Table 8 1fJ(u) and approximations for n = 10% and (5.19) with b = 100 

u exact C-L(3.1) (5.5) (5.7) (5.9) 

300 0.52114 0.52100 0.55208 0.58257 0.52101 

600 0.30867 0.30866 0.30479 0.33939 0.30867 

900 0.18287 0.18287 0.16827 0.19771 0.18287 

1200 0.10834 0.10834 0.09290 0.11519 0.10834 

1500 0.06418 0.06418 0.05129 0.06710 0.06418 

1800 0.03803 0.03803 0.02832 0.03909 0.03803 

2100 0.02253 0.02253 0.01563 0.02277 0.02253 

2400 o .0l335 0.01335 0.00863 0.01327 0.01335 

2700 0.00791 0.00791 0.00476 0.00773 0.0079l 

3000 0.00468 0.00468 0.00263 0.00450 0.00468 

The exact values and the Cramer-Lundberg approximation are taken from 

Grande11 and Segerdah1 (1971), (5.5) from Grande11 (1977) while the rest of 

the tables have been produced on a desk calculator using Grande11 and Seger-

dah1' s computations of and the explicit expression Y =O_pb/(b+1»/b 
o 

(the solution of the transcendental equations (3.3) may in general be some-

what laborious). These tables substantiate the above discussion. It ~s seen 

that (5.5) is only reasonable for moderate values of u, while the tail be-

haviour of (5.7) is considerably better. The Cramer-Lundberg approximation 
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(which is exact in the PiE case considered so far) and (5.9) nearly coincide 

and both provide a beautiful fit. 
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6. THE ASYMPTOTIC BEHAVIOUR OF ~(u,T) as T ~ = 

We shall here briefly comment on a refinement of (3.2), v~z. a formula of the 

type 

(6.1) 
-3/2 -YOu-Y2T 

\ji(u,T)~\ji(u)-D(u)T e T~oo 

where u and the other parameters are fixed. A relation of this type is highly 

expected also from random walk analogues (Veraverbeke and Teugels, 1972/73), 

from Teugels (1979) and from convergence rate results for queues as related to 

the concept of relaxation time (Cohen, 1982, pp. 179-181, 600-614 or Prabhu, 

1965). A rigorous proof and an explicit evaluation of D(u) was, however, 

first provided very recently by Teugels (1982). 

The various illustrations of the shape of \ji(u,T) presented so far indi-

cate that (6.1) could hardly be an useful approximation for small or moderate 

T. E.g. (6.1) is a concave function of T and yields even negative values for 

small T. Also the problem of estimating ~ (u) - ~ (u, T) accurately for large T 

is hardly practical since the relative error is then small anyway. In view of 

the role played by relations like (6.1) in the literature and their mathemati-

cal beauty it is, however, of some interest to present some numerical illustrations. 

Considering again the PiE case, it ~s straightforward to check from Teugels 

(1982) that 

(6.2) 
1/4 I 

D(u) / 12 (1+p 2u) 
2n 2 (l-p 2) 

The numerical comparisons show that indeed ~(u,T) has to be very close to 

~(u) before (6.1), (6.2) provide any reasonable fit. Two examples are given 

in Figures 7 - 8 . 
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Figure 8 
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The corresponding figures for p= 0.5,0.8,0.9 and all values of 1/J(u) look 

all very much the same as Figure 8, though maybe the convergence becomes slight

ly faster as p increases and 1/J(u) decreases. Thus Figure 8 represents the 

best agreement ln all set of values considered. The convergence is even slower 

if p = 0.2 as ln Figure 7. This illustrates once more that while we have ex

hibited approximations (viz. (5.8), (5.9» with a very good fit for p ~ 0.5 , 

the situation is less settled for small values of p. Presumably p = 0.2 lS 

much too small to be of interest in risk theory but this is by no means so, how

ever, in the queueing setting. 
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7. COMPUTATIONAL ASPECTS 

Various methods are available for computing the true value of ~(u,T) for the 

PiE case, but they all invariably seem to require numerical integration. The 

approach of Seal (1972a) is to use an integral formula (e.g. Takacs, 1967, 

p. 152) involving Bessel functions which can then be computed by a further nu-

merical integration or, as Seal does, by polynomial approximation. Another ob-

V10US idea would be to invert (4.3) numerically. We have here taken yet a 

third approach, viz. to express 
- (l-p)u 

~(u) -~(u,T) =pe -Hu,T) as an inte-

gral of elementary though complicated function (essentially iterated trigono-

metric functions), 

(7.1) 
1 1T 

~(u) -~(u,T) =- f f(e)de , 
1T 0 

I I I 

fee) = exp{2p2T cos e - (1 + p)T + U(p2 cos e - 1) }/(l- p - 2p 2 cos e) 

! !! 
• [p sin (up 2 sin e + 2 e) - p 2 co S ( up 2 sin e + 2 e)] . 

