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SUMMARY 

Various definitions of the collapsibility ofa· mel'archicallog-linearmadelfor a 

multidimensional contingency table are considered and shown to be equivalent. 

Necessary and sufficient conditions for collapsibility are found in terms of the 

generating class. It is shown that log-linear models are appropriate for tables 

with response and explanatory variables if and only if they are collapsible onto 

the explanatory variables. 

Some key words: Collapsibility; Contingency table; Graphical models; Interac­

tion graph; Log-linear models; Response variables. 

1 



1. INTRODUCTION AND PRELIMINARIES 

Two topics in the field of hierarchical log-linear models for multidimensional 

contingency tables - collapsibility and response variable models - are considered 

and shown to be closely related. 

Some models have the property that relations between a set of the classifying 

factors may be studied by examination of the table of marginal totals formed by 

summing over the remaining factors. Such models are said to be collapsible onto 

the given set of factors. Collapsibility has important consequences for hypothesis 

testing and model selection. We consider various definitions of collapsibility and 
, 

show their equivalence. Furthermore, necessary and sufficient conditions for 

collapsibility are found in terms of the generating class. 

Many tables analysed in practice involve response variables. It is common 

practice, however, to ignore the distinction between response and explanatory 

(background) variables. Simple examples (one of which is given in section 3) 

suffice to show the pitfalls of this approach: first, that inappropriate models may 

be used, and second that natural and relevant models that are not log-linear may 

be overlooked. This article characterises appropriate and inappropriate log-li­

near models for tables with response variables and some alternative approaches 

for the analysis of such tables are briefly considered. 

We consider a multidimensional contingency table N based on a set of classifying 

factors r. For a given subset a of r we are interested in the table of marginal 

totals ~, that is to say the table of cell counts summed over the remaining 

factors ac (the complement of a in r). We identify a hierarchical log-linear model 

L (Le., the set of probabilities pEL) with its generating class, whose elements 

(generators) are given in square brackets: thus for example the model [ABHBCD] 

for a 4-way table corresponds in the usual notation to: 
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We denote an arbitrary cell in N as i and the corresponding marginal cell as ~. 

We denote the number of objects in cell i as n(i) and the number of objects in the 

marginal cell i" as n(~). We are interested in the probabilities p(i) of an object 

falling in cell i, and the corresponding marginal probabilities p(~) formed by 

summing p(i) over ac. Similarly m(i) denotes the expected number of objects in 

cell i and and m(~) the corresponding marginal quantity. 

We assume the distribution of the table is multinomial: 

Pr[N = {nCin] = {n!lIIjnCi)! }IIjp(i)n(j) 

where n is the total number of objects. It is well known that the maximum 

likelihood estimate p of pEL is given as the unique solution to the system of 

equations: 

i) P E L 

ii) p(~) = n(~)/n 'if generators c of L 

For a given log-linear model L we define the interaction graph of L as the un­

directed graph whose vertices correspond to the classifying factors in rand 

whose edges are given by the 2-factor interactions present in the model. See for 

example Figure 1. 

insert Figure 1 about here 

One may interpret the interaction graph in the following way (Darroch, Laurit­

zen and Speed, (1980»: if two disjoint subsets of vertices a1 and a2 are separated 

by a subset a3 in the sense that all paths from a1 to a2 go through a3, then the 

variables in a1 are conditionally independent of those in a2 given the variables in 
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We say that two vertices in a graph are adjacent if there is an edge between them 

and we define the boundary of a subset a of r, written aa, as those vertices that 

are not in a but are adjacent to some vertex in a. The closure of a is defined as the 

union of a and its boundary and is denoted It. A set a is called complete if all 

possible edges between the vertices of a are present in the graph. 

We can define an equivalence relation on the graph as IX - (3 iff there is a path 

connecting IX and (3. The subgraphs induced by the equivalence relation are 

termed the connected components of the graph. 

Clearly, many different log-linear models may have the same interaction graph, 

as long as they contain the same 2-factor interactions. Models with the maximal 

permissible higher-order interactions corresponding to a given graph are termed 

graphical models: it is shown (ibid.) that all decomposable (direct) models are 

graphical. 

