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SU!:1MARY 

The non-parametric multiplicative intensity model for simple point processes 

on the line is considered, By introducing a suitable topology on the space of 

all point process paths, a topological extension of the model ~s found, acco

modating for point processes with multiple points. In the extended model the 

maximum-likelihood estimator lS determined and shown to be interpretable in 

terms of a mUltiple point process. Finally, the maximum-likelihood estimator 

and the Aalen estimator are compared. The results are illustrated by examples 

involving a model for Poisson processes, a model for censored survival data 

and the Cox regression model. 

Key words Multiplicative intensity model, generalized maximum-likelihood 

estimator, Aalen estimator, Kaplan-Meier estimator, Cox regression model, 

point processes with multiple points. 
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1. INTRODUCTION 

In a basic paper Aalen (1978) introduced the multiplicative intensity model for 

counting processes, defined a class of martingale estimators for the unknown 

integrated intensity functions that serlre as parameters in the model, and 

showed that under suitable conditions, these estimators are well behaved asymp

totically. 

The models are non-parametric In the sense that the unknown intensities 

may be chosen arbitrarily from a class of functions, rather than a finite

dimensional parameter set. This means that e.g. standard maximum-likelihood 

methods do not apply, and that creating the Aalen estimator is a matter of de

finition, not of derivation. 

One gap in the Aalen theory is that it lS difficult to interpret the esti

mator: while any integrated intensity from the model is a continuous function, 

the estimator turns out a step function. An exact analogue Ca special case) is 

provided by considering i.i.d. observations from an unknown distribution, sup

posed to be continuous, yet estimating that distribution by the discrete em

pirical distribution. 

Of course, In the situation with i.i.d. observations, it is well known how 

to view the empirical distribution as a maximum-likelihood estimator. MOre 

generally, for i.i.d. observations with right censoring, it is known that the 

Kaplan-Meier estimator lS the maximum-likelihood estimator. But in both cases, 

the derivation of the maximum-likelihood estimator and its interpretation is 

made possible only by considering an extension of the original model, namely 

the distribution generating the data is allowed to be completely arbitrary, In 

particular it may be discrete. 

This paper proposes an extension of the multiplicative intensity model. To 

accomodate for analogues of the discrete distributions appearing In the extend-
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ed models for i.i.d. data, it is necessary to introduce counting processes with 

mUltiple jumps. The space of paths * H for such processes is equipped with a 

suitable topology, and the desired extension of the Aalen model P then ar~ses 

by considering the weak closure of P when us~ng on the space of pro ba-

bilities on * W ,the weak topology derived from the topology on W* . In the 

extended model, the maximum-likelihood estimator is then found by maximizing 

the probability of the observation. 

It emerges that the Aalen estimator ~s not ~n general the maximum-likeli-

hood estimator. But it is shown that the difference ~s often negligeable. 

The extension used here is based on topological considerations. Alterna-

tively one might try to find an algebraic extension, but there does not seem 

to be any natural way of doing this. One such extension has been proposed by 

Johansen (1981) and is discussed in Section 5 below. 

In Section 2, the necessary terminology is introduced. In Section 3 the 

structure of counting processes with mUltiple jumps is recapitulated and in 

Section 4 the extension of a simple Markov process model is determined. The 

most important results appear in Section 5, where the extension of the general 

Aalen model ~s studied under assumptions that make it possible to apply locally 

~n time the results from Section 4. The methods are illustrated by means of 

the model for i.i.d. censored observations mentioned above, and by the Cox 

regression model. Finally, in Section 6, a comparison is made between the 

Aalen estimator and the maximum-likelihood estimator. 
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2. COUNTING PROCESSES AND THE MULTIPLICATIVE INTENSITY MODEL 

By definition a one-dimensional counting process N - (N ) - t t~O 
~s an integer-

valued stochastic process satisfying N = 0 o and with right-continuous non-

decreasing sample paths, increasing only by jumps of size 1. 

We shall here use the canonical realisation of such a process, i.e. we 

shall denote by W the space of all right-continuous paths w: [0 ,co) ~ lNO = 

{O,l, ... } with w(O)=O, w(s)~w(t) for s~t and l'.w(t)=O or 1 for all t 

with l'.w(t) =w(t) -w(t-) the jump of w at t· , we shall define Nt by 

Nt (w) = wet) and then simply consider probabilities on W. 

The measurable structure to be used on W consists of the a-algebra F 

spanned by all (Nt)t>O' and, for every t; the pre-t a-algebra Ft spanned by 

Further, for 

taining all F 
s 

for 

t>O 

s < t. 

we define F 
t-

as the smallest a-algebra con-

(Note that we do not assume F or Ft to have 

been completed with respect to one or more probabilities, as is the custom in 

the general theory of processes). 

With this setup, according to the terminology from Jacobsen (1982), a stable 

canonical counting process ~s a probability on (W,F). Here 'stable' refers to 

the assumption that only finitely many Jumps are allowed in finite time. With 

P such a process, we write PU rather than EU for the P-expectation of U. 

A real-valued process Z = (Zt) t>O defined on (W ,F) ~s measurable if 

(t, w) ~ Zt (w) ~s measurable, adapted if each Zt ~s Ft -measurable and pre

dictable if Z is measurable and each Zt is Ft _ -measurable. 

Suppose now given a probability P on (W,F) such that PN <00 for all t, 
t 

and suppose that the integrated intensity for N with respect to P may be 

written 



where 

A = ft A ds, 
t 0 s-
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A_ = C\J t>O' the intensity, is a left-continuous, adapted non-negative 

process with right-limits, (in particular A_ ~s predictable). Thus lA is con-

tinuous, predictab le and M = N - A ~s a P-martingale. Recall that A_ or A 

determines P: g~ven a process A which ~s the intensity for some P, that 

P ~s unique. With T = inf{ t . N = k} k . t ' P ~s completely specified by the di-

stribution of and, for every k~ 1, the conditional distribution of 

given i;k = (Tl"" ,Tk). The assumptions about P imply that we may write 

on the set (Tk < 00), where each ]l-function ~s right-continuous with left

limits and 

The multiplicative intensity model arises by specifying that 

A = a (t-)Z 
t- t-

(2.1) 

where a, the unknown parameter, is a suitable non-negative, right-continuous, 

left-limit function and Z ~s a g~ven adapted, non-negative process such that 

Zt ~s right-continuous ~n t with left-limits. To ensure that A_ given by 

(2.1) is the intensity for a stable counting process, some further conditions 

must be imposed on o'"Z. As in Jacobsen (1982) we shall assume that 

for all t and for the moment that 

for some constants c and d. 

t f 0',<= o 

(2.2) 

With these definitions, the model ~s characterized exclusively by the pro-
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cess Z. In the terminology of Jacobsen (1982) the model is the full Aalen 

model for Z. 

~s 

The Aalen estimator (Aalen (1978» of the integrated intensity 

t f\ = J 0 ds a(s)l(Z >0) 
s 

1 f\ = J N(ds)-Z - 1 (Z >0) , (2.3) 
(O,t] s- s-

the prototype of what may be called martingale unbiased estimators or m-

estimators (Rebolledo (1978», i. e. S - S is a martingale. 

Apart from being very simple to compute, the usefulness of the Aalen esti-

mator lies in its good asymptotic properties as demonstrated by Aalen (1978). 

(The asymptotic theory is based on what in Jacobsen (1982) is called the pro-

duct Aalen model, where information about a comes from r independent pro-

cesses. These, perhaps the most important of the multiplicative intensity mo-

dels, are discussed in Section 5 below). 

One problem with the Aalen estimator ~s that St' which is continuous ~n 

t, is estimated by the step function St' ~.e. the estimator is not range-

preserving. This makes it difficult to interpret the estimator: there ~s no 

obvious guess of what counting process from the model generated the data. 

This paper proposes an alternative to the Aalen estimator, which is the 

rnaximum-likelihoodestimator ~n an extension of the multiplicative intensity 

model. 