To derive (7.1), it is convenient to rely on the queueing interpretation 

(2.3). If the queue length Q(T) 1S N, then V(T) 1S the residual service 

time of the customer being served plus the service times of the N-l remaining 

ones, i.e. Erlangian with parameter N. Thus 

= = N-l 
(7.2) 

x -x 
P(V(T) >u) = L P(Q(T) =N) f (N-l)! e dx 

N=l u 

= N-l k = k 
L P(Q(T) = N) L e -u kU '. = L e -u uk,P(Q(T) ~ k + 1) 

N=l k=O k=O . 

Now let 

1T 

I J. (x) 1 fex cos e cos je de 
1T 0 

denote the modified Bessel function of jth order (Olver, 1965) and note that 
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00 00 N/2 1 
I: pj/2coSJ8=Re I: (p!e i8 )j=p- (cosN8-P1

2 cos (N-l)8) 
j =N j=N l-p-2p:2 cos 8 

Hence (Prabhu, 1965) 

(7.3) 

'If 1 
__ e-(1+P)T{pN 1 2p2Tcos8 1 

+2 fe /(l-p - 2p2 cos 8) 
'If 0 

• [p (N+l)/2 cos (N+l)8 - p (N+l)/2 cos (N -1)8]d8} 

A further application of Euler's formulas yields 

(7.4) 00 uk k/2 UP!cos8 1 
I: kT P cos(k+2)8=e . cos(up 2 sin8+28) 

k=O 

Inserting (7.3) in (7.2), the -(l+p)T k+l 
e p terms sum to P(V(oo»u) =1J!(u) 

and a calculation similar to (7.4) for the last term in (7.3) produces (7.1). 

The integrand f(8) ln (7.1) oscillates quite rapidly in particular for u 

large. A division was therefore made of (O,'If) into subintervals (ak,bk) ln 
1 b 

which up 2 sin 8 oscillates at most 'If/2 and f kf was evaluated by the ex-
ak 

tended Simpson's rule, Davis and Polonsky (1965) , with S = 32,64,128, ... panels. 

To estimate the error, (ak,bk) was further subdivided into intervals 

(ake.' bke.) of each 32 panels of length hk 

judged by 

(7.5) 
16 h5 

I: max --:-9 O=--k_.. I f 1111 (8) I 
k,l akl<8<bkl 

and an upper bound on the error 

with f"" (8) evaluated numerically at the grid points. The value of S was 

finalized when either S = 512 or the relative error as judged by the ratio 8 
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of (7.5) to the corresponding evaluated value of 1/J(u,T) came below a spec~-

fied value E: • For Set A of tables, E: was set to !%. The needed value of S 

was only ln one of the 448 cases 512 and in most of the cases 64. For Set B of 

tables, E was set to ! %" . 2 

The computations were carried out ~n Pascal (17 significant figures) at the 

Regional Computing Center, University of Copenhagen, on their Univac 1181 ma-

chine. As check, a testprogram reproducing Table 2 of Seal (1972a) for 

1 -1/J (u, T ) was written. Oomparison showed only ln a few cases discrepancies op 

beyond the accuracy claimed by the two methods. This was mainly for large Top' 

where we would think that the present method is superior since it more trans-

parent1y reflects the convergence of 1/J(u, T) to 1/J (u) E.g. for T = 2000 op 

Seal reports a number of values with 1/J(u,T ) >1/J(u) which ~s impossible, while op 

for T =1000,u=110 Seal has l-1/J(u,T) =0.99996 whereas we got 0.99998 op op 

with an error estimate much below 10-5 (a further justification that this H 

the true value is the coincidence with (4.2) and u being very large). 