2. COLLAPSIBILITY 

For a given hierarchical log-linear model L defined on N we define its restriction 

La on Na in the following way: the generating class of La is formed by deleting all 

occurrences of factors in aC in the generating class of L, and then removing 

unnecessary elements. Thus if a = (A,B,C), and L = [AB][BCD][AD], then 

La = [AB][BC][A] = [AB][BC]. 

Write the probability of cell ia under La as say PaCi,). 
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Definition 

L is collapsible onto a if one of the two following equivalent properties hold: 

(i) for all p = p(i)EL it holds that p(ia)ELa' 

(ii) for all \Z, p(\z) = Pa(\z)· 

A further characterisation (in terms of S-sufficiency) and motivation is given in 

section 4, while some discussion of the concept is given at the end of this section. 

As justification, we give here only a proof of the equivalence of the criteria. To 

prove (ii)::} (i), note that if pE L is the true probability measure, then as n::}oo, 

P::} p and hence (since all p(\z) > 0) 

To prove (i)::} (ii), note that if c ~ a is contained in a generator, then 

p(ic) = n(ic)/n. But in conjunction with Pa ELa these are the equations determining 

Pa · Thus p(\z)ELa implies Pa(\z) = p(ia)' 

Note in connection with (i) that always La ~{p(ia):PEL} . 

. Definition. 

Two subsets a and b form a decomposition of r relative to a hierarchicallog-li­

near model L if a U b = r, a and b are separated by anb, and an b ~ c for some 

generator c of L. 

Theorem 2.1 

If a and b form a decomposition of r relative to L then 
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Proof 

(Haberman, 1974, or Lauritzen, 1979). 

Corollary 2.2 

If a(ac) £; c for some generator c of L, then L is collapsible onto a. 

Proof (Lauritzen, 1979) 

a and b = aC form a decomposition of r relative to L exactly when a(ac) £; c for 

some generator c of L. 

Theorem 2.3 

A hierarchical log-linear model L is collapsible onto a if and only if the boundary 

of every connected component of aC is contained in a generator of L. 

Proof 

Sufficiency: let b be a connected component of aC • Then the stated condition is 

easily seen to hold for LbC as well and collapsibility follows by applying Corollary 

2.2 to each connected component in turn. 

Necessity: suppose that for some connected component b of aC , ab ~c for all 

generators c of L. Write b = {zl" .. zp}. For each factor in ab choose an adjacent 

factor in b and write accordingly ab = {Yrs} where Yrs is adjacent to zr' 1 ~ r ~ p, 

s = 1. .. sr' Define for Zi,Zj adjacent 

AZ;Zj =)0 
loo 

Z· = z· = 1 or z· = z· = 2 1 J 1 J 

otherwise 

and 

otherwise 
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If u,v ... ;k,l... are the factors in aC-b, a-ab respectively, define 

where c(8) is a normalizing constant. Then the marginal distribution of the 

factors in a is readily seen to be of the form 

=d(8)[1+exp{8#(r,s:Yrs=1)}1 (1) 

Now let m be the number of factors in ab and suppose that (i) holds. Then the 

m-factor interaction between the yrs vanishes, and hence the cross-product ratio 

between 11...1 and 22 ... 2 is unity, ie. 

(2) 

where SI = {Y:Yrs = 1 or 2, Er,sYrs even}, and S2 = {Y:Yrs = 1 or 2, Er,sYrs odd}. 

Combining (1) and (2), d(8) cancels and with ~ = eO we obtain 

IT (1 I:k)(~) - IT (1 /-k)l:) 
k,cm k even + <; - k,cm k odd + <; -...;:: , ~ , 

which cannot hold for all ~ (e.g. the constant term is 1 on the Lh.s. and 2 on the 

l.h.s). Hence (i) fails. 

Before proceeding further, we give some remarks and examples to illustrate the 

theorem. Note first that the connected components describe the maximal parti­

tioning of aC into subsets which are conditionally independent given the factors in 

a. Also, if L is graphical, the condition simply means that the boundary of every 

connected component is complete. 
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examples 

Let r = (A,B,C,D), a = (A,B,C) and L = [ABHBC][AC][AD][BDHCD]. Then the 

boundary of aC = (D) is (A,B,C) and since the term ABC is not contained in a 

generator of L, L is not collapsible onto a. 

