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Summary: 

This paper presents a unified approach to ANOVA-modelling in 

designs where all factors are orthogonal, based on formal mathe

matical definitions of concepts related to factors and experimen

tal designs. The structure of an orthogonal design is described 

by a "factor structure diagram", containing the relevant informa

tion about nestedness relations between the factors. An orthogonal 

design determines a unique decomposition of the observation space 

as a direct sum of orthogonal subspaces, one for each factor of 

the design. The class of solvable variance component models, 

stated in terms of factors in a given design, is characterized, 

and the solutions to problems of estimation and hypothesis testing 

are given in terms of the factor structure diagram and the ANOVA 

table induced by the decomposition. 
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This paper deals with ANOVA models in designs where all 

factors are orthogonal. Examples are randomized block 

designs, split-plot designs, complete balanced k-factor 

designs (possibly with an orthogonal blocking), latin and 

graeco-latin squares, fractional replications of complete 

factorials. 

The justification of a new paper on this classical 

subject is that too little seems to have been done to 

put these models into a unified framework. In textbooks, 

they are usually presented as a sequence of very similar 

models, but not as special cases of the same model, in the 

sense that the solution comes out by inserting the "model 

structure" in a set of formulas. The present paper does 

(almost) give such a solution, and this solution is compu

tationally explicit, in the sense that the formulas derived 

for degrees of freedom, sums of squares, estimates of 

variance components etc. coincide with those one would 

usually apply if the computations were to be done on a desk 

calculator. These formulas are derived in a simple way 

from a diagram describing the model structure. 

Similar ideas, related to a wider class of ANOVA models 

(namely those with orthogonal block structure only) have 

been put forward in two papers by Nelder (1965), which 

together with Wilkinson (1970) and James and Wilkinson 

(1971) establish the theoretical back~round for the GENSTAT 

'ANOVA' algorithm. However, our formal description of 

design structure is considered mathematically simpler than 

that suggested by Nelder, and the Nelder-Wilkinson approach 

does not lead to the same degree of explicity of the com

putational formulas in the case of orthogonal block-treat

ment structure (accordingly, the GENSTAT 'ANOVA' algorithm 

would not be suited for desk calculators). 

It should not be believed from what is said above, that 

the present paper suggests a serious competetor to the 

'ANOVA' algorithm. For practical purposes, the part of the 

analysis concerned with the structure of the design is more 
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conveniently done by the statistician than by a computer. 

The present paper should be regarded as a support to this. 

The computational work can, of course, be left to a computer, 

and for this GENSTAT can certainly be recommended. The 

specification of a model to be analysed by 'ANOVA' re-

quires an understanding of the design on about the same 

level as given by the factor structure diagrams introduced 

in the present paper. In particular, it should be noticed 

by GENSTAT users that 'ANOVA' is unable to detect missing 

minima and nestedness relations (see section 1) which can 

not be read directly off the model formula. This may lead 

to erroneous degrees of freedom, if not taken into account 

by the programmer. 

The theory in the following is based on formal mathema

tical definitions of basic concepts related to experimen

tal designs. Some of these concepts (e.g. the concept of 

a factor) are so simple and well known that their mathema

tical meaning is usually subsumed or ignored. It should 

be noticed, however, that the concept of a minimum of two 

factors -which is a standard mathematical construction and 

an almost unavoidable part of the mathematical formalisation

does not correspond to a classical statistical concept 

(though related to concepts like partial aliasing or par

tial confounding). The concept of a minimum plays a crucial 

role for the results obtained in later sections. 

Readers familiar with Nelder's 1965-papers may be confused 

by the fact that our arrows between factors (like F -7 G) 

are essentially the reverse of those found in Nelder's paper. 

This inconsistency is difficult to avoid, because our arrows 

indicate mappings between sets. 

Let y = (y i liE I ) E JRI denote our data set. The 

(finite) indexing set I is the set of experimental units. 

A factor 

F I ~ F 
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is a mapping F from I into some other finite set F. 

The elements f E F are called factor levels. Usually, 

we shall refer to "the factor F " (rather than "the 

factor F: I 4 F "), thus subsuming the mapping as given 

by the context. 

Two factors play a special role as "extremes" , the 

trivial factor 0 , correponding to a constant mapping 

(5: I ~ 0 where 0 is an arbitrary set with one element, 

and the units factor I , corresponding to the identity 

I: 1-4>1. 

Intuitively, a factor F should be thought of as a par

ti tioning of I into classes F -1 (f) , each equipped with 

a "label" f E F. Thus, the trivial factor 0 is the 

partitioning into a single class, and I is the partition

ing into single units. 

J~J~==~~1~~~~~=~~~~~~g· 
As a standard notation in the following, we let n f denote 

the size of the class corresponding to f E F , i.e. 

(where * is used for "number of elements in ,,). By IFI 
we denote the number of non-empty classes, i.e. 

I F I = #- { f € F I n f > 0 } • 

Notice that I F I = -# F if and only if the mapping F is 

surjective. A factor F is called balanced if all the 

classes are of the same size, which is then denoted 

= = 

J~~~==~~g~~~=~~~~~~~. 
Let two factors F and G be given. Suppose that there 

exists a mapping f: F~ G such that 

F>~F 

r<z,lf 
G 

= 
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In this case we say that F is nested in or finer than 

G , or that G is marginal to or coarser than F. We 

wri te G c F or (in diagrams), F ~ G • 

Notice that we have G c F if and only if any of the 

G-classes can be written as a union of some of the F-classes, 

namely 
"IT -1( g) = U F -1 (f) 

f E cp-1(g) 

J~~~==~~~~~~~~~g=~~~g~~g. 
Two factors F and G will be called equivalent, written 

F~ G , if both F c G and G cF. Roughly speaking, 

equivalent factors are factors which induce the same parti

tioning of I. Only the labeling of)the classes and the 

number of "empty classes" (corresponding to level names 

which are not used) may be different. For many purposes, 

the properties of a factor are sufficiently described by 

its equivalence class, and most of the concepts discussed 

in the following are welldefined "up to equivalence" 

(notice, however, that balancedness is not a property of the 

equivalence class). 

Under the subsumed convention of not distinguishing 

between equivalent factors, the relation c is a partial 

ordering of the set of factors. We have the maximal element 

I and the minimal element O. 

1.4. Crossclassifications. 
========================== 

The product F le G of two factors F and G (or the cross

classification induced by F and G) is defined as 

FxG: I ~ FxG 

where the set F x G is the ordinary Cartesian product, and 

Fx G(i) = (F(i),G(i)). 

The formation of products can be regarded as an operation 

on equivalence classes, in the sense that 
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F IV FI and G fV G' ====> Fx G f\J FiX G1 

Under the partial ordering c, the product F)( G can 

be characterized as the coarsest factor which is finer 

than both F and G. Indeed, the following two properties 

are easily seen to characterize F x G up to equivalence, 

( 1 ) F c F I( G and G c F )( G 

(2) Any factor H finer than both F and G is 

also finer than F)( G • 

In this sense, the partially ordered set of (equivalence 

classes of) factors possesses maxima, and the maximum ope

ration (which we would otherwise denote v or U) coin

cides with the formation of products ("F v G = F x G ,,). 

d~~~==Ij~~~~g=~~=~g~~~~;g· 
The dual concept, the minimum of two factors, is defined 

as follows. For two factors F and G their minimum 

FAG is a factor with the properties 

( 1 ) F 1\ G c F and F 1\ G c G 

(2) Any factor H coarser than both F and G is 

also coarser than F 1\ G • 

It is easy to show that the minimum FA G , if it exists, 

is uniquely determined up to equivalence. Existence of 

the minimum can be proved as follows. For any factor F 

let QF denote the set of subsets of I of the form 

F -1 (M) ,where M is a subset of the set F. Then aF 
is obviously an algebra of subsets of I, i. e. 0 E Q F ' 

I E aF , and aF is closed under the formation of inter

sections, unions and complements. QF can be characterized 

as the algebra spanned by the clsses F -1 (f) in the par-

ti tioning induced by F. Conversely, let a be an 

arbitrary algebra of subsets of I. A factor F with 

a = a F can be constructed as follows; consider the 

atoms of a, i. e. the minimal nonempty sets in a. 
These constitute a partitioning, and a factor F constructed 
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by suitable labeling of the classes will obviously have 

QF = a 
Hence, we have the one-to-one correspondence 

between equivalence classes of factors and algebras on I. 