Here clearly the relative deviation on 1 -1/J(u, T ) is unimportant, but that on 
op 

1/J( u, T ) no t • op 
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Appendix. Sample from Set A of tables. 

The upper value T* of T is chosen as Au+2.7w, cL (4.2),andtheconsi-

dered values T=Tk are k=1,2,3,4,8,12, ... ,96,100% of 

all cases {1jJ(u,Tk)} cover [O,1jJ(u)] reasonably well. 

T*. This makes in 

Table 9 1J;(u, T) N (u), approximations!1/! (u) (only values> 0), panels and estimate 

8(%",) of the error on the true value. p = 0.8, 1jJ(u) = 1% . 

k Tk exact (4.2) (4.7) (5.4) (5.6) (5.8) (6.1) S 28 -

1 3.4 0.000 0.096 0.046 0.000 0.000 0.000 256 3 
2 6.8 0.001 0.105 0.059 0.000 0.000 0.002 128 3 
3 10.3 0.003 0.114 0.073 0.000 0.000 0.005 128 1 
4 13.8 0.009 0.124 0.088 0.002 0.000 0.012 64 4 
8 27.5 0.071 0.171 0.158 0.091 0.028 0.077 64 0 

12 41. 3 0.181 0.227 0.244 0.359 0.121 0.187 64 0 
16 55.1 0.305 0.293 0.341 0.713 0.250 0.310 64 0 
20 68.8 0.423 0.366 0.441 1.069 0.379 0.427 64 0 
24 82.6 0.527 0.444 0.538 1.392 0.494 0.530 64 0 
28 96.4 0.614 0.525 0.625 1.672 0.590 0.617 64 0 
32 110.1 0.687 0.605 0.697 1.909 0.668 0.689 0.231 64 0 
36 123.9 0.746 0.680 0.752 2.107 0.730 0.748 0.447 64 0 
40 137.7 0.794 0.749 0.792 2.273 0.779 0.795 0.595 64 0 
44 151.4 0.833 0.809 0.820 2.411 0.818 0.834 0.699 64 0 
48 165.2 0.864 0.859 0.840 2.526 0.849 0.865 0.773 64 0 
52 179.0 0.890 0.900 0.856 2.621 0.873 0.890 0.828 64 . 0 
56 192.7 0.910 0.931 0.871 2.701 0.892 0.911 0.868 64 0 
60 206.5 0.927 0.954 0.887 2.768 0.908 0.927 0.898 64 0 
64 220.3 0.940 0.971 0.904 2.825 0.920 0.941 0.920 64 0 
68 234.0 0.951 0.982 0.922 2.872 0.929 0.951 0.938 64 0 
72 247.8 0.960 0.989 0.939 2.912 0.937 0.960 0.951 64 0 
76 261.6 0.967 0.994 0.955 2.945 0.943 0.967 0.961 64 0 
80 275.3 0.973 0.997 0.968 2.974 0.947 0.973 0.969 64 0 
84 289.1 0.978 0.998 0.978 2.998 0.951 0.978 0.975 64 0 
88 302.9 0.982 0.999 0.986 3.018 0.954 0.982 0.980 64 0 
92 316.6 0.985 1.000 0.991 3.035 0.957 0.985 0.984 64 0 
96 330.4 0.988 1.000 0.995 3.050 0.959 0.987 0.987 64 0 

100 344.2 0.990 1.000 0.997 3.063 0.960 0.990 0.990 64 0 
<Xl 1.000 1.000 1.000 3.140 0.967 1.000 1.000 



38 

REFERENCES 

Arfwedson, G. (1953). Research in collective risk theory. The case of equal 

risk sums. Skand. Aktuar Tidskr. ~, 1-15. 

Asmussen, S. (1981). Time-dependent approximations ~n some queueing systems 

with imbedded Markov chains related to random walks. Preprint 1981 

no. 6. Institute of Mathematical Statistics, University of Copenhagen. 

Asmussen, S. (1982). Conditioned limit theorems relating a random walk to its 

associate, with applications to risk reserve processes and the GI/G/l 

queue. Adv. Appl. Probab. 1±, 143-170. 

Bahadur, R.R. and Ranga Rao, R. (1960). On deviations of the sample mean. 

Ann. Math. Statist. 31, 1015-1027. 

von Bahr, B. (1974). Ruin probabilities expressed ~n terms of ladder height 

distributions. Scand. Actuarial J., 190-204. 

