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.. Summary: Extensions of classical extreme value theory to apply to stationary 
sequences generally make use of two types of dependence restriction: 
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exceedances. 

The-purpose of this paper is to investigate extremal properties when the 
local condition Cb) is omitted. It is found that, under general conditions, 
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to be largely described by a parameter here called the "extremal index" of the 
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1. INTRODUCTION 

Classical Extreme Value Theory discusses the possible limiting laws for the 

maximum 

Cl.lIt) 

of n independent identically distributed (i.i.d,) random variables (r.v.) as 

n + 00. Specifically it is shown that if M has a non-degenerate distribution 
n 

G i.e. if 

(1. 2) 
d 

P{a (M - b ) ~ x} + G(x) n n n 

for some constants a > 0, b then G must be one of the following classical 
n n 

types (in the sense that G(x) = H(ax*b) for some a > o,b where H is one of the 

listed distributions): 

Type I H(x) = 

Type 11 H(x) = 

= 

Type III H(x) 

= 

-x exp(-e ) 

--a 
exp(-x ) 

0 

a exp(-(-x) ) 

1 

_00 < x < 00 

x > 0 (a > 0) 

x ~ 0 

x ~ 0 

x > 0 

(a > 0) 

It may be shown that this result remains true (d [7], [9]) if the condition that 

the ~. be i.i.d. is replaced by the requirement that they form a stationary se-
1 

quence satisfying a very weak dependence restriction. This restriction, here 

referred to as the distributional mixing condition D{u ) is defined as follows. 
n 

Write F. (xl' .. x ) = P{~. ~ xl ... ~. ~ x } for the joint distribu-
11 ... i n 11 1 n n n 

tion function of ~. . .. ~. , and, for brevity, F. 
i (u) = F. i (u,u ... u) 

11 1 11 . . . 11 ... n n n 
for each n,i l . . . i , u . Let {u } be a sequence of constants. Then the sequence 

n n 

{~n} is said to satisfy D(un) if for each n,l and each choice of integers il, .. i p ' 



. (u) - F. 
Jp' n 11 

2 

. (u) F. . (u) I < Cl 0 
1p n J 1 ... Jp' n n,-l.. 

where Cl 0 + ° as n + 00 for some sequence {l }wi th l = o(n). 
n,-l..n n n 

In spite of the slightly complicated definition this condition is clearly 

much weaker than the standard forms of mixing condition (such as strong mixing) 

in that it requires only approximate independence of events A "from the past" 

and B "from the future" having the special, simple forms 

P 
A = n {~. 

r=l 1r 
~ u } 

n 

p' 
B = n (~. ~ u) . 

s=l J s n 

The specific form of the theorem referred to above (proved in [7], [9]), is 

as follows. 

Theorem 1.1. Let {~ } be a stationary sequence such that M = max{~l'" ~ } has n n n 

a non-degenerate limiting distribution G as in (1.2) for some constants a > O,b . 
n n 

Suppose that D(un) holds for all sequences un given by un = x/an+bn ; _00 < x < 00. 

Then G is one of the three classical types given above. 

Thus the condition D(u ) alone is sufficient to guarantee that the central 
n 

dassical result concerning the possible extremal types:, holds also for stationary 

sequences. 

It is also shown in [7] that if a further condition holds - there called 

D'(u ), viz. 
n 

(1.3) D' (u ): 
n 

[n/k] 
limsup n I 

n+oo j=2 
P{~l>u ,~.>u } + ° as k + 00 n J n 

(for each u = x/a +b ), then the particular type which applies is the same as 
n n n 

if the sequence {~ } were independent and identically distributed (i.i.d.) with 
n 

marginal d.f. F, and the same normalizing constants may be used. In particular 

this means that the classical criteria for domains of attraction (cf. [9]) may 

be used to determine (on the basis of the behavior of the tail 1 - F(x) for 
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large x) which limiting law applies. These assertions result from making 

appropriate identifications (e.g. u = x/a +b ) in the following theorePl {cf. 
n n n 

[7]) which generalizes a simpl e classical result. 

Theorem 1.2. Let {~ } be a stationary sequence and {u } a sequence of constants 
n n 

such that D(u ), D'(u ) hold. Let 0 ~ T < 00 Then 
n n 

(1.4) 

if and only if 

(1. 5) 

P {M ~ u } -+ e - T 
n n 

n[l - F(u )] -+ T . 
n 

Conditions similar to D'(u ) have been used in virtually all studies of 
n 

extremes of dependent sequences beginning with the early works of Watson [15] and 

Loynes [10] who showed in particular that (1.5) implies (1.4), using stronger 

dependence restrictions that Deu). However since Theorem 1.1 does not require 
n 

D'(u) in limiting the extremal distributions to the classical types, it seems 
n 

worthwhile to investigate the precise role of conditions of this kind. 