This correspondence is order preserving , in the sense that 

This means that the problem of constructing the minimum 

of two factors is equivalent to the problem of constructing 

the "minimum" of two algebras under the usual ordering by 

inclusion. But the solution to the last problem is straight

forward, since the intersection of two algebras is again an 

algebral Thus, the minimum of two factors exists and is 

determined by 

• 

d~~~==~~=~~~R~~· 
The above proof of existence does not give much intuitive· 

feeling for what the operation A really does. This is 

more conveniently explained by an example. Put I = 
{ 1 , 2, ••• , 9} , and suppose we have two factors R 

and C (rows and columns) on 3 and 4 levels, respec

ti vely. Suppose that the allocation of units to R)( C -

levels is as follows. 

c 1 c 2 c 3 c4 

r 1 1,2 3 R = {r1 ,r2 ,r3 } 

r 2 4,5 6 9 C = {c1 ,c2 ,c3 ,c4 } 

r3 7,8 

Put H = R" C. The relation HeR means that H is 

constant in rows, for example (for the first row) 

H(1) = H(2) = H(3) 

----------~-
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Similarly, H c C means that H is constant in columns, 

for example 

H(3). = H(6) 

Continuing like this, we can easily deduce that H must 

be constant, i. e. R 1\ C = O. Thus, a criterion for 

the property RA C = 0 (which is sometimes called con

nectedness of the two-way table) is that we can move from 

any non-empty cell to any other in a finite sequence of 

jumps between non-empty cells within the same row or the 

same column. More generally, this relation between units 

-that the two corresponding cells can be connected by such 

a sequence of vertical and horizontal movements- is an 

equivalence relation, and the partitioning of I into 

equivalence classes under this relation is exactly the 

partitioning corresponding to the minimum RA C. Example: 

If the last element 9 of I above is removed, we will 

get a non-trivial minimum on two levels, corresponding to 

the partitioning into {1,2,3,4,5,6} and {7,S} • 

In this and the following section, we shall study the 

structure imposed by one or several factors on the obser

vation space ]RI. Vectors in JRI are regarded as 

I x 1 -matrices (column vectors), and linear mappings are 

identified with their matrices as usual. ]RI is equipped 

with the usual inner product 

and the corresponding 

11 y 1\ = 

= L: x.y. 
i Ell 1 

Euclidean norm is denoted 

The I 'l( I identity matrix is denoted by I (without 

danger of confusion, we hope). 
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and 
===== 

A factor F: I -)0. F induces a linear mapping 

defined by 

( 0< F( i) liE I ) 

As a matrix, XF is the I x F - matrix with elements 

= { 1 

o 

for F(i) = f 

otherwise . 

XF is called the design matrix corresponding to the factor 

F. The image of the linear mapping XF ' which can also 

be characterized as the space of functions that are constant 

on the classes induced by F, is denoted by 

= 

Notice that dim LF = I F I • By 

PF : JRI ~ JRI 

we denote the orthogonal projection, on LF • According 

to well known rules for estimation in a one-way ANOVA 

model, PF transforms a vector y by replacement of 

each coordinate 

sponding class. 

-Yi with the average Yf 

Hence, the I x I - matrix 

over the corre

PF has elements 

= { for F(i1 ) = F(i2 ) = f 

for F(i1 ) + F(i2 ) . 

Notice the relation 

= 1 lex' 
n F --1" F 

which holds for any balanced factor F • 

The mapping F -+ LF is order preserving in the sense 

that 
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and it preserves minima according to the rule 

= 

(this formula, which is easy to prove, can be regarded as 

an alternative definition of the minimum). Maxima are 

not preserved. We have the inclusion 

Ti- ~ 
-l!')( G 

which is usually sharp (and leads to the concept of inter

action) • 

~~~~==~~!~£~~~g1=~~~!£~g~ 
As usual, two linear subspaces L1 and L2 of mI are 

said to be orthogonal if any vector in L1 is orthogonal 

to any vector in L2 • L1 and L2 are called geometrically 

orthogonal if they satisfy the following (weaker) condition. 

Let L1 = V ~ V1 and L2 = V @ V2 be the decompositions 

of L1 and L2 as direct orthogonal sums of V I L1 n L2 

and "remainders" V 1 = L1 n vi and V 2:: L2 n V • 

Then V11 V2 • 

The term "geometrically" is motivated by the fact 

that this kind of orthogonality is the one known from 

ordinary geometry, where two planes in m3 may be ortho

gonal in exactly this sense. The following lemma charac

terizes the concept in a way which is more convenient in 

the ANOVA context. 

~~~~~~==~~~~g~ L1 and L2 are geometrically ortho
gonal if and only if the corresponding orthogonal pro-

jections P1 and P2 commute, i.e. P1P2 = P2P1 • 

The proof is left to the reader, and so is the proof of the 

following useful result. 
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L1 ' ••• , Lk 
P 1 ' ••• , Pk 

projections. 

be geometrically 

denote the corre

Then 

is the orthogonal projection on L = L1 n ••• n Lk • 

Two factors F and G are called orthogonal , and we 

write F 1 G , if the corresponding subspaces LF and LG 

are geometrically orthogonal; or, equivalently, if 

= 

The justification of the concept of orthogonality in 

relation to ANOVA models lies in the above formula which, 

among other things, leads to simple expressions for ortho

gonal projections on sums of subspaces generated by ortho

gonal factors. However, as a criterion for orthogonality 

in concrete situations we need a more explicit condition 

on the cell counts nfg • To this end, notice that F 

and G are orthogonal if and only if 

= 

Indeed, if LF and LG are geometrically orthogonal this 

formula follows immediately from lemma 2.2.2 above, since 

LF n LG = LFi\G Conversely, if the above formula holds 

we have in particular 

= = P'P' G F = 

For i1 ' i2 El, we shall com

element of the two matrices PFPG 
first one, put f = F(i1 ) and g = 

an obvious notation for indicator 

Now, put H = F /I. G • 

pute the (i1 ,i2 )'th 

and PH. As to the 

G(i2 ). Then, with 

functions, we have 

= 
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For the second matrix, we have 

= { for H(i1 ) = H(i2 ) = h 

for H(i1 ) + H(i2 ) 

Now, in the case H(i1 ) + H(i2 ) we have obviously (cfr. 

the construction of the minimum) nfg = 0 , which means that 

the (i1 ,i2 )'th element of both matrices is 0 in this 

case. Hence, our condition for orthogonality boils down to 

~~~~~~==E~~R~g~~~~~~ F and G are orthogonal if and 
only if the relation 

= 

holds for all f E F , g E G 

f and g are nested in h 

and G-1 (g) 5 H-1 (h) ). 

and hE H = F 1\ G such that 

(i.e. F-1 (f) c H-1 (h) 

In the case F 1\ G = 0 , this criterion simplifies to 
) 

= 

which is the well known condition of proportional cell counts. 

The condition in the general case states that such a pro

portionality condition should hold within each of the 

subtables of the table (nfg ) determined by the levels 

of H = FA G • 

~~~~==~~~=~g1~~~~~=~=;~g~=~~g~~~~ 
It follows in particular from the above criterion that 

F and G are orthogonal if FxG is balanced. In this 

case F 1\ G = 0 , obviously. More generally, let k factors 

F1 ' ••• ,Fk be given such that the cell counts nf f of 
1· •• k 

the k -way table F 1 x ••• J( Fk are all equal. It is then 

easy to show that any two factors, formed as products of 

some of the k factors, are orthogonal. This follows 
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from proposition 2.2.3 above, noticing that the rule for 

formation of minima of such factors is 

( TT F,) 1\( TT F.) 
jEM J J'EM J 1 2 

= F. 
J 

, 

c {1, ••• ,k} • 

~~==~~g~~~~~~~~~~=~~= mI WITH RESPECT TO AN ORTHOGONAL 
============================== 

DESIGN. 
====== 

Our "universe" when we make ANOVA modelling is a set j) 

of factors, which we shall refer to as the design. The 

idea is that D should include all factors relevant for 

the model building, also the crossclassifications which 

are to occur as interaction terms in our models. For 

example, if data are arranged in a balanced k -way table, 

~ will typically consist of all (or almost all) possible 

products of "main effects" 

~~1~==~~t~~~~~~!=~~~~~~~~ 
Throughout this paper, we make the following three assump

tions. 