Beard, R.E. (1975). Ruin probability during a finite time interval. Astin 

Bull. ~, 265-271. 

Beekman, J.A. and N.L. Bowers, Jr. (1972). An approximation to the finite 

time ruin function. Skand. Aktuar Tidskr. 55, 41-56; ibid. 22, 128-137. 

Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. 

Bohman, H. (1974). Risk theory and Wiener processes. Astin Bull. l, 96-99. 

Cohen, J.W. (1982). The Single Server Queue. North-Holland, Amsterdam. 

Cramer, H. (1955). Collective risk theory. The Jubilee volume of Forsakrings

bolaget Skandia, Stockholm. 

Davis, P.J. and Polonsky, I. (1965). Numerical interpolation, differentiation 

and integration. Handbook of Mathematical Functions (Abramowitz-Stegun 

ed.), 875-924. Dover, New York. 

de Smit, J.H.A. (1982). Numerical results for many-server queues. 11. Confe

rence on Stochastic Processes and their Applications, Clermont-Ferraud. 

Feller, W. (1971). An Introduction to Probability Theory and its Applications 

11 (2.ed.). Wiley, New York. 



39 

Gnedenko, B.V. and Kolmogorov, A.N. (1954). Limit Distributions for Sums of 

Independent Random Variables. Addison-Wesley, Reading. 

Grandell, J. (1974). A remark on Wiener process approximation of risk pro

cesses. Astin Bull. 2, 100-101. 

Grandell, J. (1977). A class of approximations of ruin probabilities. Scand. 

Actuarial J., Suppl.,37-52. 

Grandell, J. (1978). A remark on "A class of approximations of ru~n probabili

ties". Scand. Actuarial J., 77-78. 

Grandell, J. and Segerdahl, C.-O. (1971). A comparison of some approximations 

of ruin probabilities. Skand. Aktuar Tidskr. 54, 143-158. 

Hel land , I. (1982). Central limit theorems for martingales with discrete or 

continuous time. Scand. J. Statist. i, 79-94. 

Iglehart, D.L. (1969). Diffusion approximations in collective risk theory. 

J. Appl. Probab. ~, 285-292. 

Kingman, J.F.C. (1963). Ergodic properties of continuous-time Markov processes 

and their discrete skeletons. Proc. London Math. Soc. 12, 593-604. 

Kuchler, I. and Kuchler, U. (1981). Analytical aspects of exponential families 

of distribution functions. Math. Nachr. 101, 153-164. 

Lindvall, T. (1973). Weak convergence of probability measures and random func

tions in the function space D[O,oo). J. Appl. Probab. 10, 109-121. 

Neveu, J. (1972). Martingales a Temps Discret. Masson, Paris. 

Olver, F.W.J. (1965). Bessel functions of integer order. Handbook of Mathema

tical Functions (Abramowitz-Stegun ed.), 355-434. Dover, New York. 

Prabhu, N.U. (1961). On the ruin problem of collective risk theory. Ann. Math. 

Statist. li, 757-764. 

Prabhu, N.U. (1965). Queues and Inventories. Wiley, New York. 

Prabhu, N.U. (1980). Stochastic Storage Processes. Queues, Insurance Risk, 

and Dams. Springer, New York Heidelberg Berlin. 



40 

Seal, H.L. (1972a). Numerical calculation of the probability of ru~n ~n the 

Poisson/Exponential case. Mitt. Verein Schweiz. Versich. Math. ~, 

77-100. 

Seal, H.L. (1972b). Risk theory and the single server queue. Mitt. Verein 

Schweiz. Versich. Math. ~, 171-178. 

Seal, H.L. (1974). The numerical calculation of U(w,t), the probability of 

non-ruin in an interval (O,t). Scand. Actuarial J., 121-139. 

Segerdahl, C.O. (1955). When does ruin occur ~n the collective theory of risk? 

Skand. Aktuar Tidskr., 22-36. 

Segerdahl, C.O. (1959). A survey of results ~n the collective theory of risk. 

Probability and Statistics - the Harald Cramer Volume (Grenander ed.), 

279-299. Almquist and Wikse1l, Stockholm. 

Siegmund, D. (1975). The time until ruin in collective risk theory. Mitteil. 

Verein. Schweiz. Versich. Math. 12, 157-166. 