In a recent paper Johansen (1981) has proposed a different extension and 

derived the Aalen estimator as maximum-likelihood estimator. To this author, 

Johansen's extension appears unsatisfactory for various reasons, as will be 
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argued at the end of Section 5. 

Write Pa for the process (probability) with intensity (2.1). Assuming 

the process to be observed on the interval [O,t], ~.e. considering the re-

striction to Ft of P, 
a the likelihood function for the Aalen model is pro-

portional to 

(2.4) 

cf. Jacobsen (1982, Theorem 1.6.1). Except in the trivial case where no jumps 

are observed at all, we have 

by choosing a's with 

sup it =00, a value that ~s gradually attained 
a 

small and the a-value at each observed jump time 

big. (Recall from Jacobsen (1982 • Proposition 1.4.8 (e» that 

so that Z > 0) . 
T k-

Thus there is no maximum-likelihood estimator ~n the Aalen model. Instead 

we shall derive the estimator to be proposed here, by the following principle, 

applicable in much greater generality (see Kiefer and Wolfowitz (1956». 

Suppose X is a random element taking values ~n a metric space S, and 

suppose given a statistical model for observation of X, i.e. a family P of 

probabilities on S, the possible distributions for X. Consider the situation 

where P ~s dominated, so that the likelihood function L ~s well defined, 

but assume that sup L=oo , so there ~s no maximum-likelihood estimator. Then 
P 

instead of P consider the extended model P obtained as the weak closure of 

the set P, where the space of probabilities on S is equipped with the 

weak topology matching the given topology on S. The new model P may not be 

dominated, but following Kiefer and Wolfowitz (1956), a maximum-likelihood 

estimator may still be defined and will often exist. In particular, if to 

every possible value x E S of X there corresponds aPE P with P ({x}) > 0 , 

the maximum-likelihood estimator for the unknown distribution of X, is any 



- 7 -

probability PEP which max~m~zes the probability of the observation, Le. 

P({x}) = s.!!.p p({x}) • 
P 

In order to apply this principle to the Aalen model, we must define a topo

* logy on W, ~n fact we shall introduce a larger space W , the path-space for 

counting processes with mUltiple jumps. The reason for this is the following: 

as remarked above" it given by (2.4) gets large by choosing a's with 
t 

fOa 

small and with big values at the observed jump times. If these are denoted by 

it ~s clear that with such an a , P 
a 

will be a counting process with all 

jumps close to some t j , but with more than one Jump possible ~n a small neigh

borhood of t j . Performing a limit operation via a sequence of peaked a's 

with small integrals, leads ~n a natural way to the inclusion of paths that may 

have jumps > I. The topology to be used on this space, ~s defined ~n the next 

section. 

It should be pointed out, that typically the maximum-likelihood estimator 

found in the extended model P, will belong to ]?-"'P (because usually 

P({x}) =0 for PEP, xES). For the estimator to have good asymptotic pro-

perties (consistency for instance), it is therefore important that P'P be 

dense ~n P. This will be true for the estimator we shall determine in Section 

5. 
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* 3. THE MULTIPLE JUMP SPACE W 

* Let W be the space of increasing right-continuous paths w: [0,00) ~ JNO with 

w(O) = 0, w(s) -; wet) for s < t and !'-w(t) E JNO for all t. Thus W lS the 

subset 

* W = {w E W : !'-w( t) -; 1 for all t} 

* * * of W On W we shall write Nt (w) = wet) and denote the relevant(J-

* * * algebras by F ,Ft,Ft _ 

* Each wE W may be identified with a positive integer-valued measure 

K=K on [0,00) givenby dO}=O and 
w 

ds,t] =w(t) -w(s) or dB) = L !'-w(t) 
tEB 

for O<s<t and Bc[O,oo) a Borel set respectively. 

Equipping the space of all such measures with the vague topology so that 

K ~K iff 
n 

ffdK ~ ffdK 
n 

for all bounded continuous f: [0,00) ~ JR with compact support, we obtain the 

* vague topology on W . Obviously w ~w 
n 

iff 

if 

w (t) ~w(t) for all t with !'-w(t) = 0 . 
n 

If for instance w EW with k Jumps situated at 
n 

t. ~ to> 0 
J ,n 

for all j, then 

w(t)=kl[ )(t) 
to'oo 

* w ~wEW , where 
n 

tl < .•• < tk ,n ,n 

This agrees with the ideas sketched at the end of Section 2. Notice that 

and 

w 
n 

does not converge to w in the Skorohod topology, which is finer than the 
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vague topology and too fine for our purpose. 

* With the vague topology on W consider the matching weak topology on 

* the space of probability measures on W 

f CPdP -+ f CPdP n 

* 

so that P => P iff 
n 

for all bounded vaguely continuous cp: W -+ JR • 

The following result lS a special case of Ka11enberg (1975, Theorem 4.2). 

3.1. Proposition Let * (P) l'P be probabilities on W In order that 
nn> 

P => P it lS sufficient that for some E: > 0 and for some dense set D ~ [0,00) 
n 

* of points t with P(t.Nt = 0) = 1 , 

o 

An alternative criterion may be obtained as follows. With the convention 

inf C/J = 00, define for k E IN , 

* ok = in£{ t : Nt > k} . 

In particular ok = Tk on W. Consider the mapplng 

* from W onto the space S of sequences (sk)k>l with 0 < sk ~ 00, sI ~ s2 ~ 

On S introduce the topology for coordinatewise convergence, so that 

(sn.k)~l -+ (sk)~l iff for every k, sn,k -+ sk as a limit in (0,00]. The 

proof of the following result is absolutely straightforward and is omitted. 

3.2 Lemma The mapping lS a homeomorphism from * W onto S. 0 
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With P a probability 0n W* write , Q = 1jJ (P) for the P-distribution of 

* 3.3. Proposition Let (p ) P be probabilities on W. In order that n n>l' 

it is necessary and sufficient that for every k E IN 

Proof By Lemma 3.2 iff Q =>Q. 
n 

But Q =>Q n 
iff Q (k) => Q (k) 

n 
for each 

k and the sequence (Q ) lS tight. So we only have to show that if n n>l 

to every 

for all k, then (Qn) is tight 0 Since in particular Q~l) => Q (l) , 

E: > 0 there is a compact subset Kl of (0,00] with Q~l) (Kl ) :; 1 - E: 

for all n. But then, since for 

lS a compact subset of S with Q (K) > 1 - E: 
n = for all n. o 

We shall conclude this section with a brief discussion of the structure 

* of the probabilities on W. Such a probability P is a canonical counting 

process with multiple jumps and, as shown by Jacobsen (1982, Section 2.5), may 

be viewed as a multivariate canonical counting process with infinite type-set 

* E=JN corresponding to the possible jump sizes. In particular, if Tk(W) 

* * denotes the time of the k' th jump for wE Wand Yk(w) = L'lN (w) the size 
Tk 

* * of that jump (defined only if Tk (w) < 00), then with ~k = 

* * (Tl,···,Tk,Yl,···,Yk), P 

determined on the sets 

is specified by the conditional probabilities 

* 

* * P(Yk+l =y I ~k,Tk+l) 

(Tk < 00) and respectively. 

We shall mainly be interested in the case where P lS purely discrete. 

Recall from Jacobsen (1982) that a probability Pr on (0,00] with survivor 

function G lS purely discrete if there is a countable subset D of (0,00] 

t t 
with Pr(D) = 1 and all point s In D n (0, t) isolated, where t = 
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in£{t: Pr(t,co] =O}. With this m mind, P lS purely discrete if the condi-

* tional distribution of 

* 
glven ~k lS purely discrete for all possible 

values of ~k. 