It has in fact been shown by Chernick [3] (extending a result of Loynes [10]) 

that if for each T > 0, U = u (T) is defined to satisfy (1.5), then under D(u ) n n n 

conditio~s alone, any limit (function) for P{M ~ u CT)} must be of the form 
n n 

(1.6) P{M ~ u (T)} 
n n 

-8T 
-+ e 

for some 8 with 0 ~ 8 ~ 1. 

In the present paper we extend this result in various ways. It will then 

follow, as a consequence, that in virtually all cases of practical interest the 

condition DCu ) alone is sufficient to guarantee that any asymptotic distribution 
n 

for the maximum M is of precisely the same type as if the sequence {~ } were 
n n 

i. i. d . with the same marginal df. F. In fact the only essential difference which 

appears in dropping the assumption D'(u ) is that the normalizing constants in 
n 
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(1.2) may have to be modified from those applying to the i.i.d. case. In obtaining 

these results we use some ideas from O'Brien ([12], [13]). 

The parameter e in (1.6) is here (as in [9]) called the extremal index of the 

sequence {~}. The main results concerning its existence are given in Section 2, 
n 

with particular criteria and examples cited in Section 3. In Section 4 we look 

briefly at the role of D'(u ) in obtaining a Poisson limit for the (time-normalized) 
n 

point p~ocess of exceedances of the 1 evel u by the ~. 's. When D' (u ) does not hold, 
n] n . 

the exceedances of u can occur inr clusters, leading to multiple pointsUn a limiting 
n 

point process. As will be seen from Section 4 the degree of clustering is directly 

related to the extremal index e. 

2. Extremal results under D(u ) 
n 

The basic technique of [7] for extending extremal theory to stationary cases 

is to show that 

(2.1) P{M ~ u } - pk{M ~ u } + 0 
n n r n n 

for each k = 1,2 ..• when Deu) holds, where r = [n/k] (the integer part of n/k). n n 

This clearly simply reflects a.form of approximate independence of the submaxima 

in the k subsets of [n/k] = r integers (1,2 ... r), (r + 1 ... 2r) .•. which n n n n 

together comprise essentially all of (1,2 .•. n). . Here we obtain a somewhat more 

general version of this result. The notation M(E) will be used (here and subsequen-

tly) to denote the maximum of ~. for j in the set E of integers. 
J 

Lemma 2.1. Let {u } be a sequence of constants and let D(u ) be satisfied by the n . n 

stationary sequence {~}. Let {k } be a sequence of constants such that k = o(n) n n· n 

and, in the notation used in stating D(u ), k £. = oen), k ~ 0 + O. Then n n n n n,~ 
n 

k 
(2.2) P{M ~ u } - P n{M ~ u } + 0 as n + 00 

n n r n 
n 

where r = [n/k ] . n n 
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Proof: This will be sketched only since it is analogous to the proof of (2.1) 

given e.g. in [7], [9]. We shall also assume that n [1 - F (u )] is bounded, which 
n 

is not necessary (cf ,[7]) but simplifying (and holds via (1.5) in the applications 

to be made). 

Let {~ } be as in the definition of Deu ). Divide the integers 1 n on n into 

intervals (i.e. sets of consecutive integers) 11, Ii, 12, 12 ... Ik , Ik where 
n n 

11 = (1,2 , .. rn-~n)' Ii = (rn-~n+l •.• r n), 12 = (rn+l •.. 2rn-~n)' 

1*2 = (2r -~ +1 ..• n n 

Thus each interval 

integers, and Ik 
n 

that 

(2.3) 

2r) ... Ik = ((k -l)r +1 •.. k r -~), n n n nn n n - . 
I. contains r -~ integers, with each I~ 

J n n ... J 

1* = (k r _0 +1 n) k n n..{..n ... • 
n 

except Ik having ~n 
n 

having n-k r +~ ~ k +~ (since r = [n/k ]). nn n n n n n It is readily seen 

k 
o ~ P ( R {M (1.) ~u }) - P {M ~u } 

. j=l J n n n 

~ (k -l)P{M(Il*»U } + P{M(Ik* »u } n . n n 
n 

~ [Lk -l)~ +(k +~ )]P{~l>u } n n n n n 

k (~ +1) 
::; K n n -7- 0 as n -7- 00 

n 

by virtue of the stated assumptions (K being a constant). 

It follows from D(u ) by a straightforward induction (cf. [7, Lemma 2.3]) that 
n 

k k 
(2.4) Ip{ nn (M(I.)~u )} - P n{M(Il)~u }I ~ k a 0 

. 1 J n n n n,..{.. 
J= n 

which tends to zero by assumption. Finally it is readily checked that 

(2.5) 
k k 

Ip n{M(Il)~un} - P n{Mr ~un}1 
n 

~ kn[P{M(Il)~un} - P{Mr ~n}] = knP{M(Il)<un~(Ii)} 
n 

~ k ~ P{~l>u } ~ Kk ~ In -7- 0 n n n n n 
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The result now follows at once by combining (2.3), (2.4) and (2.5). 

We suppose from now on that for each T > 0 a sequence {u (T)} is defined to 
n 

satusfy (1.5), viz. 