Siegrnund, D. (1979). Corrected diffusion approximations ~n certain random walk 

problems. Adv. Appl. Probab. g, 701-719. 

Skorohod, A.V. (1965). Studies in the Theory of Random Processes. Addison

Wesley, Reading. 

Takacs, L. (1967). Combinatorial Methods ~n the Theory of Stochastic Processes. 

Krieger, Huntington. 

Teugels, J.L. (1977). On the rate of convergence of the max~mum of a compound 

Poisson process. Bull. Soc. Math. Belgique 39, 205-216. 

Teugels, J.L. (1982). Estimation of ruin probabilities. Insurance: Mathema

tics and Economics l, 163-175. 

Thorin, O. and Wikstad, N. (1976). Calculation of ru~n probabilities when the 

claim distribution is lognorrnal. Astin Bull. ~, 231-246. 

Veraverbeke, N. and Teugels, J.L. (1975/76). The exponential rate of conver

gence of the distribution of the maximum of a random walk. J. Appl. 

Probab. ~, 279-288; ibid. !i, 733-740. 



41 

Whitt, W. (1974). Heavy traffic limit theorems for queues: A survey. Mathema

tical Methods in Queueing Theory (Clarke ed.). Lecture Notes in Econo

mics and Mathematical Systems ~, 307-350. Springer, New York. 

Whitt, W. (1980). Some useful functions for functional limit theorems. Math. 

Opus. Res. 2. 67-81. 



PREPRINTS 1981 

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE 

INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, 

2100 COPENHAGEN 0, DENMARK. 

No. 1 Johansen, S~ren: Asymptotic Inference in Random Coeffi-
cient Regression Models. 

No. 2 Asmussen, S~ren: On the Role of a Certain Eigenvalue in 
Estimating the Growth Rate of a Branching Process. 

No. 3 Lauritzen, Steffen.: Time Series Analysis in 1880. A 
Discussion of Contributions made by T.N. Thiele. 

No. 4 Asmussen, S~ren: Conditioned Limit Theorems Relating a 
Random Walk to its Associate, with Applications to 
Risk Reserve Processes and the GI/G/l Queue. 

No. 5 Johansen,S~ren: The Statistical Analysis of a Markov 
Branching Process. 

No. 6 Asmussen, S~ren: Time - Dependent Approximations in some 
Queueing Systems with Imbedded Markov Chains Related 
to Random Walks. 

No. 7 Skovgaard, Ib M.: A Second - Order Investigation of 
Asymptotic Ancillarity. 

No. 8 Rootzen, Holger: The Rate of Extremes of Stationary 
Normal Sequences. 

No. 9 Skovgaard, Ib M.: Large Deviation Approximations for 
Maximum Likelihood Estimators. 

No. 10 Jensen, Ulla Funck: A Stochastic Projection Model with 
Implications for Multistate Demography and Manpower 
Analysis. 

No. 11 Johansen, S~ren: An Extension of Cox's Regression Model. 

No. 12 Skovgaard, Ib M.: Edgeworth Expansions in Statistics. 



PREPRINTS 1982 

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE 

INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5, 

2100 COPENHAGEN 0, DENMARK. 

No. 1 Holmgaard, Simon and Yu, Song Yu: Gaussian Markov Random 
Fields Applied to Image Segmentation. 

No. 2 Andersson, Steen A., Br~ns, Hans K. and Jensen, S~ren 
Tolver: Distribution of Eigenvalues in Multivariate 
Statistical Analysis. 

No. 3 Tjur, Tue: Variance Component Models in Orthogonal 
Designs. 

No. 4 Jacobsen, Martin: Maximum-Likelihood Estimation in the 
Multiplicative Intensity Model. 

No. 5 Leadbetter, M. R.: Extremes and Local Dependence in 
Stationary Sequences. 

No. 6 Henningsen, Inge and Liest~l, Knut: A Model of Neurons 
with Pacemaker Behaviour Recieving Strong Synaptic 
Input. 

No. 7 Asmussen, S~ren and Edwards, David: Collapsibility and 
Response Variables in Contingency Tables. 

No. 8 Hald, A. and Johansen, S.: On de Moivre's Recursion 
Formulae for Duration of Play. 

No. 9 Asmussen, S~ren: Approximations for the Probability of 
Ruin Within Finite Time. 