The intensity function for Pr lS ]J(t) =Pr{t}/Pr[t,co] and G(t) = 

IT (1 - ]l (s» . Thus, if P is purely discrete we may write 
O<s<t 

Introducing NY = L 1 (lIN* = y)' N = L NY as the number 
t t t s<t s y~l 

of jumps of Slze 

y and the total number of jumps on [0, tJ respectively, P is characterized 

by its (predictable) intensity process 

* )7 = P(lINY = IIF ) 
t t t-

* * = P(lIN = ylF ) 
t t-

Writing 

we have 

* * * * 
P(Yk+l =yl~k,Tlz+l) ='IT~k(rk+l'Y) 

(t)'IT~* 

N 
t-

(t,y) 

and with I= L)..Y the total intensity, 
y~l 

At = ]l~* (t) 

N 
t-

where 

For every t>O 
= ' 

P lS concentrated on a countable collection of 

atoms. With 

* F -
t 
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* an arbitrary Ft -atom, where 0 < tl < ... < tk -;; t, Yl"" 'Yk E:IN, 

the constant values of AY and I on A for 

P (A) IT 
O<s<t 
s:j:t". 

J 
an expression that is 

s s 

y. 
(1 - I (A» IT A J (A) 

s . 1 t. 
J= J 

k 

very important for what follows. 

and 

< s = t, 

For details about the preceding, see Jacobsen (1982, Section 2.5), 

(3.4) 

About the notation ~n the sequel: suppose an expression involves a probabi

lity on * W which is concentrated on w· , to emphasize this fact, the * symbol 

~s omitted from the expression, which ~s legitimate since e.g. the restriction 

to W of * Tk ~s the of Section 2. 
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4. EXTENSION OFA MARKOVPROCESS MODEL 

In this section we shall discuss maximum-likelihood estimation ~n a particu-

larly simple Aalen model, namely we shall assume that the intensity (2.1) has 

the form 

A =a(t-)a 
t- N (4.1) 

t-

where are given non-negative constants with L 1/ ak 00. 

The process with intensity (4.1) is a Markov process. It is well known 

that with t 
J 00. <00 for all t, the condition L l/ak = 00 (which is less re-

strictive than (2.2)) is necessary and sufficient for this Markov process to 

have only finitely many jumps in finite time. 

We shall first introduce a class of functions which will play a vital role 

~n the theory developed in this section and the next. 

For the time being, let ak ;;; 0 but do not assume L 1/ ak = co. Also let 

0< (3;;; 1. Define 

and define recursively 

For (3 = 0 define 

(7Tk- l (aD, ... , ak- 2 ,ak ; (3) 
ak_l-ak 

(4.2) 

(4.3) 
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(4.4) 

otherwise. 

The main properties of the functions 'Irk may be summarized as follows. 

4.5 Lemma (a) For 0 < S::; 1, the function 'Irk ~s jointly continuous in 

fixed is continuous at S = O. 

(b) For O<S::;l and no two a. 
J 

equal 

k 
'lrk(aO,··"ak;S) =ak- 1 ... aO L: 

v=O k 

a 
S V 

IT (a.-a) 
. 0 J v J= 
j=l=V 

(c) O::;'lrk~l always, and 'lrk(aO, .. "ak;S) =0 if aO ... ak- 1 =0 or if 

k> 1 and S = 1 , 

(d) For 0 < S ~ 1 

provided L: 
k>O 

Sketch of proof (a) From (4.3) it follows that 'lrk(aO, ... ,ak;s) ~s 

ak- 1 •• .aO times the kIth order divided difference of the function f (x) = S 
x 

evaluated at aO, ... ,ak , (see e.g. Nq,rlund (l954~ pp. 8-10». Since for S>O, 

f is infinitely often differentiable, the first assertion follows from the 

theory of divided differences. 

(b) Follows immediately from Nq,r1und (1954, p.8, equation (19». 

(c) The first and third part ~s a consequence of the next proposition. 

The second is immediate from (b) and the continuity of 'Irk' 
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(d) This lS another corollary to Proposition 4.6. o 

The relevance of the functions TIk lS clear from the next result, due to 

Feller (1940, p.5l3). Let P 
a 

denote the canonical counting process with In-

tensity (4.1), assuming 
t 

J Oa < 00, 

4.6 Proposition Subject to Pa' the process (Nt)t~O lS a Markov process 

such that P (N <00) = 1 
a t 

for all t ~ O. The transition probabilities p .. (s,t) 
l] 

P (Nt = j IN = i) are given by a s 

t p .. (s,t) =TI .. (a., ... ,a.; exp(- J a(u)du» 
l] ] -l l] S 

(4.7) 

for i ~ j, s ~ t o 

If a = 0 k for some k, the absorbing case, we define the absorbing state 

to be kO' the smallest k 

00 

such that ak = O. Then P a (sup Nt ~ kO) = 1 . 
t 

Suppose that J Oa =00. In the absorbing case, kO lS reached in finite 

time, so taking i=O In (4.7) and letting t~oo it follows that 

In the non-absorbing case, 

limit is 0 always. 

otherwise 

P (sup N ==) = 1 
a t t 

when 

(4.8) 

so that the same 

Let now P={P} denote the model of processes with intensities of the 
a 

form (4.1) for a given sequence with I: l/ak =00 and 

If aO = 0, P only comprises the process which lS identically O. We there-

fore assume that a O > 0 from now on. 

We shall determine P, the weak closure of P. Write 
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For G a survivor function for a probability on (0,00], denote by CG the 

points of continuity for G 1n (0, 00 ). 

4.9 Lemma Let P 
a 

EP for n>l If P => P for some probability P on 
a 

n n 
* W then G converges weakly to some G, i.e. there is a survivor function 

G 

a 
n 

for a probability on 

G (t)~G(t) 
a 

n 

(0,00] such that 

for all t E CG . In addition, G(t) > 0 for all t 1U the non-absorbing case. 

Proof By Proposition 3.3. 

a 
Pa (a l > t) ~ peal > t) : = (G(t» 0 

n 

for all t with P (al = t) = O. But 

P (al>t) =P (Tl>t) = (G 
a a a 

a 
(t» 0 

n n n 

and S1nce a O > 0, the first as sertion of the lemma follows. 

To show that G(t) > 0 always if all ak > 0, suppose that G(tO) = 0 • 

Choose such that P(a=t)=O 
k for all k E lliO . We have 

* P(Nt<k) =p(ak>t) =lim Pa (Clk>t) 
n~oo n 

for every k. But 

(a ) 
with 

n 
p the transition probabilities for P . Since 

a 
G (t)~O, 

a 
n 

follows from (4.7), part (a) of Lemma 4.5 and (4.4) that 

* Thus peN < k) = 0 
t 

for all k violating the fact that 

n 
Pa (Clk > t) ~ 0 • 

n 
P (N* < 00) = 1 

t 

o 

it 
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4.10 Theorem Let the survivor function G and the sequence 

lim G ( t) = G ( t) 
a 

n~co n 

(a ) 
n 

satisfy 

for t E CG and assume ~n the non-absorbing case that G(t) > 0 for all t. 

(a) The quantities 

p .. (s,t) = 'IT •• (a., ... ,a.; G(t)/G(s» 
~J J -~ ~ J 

(4.11) 

defined for i ~ j E ]NO' s ~ t ~n the non-absorbing case and for i ~ j ~ kO' s < t 

with G(s) > 0, together with 

p .. (s,t) =0 .. 
~J ~J 

(4.12) 

for i ~ j ~ kO' s ~ t with G(s) = 0 ~n the absorbing case, are the transition 

* probabilities for a unique Markov probability P on W with state-space ]NO 

in the non-absorbing and {l, ... ,kO} in the absorbing case. 

(b) 

Proof 

P =>P for n~co 
a 

n 

(a) With 
(a ) 

n 
p the transition probabilities for 

from (4.7) and Lemma 4.5 (a) that 

(a ) 
n 

p .. (s,t)~p .. (s,t) 
~J ~J 

P 
a 

n 
it is clear 

(4.13) 

for all s ~ t E CG with G(s) > 0 Therefore the Chapman-Kolmogorov equations 

(a ) 
n 

p , hold for being valid for p at time points ~n CG, i.e. 