(2.6) n[l-F(u (T))] + T 
n 

This imposes a slight restriction on the marginal d.f. Fof the ~ , but one 
n 

o 

which will always be satisfied in the applications made. Of course if F is continu-

ous, u (T) can be defined to give equality in (2.6). In any case it is necessary 
n 

and sufficient for (2.6) to hold that 

(2.7) [l-F(x~)]/[l-F(x)] + 1 as x + 00 

(cf. [9]), a condition which always holds for any F in any of the three classical 

domains of attraction. It is also evident that if there exists u (T) satisfying 
n 

(2.6) for one fixed T > 0, then there exists such a u (T) for all T > 0 (e.g. if 
n 

unCI) satisfies (2.6) with T = 1, define Un(T) = u[n/T] (1)). 

The following result. reformulates and extends Theorem 1.2. 

Theorem 2.2. Let {~ } be a stationary sequence and {u err)} constants satisfying 
n n 

(2.6) and such that D(Un(TO)) holds for some TO > O. Then there exist constants 

e, e', 0 ~ e ~ e' ~ 1 such that 

(2.8) 

for 0 < T ~ TO. 

1imsup P{M ~ (T)} 
n n n+oo 

= e -et 

-e'T 1iminf P(M ~u (T)) = e n n n+oo 

Hence if P{M ~u (T)} converges for some T, 0 < T ~ TO' then e = e' 
n n 

{ } -eT and P M $U (T) + e for all such T. 
n n 

Proof: Note first that it is readily shown (cf. [9]) that D(un(T)) holds for 

o < T $ TO since it holds for T = TO. Write ~(T) = 1imsup P{Mn~n(T)} and let k 
n+oo 

be a fixed integer. Then it follows from Lemma 2.1 with k = k that 
n 



(2.9) 

where n' 
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limsup P{M ,:$;u (T)} = ~l/k(T) 
n n n-:+OO 

= [n/k]. Now if Un(T) ~ un,(T/k) it follows that 

n' 
o :$; P{M ,:$;U (T)} - P{M ,:$;u ,(T/k)} :$; P{ u (u ,(T/k)<s:$;U eT))} 

n n n n 'In n 
J= 

:$; n'[F (T) - F(u ,(T/k))] 
un n 

This together with the corresponding inequality when U (T) < U ,(T/k) show that 
n n 

Ip{M ,:$;U (T)} - P{M ,:$;U ,(T/k)}1 :$; n'IF(u (T))-F(u ,(T/k)) I n n n n n n 

= n' 1{(~(l+O(l)) - ~(l+~(l)) I 

by (2.6), and this tends to zero as n + 00 since n''''n/k. But clearly 

limsup P{M ,:$;u, (T/k)} = \jJ(T/k), and it thus follows that limsup P{M ,:$;u (T)} = ~(T/k). n n n n n-:+oo n~ 

Combining this with (2.9) we see that 

(2~lO) 
Ilk 

~(T/k) = ~ (T) 0< T :$; TO' k = 1, 2 .•. 

Now P{Mn,:$;Un(T)} ~ 1 - n'P{sl>un(T)} + 1 - T/k as n + 00 so that by taking kth powers 

and using Lemma 2.1, it follows that liminf P{M :$;U (T)} ~ (1 - T/k)k, and letting 
n-:+oo n n 

k + 00 that 

(2.11) liminf P{M :$;U (T)} 
n n .n+ 00 

-T 
~ e 

In particular this implies that ~(T) is strictly positive. It is also non-

increasing since if Tt < T it is clear that u (T') > u (T) when n is sufficiently 
n n 

large. But the only strictly positive non-increasing solution to the functional 

. (2 ). () -8T h .. { ( )} -8T equatJ.on .10 J.S 1/J T = e for some 8 ~ O. T at J.S lJ.msup P M:$;u T = e 
n n n-:+oo 

with 8 ~ O. 

Similarly it may be shown that liminf P{M :$;U Cr)} 
n n n-:+oo 

-8'T 
= e where clearly 8' ~ 8. 
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By (2.11) e ' ~ 1 and hence 0 ~ e ~ e' ~ 1 as asserted. Thus the relations (2.8) 

follow and the final statements of the theorem are immediate from these. o 

{ } -eT If P M ~u (T) + e for each T >0 with u (T) satisfying 12.6), we shall say n n n 

that the sequence {~ } has extrema1 index e (cf. Section 1). Use of this termino­
n 

logy will simplify statements of later results, and in particular gives the following 

obvious restatement of part of the above theorem. 

