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IN MULTIVARIATE STATISTICAL ANALYSIS 

by 

Steen A. Anderssont , Hans K. Br~nst and S~ren Tolver Jensen t 

ABSTRACT 

Ten invariant multivariate testing problems involving the real, complex, or 

quaternion structure of covariance matrices are considered. In each problem the 

the maximal invariant statistic and its distribution are described, as well 

as the maximum likelihood estimators and likelihood ratio test statistics. 

These results are obtained by means of a new, unified method based on 

invariance arguments. 

tThe authors are Professors at the Institute of Mathematical Statistics of 
the Univers ity of Copenhagen. A porti on of Andersson I s work was done \1h il e 
visiting the Department of Statistics, University of Washington. 
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1. INTRODUCTION. 

In this paper we consider ten testing problems in multivariate analysis. 

These are the problems of testing that (a) a covariance matrix has complex 

structure; (b) a covariance matrix with complex structure has real structure; 

(c) a covariance matrix with complex structure has quaternion structure; (d) a 

covariance matrix with quaternion structure has complex structure; (e) two sets 

of variates are independent, when their joint covariance matrix has real, complex, 

or quaternion structure; (f) two covariance matrices are identical, when both 

have real, complex, or quaternion structure. See Andersson [1 J for a definition 

of these structures. 

Some of these ten problems have been treated in the literature while the 

others are new. Together they occur in a fundamental way in a general algebraic 

theory of normal statistical models de'veloped by Andersson, Br~ns, and Jensen 

[5J. The class of normal models considered in [5J includes most of the struc­

tured families of covariance matrices which have appeared in the literature. 

It is shown in [5J that every testing problem where both the null hypothesis 

Ho and the alternative hypothesis H1(HoC: HI) belong to this class of models 

can be decomposed into simpler problems, each of which has the form of one of 

the ten problems described in (a) - (f) above. 

In the present paper these ten testing problems are treated in detail in 

a unified manner suggested by the general theory. Each problem is invariant 

under a group of linear transformations, and our main aim is to obtain a concrete 

representation of the orbit projection, i.e., the maximal invariant statistic, 

and to find a representation of its distribution in terms of a density with 



respect to the Lebesgue measure. Furthermore, the maximum likelihood 

estimators and likelihood ratio test statistics are obtained and their 

distributions discussed. 

For each problem the representation of the orbit projection is 

obtained using results on simultaneous reduction of certain types of forms 

ii 

on vector spaces, i.e., simultaneous diagonalization of matrices. The orbit 

projection is thus represented in terms of eigenvalues of matrices with 

certain structures. Many of these results on simultaneous reduction of fonms 

are well-known and all but one occur in Bourbaki [9]. The exception is 

apparently new and is given here as Lemma 8. 

Traditionally, distributions inmultivariate analysis are derived by 

calculations involving Jacobians of high dimensions. To use this method would 

require laborious calculations for each of the ten testing problems and, to 

make the proofs rigorous, it would be necessary to use arguments from differential 

geometry. In this paper a new method for obtaining the distribution of eigen­

values is presented in Lemmas 4, 5 and 6. This method, based on actions of a 

set of certain polynomial transformations on a space of positive definite 

symmetric matrices and on the space of eigenvalues, has several advantages over 

the classical approach. The method once presented for one problem, is 

readily adapted to all other problems. It is elementary, requiring only the 

calculation of 2x2 Jacobians at most. Lastly, the method is rigorous, not 

avoiding difficulties involving null sets of multiple eigenvalues. 

In the existing literature about the complex normal and complex 

Wishart distribution one usually treats complex variates. It is important 

to note that in this paper all matrices considered have real elements; by 

"matrices with complex or quarternion structure" we refer to real matrices 

with certain additional structures defined by the corresponding complex and 

quarternion matrices. 
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The ten testing problems are treated in Sections 2-7. In each of these 

sections the joint density of the eigenvalues is derived up to an unspecified 

norming constant. The exact values of all norming constants are derived simul­

taneously in Section 8 using a new method involving recursion formulae. The 

moments of each likelihood ratio test statistic are readily obtained from 

these norming constants. 

For the real case, the distribution of eigenvalues arising in problems (e) 

and (f) was obtained in 1939 by Hsu [14J, Fisher [12J, and Roy [19J, and are 

treated in detail in Anderson [8J. For the complex case, the parallel results 

in (e) and (f) can be obtained from work of Khatri [15J. For the quaternion 

case these two results appear in the thesis of Gabrielsen [13J written under 

the supervision of S. Tolver Jensen, obtained by methods similar to Khatri 's. 

Problem (b) was first treated by Khatri [16J, while problem (a) first 

appeared in Andersson [3J, which also contains a statistical interpretation of 

the eigenvalues and eigenvectors. Further results on problems (a), (b), (c), 

and (d), including a study of the noncentral distributions, are given in 

Andersson and Perlman [6J, [7J. 