I E J). 

Any. two factors in ~ are orthogonal. 

~ is closed under the formation of minima. 

Notice that only (1) 2) 

faction of ( f) 1) and 

the factor I and some 

done without destroying 

is really restrictive. The satis

( fJ 3) is a matter of including 

missing minima, and this can be 

the orthogonality. 

~~~~==~~~=~~~~~R~~~t~~~=~~~~~~~=~~ ~ . 
Our approach relies on the following main result. 
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Under the assumptions ( ID 1) , 

above, we have a unique decomposition 

= EB V 
G € $) G 

of El as a direct sum of pairwise orthogonal sub

spaces VG' G E $) , such that for any F E JJ 

= 

Remarks. In the following, we shall frequently consider 

sums or direct sums taken over subsets of ~ For con-

venience, we omit the specification G E J) wri ting 

for example, the last identity of the theorem as LF = 

Ei1GcF VG· 

Since the proof of the theorem is somewhat technical, 

a few remarks may help. It is not surprising that a set 

~ of pairwise orthogonal factors induces a decomposition 

of El. Indeed, take all sums and intersections of the 

geometrically orthogonal spaces LF with each other and 

their orthogonal complements. This gives what one might 

call an algebra of Eeometrically orthogonal subspaces. 

(closed under n, + and I, containing El and {o} ). 
The minimal, nontrivial subspaces of this algebra consti

tute a decomposition of El. The orthogonal projections 

on the components of this decomposition can be regarded as 

the generators of the commutative algebra spanned by the 

projections PF , F ~ ~ • However, the theorem says a 

little more than this, namely that there is a canonical 

way of labeling these subspaces, in such a way that the 

original projections PF can be recovered as "cumulated" 

projections on the components, according to the ordering 

of ~. This result depends strongly on the fact that ~ 
is closed under the formation of minima. 

~~~~~. Consider the trivial identity 

---~-.------------.. --------.----_. -- ---._.-- ----------~.-~~ 
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I = 

Rewriting this as a sum of products of terms and 

I - PF ' we get 
I = L. 

Mc £j 

where for each subset M of $) the operator QM is 

defined as 

= (TT PF) (TT (I-PF)) 
F€M F4;M 

As products of commuting orthogonal projections, these 

operators QM are again 

corresponding subspaces 

since (obviously) 

orthogonal projections. The 

VM are pairwise orthogonal, 

QM QM 
1 2 

= o 

Hence, the formula I = L Mc £l QM corresponds to a de-

composi tion of ]RI as a direct sum of 2 :W~ subspaces 

VM ' M ~ ~ However, some of these subspaces VM are 

trivial. Indeed, QM can only be different from 0 if 

( 1 ) F E M and F c F I ==? F' E M 

because otherwise QM = 0 follows from the fact that 

the product of PF and 1- PFI is 0 for FcF1 . -
Moreover, if QM is to be non-zero, we must assume that 

the minimum G of all factors in M is itself an element 

of f-1, i.e. 

(2) G = /\ F M 
FeM 

because otherwise the product of and 

PG gives o. Thus, if we restrict our attention to 

non-vanishing terms of the decomposition, we need only 

take into account the subsets M of ~ satisfying (1) 

= 

and (2) above. However, these sets M can be character

ized in a simpler way_ A set M satisfying (2) contains its 

own minimum, and if (1) is satisfied too, M must contain 

any factor finer than the minimum. Hence, the only sets M 

--- -----~------~~~ 
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we need to consider are those of the form 

M = = {FE~ IF2G} 

which means that we have reduced to a decomposition of 

]RI as a direct sum of ~ ~ subspaces, 

= 

For simplicity of notation, we write VG and QG instead 

of VM and QM in the following. 
G G 

Our next step is to show that this decomposition satis-

fies the condition of the theorem. We notice that 

= { for G c F 

otherwise. 

Hence, 

= = 

or, equivalently, 

= EB VG 
G:GcF 

Finally, we must show that the decomposition constructed 

here is the only one sat~sfying the condition of the theorem. 

Suppose we had another one 

= EB Vi 
G G 

or I = :E QI 
G G 

Let .&0 c!) denote the set of factors G for which 

Q~ + QG We intend to show that Do is empty, of 

course. Suppose that ~o has an element F If F 

not the minimal element in ~ we conclude from -

= = 

is 

that there must be some G strictly coarser than F for 

which QG f Q~ Thus, the set ~o . has the property 
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that for any element which is not equal to F; = min 1) 
o 

it has an element which is strictly coarser. It is easy 

to conclude from this that $)t) must either be empty or 

contain the minimal elemenlf' F 0 of }). But FoE $)" 
is impossible, since 

= = 

Thus, ~o is empty, and the theorem is proved. 

The name QG for the orthogonal projection onto VG 

will be standard notation in the following. Notice that 

we have now two families of orthogonal projections indexed 

by n ,the canonical projections PF on the factor spaces 

LF (which depend on F only, not on the remaining factors 

of the design), and the projections QG given by the 

theorem. The connection between these families is 

Conversely, QG can be expressed by the projections PF 
as follows. 

= PG TT (PG-PF )· 
F :F~G , 

FfG 

====== 
In the proof of the theorem, QG was constructed Proof. 

as 

= = 

= = 

= PG TT (PG-PF )· 
F:F~G, 

F+G 

- ~----~------~.-' 
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If desirable, an expression of QG as a linear combi-

nation 

= 

can be obtained from the formula of the corollary by 

straightforward application of the distributive law and the 

rule PFPF' = PFAF'. These computations are simplified 

if it is noticed that only the maximal factors F among 

those strictly coarser than G need to be included in the 

product TT (PG - PF ) ; indeed, terms (PG - PF') with 

F' c F c G are absorbed by (PG - PF ) anyway. Similarly, 

the first term PG can be omitted if the product is 

non-empty, i.e. if G f F (= min ~ ). o 

Suppose we have two factors R and C such that RiC 

and RI\C = o • Put $) = {I , RK C , R , C , O} Obviously, 
J) satisfies the conditions (~ 1), (~ 2) and ([) 3) 

(page 12). The ordering structure of 1) is 

~R~ 
I ---?) RxC ~C ~ 0 

Applying corollary 3.2.2 and the above mentioned rules 

for omission of terms in the product, we obtain the formulas 

QR)(C = (p Rx C - PR) (p Rx C - PC) = P RI( C - PR - Pc + Po 

QI = I - PR)(C 

QR = PR - Po 

QC = Pc - Po 

Qa = Po 

4. THE ANOVA TABLE. 
==================== 

By the ANOVA table for the data set y in the design ~ 
we mean a table which for each G € 1) gives the quantities 



= dim VG 
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and SSD G = 

It should be emphasized that the ANOVA table is not re

lated to a single model. We are not talking about models 

yet. The ANOVA table is a computational tool, containing 

the quantities relevant for hypothesis testing and variance 

estimation in all ANOVA models that can be stated in terms 

of factors from D 

Computationally, the ANOVA table can be obtained as follows. 