Corollary 2.3. Let {~ } be stationary and satisfy D(u (T)) for each T > 0 where n n 

n[l-F(un (T))] + T. If for some TO > 

{~n} has extrema1 index e = -T~llOga 

0, P{M ~u (TO)} converges to a limit 
n n 

so that P(M ~u (T)) + e-eT for all T 
n n 

a then 

> O. o 

In the next section we shall show that the addition of the condition D I (u) (cf. 
n 

§ 1) implies that e = 1, and give other criteria determining e when 0 ~ e < 1. How-

ever here we proceed with the more general theory, showing that if {~ } has a non­
n 

zero extremal index e, then any limiting distribution for the maximum must be of the 

same type as if the terms were i.i.d. with the same normalizing constants if e = 1, 

and simply modified constants for 0 < e < 1. The basic result generalizes a theorem 

proved by o I Brien [13] under strong mixing assumptions. Here in addition to the 

previous notation we write 

A A 
where ~1~~2 ..• are i.i.d. random variables with the same d.f. F as each of the 

A A A A 
stationary sequence ~l' ~2 ... (following Loynes [10] we call ~l' ~2 •.. the 

"associated independent sequence"). We note the well known (and easily proved) 

result that for any T > 0 and sequence {u }, 
n 

(2.12) 

if and only if 

(2.13) 

AnT 
P{M ~u } (=F (u )) + e-

n n n 

n[l-F(u )J + T 
n 
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(i.e. if and only if (2.6) holds with u = u (T)). n n 

Theorem 2.4. Suppose that the stationary sequence {Sn} has extremal index e, 

° ::;; e ::;; 1. Let {Y } be any sequence of constants and p any constant with ° ::;; p ::;; 1. 
n 

Then 

(i) If e > ° 
P{~ ::;;v } -+- p if and only if P{M ::;;y} -+- pe 

n n n n 

(ii) If e = ° 
(a) 

A 
if liminf P{M ::;;v } > 0, then P{M ::;;y } -+- 1 n n n n n-+oo 

P{M ::;;y } 
A 

if limsup < 1, then P{M ::;;y } 
-+- ° n n n n (b) 

n-+oo 

. A 
Proof: (i) Suppose e > ° and P{Mn::;;Vn} -+- p where ° < p ::;; 1. Choose t > ° such 

-T that e < p Then 

p{~ ::;;V } -+- p > e- T 
n n 

so that v > u (T) for sufficiently large n, and hence 
n n 

liminf P{M ::;;v } ~ lim P{M ::;;u (T)} = n n n n n-+oo n-+co 

-eT e 

Since this holds for any T such that e- T < p it follows that liminf P{M ::;;y } 
n-+oo n n 
e 

It also follows in particular that if p :::: 1 then P{M ::;;v } -+- 1 = p • n n 

Similarly by taking e- T > p it may be shown that e 
p when 

e 2: P . 

o::;;p<l. Hence P{M ::;;y } -+- ° when p = 0, and for ° n n 

limsup P{M ::;;v } ::;; 
n n n-+co 

< p < 1, P {M ::;;v } -+­
n n 

pe by com-

bining the inequalities for the upper and lower limits. The proof of the converse 

is similar so that (i) follows. 

To prove (ii) we 
A 

If liminf P{M ::;;v } = n n 

assume e = 0, so that P{M ::;;u (T)} -+- 1 as n -+- 00 for each T > O. 
n n 

-T A -T 
P > 0, choose T with e < p and hence P{M ::;;u (T)} -+- e < p n n 

so that V2:U (T) for sufficiently large n. Thus 
n n 
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liminf P{M ~v } ~ lim P{M ~u CT)} = 1 • n n n n n+><> n+><> 

giving (a), 

To show Cb) note that if limsup P{M ~v } < 1 we must have v <u (T) for 
n n n n 

sufficiently large n and hence 

1\ • 1\ -T 
limsup P{M ~v } ~ llm P{M ~u (T)} = e n n n n n-+co 

for each T. The conclusion (b) follows by letting T + 00. 

This result now enables us to give conditions in terms of the extremal index 
1\ 

under which M has a limiting distribution if and only if M does. This of course 
n n 

implies that in such cases, the classical domain of attraction criteria may be used 

in the dependent situation. 

Theorem 2.5. Let the stationary sequence {~ } have extremal index 8 > O. Then 
n 

1\ 
M has a non-degenerate limiting distribution if and only if M does, and these are 

n n 

then of the same type based on the same normalizing constants. In the case 8 = I 
1\ 

the limiting distributions for M and M are identical. 
n n 

1\ 
Prrroof: If P{an(Mn-bn)~x} + G(x), non-degenerate, then Theorem 2.4 (i) shows (with 

v = x/a +b ) that P{a (M -b )~x} + G8(x). But G is an extreme value distribution n n n n n n 

and it is well known (and easily checked from the possible functional forms) that 

G8 is of the same type as G in the sense of Section 1 that G8(x) = G(ax+b) for 

some a > D,b. 

The converse follows similarly, noting that if P{a (M -b )~x} + H(x), non­
n n n 

degenerate, then P{a (~ -b )~x} + HI / 8(x). As a limiting distribution for maxima 
n n n 

from an i.i.d. sequence, Hl / 8 must be of extreme value type and H = (Hl/8) 8 must be 

1/8 of the same type as H . 

The final remark for e = I is obvious. 