Related problems concerning distributions of eigenvalues have been 

studied by mathematicians and physicists in the context of statistical 

mechanics; c.f. Mehta [17] and Porter [18]. 



2. TESTING 'THE HVPOTHESIS'THAT'A'COVARIANCEMATRIX'HAS'CO MPLEX'STRUCTURE. 

Let E be a p-dimensional vector space over the field £ of complex 

numbers. By restricting the scalar multiplication to the subfield JR of real 

numbers E is also a 2p-dimensional vector space over JR, and if e1, ... ,ep 

is a basis for E as a vector space over ~ then 

becomes a basis for E as a vector space over JR. If f is a ~ -linear map 

of E into E with matri x A + iB w. r. t. e1 , .. ,ep then f considered as a 

JR-linear map has matrix 

(2) [: -: 1 

w.r.t. (1). Since composition of linear maps corresponds to multiplication of 

matrices it is seen that the set GL(p,~) of nonsingular 2p x 2p matrices of 
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the form (2) for q = 2p is a subgroup of the group GL(q, JR) of all nonsingular 

q x q ma tri ces . 
- -

Let ~: ExE -+- ~ be a nermitian left sesquilinear or-symmetric bilinear 

complex form on E (see [9J or [1]) and C+iO= (~(ea' es)) the matrix of 

~ w.r.t. el' ... , ep' Then 8=Re o~: ExE -+-JR, where Re denotes the 

real part of a complex number, is a symmetric bilinear! real form on E. 

The form cp is hermitian left sesquilinear lif and only if C + iD is 

hermitian, i.e., C is symmetric and 0 isantisymmetric. In this case 

the matrix of 8 w.r.t. (1) is 



(3) 

Moreover, ~ 0 (f x f) is also hermi ti an 1 eft sesqui 1 i near and the matri x of 

Re 0 (~ 0 (f x f)) = ( Re 0 ~) 0 (f x f) w . r . t. (1 ) i s 

(4) 

Since ~ is positive definite if and only if Re 0 ~ is positive definite it 

follows that the action 

(5) 

where 

GL~p, C) x H+(p, C) + H+(p,~) 

(M, T) + MTM I • 

+ H (p.~) is the set of positive definite matrices of the form (3), 

is well defined. Itfollows from the first equation in (14) below that this 

action is transitive. Furthermore, for q = 2p the action (5) is a restriction 

of the transitive action 

(6) GL (q , JR) x H+ (q, JR) + H+ (q , JR) 

(M, S) + MSM ' 

where H+(q, JR) is the set of all positive definite symmetric q x q matrices. 

Since the action (6) is proper ([10], p. III.27) it follows that the action 

(5) is also proper. 

2 



The form ~ is symmetri c bi 1 i near if and on ly if C + iD is symmetri c, 

i.e., C and 0 are symmetric. In thi§ case the matrix of 8 w.r.t. the 

b.asis (1) ;s 

(7) 
[ C -DJ 
-0 -C 

Moreover, ~ 0 (fx f) is also symmetric bilinear and the matrix of 

Re 0 (~ 0 (f x f)) = ( Re 0 ~) 0 (f x f) W • r • t. (1 ) i s 

(8) [ : -B ]1 [ C 

A -0 
-0 j. [A -B 1 E: 

-c B A 
S(p, a;) 

where S(p, a;) is the set of matrices of the form (7). 

We are now ready to consider the first statistical problem. Let 

Xl" •• , XN' N ~ 2p, be independently di stributed observati ons from a normal 

distribution on JR.2 P with mean vector 0 and unknown covariance matrix 

~ E: H+(2p, JR.). A minimal sufficient statistic is the empirical covariance 

matrix S = 1 vx Xl the maximum likelihood estimator, which follows a N L n n ' 
Wishart distribution on H+(2p, JR.) with N degrees of freedom and parameter 

1 N ~. This distribution has the density 

(9) [~:i ~ r2 
exp(-N/2( trr- 1S)), S EH+(2p,lR) 

w . r . t. a me as u re v == v JR., 2 P ,N on H+(2p, JR.), which is invariant under the 

action (6). Since this action is transitive v is uniquely determined by the 

condition that the integral of (9) is 1. 

3 
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Let Ho denote the hypothes i s that l: E: H+( p, ([;), i. e., that l: 

has complex structure. The statistical problem of testing H is invariant . 0 

under the restriction of the action (6) to the subgroup GL(p, ([;). Every 

invariant test statistic has a unique factorization through the orbit 

projection 

(l0) 

where the right hand side denotes the set of orbits. The main problem is 

to find a representation of (10) as a function into ]R£ for some £ and, 

when Ho is true, to represent the distribution of IT by a density w.r.t. 

a Lebesgue measure on ]R£. 