Put 
= 

(and notice that we distinguish between SS (sum of squares) 

and SSD (sum of squares of deviations)). The square sums 

SSF are obtained as 

where 

level 

of QG 
Then 

Sf 
f 

as 

denotes the sum of all observations on the 

of F . Let QG = l: a~ PF be the expression 
F 

a linear combination of the projections PF . 
= 

= 

Thus, the sums of squares of deviations SSDG are obtained 

as linear combinations of the sums of squares SSF in 

exactly the same way as the projections QG are obtained 

as linear combinations of the projections PF • Similarly, 

the formula 

= = tr( L: a~ PF ) 
F 

= L a~ dim(LF ) 
F 

= 

= 

shows that the degrees of freedom dG can be obtained as 

linear combinations of the integers IFI in exactly the 
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same manner. 

In concrete situations, it is not even necessary to 

compute the coefficients a~.- The formulas for the 

SSDG?s given above constitute the solution to the equations 

= E SSDG 
GcF 

and it is just as simple to work directly with these 

equations, solving them recursively as F varies from 

the coarsest factor (usually 0) to the finest (I). 

Similarly, degrees of freedom are obtained by solving 

This can be done by means of a factor structure diagram 

(see example 3.3) containing the information about the 

nestednessrelations between factors in ~ 
four examples illustrate this method. 

4.2.1. Th~balanced two-way table. 

The following 

Suppose we have a two-way scheme RICe with all cell counts 

n rc equal and ~ 2 • Let 1) consist of the factors 

l, Rx C , R ,C and O. The 

~xample 3.3 (page 17) gives 

factor structure diagram of 

the nestednes relations and 

the rules for formation of minima in an obvious way. 

Notice that "composed" arrows, like I ~ 0 , need not be 

drawn. 

In order to compute the degrees of freedom dG , we 

write as a superscript to each factor the number of effec

tively used factor levels IFI , and as a subscript the 

dimension dF of VF (like this: F1FI ) '. Filling in the 
F 

superscripts IFI first, it is easy to obtain the numbers 

dF recursively, in each step computing dF as the differ

ence between the corresponding superscript IFI and the 

sum of all subscripts d G of factors G strictly coarser 

I 

l 
f 
I 
I 
i 

Ii 



than F . 

III =2·4-·5 
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For example, for IRI = 4- , ICI = 5 and 

= 4-0, we get the following picture. 

The sums of squares of deviations are obtained similarly 

(using superscripts SSF and subscripts SSDF ), and we 

obtain the ANOVA table 

F dF SSDF 

I 20 SSI - SSRXC 

RICC 12 SSRxC - SSR - SSC + SSO 

R 3 SSR - SSO 

C 4- SSC SSO 

0 1 SSO 

sum 4-0 SSI 

Since we have no data, formulas for SSD' s are given 

instead of the concrete figures, but the general idea is 

to compute the numbers SSDG recursively from the numbers 

SSF ' as illustrated above for the degrees of freedom. 

This would certainly be the simplest way of doing it in 

a computer implementation of this algorithm, where the 

factor structure diagram could be stored as a binary 

~ x 11 -matrix; in more complicated designs, this may 

even be the simplest way of doing it manually. 

We give three additional examples. In all cases, the 

degrees of freedom and formulas for the SSD' s are imme

diately obtained from the factor structure diagram. 

4-.2.2. One-way ANOVA (arbitrary group sizes nf~ 

(Ill =n, IFI =k). 
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ANOVA table: 

factor d.f. SSD 

r n-k SSr - SSF 

F k-1 SSF - SSO 

0 1 SSo 

sum n SSr 

4.2,2- Latin sguare.of order k . 
Rk IRI = I Cl = ILl = k , 

2 ~ k-1~ 
rk ---4Ck > 01 I rl = k 2 

k2-3k+2 k~ 1 
~Lk CR for rows, C for columns, 

k-1 
L for latin letter) . 

factor d.f. SSD 

r k 2-3k+2 SSr - SSR - SSC - SSL + 2 SSo 

R k-1 SSR - SSo 

C k-1 SSC - SSo 

L k-1 SSL - SSo 

0 1 SSo 

sum k 2 SSr 

4.2.4. 

p. 293. 

applied 

Spli t-plot design.\ From Cochran 

Suppose that 5 treatments A = 
to 15 plots P = {1 , •.• ,15} , 

and Cox (1957), 

{a1 ' ••. , a 5} are 

each A-treatment 

being applied to 3 plots. Each plot is divided into two 

subplots, to which the two treatments B = {b1 ,b2 } are 

applied. Thus, the relevant factors are 

I on 30 levels (subplots) 

P on 15 levels (plots) 

A on 5 levels (A-treatments) 

B on 2 levels (B-treatments) 

AxB on 10 levels ( "interaction") 

, , 
i 

i 
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Adding 0, we obtain a set ~ of factors satisfying 

(1) 1) , ($I 2) and (~3). The factor structure' (with 

degrees of freedom computed) is 

and the ANOVA table, accordingly, 

factor d.f. SSD 

I 10 SSI-SSp-SSAxB+SSA 

p 10 SSp-SSA 

A)(B 4 SSAXB-SSA-~SB+SSO 

A 4 SSA-SSO 

B 1 SSB-SSO 

0 1 SSo 

sum 30 SSI 

(we have ignored a factor "replicate" , dividing the 

15 plots into 3 groups of 5. Depending on the concrete 

circumstances, this factor mayor may not be relevant as 

a third level of blocking. The inclusion of it is left 

to the reader as an exercise.) 

By a linear model we mean a model assuming that the data 

set y is ~he realization of) a normally distributed 

random vector with covariance matrix er 2. I and mean 

vector fA in a specified linear subspace L of JRI. 

We shall restrict our attention to the case where L is 

given as a sum of subspaces corresponding to factors of 

our orthogonal design 1J ,i.e. 
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L = L: LT 

T€ r 
Thus, a linear model is specified by a subset ~ of E 
However, different subsets of J) may specify the same 

model. For example, in the two-way scheme RXC, the 

two sets {R, C} and {R, C , o} represent the same model 

because = 

~~1~==~~~~~=!~~~~g~· 
We shall refer to the subset r- of ~ as the model 

formula. This is merely a notational convention according 

to which we list the elements of r separated by plusses 

instead of commaes and without the parentheses {} • For 

example, we talk about the addi ti vi ty model R + C in a 

two-way scheme. Notice, however, that we do not adopt the 
more sophisticated aspects of the GENSTAT model formula 

conventions (see Wilkinson and Rogers 1973), like distri
buti vi ty of x over +, nesting operations etc. A model 

formula in this text is nothing but a set of factors, 
written in a slightly unusual way. 

~~~~==~~~~~~~~~g~t~~~~=~!=~~~=~~g~· 
The intuitive appeal of the model formula notation lies 

in the fact that it reflects the parametric representation 

of the model. For example, the addi ti vi ty model R + C 
can be stated as 

Ey. = 0<. + f.>c l r 

(subsuming r = R(i) c = C(i) ) ; or, in vector notation, 
with 0( = ( 0<. ) E JRR 

r and r = ( ~c) € JRC , 

Ey = XRo( + Xc f3 

More generally, there is an immediate one-to-one corre
spondence between model formulas and parameterisations, 
given by 

J -E-> ( E Y = L XT c>< T ) 

T E.r 
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Notice that these parameterisations are usually not one-to

one. In fact, as soon as more than one factor is involved, 

there is a p.on-,itient:if:1Jability of parameters, since a 

constant may be added to the linear parameters of a first 

factor and subtracted from those of a second, without 

changing the distribution of y. We shall not discuss 

restrictions imposed on the parameters in order to make 

the parameterisation >one-to-one. The non-identifiabilities 

are usually well justified by the applied context. For 

example, in a two way additive model, the parameter functions 

of interest are typically differences between row parameters, 

while absolute row levels are only meaningful in situations 

where random (or vanishing) column effect can be assumed. 

Similarly, estimation of a main effect in a two-way table 

is usually not meaningful in the presence of interaction. 

Constraints on parameters (such as the usual assumption 

stating that summation of any model term over any of its 

indices should give zero) should be regarded merely as 

computational tools, mis]eading as they are if the con

strained parameters are considered "canonical" , in some 

sense. In orthogonal designs, such constraints are not 

even needed as computational tools. We seem to be in 

agreement with Nelder (1977) on these matters. 

Notice also that we do not impose restrictions on the 

set r- of terms in a model formula. For example, the 

interaction model in a two-way scheme can be written 

Rx C , Rx C + R, Rx C + R + C + 0 , etc. These model for-

mulas correspond to different parameterisations, each 

possessing its own rules for identifiability of contrasts. 

Some of these parameterisations may be rather useless, but 

there seems to be no a priori :reasbn for excluding them. 

By r* we denote the set of factors F E iJ such that 

F is marginal to (or equal to) some factor in 

may think of ~~ as the maximal model formula, 

sense that J -If specifies the same model as r 
the greatest possible number of redundant terms. 

theorem 3.2.1, we have 

J. One 

in the 

but with 

By 
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L = = 

From this we conclude that the orthogonal projection PL 
onto L is given by 

while the residual operator is 

= L QG 
G ~ :J}t 

Accordingly, the residual sum of squares can be obtained 

from the ANOVA table and the factor structure diagram as 

the sum of all SSD's corresponding to factors which are 

not marginal to factors in the model formula, 

SSD = 

The degrees of freedom for the residual sum of squares are, 

similarly, 

By standard linear model theory, this gives the variance 

estimate 

1\2 
cf = SSD/d = 

d1r-~SDG 

Gtr*dG 