For the case 0 < 8 < 1 the same normalizing constants give limits e.g. G(x), 

o 

o 
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8 A 
G (X) = G(ax+b) for Mn and Mn' Of course a simple change of the set of normalizing 

constants for M will lead to the same limit G(x). 
n 

It is, of course, also of interest to explore the situation when the extremal 

index is zero. An argument of R. Davis [4] shows (using also Theorem 2.4 (ii)) 
A 

that M and M cannot both have non-degenerate limiting distributions based on the 
n n 

same normalizing constants. This is stated precisely as follows, without proof. 

Theorem 2.6. Let the stationary sequence {~ } satisfy Deu (T)) where for each T > 0 
. n n 

A 
u (T) satisfies (2.6). If {~ } has extremal index 8 = 0, then M and M cannot both 
n n n n 

have non-degenerate limiting distributions based on the same normalizing constants. 
A 

That is, it is not possible to have P{a (M -b ) s;x} + G(x), P{a (M -b )s;x} + H(x) for 
n n n n n n 

non-degenerate G,H. D 

Further comments on the (perhaps somewhat pathological) case when 8 = 0 will be 

given in Section 3. 

3. Some criteria for the extremal index, and examples. 

The first result has perhaps more theoretical then practical interest but serves 

as a means of extending the condition D I (u ) to apply to more dependent cases with 
n 

8 < 1. By way of convenient notation we again write n' = [n/k] for fixed k, 

n = 1, 2 .... Also as previously F. 
11 

. (u) will denote the joint d.f. of 
1 

~. evaluated at (u, u ... u). 
1 
r 

r 

Theorem 3 . .1. Let the stationary sequence {~ } satisfy D(u (T)) for each T > 0 where 
n n 

u (T) satisfies (2.6). Then {~ } has extremal index 8 (0 s; 8 s; 1) if and only if 
n n 

(3.1) 

for some TO > O. 

(3.2) 

k limsup 11 - Fl , .•. , n'(un) - 8To/kl + 0 as k 
n-+co 

Equivalently this holds if and only if 

1 - Fl ,(u) + 8TO/k + Ak as n + CX) 

, ... , n n 

where kAk + 0 as k 

+ CX) 
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Proof: For simplicity of notation we take TO = 1 and write un = un(l) . 

has extremal index e, and since. (2.1) holds by Lemma 2.1, 

{ } -elk Fl (u ) = P M ~ -+ e = 1 - elk + o(l/k) n' n n' n 

from which (3.2) (and hence obviously (3.1)) follow. 

Conversely if (3.1) holds then 

limsup P{Mn,:s;un} = limsup [FI ... n' (ud -l+e/k] + 1 - elk 
Jl+OO Jl+OO 

Hence again by (2.1) 

:s; 1 - elk + limsup 11 - Fl ... n' (ud - elk] 
n~ 

= 1 - elk + 6(1/k) 

- .-.--_. 

k 
limsup P{M ~ }:s; {l-e/k+'o (Ilk)} 

w= n n 

for all k giving, on letting k -+ 00, 

limsup P{M :s;u } :s; e-e 
n n 

The opposite inequality for liminf P{M :s;u } follows similarly so that n n 

If {~ } 
n 

P{M :s;u } -+ e -e. Thus we have convergence of P{M :s;u (T)} to e -eT at T = TO = 1 
n n n n 

and the result follows from Corollary 2.3. o 

The condition D' (u) given by (1.3) limits the probability of one exceedance of 
n 

u being followed "closely" by another. One obvious generalization is to permit 
n 

(with high probability) no more than some specified mmber of exceedances to occur 

together. One specific such restriction is to limit the quantity 

(3.2) E(r) = 
n,k P { ~ . >u , ~ . >u , ... ~. >u } 

l.l n l. 2 n l.r n 

for some r. For example the assumption D' (ud limits E~ 2~ so that in fact , 
limsup E (2) -+ 0 as k -+ 00, from which it follows (cf. [7]) that (1.4) holds so that 

n,k n-tro 
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{~ } has extremal index 1. Generalizations of this are clearly possible to allow 
n 

a non-zero limit for limsup E~r~ as k -+ CXl for some values of r 2:: 2 as the following 
n+CXJ ' 

simplest case beyond D'(u ) shows. 
n 

Corollary 3.2. Let the stationary sequence {~ } satisfy D(u (T)) for each T > 0 
n n 

where Un(T) satisfies (2.6). Suppose that for some TO > 0, un = Un(TO) and some e, 

o :s: e :s: 1, 

(3.3) 

ani 

(3.4) 

limsup 
n+CXJ 

limsup 
n+CXJ 

Then {~ } has extremal index e. 
n 

E(3) -+ 0 as k -+ CXl 

n,k 

Proof: n' Since 1 - Fl ... n' (ud = p{ u (~. >u )} it follows by standard Bonferroni 
j =1 J n 

inequalities that 

and hence 

kn'[l-F(un)] - TaCl-e) - IE~~~-Ta(l-e) I :s: k[l-Fl ... n'(un)] 