Let 

( 11) 

where Ip is the px p identity matrix. 

map 

(12) 

It is seen that the linear 

is well defined,because t(S) = t(S+JSJ 1 ) E: H+(P, V). I Since J is 

the matrix (w.r.t. the basis (1)) for scalar multiplication by ;, it 

follows that J commutes with all matrices of the form (2), and thus also 



that t commutes with the actions of GL(p, C). Moreover, the residual 

( 13) 

has the form (7). 

Lemma 1. Let ~ be a positive.definite hermitian left sesquilinear form 

and tjI a symmetri c bi 1 i near form on E. Then there exi s ts a bas i s for E 

such that the matrices of ~ and tjI are respectively the identity matrix 

Ip and a diagonal matrix 

A. > o. p-

ProOf. Bourbaki [9J, p. 123. o 
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An equivalent formulation of the lemma is that there exists a C-linear 

map f:E -+- E such that ~o(fxf) and tjlo(fxf) have matrices Ip and A resp. 

w.r.t. the original basis e1, ... ,ep. Since the matrices for Reo~ and 

Reotjl transform according to (4) and (8) the lemma also has an equivalent 
+ formul ati on in terms of 2p x 2p real matri ces. Let T EH (p, C) and 

RES(P, tD). . Then there exists an MEGL(p, C) such that 

(14) MTM' = I and MRM' = [A 0]. 2p 0 -A 



It is seen from (14) that ±A1' ... ,Hp are uniquely determined as the 

eigenvalues of R w.r.t. T, i.e., the solutions to the equation 

(15) det(R - AT) = O. 

From (14) and (15) with T = t(S) and R = S - t(S) and the fact 

that S = t(S) + (S - t(S)) is positive definite, it then follows that 

there exi s ts an ME GL (.p,~) such that 

(16) 
[
I + A 

MSM ' = ~ 

and that (10) can be represented by 

(17) + rr:H (2p, JR) -+- Ap' 

where Ap={(X.1, ... ,Ap)EJRPI1>A1~ ... ~Ap~0} and rr(S) is the 

ordered family of nonnegati ve ei genva 1 ues of S - t( S) w. r. t. t( S) . 

That the function rr in (17) is continuous follows from 

Lemma 2. The ordered fami 1 y of ei genva 1 ues of a symmetri c mx m real 

matrix R w.r.t. a positive definite symmetric mxm real matrix T 

depends continuously on (T,R). 

Proof. Let (Tn, Rn) be a sequence of pairs of a positive definite 

symmetric mxm real matrix and a symmetric mxm real matrix such that 

(T n' Rn) -+- (T ,R). One has to show that the ordered family (A 1n ,··· ,Amn ) 

of solutions to the equation 

m 
de t (Rn- ATn) = a IT (A - A. ) = 0 

ni=l ln 

converges to the ordered family (A 1, ... ,Am) of solutions to the equation 

m 
det(R- AT)=a .IT (A-Ai) = O. 

1 =1 

6 



Since the sequence (T ,R ) 
n n 

is bounded,the sequence 

also bounded. It is therefore enough to show that every convergent 

subsequence (Aml, ... ,Amnl) converges to (Al, ... ,Am). But if 
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is 

(AI 1, ... ,Am I) -+- (fll,.·.,fl) it follows that a rr(A-A. I) converges to n n m n ln 
both arr( A - Ai) and arr( 1,.- fl;), and the uni queness of the roots of 

a polynomial gives that (fll,·.·,flm) = (Al, ... ,Am)· 0 

Remark. Since the action of GL(p, C) + on H (2p, JR) is proper it is 

known that the final topology induced by rr on H+(2p,JR)/GL(P'~) is 

locally compact ([11], p. 39). Since the right hand side of (16) 

depends continuously on (AI'" .,Ap) E Ap' the lemma above shows in fact 

that the representation of (10) by (17) is also topological, i.e., the 

identification of H+(2p, JR)/GL(p, «;) with Ap is a hlomeomorphism. 

Theorem 1. The maximum likelihood estimator of z under Ho is t(S) 

and the likelihood ratio statistic for testing Ho is 

(18) 

where (Al, ... ,Ap) = rr(S). Under the hypothesis Ho the statistics t{S) and rr(S) 

are independently distributed. The distribution. of t(S) has density 

(19) 

w.r.t. a unique measure vC,p,N which is invariant under the action (5). 