~~~~==~~~g=~£~=~£~~1=~~~~~g~£~· 
Let r:~ c r*' be the maximal model formula for a reduced o -
model ro, and let SSDo and do denote the residual 

sum of squares and its degrees of freedom in this reduced 

model. By standard linear model theory, the likelihood 

ratio test for 30 against J is equivalent to the 

F - test 

F( d -d , d) 
o = 

(SSD - SSD)/(d -d) o 0 

SSD/ d 
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All quantities in this expression are easily obtained from 

the ANOVA table and the factor stI'lucture diagram. In par

ticular, in the most important case where 3;~ is obtained 
~* . from J by removal of a single factor T , the test for 

"no T -effect" becomes 

= 

~~~~==~g~~~~~~~~=~~=~~~=~~~~~~=R~~~~~~~g· 
We shall restrict our attention to contrasts of the form 

T T I tll T T er O(t'- ex tll , t, € , E J • The first question to 

decide is, of course, whether or not a given contrast can 

be estimated at all. The answer to this question and the 

rule for estimation is given by the following theorem: 

~~~~1~==~~~~~~~. Consider the model 

Ey = f" = L XTo<T 

T€J 

For t' and t ll € T T €:r-o 0 0 0 

two conditions are equivalent: 

(2) 

The parameter function 

estimable (i.e. it can be 

function of E y ). 

For any other factor T E :r
are nested in the same level of 

the following 

is 

as a 

t\ and tU 
o 0 

T ,. T • 
o 

In case of estimability, the maximum likelihood esti

mate of this contrast is 

ATp 
oct' 

o 
= - -

Y t' - Yt" 
o 0 

where Yt = St /nt denotes the average of all 
o 0 0 

observations on the level t of T The variance 
2 0 0 

on this estimate is (j. (1/nt i + 1/nt " ) 
o 0 



Remark. The phrase 
same level of T ~ T o 
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"t' and t 1/ are nested in the o 0 
" should, of course, be read as 

"the classes T -1(t' ) o 0 
and T -1(t ll ) are contained in 

'0 0 
the same class among those determined by TAT ",. We o 
illustrate by an example: In a balanced three way scheme 
AlCB~e ,consider the model AxB + Bxe , coordinatewise 

parameterised as KYi = dab + (1bc. A contrast of the 
form . 0< ci b l - lXal'b\l is estimable if and only if b l = bll ; 

or, equivalently, if and only if (ai, b1 ) and (a", bl!) are 
nested in the same level of (AxB)A(Bxe) = B • 

Proof. First assume that (2) is satisfied, and define 
===== I 
1 E JR by 

{ 1/nt , for To(i) = t' 
0 0 T (i) tU 1. = -1/ntll for = 

J. 0 0 o 0 otherwise. 

Notice that 

to LT ' 
determ~ned 

l'y 

because 
by T 

0 

= -
Yt l - Yt" 

1. 0 0 
J. 

For any 

• 
is 

other 

The vector 1 belongs 
constant on the classes 
factor T Er, we 

have 

= = = 0, 

because condition (2) implies that the two classes T -1(tt) o 0 
and T -1 (tli) are contained in the same TAT -class , 

o 0 -- 0 
from which it follows that averaging of li over an arbi-
trary TAT -class gives o. Hence, the linear functional o 
l' vanishes on the subspaces LT for T + To. From 
this we conclude that 

l' (f ) = 1'( E XToC T ) = l'X 0< To 

TEr 
To 

T T 
= 0( t'O 0{ t 1P 

0 0 

This means that our contrast is a function of fL 
the maximum likelihood estimate is given by 

, and 

l' (ft ) = l'P·Y = (PT 1) 'PLY = l'PT PLY = L 0 0 

l'PT Y (PT 1) 'y l'y -= = = Yt' - Yt" • 
0 0 o 0 
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Evaluation of the variance on this estimate is straight

forward. It remains to be shown that (1) implies (2). 

Suppose that (2) is not satisfied, i.e. there exists a 

factor T E J such that t ' and t 11 are on different o 0 
levels of T 1\ T. Put H =T A T and let o 0 
denote the corresponding levels of H. Let 

hi and 

M' and 

hll 

M' 
o 

denote the subsets of the sets T and T , respectively, o 
of factor levels nested in the level hi of H. Now, 

suppose that the corresponding parameter vectors ~T 
and ~To are modified by addition of a constant ~ + 0 

~~ for t E Ml , and subtraction of that same constant 

from ~~o for t E MI • This will leave the mean )L 

to 

o 0 0 T T 
unchanged, while the contrast eX t P - o(t'P decreasesi by 

o 0 

A. From this we conclude that the contrast is not 

estimable. 

By a variance component model we mean a model of the form 

y = 

where rand tB are subsets of D 0< T = (o(~) E JRT 

(T E J ) and O"'B ~ 0 (B E ~) are unknown parameters, and 

u B E JRB (B E (B) denote independent, normalized normally 

distributed vectors. 

Coordinatewise, we can write this model as 

y. 
l = o(T 

t + 

(subsuming t = T(i) , b = B(i)). The idea is that the 

observation 

o<T (T€ r) 
t 

on a single 

Y is assumed to be a sum of the fixed effects i 
and the random effects O"B u~ • The variance 

observation y. 
l 

is, 

cr- 2 
B 

and the parameters O"'B2 are, accordingly, called variance 
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components. 

Alternatively, we may specify the model by mean and 

covariance matrix of the data set y. We have 

Ey = 

cov(y) 

~~J~==~~=~~~R1~. 

= 

= 

X o(T 
T 

2 X X' O'B B B 

Suppose we have a balanced two way table Rx C wi th ·~RxG) ~ 2, 

I}. Consider the variance and put jJ = {O, R , C , RxC 

component model given by 

= { R , C } = {RXC,1} 

Coordinatewise, this model can be written 

y. 
1 = 0< + r 

+ w· v + 0". u . rc 1 

where C<r (r € R) and rc (c E C) are the row and column 
parameters , respectively, w 2 and (j2 are the variance 

components, and vrc ((r,c) € RxC) and ui (iE1) are 
independent, normalized normally distributed. This is a 

two way additive model with random interaction, frequently 

referred to in applications as a justification for fitting 
an additive model to the· cell averages in situations where 

the interaction is too large to be ignored against the intra

cell variation. 

~~~~==~~~~~=!~~~~g~~ 
A variance component model is specified by the two subsets 

r- and ~ 6f ~ We shall condense this information 

in a single model formula, adopting the convention that 
random factors should be in brackets. Thus, the two way 

additive model with random interaction is written 

R+C+ [RXC +1J 
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and the general idea is to write " r + [ (J3 ] " 
Notice that the linear models are variance component 

models with 8 = {I} , and our conventions for model 

formulas are consistent with those introduced in section 

5.1 (page 23) when an error term + [ I] is subsumed. 

These ideas will be familiar to GENSTAT users (the model 

formulas r and cB are simply those occuring in the 

'TREATMENT' and 'BLOCKS 1 directives). 