:s: knl(l-F(un)] - Ta(l-e) + IE~~~-To(l-e) I + E~~~ 

Since u = u (Ta)' letting n -+ CXl with k fixed yields 
n n 

eTa - limsup IE~2~ -TaCl-e) I :s: liminf k[l-Fl ... n'Cun)] 
n+CXJ' n+CXJ 

:s: limsupk[l-Fl ,Cu)] :s: 8Ta + limsup IE(2k)-Ta Cl-e) I + limsup E(3) 
'" n n n, n,k n+CXJ n+CXJ 

from which it follows simply that 

limsup Ik[1-F1 ... n,(un)]-8Tal 
n+CXJ 

:s: limsup IE~~~-TaCl-e) I + limsup E~~~ 
n+CXJ n+CXJ 
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which tends to zero as k + 00, giving (3.1) and hence the desired conclusion by the 

theorem. D 

The condition (3.3) may be restated in an obvious way to give the following alter-

native version of the corollary. 

Corollary 3,3. The result of Corollary 3.2 holds if (3.3) is replacedby 

(3.5) I~'2 (l-j/n')P{i;.>u Ii;l>u } + 1 - 8 + Ak as n 
]= ] n n 

where A + 0 as k + 00. 

k 

Proof: It is simply checked that 

+00 , 

E(2) - T (1-8) = n[l-F(u )]I~'2(1-j/n,)p{i;.>u Ii;l>u } - T (1-8) 
n,k 0 n ]= ] n n 0 

+\asn+ oo 

from which (3.3) follows at once. D 

By way of a very simple illustration of the use of results of this type consider 

i.i.d. random variables nI' n2 .. , with d.f. F and define the sequence {i;n: n~l} by 

and p{i;>u ! i; ) 
J 11 1 

:::: 1 F for J > 2 so [hat 

~~'2 (l-j/nl)p{i;l>u ,i;.>u } = ~(l+o(l)) + CI-FCu ))r~13 (l-j/n') 
L]= n ] n n L]= 

so that (3.5) holds with 8 = ~ (3.4) is also clearly satisfied as is DCu CT)) 
n 

so that {C } has extremal index 8 = :k: "'n 2. 
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While "repeated limit conditions" such as (3.1) can be useful in practice, it 

may sometimes be more convenient to use conditions depending on a single limit only, 

and we shall show briefly how this may be done, giving an alternative form for 

Theorem 3.1. 

The condition D(u ) requires that 
n 

I = o(n). It is clearly possible to 
n 

(3.6) 

and 

the quantity a I + 0 as n + 00 for some 
n, n 

obtain k + 00 such that both 
n 

(3.7) k I = o(n) 
n n 

-~ hold (e.g. takingk = min(a I ' 
n n, n 

following variant of Theorem 3.1. 

Using such a sequence k we have the 
n 

Theorem 3.4. Let the stationary sequence {~ }. satisfy D(u er)) for each T > 0 where n n 

Un(T) satisfies (2.6). For some TO > 0 let kn + 00 be such that (3.6) and (3.7) hold 

with u 
n 

If, writing r = [n/k ], 
n n 

(3.8) kn[l-Fl ... r(un)] + 8TO as n + 00 (0 :s; 8 :s; 1) 
n 

then {~ } has extremal index 8. Conversely if {~ } has extremal index 8 then (3.8) 
n n 

holds for each TO > 0 and each kn + 00 satisfying (3.6) and (3.7) with un = Un(TO)' 

Proof: If (3.8) holds then 

so that 

P{M :s;u} = F 
r n 1 

n 
(u ) 

.. , r n 

8TO 
= 1 - ~(l+o(l)) 

n n 

8TO k -8T 
= [1 _ ~ + oC: )] n + e 0 

n n 

and hence P{M :S;u } 
n n 

-8TO 
+ e by Lemma 2,1 showing that {E; } has extremal index 8 by 

n 

Corollary 2,3, 



Conversely if {~ } has extremal 
n 

and (3.7) then Lemma 2.1 shows that 
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index e, and TO > 0, k + 00 satisfying 
k -eT n . 

P n(M ~u) + e 0 with u = u (TO) r n n n 
n 

follows simply that Fl ... r (un) + 1 and 
n 

log[l-(l-Fl 
eTo 

= - ~ (1+0(1)) 
n 

so that 

-[l-F . 1 

giving (3.8) as required. 

r (un) ][1+0(1)] = 
n 

(3.6) 

A simply expressed sufficient condition for (3.8) may be given as in the fol-

o 

lowing corollary. In this we write E(s) for E(Sk) where this is given by (3.2) i.e. n n·, 

(3.9) 

(where r = [n/k ]). n n 

n 

P{~. >u 
<i ~r 11 n 

S n 

~. >u } 
1 n 

s 

Corollary 3. S. Let the stationary sequence {~ } satisfy D(u (T)) for each T > 0, 
n n 

where Un(T) satisfies (2.6) For some TO > 0 let kn + 00 be such that (3.6) and (3.7) 

hold with un = Un(TO). Suppose that for each s = 1, 2 ... the E~s) defined by 

(3.9) satisfy 

(3.10) +a 
s 

where as + 0 as s + 00 Then {~n} has extremal index 

Proof: 

e -1 \00 (_)r-1 N = TO Lr=l ~r 

Write An = kn [1-F1 ... r (un)] 
n 

r 
= k p{ un(~.>u )}. 