Let a=(A,B,C), b=(D,E) and L= [AB][BCHAC] [ABDHBCE]. Then the 

components of b are not connected, the boundary of D is (A,B), the boundary of 

Eis (B,C), and since [AB] and [BC] are contained in generators of L, L is collap­

sible onto a. 

Corollary 2.4 

If L is collapsible onto a, then 

where the product is over connected subsets b of ac. 

Proof 

Apply Theorem 2.1 to each connected subset in turn. 

Expressed loosely, collapsibility onto a subset a means that inference concerning 

the factors in a can be performed in the marginal table Na • Suppose for example 

that two models Ll £ L2 both are collapsible onto a and that they differ in terms 

involving the variables in a (but not included in the boundary of a connected 

component of ac) only. Then the likelihood ratio test statistic for testing Ll 

against L2 is 

0 2 = 2I:jn(i)ln(ml(i)/m2(i» 

= 2I:jn(i)ln(pl(i)/p2(i» 

=2I:j n(~)ln(pl(i,,)lp;(~» 
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from Corollary 2.4, i.e. the test can be performed in the marginal table Na • The 

same applies to the Pearson test for goodness-of-fit. Since the marginal table 

always has larger cell counts than the whole table, this enables asymptotic results 

to be cited with more confidence. Moreover we note that the tests do not depend 

on the model terms involving variables in aC • This gives rise to a property analo­

gous to orthogonality in normal linear models, as illustrated in the following 

example. 

Consider the model L = [ABC][BCD] (see Figure 2). 

insert Figure 2 about here 

Clearly, L is collapsible onto (A,B,C) and (B,C,D), as are all hierarchical sub­

models of L that contain the B.C interaction. Thus the sets of terms 

Sj = (ABC,AB,AC,A) and S2 = (BCD,BD,BC,D) are such that the tests for 

whether a term in the one set is zero are the same irrespective of which terms in 

the other set are present in the model. In this way model selection can be put on a 

more secure foundation. Strategies for model selection ought to take this proper­

ty into account since the number of tests which it is necessary to perform can be 

greatly reduced. 

The definition of collapsibility given here is apparently stated for the first time 

in Lauritzen (1979) in the form (ii). Tolver Jensen (1978) has some related 

discussion from the point of view of hypothesis testing. Whittemore (1978) has 

defined collapsibility in terms of log-linear parameters, but the definitions are 

not directly comparable. In our opinion the definition given here is more general­

ly useful: the log-linear parametrisation is a mathematical convenience and little 

intrinsic interest is attached to the parameters themselves. 

9 



3. RESPONSE VARIABLES 

As a simple example, suppose that we have a 3-way table of counts of individu­

als, where S denotes sex, R denotes race, and A attitude to some question of 

topical interest, and where we suppose that the response A depends on both the 

individuals sex and race. If one performs a conventional analysis by choosing the 

log-linear model with the best fit, regardless of its interpretation, one may accept 

the model: 

However this model asserts that sex and race are conditionally independent given 

attitude, which is absurd. A more appropriate model is that sex and race are 

marginally independent. Birch (1963) considered this model: it has explicit 

maximum likelihood estimates given by: 

(3) 

but is not log-linear in the three variables. A closely related model also discussed 

by Birch (1963) specifies in addition to marginal independence that there is no 

3-factor interaction between the three variables. This has maximum likelihood 

estimates given by: 

where milk are the fitted values obtained by fitting the model of no 3-factor 

interaction to the whole table. Neither is this model log-linear . 

This illustrates that ignoring the distinction between response and explanatory 

variables has, as mentioned above, two dangers: first that inappropriate models 

may be used, and second that natural and relevant models that are not log-linear 
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may be overlooked. 