(4.14) 

for s ~ u ~ t E CG with G(u) > O. But (4.11) shows that p .. 
~J 

~s right-continu-

ous ~n s,t, hence (4.14) is true for all s~u~t with G(u) >0. It is now 

easy to extend (4.14) to all s~u~t using (4.12) and the fact that by (4,11), 
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p .. (s,t) H constant ~n t if G(s) >0, G(t) =0. 
~J 

To establish the existence of the Markov probability P it rema~ns to show 

that L 
j>i 

p .. (s,t) =1 
~J 

~n the non-absorbing and that p .. (s,t)=l 
~J 

for 

i ~ kO ~n the absorbing case. (The fact that the Markov chain with trans ition 

probabilities p may be realized with right-continuous paths, i.e. as a proba

* bility on W , ~s standard, see e.g. Jacobsen (1972». But this is evident in 

the absorbing case and follows from (4.11) and Lemma 4.5 (d) in the non-absor-

bing case since G(t) > o. 

* (b) It ~s easy to see that P (L'lNt = 0) for t E CG , so by Proposition 3.3 

it suffices to show that 

Pa (0l>sl,···,0k>sk)~P(0l>sl,···,0k>sk) 
n 

(4.15) 

for all k and all sI ~ ... ~ sk ECG' But expressing (4.15) in terms of the 

transition probabilities for P and P, the convergence follows readily 
a 

n 
using (4.l3). o 

Thus the closure P of the model P comprises the Markov probabilities P 

described in part (a) of the theorem. As we shall see presently, for maximum-

likelihood estimation the important part of the extension ~P consists of the 

P determined by purely discrete G. 

Suppose now a Markov chain (with unknown G) arising from P ~s observed 

on [O,t]. With k Jumps occurring at o < t 1 < . . . < tk ~ t and the size 

of the kIth jump, the probability of the observation becomes 

(4.16) 

where and xo = 0, to = o. Here 
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a. 
1 p. . (s , u -) = lim p . . (s , U ') = (G ( u - ) / G ( s ) ) , 

11 ,u'ttu 11 

p .. (s - , s) = 1 im p .. (s ' , u) = 1f. • (a. , ... , a.; G (s ) / G (s - ) ) 
1J s'Hs 1J J-1 1 J 

assuming G(s»O for (4.17) and G(s-»O for (4.18). 

(4.17) 

(4.18) 

4.19 Theorem (a) The likelihood function 1n the model P for observation 

of the Markov chain on [O,t] is 

Nt 

L (G) = ( IT 
t k=l p * * 

N * N * 
'k-l 'k-l 

with the p .. (s,t) given by (4.11) and (4.12). 
1J 

(b) The maximum-likelihood estimator G of G is unique and is a purely 

* * discrete survivor function with atoms at '1"""- only. More specifically, 
A Nt 

if 11 is the intensity function for G, then 11 (s) = 0 for s #-,~ while 

* 11 ('k) 1S the value of 0~11~1 max1m1zmg 

1f * (a * , ••. , a * ; 1 - 11) • (4.20) 

~N* N * N * 
'k 'k-l 'k 

* (c) In the special case where all ~N * = 1, 11 
'k 

1S g1ven by 11 (s) = 0 for 

s #-,~ and 

(4.21) 
1 

1 - exp( ---) 
ak- l 

Proof (a) The likelihood function 1S just (4.16) rewritten. 

(b) and (c). Consider first the non-absorbing case. Since it is seen that 

Lt(G) =0 if G(t) =0, we must have G(t) >0. But then (4.17) shows that G 
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* * * * [0,T l ),(T l ,T 2), ... ,(T"N ,d ~n order that 
t 

must be constant on the intervals 

:the factors ~n involving transitions p .. attain their maximal value 1. 
~~ 

The last assertion of (b) follows from (4.18), except for the uniqueness of the 

max~mum, which we shall not argue. Part (c) is likewise immediate from (4.18), 

* * using that N = k because all 
T* 

k 
l',N *=1, and that 

T. 
J 

(4.22) 

The same reasoning applies ~n the absorbing case if one works strictly to 

* the the left of the time where kO is reached. If that happens at T. , then 
J 

(4.20) is < 1 if ].1<1 (use the interpretation of 1T provided in Proposi-

* * tion 4.6), and by (4.4) = 1 if ].1=1 Thus ].1(T.)=1 so that G(T.)=O 
J J 

* forcing G:::O to the right of T. 0 
J 

Remarks G 1S a survivor function of the type permitted by the model P, 

1.e. G(s) >0 for all s in the non-absorbing case. This is clear from (4.20) 

because the quantity there vanishes if ].1 = 1 when all ak > 0 

Notice also that the expression ~n (4.22) is well defined: it is only 

possible to observe the first k jumps to have size 1 if ak- l > O. 

o 

Consider a Markov chain P from P generated by a purely discrete G 

with intensity function ].1. Viewed as a counting process with multiple jumps, 

the intensity process for P is A = (AY)Y~l where 

* * AY = P (l',N = y IF) = p ( t - t) 
t t t- * * " N N +y 

t- t-, 
and ~s g~ven by 
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With these expressions, (3.4) provides an alternative derivation of Lt(G) 

for G purely discrete. 

4.23 Example Let a = 1 k 
for all k. The model P consists of Poisson pro-

cesses, and if P is determined by the survivor function G, then 

Pij(s,t) = (j:i)! (- log(G(t)/G(s»)j-i ~~~~ 

~n agreement with 

S k 
ifk(l, ... ,l;S) =k! (-log S) (4.24) 

In point process terminology, P ~s the Poisson point process with intensity 

* measure A on (0,00] given by A(O,t] =PNt=-logG(t). 

For P belonging to the Aalen model P, 
ex. 

t 
A(O, t] = f Ocr. That the extension 

p~ comprises Poisson processes with multiple points is quite reasonable. 

The maximum-likelihood estimator for G can be found explicitly. With 

* Yk = llN * we must max~m~ze 
Tk 

1 Yk 
-]1 (- log(l -]1» 

Yk ! 

cf. (4.20) and (4.24). This gives 

* which together with ]1 (s) = 0 for s I- Tk ,specifies G 

The intensity measure A for the Poisson process P determined by G is 



A 

!I. (0, tJ = - logG(t) 

-log IT (1- ]1(s» 
O<s<t 

as should be expected. 

- 22 -

o 
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5. EXTENSION OF THE GENERAL AALEN MODEL 

Consider the Aa1en model P of processes with intensities 

as 1n (2.1), and let p be the process with this intensity, assuming 

for all t. 

(5.1) 

t f a <00 o 

As a positive adapted right-continuous process Z= (Zt) has the following 

representation: for every k ~ 0, t1 < ... < tk there is a function 

Zk [tk,oo) -+ [0,00) such that 
, t1 .•. tk 

Z (w) =z (t) 
t k, t1 ... tk 

In the Markov chain case considered 1n the preV10US section, we have 

Z (t) = a 
k, t 1 ... tk k 

For most of the remainder of this section we shall make the following 

assumptions. 

A.1 There exists (ak)k>O with L 1/ ak = 00 such that 

all k, t1 < ... < tk ~ t 

Z (t) < a for 
k, t 1 ... tk = k 

A.2 For every k, zk (t) 
,t1 · .. tk 

1S jointly continuous 1n 0 < t1 < ... < tk ~ t 

and extends to a continuous function of t 1 , ... ,tk ,t on the domain 

A.3 Either Z (t) > 0 
k, t1 ... tk 

(the non-absorbing 

case) or else, for every t there exists kO(t) finite and decreasing in t 

such that Z (t) = 0 for 
k, t1 ... tk 

and all while 

zk t (t) >0 for k<kO(t) 
, 1'" tk 

and all t1 ~ ... ~ tk ~ t (the absorbing case). 
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Assumption A.l, which may be restated as Zt ~ aN ' guarantees that the 
t 

counting process with intensity (5.1) exists. It is satisfied in particular if 

(2.2) holds. A.2 may be relaxed a little as will be mentioned later. A.3 im-

plies that any process P 
a 

can only jump after time t 

5.2 Lemma Let G be a surv~vor function and suppose that G (t) ~ G(t) 
Cl, 

n 
for t ECG' Let f: [0,=) ~ [0,=) be continuous. Then for t E CG 

t t 
exp( - J Of(s)an (s)ds) ~ exp( - J Of(s) (-log G) (ds» . (5.3) 

o 

The proof is easy and ~s omitted. If G ~s purely discrete with intensity 

function tl, (5.3) reads 

t f(s) 
exp ( - J 0 f (s) an (s) ds) ~ IT (1 - tl (s ) ) 

O<s<t 

We have the following analogue of Lemma 4.9. 