~~~~==~gg~~R~~~~~~ 
As in our treatment of linear models, r- is allowed to 

be an arbitrary subset of $) However, a) is assumed 

to satisfy the following conditions: 

((B 1) I E as 
(IB 2) All factors in (B are balanced. 

((J)3) <B is closed under the formation of minima. 

(54- ) The matrices XBX~ are linearly independent. 

Condition ((131) means that an "error term" , taking 

care of the random variation between experimental units, 

should be present in the model. In practice\ this condition 

seems to be unrestrictive. 

Condition (~2) is restrictive, of course, but neces

sary for an explicit solution. It is wellknown that even 

the simplest variance component model, one way analysis of 

variance with random variation between groups, can not be 

solved explicitely if the group sizes are unequal. 

Condition (03 3) is necessary for an algebraically 

nice solution, and somewhat restrictive in practice. 

The treatment of variance component models not satisfying 

(~3) can, to some exten~, be based on addition of the 

missing minima to lB as random "pseudo" factors. The 

simplest example is the two way model 0 + [R + C + I] • 

Extension to 0 + [0 + R + C + I ] gives rather satisfactory 

estimates of the variance components, which, however, may 

correspond to a covariance matrix (of the original model) 

which is not positively definite; in particular, we m~y 
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obtain a negative estimate of the variance on the grand 

mean y. 

Condition (~4) ensures identifiability of the vari

ance components, cfr. the parameterisation of cov(y) 

(page 29). Linear dependence seems to occur only in patho

logical situations (the simplest example is a latin square 

of order 2 , with the three "main" factors and I as 

random factors). 

Notice that we do not make explicit assumptions against 

non-estimability of variance components due to confounding 

with fixed effects. Obvi0usly, a variance component ~i 
can not be estimated if r- contains a factor finer than 

B. The similar problem for linear models occurs when 

L =lliI , with zero degrees of freedom left for the resi

dual. Formally, it is an advantage not to exclude models 

with such non-estimable variance components, cfr. the 

above remarks on the model 0 + [0 + R + C + I ] , where 

~o2 is non-estimable in exactly this sense. However, our 

later results on estimation and hypothesis testing are 

obviously based on the (subsumed) assumption that the 

degrees of freedom involved are strictly positive. 

The set a3 of random 

(j) 1) , (!) 2) and 

factors satisfies our conditions 

(~3) (section 3.1, page 12) for the 

total set JJ of factors considered. Hence, by theorem 

3.2.1 (page 13), OJ induces a decomposition of mI 

similar to that induced by ~ In order to distinguish, 

components of this new decomposition will be equipped 

with the superscript o. Thus, 

= 

is the decomposition induced by ~ 
orthogonal projections, 

Or, in terms of 
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Sums of squares of deviations and their degrees of freedom 

are similarly denoted by 

= and = dim V~ = 

The condensed ANOVA table, giving for each B E f:) the 

quanti ties SSD~ and d~, corresponds to what Nelder (1965) 

calls the null analysis of variance, the analysis without 

treatment structure. The components of the decomposition 

after (B are called strata. 

Obviously, the decomposition induced by a) is coarser 

than that induced by the whole design ~ in the sense 

that each V~ is a direct sum of some of the subspaces 

VG (G E JJ ). We say that the factor G belongs to 

B - str.atum if VG ~ V~. The rule for allocation of factors 

to strata by means of the factor structure diagram is as 

follows: 

= 

where }) B consists of those factors G € fJ for which 

B is the coarsest random factor finer than G, i.e. 

~B = { G E }) I B = 1\ BI } 
BIE8 
GcB' 

Remark. In the decomposition after ~ there may be com

ponents of dimension dG = O. Such factors G are unique

ly assigned to a stratum by the proposition, while the 

criterion VG ~ V~ assigns G to any stratym. However, 

the allocation of such factors to strata is irrelevant for 

the analysis. The corresponding lines of the ANOVA table 

can simply be deleted. 

E~££~. Define a mapping S:}) -? (B (S for stratum) by 
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S(G) = 

Then ~ B = 

that the sets 

S-1(B). From this it follows in particular 

~ B constitute a partitioning of ~ 
Moreover, for any fixed B E CB o we have 

Indeed, Bo is finer than G if and only if Bo is 

fine'r than the coarsest factor in G3 which is finer 

than G. Now, the set of factors G satisfying this 

can be rewritten as follows: 

{ G €~ I S(G) ~ B } = S-1({B€(B I B~Bo}) 
0 

= U S-1(B) = U JJ B 
BE"~ B €. (Jj 
BeB Be B - 0 0 

This means that the set of factors G € f) coarser than 

a given random factor B equals the (disjoint) union o 
of the sets ~B for Be B • Now define 

- 0 

= 

Obviously, these subspaces constitute a decomposition 

= 

of lliI as a direct sum of orthogonal subspaces, formed 

by collapse of the subspaces VG according to the parti

tioning ~ = U B !) B • From what was shown above, we 

conclude that 

EB ( ffi VG) = EB W~ 
B € Q3 G € 1)B B € <B 
B~Bo ' B5Bo 

LB = EB VG = 
" G€j) 

GS;Bo 

Hence, the decomposition lliI = EB W~ satisfies the 

condition of theorem 3.2.1 (page 13) for the decomposition 

with respect to ~ Since this condition was shown to 
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characterize the decomposition uniquely, we must have 

= = 

which concludes the proof. 