n j=l ] n 
Inequalities we have for s odd, n>s, 

Then using Bonferroni 

E(l) _ E(2) + E(3) ... + E(s) ~ A ~ E(l) _ E(2) + E(3) ... _ E(s+l) 
n n n n n n n n n 

Writing ~ = liminf A , ~ = limsup A and letting n + 00, we obtain, for each odd s, 
n+oo n n-700 n 
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(3.11) 

Since the extreme terms differ by a 1 which tends to zero as s + 00, it follows that s+ 

X = A say. If T = \,S 1 (-) r-la it further follows fro.m (3.11) that 
-' :s I..r= r 

o :::; T - A :::; T - T = a for s odd and similarly 0 :::; A - T :::; T s s s+l s+l s s-l 

for s even, so that in both cases 

IT -AI :::; a + a 1 + 0 as s + 00 
S S s+ 

T = a s s 

H \,00 (_) r-l", h 1 "\ d (3 8) h Id . h e ence I..r=l ~r converges to t e va ue A an . 0 s Wlt To = \,00 (_)r-la 
L.r=l r 

giving the desired result. 

Finally in this section we cite some examples of sequences exhibiting all the 

possible types of behavior relative to the extremal index. In each of these cases 

D(u (T)) is satisfied. 
n 

The most common case is where D'(u (T)) holds leading to the extremal index 8=1. 
n 

o 

For example this is so for a stationary normal sequence {£ } with covariance sequence 
n 

{r } satisfying the condition ofS.M. Berrnan. [2], viz. r logn + 0 - an obviously 
n n 

weak condition indeed. 

We have given a simple example of a case when e = ~ in the discussion above. An 

example where a series of values of e is possible through parameter choice in an auto-

regressive scheme, has been given by Chernick [3]. The stable processes considered 

by Rootzen [14], can have any value of e in the range 0 < e :::; 1. A simple example 

due to L. de Haan also exhibiting this behavior is the sequence 

k 
£n = max p nn_k 

k~O 

where 0 < p < land {1n} is an i.i.d. sequence with common d.f. exp(-l/x). This 

yields an extremal index e = 1 - p. 

An example of Denzel and O'Brien [5] exhibits a "chain dependent" sequence {£ } 
n 

A 
with extremal index e = O. In this case M has a Type 11 limiting distribution, but 

n 
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we do not know whether M has any sort of limiting distribution. 
n 

A further example of L. de Haan, however, provides a case where e = 0 and 
A 

M,M both have limiting distributions. Specifically the sequence {~ } is defined n n n 

by ~ = max(n -k) 
n k:?:O :n-k 

~ -a 
where n are i.i.d. with commond.f. exp(-x )x > 0, (a > 1). In this case M has 

n n 

a Type III limit with parameter a and norming constants a = n- l / a b = ° whereas 
n ' n 

A 
M has a Type 11 limit with parameter a -1 and norming constants a n n 

-1/ (a-I) 
= n ", ,b =0. 

n 

Finally an example of O'Brien [12] exhibits a case in which {~ } has no extremal 
n 

index at all. In this each ~n is uniform over the interval [0,1], ~l' ~3 ... being 

independent and ~2n a certain function of ~2n-l for each n. 

4. Point process of clusters. 

As noted in Section 1, when n[1-F(un)1 + T and D(un) and D'(un) both hold, the 

(time normalized) instants at which the sequence exceeds u take on a Poisson charac­
n 

ter as n becomes large. More specifically let N denote the point process on the 
n 

unit interval (0,1] consisting of those points j/n such that ~. > u. Then under 
J n 

the conditions above it may be shown ([ 8]) that N converges weakly to a Poisson 
n 

Process with intensity T on (0,1]. 

When D'(u ) does not hold, the exceedances of u may tend to occur in clusters, 
n n' 

leading to the simultaneous occurrence of multiple events i. e. a "compounding" in 

the limiting point process. A complete description of the limiting point process has 

been given by Rootzen [14] in the case where the underlying sequence {~ } belongs to 
n 

a class of stable processes (cf. the above discussion in Section 3). 

Again under a (multidimensional type of) strengthening of the condition D(u), n 

and assuming D' (u ), it is possible to obtain a "complete Poisson theorem" (cf. [1], 
n 

[9]). This involves convergence of the point process in the plane with points at 
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(j/n,(~.-b )/a), with appropriate a ,b , to a certain Poisson process in the 
J n n n n 

plane. Results of this type allow rather complete descriptions of (joint) asymp-

totic distributional results for extreme order statistics. 