5.5 Lemma Let PEP 
--------~ a 

for n> 1. If P => P for some probability 
a 

W* , 

Proof 

n 
then G (t)~G(t) 

Cl, 
n 

n 
for all t E CG with zO(t) > O. 

We have Pa (0'1> t) ~ P(al > t) if peal = t) = O. But 
n 

(5.4) 

P on 

andsmcebyA.3, zO(s»O for s~t if zO(t»O, theconclusionfollows 

from Lemma 5.2 with f(s) =l/zO(s), which is continuous by A.2. 0 

We shall not determine in detail the weak closure P of P. With Lemma 

5.5 as motivation, we shall consider sequences 

G (t)~G(t) 
a 

n 

(a) such that 
n 

(5.6) 
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for some surv~vor function G. Further. with reference to the results of Sec-

tion 4, we shall only consider the case where G is purely discrete. Without 

further argument we then claim that the partial extension determined this way, 

always contains the maximum-likelihood estimator. 

Let G be purely discrete with intensity function V so that 

G(t) IT (l-V(s» 
O<s~t 

If tt = inf {t : G(t) O} < 00, the definition of V 

to the right of tt ~s immaterial. We shall adopt the convention that vet) =0 

t for t> t . 

5.7 Theorem Suppose that assumptions A.l-A.3 hold, let (a) be g~ven such 
n 

that (5.6) is satisfied with G purely discrete with intensity function V. 

Suppose finally in the non-absorbing case that G(t) > 0 for all t. 

(a) The collection of predictable processes on the multiple 

* jump path-space W defined by 

(5.8) 

* on the F -atom 
t-

* * * (T l =tl'Yl=Yl,···,Tk=tk'Yk=Yk,Tk+l~t) , 

~s the intensity process for a unique purely discrete mUltiple Jump process P . 
V 

z (t)=z (t) 
xk + 9, xk + 9" t 1 ... tl ' ... , tk ... t k , t ... t 

with t. 
J 

repeated y. 
J 

times, t repeated times. 

(b) P =>P as n-'»oo 
a V 

n 
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Proof (a) By Lemma 4.5 (d) and A.l 

A 
t 

if ]l(t)<l. 

z (t) 
xk 

L AY = 1 - Cl - ]l (t» < 1 
>1 t . 

y= 

(5.9) 

By assumption, this is always true in the non-absorbing case. \Je can there-

fore construct a 'counting process' with multiple jumps, having A for inten-

sity process. The only problem is that this process may reach 00 In finite 

time. But this possibility is excluded by assumption A.l: replacing zk by the 

upper bound ak , yields a Markov process that moves more quickly than (is domi

nated stochastically by) the one we have constructed, and as we know from Sec-

tion 4, the Markov process always stays finite. 

In the absorbing case, the same reasoning applies except if ]let) =1. The 

process lS well defined and finite to the left of t. At time t, (4.4) shows 

that no jump occurs if xk ~ kO (t), while otherwise a jump to kO (t) lS forced. 

The convention ]l(s) = 0 for s > t now shows that the definition of A fits 

if the process is prolonged beyond t by not moving any more. 

(b) From (5.9) it is seen that 1" =0 
t 

whenever ]let) = 0 so that the pro-

cess P can only jump at times t that are atoms for G. From Proposition 3.1 
]l 

it therefore follows easily that to show 

(5.10) and (5.11): for any k~l, O<t l < 

* * 

P '* P, it is sufficient to show 
a 

n 
... < t k , y 1 ' ••• , Y k ~ 1 

P(T l =tl'Yl =Yl,···,Tk=tk'Yk=Yk) (5.10) 

Hm lim P (t.-h.<T l< ... <T ~t.+h.<T l,j=l, ... ,k) 
h 0 h 0 Cl, J J X. 1+ X. - J J x. + 

1 ++, ... , k'H n~ 00 n J - J J 

where Xo = 0, Xj = Y 1 + ..• + Y j ; 

atoms for G 

and for s<t such that [s, tJ contains no 



1 im P (N - N = 0) = 1 
et t s 

n~oo n 
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(5.11) 

The critical part of the proof consists ~n establishing (5.10). Introduce 

fixed with t. 1 + h. 1 < t. - h. 
J- J- J J 

A.=(t.-h.<T l< ... <T ~t.+h.) 
J J J X. 1+ X. - J J 

J- J 

The probability Pn on the right of (5.10) ~s 

p =P (A.(t. +h. <T 1); j =l, ... ,k) , 
n et J J J X.+ 

n J 

which we shall evaluate by conditioning on the o-algebra G generated by 

Tl.···'Txk_l and the event B=(tk-hk<Txk_l+l)' Inside B, Pcxn(·IG) may be 

viewed as a counting process on the interval (tk - hk,oo) , where the distribu-

tion of the time of the first jump T +1 has intensity function 
~-l 

given further that this Jump occurs at ul ' the intensity function governing 

the distribution of the second jump ~s 

(u2 )et (u2 ) 
T , u l n 

xk- l ' 

and so on. 

Now introduce for 0 ~ Q, ~ Yk 

where the sup extends over values of s. and u. 
~ ~ 

such that 

t.-h.<s l<"'<s <t.+h. 
J J X. 1+ X. = J J 

]- J 

(5.12) 
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for 1 ~ j ~ k - 1 and 

Let ~X +9-
k-l 

be the corresponding info 

Next write 

where C = (tk - hk < T 1 < ... < t < T 1 < tk + hk)· Then P ('\ IG) may be 
xk - l + xk xk+ = an 

bounded above (below) by the probability that the faster (slower) moving count-

ing process on (tk - hk,oo) with jumps generated by the successive intensity 

functions z a (ul ) , o •• ,""i. la (u ) (intensity functions 
xk- l n xk - n Yk 

z a (ul ), .. 0 ,z la (u » have at least Yk jumps before time tk + hk . 
-x n -x. - n y 

k-l K k 
Since this new process is Markov, the results of Section 4 provide expressions 

for the two bounds. Bounds for P (CIG) are obtained ln the same fashion, 
a 

n 
requiring that the Markov process have at least Yk + 1 jumps before tk + hk . 

Since P a ('\ 'C I G) is determined by Zx for x~ ~, we may create xk + 1 an 
n 

absorbing state for the Markov process, making it simple to compute the proba-

bility of at least Yk' respectively Yk + 1 jumps. The end result is 

'IT (z , ... ,z;y) + 'IT l(z , ... ,z ,O;y) 
Yk -xk- 1 -xk n Yk+ -xk - l -xk n 

-'IT l(z , ... ,z ,O;y) 
Yk + -xk - l -xk n 

tk+hk 
where y = exp (- fa). These constant bounds are valid on the set 

n n 
tk-hk 
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k-l 
D = [n A. (t. + h. < , 1)] n (tk - hk < , 1)' 

j=l J J J x j + xk - l + 

so writing ~k' r k for the lower and upper bound respectively we get 

~k Pa (D) ~Pn~rk Pa (D) 
n n 

But 

tk-hk 

P (D) = P (exp( - f z (u)a (u)du; Ek 1) 
a a t h xk- l ' '1 ... 'xk - l n -

n n k-l+ k-l 

where Ek l=(A.(t.+h.<, 1); j=l, ... ,k-l). Thus 
- J] J x.+ 

- J 

tk-hk 

~kexp(- f z (u)a (u)du) 
x n 

tk-l+hk- l k-l 

(5.13) 

tk-hk 

exp( - f z (u)a (u)du) P", (Ek- l ) 
h -xk-l n ~n 

t k- l + k-l 

where 

the sup extending over the same values of S. 
1. 

as 1.n (5.12), and where z (ti) 
-xk- 1 

is the corresponding inf. 