and { Q~ I B € lB } 

span the same linear subspace of mI~I 

~~~~~. It suffices to show that any of the matrices 

XBXB can be written as a linear combination of the matrices 

Q~ , and vice versa. Since the random factors are assumed 

to be balanced, we have (cfr. page 8) 

= = • 

Conversely, by the remarks following the proof of corollary 

3.2.2 (page 17), we have an expression 

= = 

It follows in particular from the above proposition 

that we have an alternative parameterisation of the co

variance matrix as 

cov(y) = 

The quantities ~B will be referred to as the canonical 

covariance parameters. The explicit solution of the 

variance component model is based on this parameterisation, 

which relies heavily on our assumptions (£B 1) - (<B 4) 

(page 30). In particular, the assumption (~3), which 

,? " 
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in the case of balanced k -factor designs was noticed by 

S.T. Jensen (1979), is essential •. Szatrowski and Miller 

(1980) give the same condition in a less explicit form 

(they give the criterion for existence of explicit maximum 

likelihood estimates that the set of all coordinatewise 

products of columns of the (B X {O, F 1 ' ••• , Fk } -matrix 

((vBF » = ((1{FeB}» has exactly *,(B elements, but 

they do not notice the (equivalent) condition that the 

set of rows is closed under coordinatewise multiplication). 

The connection between the two parameterisations is 

obtained as follows: 

i.e. 

(6.5.2) 

= 

cr 2 
B 

where the coefficients b~1 are determined by 

LB b~,PB • And 

= 

i.e. 

= L 
BE a:, 

" 2 " 0 w O"B n B L.J QB, 
BE8 B'E(B 

BleB 

L 
B E.IB 
BleB 

= 

~;2;==~~~g~~~~=~g~~g~~~=~~~R~~~~~g· 

= 

The above discussion of the canonical parameterisation 
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ignores the problem of specifying the domain of variation 

for the new parameters 'AB ' B € (B Proposition 6.5.1 
gives an identity between the linear spaces spanned by two 

sets of matrices, but the corresponding cones of nonnegative 

linear combinations are usually not identical. The formula 

(6.5.3) expressing AB as a linear combination of the 

variance components shows that nonnegative variance compo

nents imply nonnegative canonical parameters, but the con

verse is not always true. This leads to the wellknown 

problem of negative variance components, which can be 

explained as follows. A nice solution of the model under 

the canonical parameterisation is only possible when the 

parameters are allowed to vary freely in their "natural" 

domain, which is obviously given by ~B ~ O. This means 

that calculation of estimates &B2 from estimates ~B 
may lead to negative estimates for some of the variance 

components. We shall not, in this paper, discuss formal 

procedures for estimation of the variance components in 

their original domain ~i ~ O. In practice, this seems 

to be a minor problem. The interpretation of a negative 

variance component ~B2 is that the correlation between 

observations in the same B - class is smaller than the 

correlation between observations in different B - classes 

(all other random factor levels kept fixed). This pheno

menon is explainable in some applied contexts, and in some 

it is not. Very often, tpe occurrence of a negative vari-
(-

ance component estimate can be taken as a wellcome oppor-

tunity to simplify the model by removal of the correspond-

'ing factor B from the model. Of course, a significantly 

negative estimate of a variance component, which ought to 

be positive, will always be a problem. But the immediate 

conclusion in this case seems to be that the model fails 

to describe data, rather than that a more sophisticated 

estimation procedure is required. See Nelder (1954) and 

Searle (1971) for more careful discussions of these matters. 

In the following, we will simply ignore the problem and 

work with the extended model given by 'A B ~ O. 
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~~Z~==~~~~~~~=!~~=~g~~g~~~=~~~R~~~~~=~~~~~· 
The basic observation behind the explicit solution to the 

classical variance component model is that the decomposi

tion according to 8 decomposes the data vector y as 

a sum of stochastically independent components Q~y, one 

for each stratum, and each of these components is described 

by its own linear model. Indeed, the data components 

Q~y are easily seen to be independent, normally distri

buted with mean 

= = Q~ (fA ) 

and covariance matrix 

cov(Q~Y) = 

The parameters PB and AB of the distribution of Q~y 
are functionally independent of those describing the distri

butions of the remaining data components. Thus, estimation 

in the original model boils down to estimation in each 

stratum of the parameters fJ-B and A from QOy 

This is straightforward, because the mo~el for Q~y "is 

essentially (apart from the lack of a coordinate system) 
o an ordinary linear model with data space VB •. The cova-

riance matrix "BQ~ is a constant A B times the "i

denti ty" Q~ on V~ and fA B varies in the linear 

subspace L n V~ (L = L T ET LT ). The orthogonal 

projection onto this space is 

are geometrically orthogonal. 
PLQ~ ,since L and V~ 
Estimating as usual in a 

linear model, we obtain the estimates 

= 

and (provided that dim V~ > dim(L n V~) ) 

11 Q~y - PLQ~y 112 
= 

dim V~ - dim(L n V~) 

1\ 

The estimates JAB are recombined to 

1\ 

L 
A 

f = f-B = PLY 
BE(B 
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which is recognized as the estimate for the mean in a 

linear model specified by r-. 
" The estimates ~B can be computed from the ANOVA table 

and the factor structure diagram as follows. We have 

= 

Jt ( r- is defined in section 5.3, page 24), and 

= L: QG 
G€ .fiB 

( J) B is defined in proposition 6.4.1, page 32). Thus, 

the residual operator for our linear model in B - stratum 

is 
= 

and the residual sum of squares in B - stratum is, accordingly, 

Applying the analogous rule for computation of degrees of 

freedom, we get 

= 

where both sums are to be taken over G ~ IjJ B \ J1I' , i. e. 

the set of all factors in B - stratum which are not syste

matic factors or marginal to systematic factors. Very 

often (at least for the initial model in a statistical 

analysis), this set consists of B only, in which case 

we have the simpler formula 

= 

~~§~==~~g~~~g~~~=~~=g~~=~~~~~~~~=~~~R~~~~g~· 
Estimates ~i are immediately obtained from the estimates 

11. 

~B by means of formula (6 c 5.2) (page 35). Notice that 

these estimates are not X2-distributed (except ~l, 
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1\ 

which is always equal to ~I ). In particular, some of 
,..2 

them may be negative. However, th~ moments of ~B are 

not difficult to obtain, and various methods for construc

tion of confidence limits exist, see e.g. Scheffe (1959), 
Searle (1971). 

Let r be a subset of o 
'fo +[(13 ] • 

~ specifying a reduced model 
rli c <l Je We assume J o _ J and, accordingly, 

L c L (where o - Lo = L: T E 1;; LT ). In order to give an 

explicit statistical test for the model reduction 

r + [8 ] 

we must assume that the corresponding square sum 

E SSDG 
G E r-'\ r-:~ 

o 

= 

consists of contributions from a single stratum B o only, 

i.e. 

c f)B 
o 

Notice that this condition is in particular satisfied in 

the frequently occuring case where JII" is obtained 
o 

from J;lf by removal of a single factor. 

Under the above condition, the model reduction can be 

regarded as a reduction of the linear model for the data 

component Q~ y , while the models for the remaining data 
o 

components are left unchanged. 

ratio test takes the form of an 

Accordingly, the likelihood 

ordinary F - test for 

reduction of the linear model in B - stratum, o 

SSD1 / d1 
= -----

SSD2 / d2 

where SSD1 = L SSDG d1 = 
G E J'\r-~ 

= L SS Dc;. d2 = 
GE ~B\r* 

0 

r dG 

GET'\ 'r* 
0 

L d G 
G~ 5)B \ J* 

0 

'I 
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The rules for inclusion of terms SSDG (and d G) in 

nominator and denominato~ are exactly as in the test for 

reduction of a linear model, cfr. section 5.4 (page 25), 
except that only factors from . B - stratum should be taken o 
into account. Usually, when forming the ANOVA table to 

analyze a variance component model, it is convenient to 

arrange the lines in such a way that strata are collected 

as subtables. Under this convention, tests for reduction 

of linear structure are carried out exactly as in the case 

of a linear model, on the basis of the relevant subtable 

and the factor structure diagram. 

In more complicated situations, it is sometimes desirable 

to test reductions of linear structure which do not take 

place in a single stratum. Formally, this corresponds to 

simultaneous reduction of linear models for separate data 

sets, and there seems to be no simple way of doing it. 

The best we can do is to carry out the relevant F - test 

in each of the strata involved (usually not more than two). 

If no clear conclusion comes out of this, some kind of 

weighted test statistic, summarizing the information from 

the strata involved, may be considered. A discussion of 

this is beyond the scope of the present paper. 

~~J~~==~~R~~~~g~g=~~g~~~f2,;=~~~g~~g~~~=g~~~~~~~~· 
We shall restrict our attention to reductions of the form 

J + [(B] ~ :r + [(Bo] , where lBo is obtained from 

~ by removal of a single factor B. Thus, in para

metric terms, we are considering the hypothesis ~i = O. 

In order to derive an explicit test, we must assume that 

(B 0 (as well as (B ) satisfies the conditions ( <B 1) - (lB 4) 

of section 6.3 (page 30). This means that the "measure

ment error" I must not be removed (of course), and that 

d3 0 should again be closed under the formation of minima, 

(conditions (~2) and (~4) are automatically carriee 

over from <B to (B 0 ). ClosednesS" under minima is 

satisfied by a5 0 if and only if the minimum Bo of all 

factors BI E d30 which are .·finer than B is distinct from 

B , i.e. 



(6.10.1) B 
o = 

41 

/\ B' 

B' E rB 
BeB' 0 

B • 

Indeed, if this condition is satisfied 

not have BII\ BII = B for factors BI 

we can obviously 

and B" E: (B 
o ' 

BII\, BII must be among the factors left which means that in 

CBo • Conversely, if the above condition was not satis

fied we would have a collection of factors from ~o 
(namely those finer than B) possessing a minimum not in 

(Bo • 

Under the above condition (6.10.1), we have 

AB = nBO"i + 'AB 
o 

This follows from (6.5.3) (page 35), noticing that the 

expression for ~B differs from the expression for ~B 
only by the occurrence of the term nB~i Hence, the 0 

hypothesis cri = 0 is equivalent to AB = AB 
o 

Recalling our interpretation of the model as a product of 

linear models for the data components Q~.y Bl € <B , 
this hypothesis is formally equivalent to a hypothesis 

stating that two linear models for separate, independent 

data sets have the same variance. The usual procedure 

for test of this is a comparison of the two variance 

estimates by a two-sided F - test on their ratio, i. e. 

= 

where d and do are the degrees of freedom occurring in 
1\ " 

the denominators of the expressions for -:x Band ? B 

respectively. Large values of this F _ statistic 0 

indicates AB >?B ,or ~i > o. Small values 
o 

indicate that O"B2 is negative. Thus, the test should be 
2 carried out as two-sided when negative values of 

taken into account. Apart from this, the test is 
O"B are 
formally 

equivalent to a test in a linear model, namely the test for 

the reduction of the linear model in B - stratum (in the 
o 

decomposition after 8 0 ) given by 
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~~ll~==~g~~~~~~~~=~!=~~~~~~g~g· 
It was shown in section 6.7 (page 37-38) that the maximum 

likelihood estimate for the mean = E Y coincides with 

that of the linear model specified by r-. In particular, 
a contrast of the form 0(. ~I - 0( ~Il (T Er, tl, tll ET) 

should be estimated as in the linear model, by the difference 

between the corresponding averages. Since the rules for 

identifiability of contrasts are obviously the same as in 

the linear model, it remains only to give the formula 

for the variances on estimated contrasts. 

~~ll~l~==~~~R~g~~~~~. Let 
estimable contrast (i.e. t l 

o 
nested in the same level of 

-

be an 
tU are 

o 
for any other 

T Er). Then the estimate Ytl - Yt" has the vari-
o 0 

ance 

where 

{ 
0 for t' and tU on the same level 

0 0 
of T 1\ B 

cB = 0 

1 +..1. for t' and tll on the nh, nh" 0 0 
distinct levels hi and hll 

of H = T 
0 

1\ B . 