The class of appropriate models was defined by Goodman (1973). See also 

Fienberg (1980), ch. 7. To define the class, let a be the set of explanatory vari­

ables, and b the set of response variables. The joint density of (a,b) can be fac­

torised into a product of the marginal density of a and the conditional density of 

b given a: 

(4) 

The class of models is then defined by specifying a log-linear model M for the 

marginal density of a, and a log-linear model C for the conditional density of b 

given a. In practice we can fit M in the ordinary way to the table of marginal 

totals Na . C is fitted as a log-linear model for the whole table: since we are 

conditioning on a we must include all interactions between the variables in a. 

The fitted values for the final Goint) model J are then obtained as 

mJ(i) = mM(~)(mC(i)/n(~)) 

For example, the model whose fitted values are given in (3) has M = [S][R] and 

C=[SRA]. 

Inference concerning the marginal model and conditional model can be perfor­

med separately: useful here is the additivity of the residual deviances, which can 

easily be obtained: 

OJ = 2I:n(i)ln{ mJ(i)/n(i)} 

= 2I:n(i)ln[m M(ia)rn C(i)/ {n(~ )n(i) } ] 

= 2I:n(~ )In {m M(~)/ n(~) } + 2I:n(i)ln {ill C(i)/n(i) } 

=O~+O~ 
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The corresponding degrees of freedom are similarly additive. 

The present section addresses the question of when the joint model J is log-linear. 

This is important for several reasons. Firstly, it enables us to characterise ap­

propriate and inappropriate joint log-linear models for contingency tables with 

response variables. Secondly, having fitted a marginal and a conditional model 

to a table, it is useful to know when these can be combined to form a log-linear 

model, since these are more familiar and allow a better data reduction to suffici­

ent marginal tables. Thirdly, we can formulate model selection strategies based 

initially on joint log-linear models that may be more convenient to carry out in 

practice. 

Fix now a and let L be the set of hierarchical log-linear models for N, ~ be the 

set of hierarchical log-linear models for the marginal table Na, Ca the set of 

conditional models (ie. containing all interactions between the factors in a), and 

~ the set of joint density models generated from ~ and Ca' 

Theorem 3.1 

For L EL, L E ~ if and only if L is collapsible onto a. In that case M = La and 

C= [a]Ulg. 

Proof 

If LE~ then clearly pL(ia) = pM(i,,)EM so that collapsibility will follow from 

M£:La' That this is indeed the case can be seen, e.g., by taking c=pC(~Ii,,) 

independent of i", ~ in (4). Then cpM(i,,)EL for all pM(i,,)EM so that L must 

include at least the interactions in M and this implies immediately that M £: La . 

Conversely, suppose that L is collapsible onto a and define M = La and 

C = [a]UL;;c: Then if b l • :.bv are the connected components of aC, it is easily seen 

that 
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Forming the joint model J = (M,C) and using Corollary 2.4 shows that IV = pLo 

Hence L=JE~. 

Theorem 3.2-
For J = (M,C) E ~, J EL if and only if the boundary of every connected compo­

nent of aC in C is contained in a generator of M. In that case L = MUC;;Z. 

Proof 

Suppose that J = (M,C) coincides with the log-linear model L. Then L is collap­

sible and by Theorem 3.1 it follows that J coincides with the joint model (M' ,C') 

given by M' = La' C' = [a]ULac. Since (M,C) are uniquely determined, M' = M 

and C' = C. Thus the connected components of aC relative to C and L are the 

same and it is clear by collapsibility that abk ~ ck for generators ck of M,k = 1 ... v. 

Conversely if the stated condition holds, then the log-linear model L = MUC£iG is 

collapsible and by Corollary 2.4 

so that J = L is log-linear. 

example 

For r = {A,B,C,D,E}, let a= {A,B,C}, M= [AB][BC][AC] and 

C = [ABCJ[ABD][BCE]. Then J = (M,C) is hierarchical log-linear since the 

boundary of D, [AB], and the boundary of E, [BC] are contained in generators 

of M. By construction J = [AC][ABD][BCE]. 
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The conditions we have obtained for log-linear models to be appropriate as 

response variable models can in part be interpreted in terms of conditional 

independence. To see this, suppose for a given model L that La is graphical. If 

for some connected component b of aC , ab is not in a generator of L (or La)' it 

follows that ab is not complete in the interaction graph of L. Thus for two 

explanatory variables, e1 and e2 say, a set of response variables R and a (possibly 

empty) set of explanatory variables E, we obtain that e1 and e2 are conditionally 

independent given Rand E. Thus essentially all models that imply that two 

explanatory variables are conditionally independent given a (set of) response 

variables (and possibly other explanatory variables) are excluded as inappropria­

te. This reinforces and clarifies our intuition. 