The inequalities (5.l3) bound Pn' the p~obability of the intersection of 

the events A. (t. + h. <, 1) for j = l, .•. ,k, by a factor times the probabili-
J J J x.+ 

J 
ty of the first k - 1 of these events. Hence, proceeding by induction, Pn 

may be bounded above and below by a product of k factors, each containing a 

r. and an exponential integral as in (5 .13) ~ 
J 

if 

By assumption A.2, z (u) 
xk- l 

t k - l + hk- l E CG ' tk + hk E CG ' 

and z (u) are continuous 1.n 
-xk- l 

by Lemma 5.2 and (5.4) e.g. 

u. Therefore, 
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Referring again to A.2 and using the continuity properties of the 

n-functions, it is now clear that 

lim 
hl HO, ... ,hk HO 

lim p 
n 

n~oo 

z 
k x. 1 (s) 
IT [n (z (t.), ... ,z (t.);l-j.l(L» IT (1-]1(s»]- ] 

j=l Yj Xj _l ] Xj ] ] t. <s<t. 
]-1 ] 

with to = 0, Xo = O. For the proof of (5.10) it remains to identify this ex-

* pression with P (To = t . , Y. = y. ,1 < j < k) ] ] ] ] = = which is straightforward from the de-

finition of (5 . 9 ) and (3. 4) • 

For the proof of (5.11), define 

G(t) = lim sup exp( - J~Cln (u)du) , 
sHt n 

which lS a survivor function. 

Consider the non-absorbing case. By assumption, G(s) > 0 for all s, so the 

* Markov probability Q on W with transition probabilities 

p. . (s , t) = n. . (a. , . . . , a .; G ( t) IG ( s ) ) 
l] ] -l l ] 

lS well defined. (The a. 
l 

are the constants from assumption A.l). The defini-

* tion of G ensures that for all t, Nt under Q lS stochastically larger 

* than N =N under P for any n. t t Cl n 

Suppose that G has no atoms In [s, tJ. Given E: > 0, let n be so large 

t exp ( - J Cl ) > 1 - E: 
S n 

that Then 
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00 

t 
P (N -N =0)= L P (exp(-! z (u)a (u)du; N =x) 
an t s x=O an s x,Tl···Tx n s 

00 

> L 
- x=O 

t 
P (exp ( - a! a)· N = x) 

a x s n' s 

>P = a 
n 

>P = a 
n 

n 

(1 - s) 

(1 - s) 

aN 
s 

bN 
s 

where bk = aO V ••• vak and we have used stochastic domination for the last 

bN~ 
step. As s -} 0, Q(l - s) ~ 1 and (5.11) follows. 

In the absorbing case, the same argument applies for s < t such that 

G(s) = G(t) > O. If G(s) = 0, we have 

P (N -N =O»P (N >KO(s))=l-P (N <KO(S)) 
a t s = a s= a s 

n n n 

by A.3 and the following remark. For k< KO(S) define 

ck = inf z (s) , 
k,sl" .sk 

the inf extending over si with 0 ~ sI ~ ... ~ sk ~ s. By A.2 and A.3, ck > 0 . 

The process P moves faster than the Markov process 
a 

Q with transitions 
a 

n n 

v q. . (u, v) = 1T. • (c . , . . . , c .; exp ( -! a )) , 
lJ J-l l J U n 

and therefore 

s 
P (N < KO(S)) < L 1T (cO"" ,c ; exp( - lOan») , 

a s = x x 
n X<KO(S) 

and here each term tends to 0 by Lemma 4.5 (a) and (4.4) because 
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o 

Consider the model P obtained by closing P. For observation of the pro-

cess on [0, tJ, the likelihood function is 0 for probabilities from P, 

while by (3.4) it equals 

11 
O<s<t 

for the member of the extended model given by Theorem 5.7 (a). 

(5.14 ) 

If the observation comes from the original model, only simple jumps are ob-

served and the maximum-likelihood estimator may be found explicitly. Since the 

* restriction to W (from W ) of the simple jump intensity 

the restriction to W of Lt becomes, cf. (4.22) 

L (].l) = ( 
t 

IT 
O<s<t 

sh l' . :- . , TN 
t 

z Nt 
(1- ].l(s» s) IT 

k=l 

satisfies 

(5.15) 

and the following result follows quite easily. That the estimator corresponds 

to one of the processes from Theorem 5.7 follows from A.l - A.3. (Note that by 

A.2, the exponent z in (5.15) may be replaced by Z ). s s-

5.16 Theorem (a) The maximum-likelihood estimator P in the model P for 

observation on [O,t), is a purely discrete process of the type given In 

Theorem 5.7. The intensity function ].l determining P lS given by ].l (s) = 0 

* * * if s I: Tk while ].l(Tk ) for k=l, ... ,Nt lS the value of ].l (Tk ) which maXl-
y, 

mlzes the observed value of ,\ k as glven by (5 .8) . 
T* k 
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* (b) If only simple jumps are observed, then fl (s) = 0 for s # 'k = 'k 

and 

1 1- exp( ---) 
Z 
'k-

for k=l, ... ,Nt=Nt o 

We shall generalize Theorem 5.16 to the situation where r independent 

processes are observed, all having intensities of the form (5.1) with a common 

unknown a. Thus the intensity of the i'th subprocess is 

i i 
A = a(t-)Z 
t- t-

(5.17) 

We assume that all Zi satisfy assumptions A.l - A.3. 

Formally we have a product model p = {p } 
a as defined In Jacobsen (1982, 

Section 4.2), i.e. 

with pl the process with intensity (5.17). If we consider the limiting pro
a 

cedure (5.6) with G purely discrete, then each pi 
a 

. pi 1 r n 
dlscrete and evidently then P q P ® ••• ® P , 

a 

* * 
n 

converges to some purely 

(using of course the pro-

duct topology on W x ... xW ). This glves a partial extension of the product mo-

del P which is rich enough to define the maximum-likelihood estimator. The 

likelihood function is the product of r factors of the type (5.14). 

We shall determine the estimator In the case where the product process lS 

observed on [O,t], and where only simple jumps are observed with no two sub-

processes jumping simultaneously. (Of course this is the case if the data lS 
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generated by the original model P). Write 

let 

r . 
L Z1. 

. 1 t. 1.= 

denote the time of the kIth jump for all the subprocesses combined Tk 

and put I = i 
k 

if subprocess 1. jumps at ~k. Finally, let P denote the 

weak closure of P. 

5.18 Theorem Suppose the product process 1.S followed on [0, tJ and that 

only simple jumps are observed with no two subprocesses jumping simultaneously. 

The maximum-likelihood estimator P in the model P is then the product 

A Al Ar 
P = P ® ••• ® P of purely discrete processes of the type from Theorem 5.7, and 

the intensity for pi is of the form (5.8) for each i with z replaced by 

1. 
Z and jl = jl not depending on 1.. 

The estimator jl for jl 1.S given by jl (s) = 0 if s f:. ~l'··· '~N and 
t 

for k=l, ... ,Nt 

Proof If Ik = i the part of the likelihood involving jl (~k) comprises the factor 

from subprocesses i, and the factors 



- 35 -

from subprocesses J ,J :f i. The result follows readily from this, uSlng that 

since only process 

by A.2. 

If 

l jumps at 

Lik 
(1+-
~ 

T -
k· 

-l/Li 
) k 

j f:. i, zj lS continuous at 
s 

for 

o 

may be written 

(5.19) 

We have used that only subprocess Ik Jumps at time 

T k , together with the continuity assumption A. 2. 