~~~~!. Let 1 E ]RI 
5.5.1 (page 27). Then 

1 E LT we have 

be defineru as in the proof of theorem 
l'y 

o 

varCl'y) = l'cov(Y)l 

= 

= 

L nBe-il'PBl = 

BE (J) 

E nBe-ill PT 1\ B 1112 
BE<P.> 0 

= 
- -Y tl - Y t'l , and since 

o 0 
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The proposition follows if we can show that 11 PToA B 1112 :: 
cB .' Noticing that the operator PT A B replaces ealSrh 
li by the average over the correspogding ToA B - class, 
this is a matter of straightforward computations which are 

left to the reader. 

~~JJ~~~::::g~~~11g~~· Suppose that 
t' and tU 

To belongs to 
B -stratum and that o 
of B 1\ To for any 

o 0 
random factor 

are on the same level 

B which is strictly 
coarser than B • 

o 
Then 

var ( Y t I - Y tIt ) 
o 0 

:: 

= =-=-= = 
Under the above assumptions we have Proof. 

{ :: 

o 

+ for 

otherwise. 

B c B 
o 

Indeed, if B is not finer than B the minimum B 1\ B o 0 
is strictly coarser than B and it follows that o 

cB :: 11 PB A T 1 112 :: IIPBI\(BJ\T )1112 
0 o 0 . 2 

IIP(BA B )/\ TIll :: cB /\ B :: 

o 0 0 

For B c B we have 
0 -

cB :: IIPBAT 1112 = IIPT I 112 
0 0' 

1 +-1. = nt l nt~ 
0 

Hence, by formula (6.5.3) (page 35), 

var( Ytl - Yt/l) 
o 0 

= L 
BE. a3 
B c B 

o -

2 ( 1 nB().;B -ntl 
o 

0 

= 111 112 

:: 

:: 
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Contrasts satisfying the condition of corollary 6.11.2 

are said to be estimable in a single stratum (namely 

Bo ~ stratum). For such contrasts -and only for such 

contrasts - can the pairwise comparison of the levels 

t l and t 11 be performed as an exact< t - test, since o 0 
the estimated variance on Yt l - Yt U is X2-distributed. 

o 0 

~~4~~==~~=~~~R1~· 
In the split-plot experiment of example 4.2.4 (page 21-22), 

consider the model AX B + [p + I] ; or, in parametric 

terms, 

y. 
1 

= r ab + W·v + p o-·u. 
1 

Proposition 6.4.1 and the factor structure diagram (page 

22) gives the allocation of factors to strata: 

~I 

f)p 

= 

= 

{ I 

{ P 

AxB, B } 

A , 0 } , 

reflecting the obvious fact that A - contrasts (in the 

addi ti ve model A + B + [p + I ] ) are estimated: from 

plot totals, while the estimation of B - contrasts and test 

for A X B -interaction is based on differences within plots. 

The ANOVA table, arranged by strata, is 

stratum effect d.f. 

I I 10 

AlCB 4 

B 1 

P P 10 

A 4 

0 1 

The test for w 2 = ° is 

F(10,10) = 
SSDp/10 

SSDI71"O 

SSD 

SSDr 
SSDAxB 

SSDB 

SSDp 

SSDA 

SSDO 
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If this is accepted, the two strata collapse, and we are 

left with an ordinary 5 x 2 - scheme with 3 observations 

per cell. However, we shall assume that this hypothesis 

is rejected (or not considered at all), i.e. that the 

division into plots is relevant. Rn this case, the test 

for interaction (i e e. the reduction A X B + [p + I ] ~ 

A + B + [p + I] ) is performed in I - stratum, 

SSDAxB /4 

SSD I / 10 
F(4,10) = • 

If this is accepted, we have an additive model (¥ab = 
O<a + f='b) with the main effect of B in I - stratum 

and the main effect of A in P - stratum. The tests for 

main e~fec~s are 

F(1,14) = 

F(4,10) = 

Estimation of variances on contrast estimates is straight

forward in this case, by corollary 6.11.2 (page 43). 

However, suppose that additivity can not be accepted. 

For illustrative purposes, we may even consider the situ

ation where the product structure of the treatment factor 

T = A)( B is irrelevant, the experiment being designed 

for comparison of ITI = 10 different treatments, arbi

trarily arranged in 5 pairs, each pair being applied to 

the pair of subplots of 3 plots. The relevant factors 

in this case would be I, P , T and 0 , but the condition 

(~3) (section 3.1, page 12) forces us to include the 

"pseudo" factor P 1\ T (= A above) on 5 levels, reflect

ing the arrangement of treatments in pairs. Thus, we take 

= { I , P , T , P"T , 0 } 

and obtain the factor structure diagram on top of page 46. 

This diagram is the same as that referred to above, except 

that the factor B is removed and the degrees of freedom 

changed accordingly. 
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The ANOVA table becomes 

stratum effect d.f. SSD 

I I 10 SSI - SS 

T 5 SST - SS 

P P 10 SSp - SS 

PAT 4 SSpAT -

0 1 SSo 

The test for overall treatment effect provides an example 

of a test which does not take place in a single stratum. 

Indeed, the model reduction T + [p + I] -? 0 + [p + I] 

corresponds to removal of both T and P 1\ T from the 

maximal model formula r* = {T, TAP, O} , and these two 

factors are not in the same stratum. All we can do is to 

perform the two F - te sts 

SSDT / 5 
F(5,10) = 

SSDI / 10 

testing for differences between treatments within pairs, 

and 

F(4,10) 

testing for differences between pair totals. 

Similarly, the variances on certain contrast estimates 

are not estimable within a single stratum. For treatments 

tl and t" in the same pair, we have (by the corollary, 

since t' and tit are on the same level of P /\ T in this 

case) 
= = 

but for tl and tU not in the same pair we must apply 

proposition 6.11.1 (page 42), obtaining 
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v are Y tJ - Y t" ) = 
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