In addition, when La is not graphical, other models are excluded. For example 

L= [ABHBCHAC][AD][BD][CD], where A,B and C are explanatory and D a 

response variable, is excluded, but this does not have a conditional independence 

interpretation. 

We note that three approaches can be adopted to the analysis of tables with 

response variables. 

Firstly, one can simply condition on the explanatory variables. This approach is 

appropriate when there is no interest in the mutual dependencies exhibited by the 

explanatory variables. It may be relevant, for example, when the explanatory 

variables are demographic, and better demographic information is available 

from other sources. 

Secondly, one can fit marginal and conditional models as described above. 

When a final model has been selected, theorem 3.2 can be cited to determine 

whether it is log-linear. 

Thirdly, and this may be the more convenient approach in practice, one may 

choose to remain within the class of appropriate log-linear models as long as 

possible. When a 'best' model has been chosen, it may be examined to see which 

marginal independence relations are not testable in the joint framework, and 

these may be tested in the marginal table. 
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We finally mention that the results are easily extended to the models discussed 

by Goodman (1973) and Fienberg (1980), where a sequence of sets a,bp ... bk is 

given. Here the variables in the set br (r = 1 ... k) are responses to the variables in 

the sets a" .br_p and themselves explanatory with regard to br+ I" .bk • This 

framework may for example be appropriate when the variables are measured in 

time sequence, and we exclude the possibility that a variable can depend on 

another variable measured at a subsequent point of time. 

Defining the sets do = a, dj = bjUdj_1 (i = 1.. .k), the class of models is defined by 

the equation 

where CO,C1",Ck are log-linear models defined on the appropriate marginal 

tables. The theorems of the previous section can easily be extended giving 

1) L EL is a response variable model iff it it is collapsible onto d j (i = O ... k-l). 

2) A response variable model J = (CO,C1 ... Ck) is log-linear iff the boundary of 

each connected component of br under Cr is contained in a generator of Cr_l , for 

r= l...k. 

4. S-SUFFICIENCY 

Let T = T(X) be statistics and suppose that the density of X factorises as 

Pe,~(x) = pit)p~(xlt) (5) 

where the parameters () (of the marginal distribution of T) and 1] (of the condi-
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tional distribution of T given X) are variation independent. Then T is called 

S-sufficient for (), cf. Barndorff-Nielsen (1978). The notion was introduced by 

Fraser (1956) for describing" ... sufficiency for the parameter of interest". 

Theorem 4.1 

A hierarchical log-linear model L is collapsible onto a if and only if for any n the 

marginal table Na is S-sufficient for p(~), or equivalently if and only if p(l) 

factorises as 

(6) 

where (),'I} are variation independent. 

Proof 

We first note that (6) is equivalent to S-sufficiency for n= 1. Suppose first that L 

is collapsible onto a. Then by Theorem 3.1 L = (M, C) and (4) shows immediately 

that (6) holds. S-sufficiency of Na for n> 1 follows now by elementary properties 

of sufficiency and conditioning along the following lines. Write 

N = 1(1) + ... + 1(n) where 1(k) is the table for individual k and similarly 

Na = 1a(1) + ... + .J;,(n). By (6), the joint density of the 1(k) is 

Since Na is sufficient for M, the first factor can be factorised according to 

Neyman's criterion and the S-sufficiency of Na , based on observation of the 1(k), 

follows easily. To obtain the conclusion based on observation of N, appeal once 

more to Neyman's criterion and the sufficiency of N for L. We omit the details. 

Suppose next that (6) holds. Since L always includes p with the factors in aC 

irrelevant, we can find 'I} such that p iia, Ii,,) = c independent of ia C , ~. Thus for any 

(), p(i) = CPoCi,,)EL by variation independence. But this implies PoC~)ELa' i.e. (i) 
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holds. 
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