Throughout this section we have assumed A.l - A.3. The continuity require-

ments In A.2 may however be relaxed. Under the limit (5.6) with G purely 

discrete, the conclusion In Theorem 5.7 (b) still holds provided all 

(t) continuous neighborhoods points 000 with z are In of (tl,···,tn,t) 
n, t l ·· .tn 

the 0 
tk and 0 t atoms for G, and possess continuous extensions In these 

neighborhoods as required globally in A.2. It follows in particular, that if 

the original Aalen model or product Aalen model is the true one, then the 

maximum-likelihood estimator may be found as in Theorem 5.16 (b) or Theorem 

5.18 and has the same interpretation, provided for instance that there is a 

set ac [0,=) of Lebesgue measure a is continuous 

at all (tl, ... ,tn,t) with tkEa, tEa. 

5.20 Example Let for 1:::: i:::: r, 0 < U i ~= be glven and assume that 

with the time of the first jump for the i'th process. The corresponding 

product model arises when observing i.i.d. lifetimes with right-censoring at 
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~, z~:= 0 except for n = 0, and 
n 

with a discontinuity at u. 
~ 

However, the remark above applies if we take 

Let ~ be a purely discrete intensity function and suppose that ~(u.)=o 
~ 

p = pI ® ••• ® pr 
~ ~ ~ 

for all ~. Cons ider the process from the extended product 

model with each pi given by Theorem 5.7 (a). We find that Ai,y:=o 
t 

for y ~ 2 

while by (5.8) Ai, 1 10 only on 
t 

= l[O,u.) (t)~(t) 
~ 

and on that set equals 

The conclusion ~s that P ~s a model for i.i.d. lifetimes with survivor 
~ 

function G( t) = IT (1 - ~ (s», right-censored at u l ' ... , ur . 
s<t 

If the original product model is the true one, the maximum-likelihood esti-

mator may be found using Theorem 5.18. Now 

Z 
t-

r 
2: 

i=l 

~s the number R 
t-

of individuals at risk (i.e. not dead and not censored) 

immediately 

always have 

before t. Since a jump at 
I I 
~k _ ~k = 1 and find that 
Tk~ Tk 

bmes of death where 

A '" 1 
]leT )=-

k Rrv 
T -

k 

t is possible only if z > 0 , 
t-

~ (s) = 0 except at the observed 

we 

The maximum-likelihood estimator P for P ~s therefore the process 
]l ~ 

generating i.i.d. lifetimes right-censored at with survivor func-

tion 
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G(t) 

1.e. the Kaplan-Meier estimator. 

In the special case with no censoring (all u. =00), 
1 

and 

G is the survivor function for the empirical distribution attaching mass l/r 

to each o 

5.21 Example Suppose that for i = 1, ..• ,r 

(S,v. (t» 
1. e 1 

(T~~t) 
(5.22) 

with S E]RP and each v. (t) 
1 

a p-vector of given continuous covariate func-

tions. 

For S given, the corresporlding produc.tmodel is the counting process for-

mulation of the Cox regression model (Cox (1972» in its simplest form. (See 

Andersen and Gill (1981) or Jacobsen (1982, Section 4.5). Thus r independent 

lifetimes are observed with survivor function 

t (S.v. (s» 
1 

exp (- f a,(s)e ds) 
o 

for individual i. 

We have Zl == 0 for n ~ 1 and 
n 

(S.v.(t» 
1 

e 

(5.23) 

so A.l - A.3 are satisfied, and for S fixed we may find the maximum-likeli-

hood estimator in the extended product model, using Theorem 5.18. With no two 

deaths observed to occur simultaneously the result is that 



- 38 -

for the population at risk immediately before Tk' 

(In particular Ik E Rk ). The interpretation of jl is that we believe the data 

to be generated by 
A Al A r 
p = P ® ••• ® P where the intensity for 1.S spec if ied 

by (see Theorem 5.7 (a», ~i,y=O for y ~ 2 while 
t 

~i,l 
t 

(S,v.(t» 1. 
1.* '/flee ,0; l-jl(t» 
(T~ ~t) 

(S.v. (t» 
A 1. 

1.* [1 - (1- jl(t»e ] 
(T~ ~t) 

Thus P generates independent lifetimes with survivor functions 

(S,v.(s» 
A e 1. 

n (1 -jl(s» 
O<s~t 

In the special case with v. (t) =v. 
1. 1. 

t 

not depending on t we have 

where GO estimates exp (- fa), the survivor function arising for 
o 

s = o. 

We may now proceed to estimate S by inserting jl 1.n the expression for 

the likelihood function and maximizing the resulting likelihood profile as a 

function of S. (We have considered an extension of the product model specified 
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by (5.22) for each value of S. We ought to have considered the extension ob-

tained by allowing a,=a, 
n 

and S=S 
n 

to vary simultaneously, but this would 

not give anything new). For observation on [O,t], Lt(~) = Lt(~'S) LS a pro

duct of r factors of the form (5.15). We get (since process i jumps only 

once) 

r 
n ( n 

i=l O<s~t 
L 

s<T l 

(S,v.(s» 
L 

e 
(1 - ~(s» )[1 -

and rearranging the factors, inserting ~ = ~ and writing 

e(i) 

this yields 

The factors e(Ik)/~ multiply to give Cox's partial likelihood (Cox 

(1972), (1975), Oakes (1981» commonly used for estimating S. We see that the 

partial likelihood does not give the maximum-likelihood estimator for S, 

although in practice the difference may well turn out to be negligeable. 

The estimators derived Ln this example were first obtained by Bailey 

(1979), o 

Johansen (1981) (see also his discussion of Oakes (1981» has proposed a 

different extension of the multiplicative intensity model and derived the Aalen 

estimator (2.3) as maximurnrlikelihood estimator. We shall conclude this section 

with a discussion of his proposal. 
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Consider the model (5.1). The purely discrete members of Johansen's exten-

sion have multiple jumps with intensity given by 

),Y = -\- (2 v(t»y exp (- 2 v(t» 
t y. t- t-

(5.24) 

with vet) > 0 always and > 0 only at a sequence of isolated points. 

There are two ma~n reasons why we consider this extension unsatisfactory: 

1) the extension does not respect the structure of the original model; 2) 

the extension is not properly defined by (5.24). 

To argue the first point, suppose that 2 = 1 > so that the process 
t- (Tl=t)' 

with intensity (5.1) only has one jump of s~ze one and 

The process 

t 
= exp (- f a) 

o 

P with intensity (5.24) has one Jump such that 
v 

exp (... L v ( s » , 
O<s~t 

but this Jump may be arbitrarily large: 

P,,(Yl.=y j / = t) - 1 (v(t»y e","v(t) • 
v 1 - y! 

Thus a model for observing one positive random variable (lifetime) is re-

placed by a model for observing a lifetime and a jump size, which ~s not natu-

ral. (The topological considerations behind the extension defined. ~n this 

paper, prevents similar things from happening here). 

As for the second point made above, look at (5.24). Given the model (5.1), 

the process 2 is only defined. on the space W of simple jumps, whereas for 

(5.24) to define the intensity of a process with multiple jumps, 2 must be 
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* extended to W. It is not at all obvious how this should be done, indeed a 

major effort ~n this paper has been devoted to the problem of finding the pro-

per replacement for Z when switching from the simple to the multiple jump 

case. 