It is also of interest to determine the effect of eliminating the condition 

D'(u) in results of this type. For example Mori [11] has shown that under strong 
n 

mixing the limiting point processes are confined to a certain class (and it seems 

likely that this is true also under the weaker D(u )-type of condition). 
n 

We shall not investigate limiting results of these types in detail here. How-

ever it does seem interesting and useful to give the simplest of convergence 

results - involving the Poisson limit for the point process "positions" of the 

"clusters" of exceedances of high levels. This is analogous to a result of 

Rootzen in [14] for stable processes. 

One very simple means of defining clusters of exceedances is to take a se-

quence r and consider that events occurring within a distance rof each other 
n n 

belong to the same cluster. r should of course be chosen so that it is at least 
n 

as large as (virtually all) cluster "lengths" but small compared with cluster 

"separation." For many usual situations this still leaves considerable flexibility 

in the choice of r , while leading to unique results as we shall see. 
n 

More specifically we shall suppose that D(un) holds for un = U'(T) satisfying 
n 

(2.6), a sequence k -+ 00 is chosen to satisfy (3.6) and (3.7) and r = [n/k ]. n n n 

A poiilt process N is defined on the unit interval (0,1] as follows. If for given 
n 

s = 1, 2 ... k there is an exceedance of u by ~. for at least one j such that 
n n J 

(s-l)r < j ~ sr , then N has a single event at the point t = sr In. That is n n n n 

any group of exceedances between (s-l)r and sr is replaced by a single event -
n n 

after time-scaling - at sr In, "representing" the original group. We refer to 
n 

N as the "point process of cluster positions." With this construction the 
n 
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following result holds. 

Theorem 4.1. Let the stationary sequence {~ } satisfy D(u (T)) for each T > 0 
n n 

where u CT) satisfies (2.6). Let k + 00 be chosen to satisfy (3.6) and (3.7) and 
n n 

let {~ } have extremal index e CO < e :,;; 1). Then the point process N of cluster 
n n 

positions for exceedances of u (T) converges in distribution to a Poisson Process n . 

N on (0,1] with intensity parameter eT. 

Proof: As in previous proofs of similar results (cf. [8]) it is by a theorem of 

Kal1enberg [6] only necessary to show that 

(4.1) 

and 

(4.2) 

EN {(a,b]) + EN{(a,bJ} for 0 < a < b :,;; 1 
n 

PiN (E)=O} + P{N(E)=O} 
n 

for each finite disjoint union E of sets (a.,b.] c (o,l}.. 
1 1 

If v denotes the number of (integer) intervals ((s~l)r ,sr ] completely 
n n n 

-1 contained in ([na],[nb]] it is clear that v ~ nr (b-a) ~ k (b-a) and further n n n 

that 
r 

EN {(a,b]} ~ v p{ un(~.>u )} 
n n i=l 1 n 

,.., k (b-a) [l-F 
n 1 

+ Cb-a) eT 

by (3.8). But this is just EN{(a,b]} so that (4.1) follows. 
p 

To show (4.2) we write E = u (a.,b.] and write B. for the integers in ([(na.], 
1 J J J J 

[(nb.]]. Then it is readily seen that 
J 

P 
PiN (E)=O} = p{ n (M(B.):';;u )} + 0 (1) 

n '-1 J n 
, ' J-" 

p , p 
= H {P(M(B.):';;u)} + [Pi n (M(B.):,;;u )} 

j=l J n j=l J n 

P 
IT P{M(B.):';;u }] + 0(1) 

j=l J n 
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By a straightforWard induction, the difference in square brackets does not exceed 

pa "\ in absolute value where A is the minimum separation of the intervals (a.,b.] 
n,n/\ J J 

(A can be taken non-zero since abutting intervals. can be combined). 

may be taken non-increasing in .t (cf. [9]) and it follows from D(u ) 
n 

But a () n,.{.. 

that a ,-+0 
n nA , . 

as n -+ 00. Since H: } has extremal index 8 it follows in an obvious way that 
n· 

P{M(B.)~u } -+ e-8T (b j -a j ) and hence 
J n. 

proving 4.2. 

P{N (E)=O] 
n 

p 
-+ IT P{N(a.,b. ]=0] 

j =1 J J 

= P{N(E)=O} 

o 
It is of interest to note an intuitively appealing interpretation of the extre-

mal index as the inverse of mean cluster size. This may be seen even in terms of 

the simple approach above. For the mean cluster size can be interpreted as the 

(limiting) mean number of exceedances in an interval of length r , given at least 
n 

one exceedance in that interval i.e. if Z denotes the number of exceedances of 

U (T) in an interval of length r , n n 

E{ZIZ~l} = I:=l sp{Z=sIZ~l} 

= EZ/P{Z~I} 

= rn[l-F(un)]/Fl 

-+ 8 -1 

Finally it should be noted that the limiting distributions of extreme order 

statistics will be affected in a more complicated way by the clustering than the 

maximum. These distributions would emerge from the more complete limiting result 

for individual exceedances. However use of the simple Poisson result given above 

will result in the distributions for the heights of the "kth highest clusters" 
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rather than the kth extreme order statistics, in an obvious way. This af course 

is analogous to consideration of kth highest local maxima in continuous parameter 

situations. 
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