Thus (5.24) only specifies the intensity on W. and although this is enough 

to find the maximum-likelihood estimator when only simple jumps are observed, 

it is not sufficient for interpretation of the estimator as a probability ~n 

the extended model. And to obtain such an interpretation, might be a good rea-

son for considering an extension in the first place. 
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6. COMPARING THE AALEN ESTIMATOR AND THE MAXIMUM-LIKELIHOOD ESTIMATOR 

For the product model (5.17), the Aalen estimator of 

t 

f ds ex(s) 1(2' >0) 
o s 

~s defined similarly to (2.3): 

f 
[O,t] 

N(ds) z 
1 

s-

Based on this, the natural estimator of the exponential 

~s 

G (t) 
ex 

t 

exp (- f ex) 
o 

G(t) exp (-1\) 

but ~n fact one often uses instead the product.,.limit estimator determined by 

s, 

v 
G(t) n 

O<s~t 
(1 - £113 ) 

s 

because this g~ves for instance the Kaplan-Meier estimator for the model from 

v 
Example 5.20. (G only makes sense as long as 

Jacobsen (1982». 

£1S ~ 1, see Section 5.3 of 
s 

Supposing the model (5.17) to be true, the maximum-likelihood estimator is 

determined by V given as ~n Theorem 5.18. Based on this3 the maximum-likeli-

hood estimator of G ~s the product-limit estimator determined by V, 
ex, 

A 

G (t) 
ex 

n (l.,. v(s» 
O<s~t 
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t 
so the maximum-likelihood estimator of f Cl, becomes 

o 

- log G (t) 
Cl, 

Instead of this one may consider the accumulated maximum-likelihood estima-

tor 

v 
It ~s seen from (5.19) that formally the Aa1en estimator Sand Sagree 

if 

for all k~ as is the case in Example 5.20. (If t:.z.... 1 one gets 
'k 

v '" 1 
St f N(ds) 

'" (O,t] z s 

which resembles 
v 

St' but of course St < St on ('1 ~ t» . 

Asymptotic results (as the number r of subprocesses tends to 00) for the 

distribution of S were given by Aa1en (1978), see also Chapter 5 of Jacobsen 

(1982). The results state that under certain conditions, including integrability 

conditions we have not used here, the sequence of processes 

M a CS"" S) r r 

where the ar are constants, ar ~ 00, converges ~n distribution to a mean-zero 

Gauss-process with covariance function 

R(s,t) <1>(s) /\ <1>(t) ~ 

where <1> ~s increasing and continuous, i.e. the limit process has independent 
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increments. (Here the distribution of M 
r 

1S viewed as a probability on the 

Skorohod space D[O,oo). Further the distribution of 

respect to p = p 
a a,r 

for some a which is fixed as 

M 
r 

is considered with 

r ~ 00, In particular 

depends on a. In the notation we have suppressed r when writing S. S. Of 

course N, Z depend on r, and B depends on a also), 

Under the relevant integrability assumptions, M 
r 

1S for each a and r 

a P -martingale and one of the essential conditions for the weak convergence a,r 

1S that for all a fixed, with respect to the P a,r' 

for each 

<M > ~ cp(t) 
r t 

t, with <M> 
r 

m probability 

the quadratic characteristic of M. 
r 

(6.1) 

Subject to some extra assumptions, it may also be shown that the processes 

V 
a (G(t) ~ G (t» , 

r a 
a (G(t) - G (t» 

r a 

both converge 1n distribution to the mean-zero Gauss-process with covar1ance 

function 

V(s,t) <p(s) G (s) G Ct) 
a a 

(s ~ t) , 

see Jacobsen (1982, Section 5.3). 

V 
We shall now show that S 1S close to B and that G 1S close to G. 

We shall assume the following: 

(i) 

Cii) 

P N < 00 a,r t 

<M > ~ cp(t) 
r t 

for all a, r, t; 

m probability for all a,t; 

Ciii) there 1S a constant c > 0 such that I f1Z t (w) I < c for all t~ w; 
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(iv) P (m (t) ~ 2c) ~ 0 where m (t) inf Z s' O'"r r r 
s~t 

2 t Z 
(v) f ds O',(s) P s 

l(Z >2c) ~ 0 for all a 
'" 4 a, t, 

r 0 O'"r (Z - c) s s 

Condition (i) ensures that 

t 
Nt - f ds 0',( s) Z 

o s 

~s a P -martingale with 
a .• r 

P "'M2 
O'"r t < 00. (ii) ~s just (6.1) repeated, and 

because 

<M> 
r t 

2 t 1 
a f dsO',(s) - 1 '" 

r 0 Z (Zs>O) 
(6.2) 

s 

is typically satisfied when for each s, converges. This makes (iv) and 

(v) reasonable, in particular it is plausible that the quantity in (v) is often 

of the order of magnitude -4 a 
r 

Condition (iii) is a genuine assumption, satis-

fIied in Examples 4.23, 5.20 and 5.21. 

6.3· Theorem Suppose (i)-Cv) hold. Then 

v 
Ca) sup a IS - S I ~ 0 ~n probability for all a, t· 

r s s 
, 

s~t 

A 

sup a IG(s) .,.. 11 ~ 0 in probability for all a, t. 
s~t rG(s) 

(b) 

Proof (a), Using a Taylor expansion ~n (5.19) we get$ writing 

...,l//:, - 2 
Cl + 8) k 

where 8 ~s between 0 and /:'k/Zk_ if /:'k =1= O. In all cases (also if /:'k = 0) 

we get 
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using (iii). Consequently, on (m (t) > 2c) , 
r 

D : = sup a I B -B I < 1 + c f N(ds) 
t s~t r s s = --2-- (O~t] 

.a 
r 

"" 2 • 
(Z - c) 

s-

Sti11 working on (m (t) > 2c), the integral on the right may be written 
r 

a f r 
(0, t] 

M(ds) 
1 t 

'" 2 l(z >2c) + ar Of ds .a(s) 
(Z - c) s-

s-

Z 
s 

rv 2 
(Z - c) 

s 
1(2' >2c) 

s 

(6.4). 

Considering the square of the first term and taking expectation with re-

spect to P yields 
a,r 

a 2 P r a,r 
t 1 

f <M > (ds) 1 '" o r (2' _c)4 (Zs>2c) 
s 

t 

f ds a(s) 
o 

Z 
___ s_-:-l ,..., 
(2' - c) 4 (Z s>2c) 

s 

which tends to 0 by (v). Rewriting the second term In (6.4) as (cf. (6.2» 

"'2 
t 1 Zs 

a f ds a(s) ;::::;- -"'--~2 1(;' >2c) 
r 0 Z (Z - c) s 

s s 

and observing that 

"'2 
Z 

s 
'" 2 (Z - c) 

s 
1(?, >2c) 

s 
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1S uniformly bounded, it follows from (ii) and the fact that a ~ 00, that the 
r 

term vanishes 1n probability as r ~ 00. We have thus shown that Dt l(m (t»2c) 
r 

converges to 0 1n probability, and by (iv) this implies (a), 

(b). By (5. 19) 

1 log (1 
i'.k 

- i'. ~ 
k 

with e between 0 and i'.k/Zk' Thus on Cm (t) > 2c), for some K> 0, 
r 

KD la KD la 
sup ar ~~(s) - 11 < a/e t r - 1) ~ K Dt e t r 
s~t ' G(s) , 

which by (a) tends to 0 1n probability. o 

t 
The maximum-likelihood estimator of f a is of course - log G(t), and it 

o 
would appear natural to compare this with Set), Since however G may vanish, 

there may be probability > 0 that - log G(t) = oo~ and no analogue of 

Theorem 6.3 (a) is available. 
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7. CONCLUDING REMARKS 

With the extension of the product Aa1en model proposed here, it has been pos

sible to find a maximum-likelihood estimator, and also to interpret this esti

mator in terms of a well defined counting process with multiple jumps. Further

more, evidence has been given that .certain functiona1s derived from the estima

tor are asymptotically equivalent to the Aa1en estimator and its negative expo

nential. 

The most general Aa1en model considered here was obtained as a product of 

one-dimensional processes. But the existing theory covers products of mu1tiva

riate counting processes as well, and it would be of interest to discuss ex

tensions of these models. This however may turn out to.be quite difficult, one 

reason being that the structure of mu1tivariate Markov counting processes is a 

great deal more complex than that of the one-dimensional processes treated in 

Section 4. 
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