The distribution of rr(S) has density (18) w.r.t. a measure K on Ap 

which is uniquely defined by 



(20) (t,n)(~,2p,N) = vC,p,N @ K • 

Furthermore, K has the dens ity 

(21 ) 
!3 2 _ 2p+1 : 

n( ': - ,~) IT '(1 ,) 2 1\."" 1\.1-' I\.y - I\.y 
12 Cl, < S 2P y=1 

w.r.t. a Lebesgue measure on hp' 

Remark. The distribution given by the density (19) is the complex 

Wishart distribution with N degrees of freedom and parameter 

1 + ) N1:sH (p, c. 

Proof. The density of S is given by (9). Since GL(P, C) is a 

group it follows that 1:- 1 sH+(P, C) when 1: sH+(P, C), and a direct 

calculation shows that tr1:- 1S = trE-1t(S). Since t commutes with 

the action of GL(p, C), the function det t(S)/det s, Ss H+(2p, JR), 

is invariant. Using the representation (16) the density (9) can 

be rewritten as 

(22) P N/2 (det T) N/2 1 IT (1 - A ) det E exp (-N/2tr( 1:- T)), 
Y =1 y 

8 

where T = t(S) and (A1, ... ,Ap) = n(S). The first sentence of the theorem 

follows from (22). 

Next, the distribution of (t,n)(S) = (t(S),n(S)) has the density 

(22), where T s H+( p, IC) and (AI ••• ,1.. ) sA, w.r.t. , p p 

Since the action (5) is transitive, Vc N is uniquely determined by the , p, 

condition that the integral of (19) must be 1. The theorem now follows from 

Lemmas 3 and 5 be low. o 
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Lemma 3. Let G be a locally compact group, which acts properly on a 

locally compact space X and properly and transitively on a locally compact 

space Y. Let furthermore t:X ~ Y be a continuous map which commutes 

with the actions of G, and let rr:X ~ X/G denote the orbit projection. 

Then the map (t,rr) is proper. If v is an invariant measure on X and 

Vo is an invariant measure on Y then there exists a unique measure K 

on the locally compact space X/G such that (t,rr)(v) = Vo ® K. 

Proof. (Compare Bourbaki [11], p. 39) Since the action of G on X 

is proper the final topology on X/G is locally compact and every compact 

subset of X/G has the form rr(K) , where K S X is compact. Thus every 

compact subset of Y x X/G is contained in a compact subset of the form 

L x rr(K) , where L S Y is compact. One has to show that (t,rr)-l(L xrr(K)) ~ X 

is compact. Since the action of G on Y is prope~ the set 

{g E G I ~z E K:gt(z) EL} = {g E Glgt(K) n L ~ ~} == P(t(K) ,L) is compact, 

(Bourbaki [10], p. IlL33). I Thus one has (t,rr)-l(Lxrr(K)) = 

{xEXlt(x) EL, rr(x) Err(K)} = {xEXlt(x) EL, 3ZEK 3gEG: x=gz} = 

{gz E xlz E K, 9 E G: gt(z) E l} ~ P(t(K), L)K, which is compact. 

To prove the second assertion, let hand f be non-negative 

continuous functions with compact supports on Y and X/G respectively. 

Since t commutes with the actions it is seen that the positive linear 

map h ~ fh(t(x)) f(rr(x)) dv(x) defines an invariant measure on Y. 

Because of the uniqueness of an invariant measure on Y there exists a 

non-negative constant K(f) such that vo(h)K(f) = jh(t(x))f(rr(x))dv(X). 

It is easy to see that K is a positive linear map, so that 

measure on X/G. 

K is a 

o 



All assertions in Theorem 1 have now been proved except for (21). 

To prove this we have developed a .new method, based on invariance under 

polynomial transformations, which also can be applied to the 

eigenvalue problems in the following sections. 

+ , +( -Since H (:p, C) n 'S(p, C) = ~ and t(T) = T for T EH p, C), 

it follows that the 1 i near map 

(23) + H (2p, JR) -+- E 

S -+- (t(S), S-t(S)), 

+ + where E = {(T,R) EH (p, C) X< S(p,C) I T+REH (2p, JR.)}. is well-defined, 

one-to-one, and onto. The fact that t commutes with the actions of 

GL(p, C) ~ives that (23) also commutes with the actions of GL(V, C) 

+ on H (2p, JR) and E, the 1 atter gi ven by 

(24) GL'p, C) xE -+- E 

(M, (T ,R)) -+- (MTM 1 , MRW), 

m 
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which is well-defined because of (8). Let r(x) = I a.x2j+1 be an odd real 
j=o J 

polynomial such that r(O) = 0, r(1) = 1" and Dr(x) > 0, 0 < x < 1. Let 

(25) 

and 

(26) 

m . 
r(T ,R) = I a .(RT- 1)2J R, (T ,R) E E, 

j=o J 

f(S) = t(S) + r(t(S) , S - t(S)), SE H+(2P, JR). 

Lemma 4. The map f defi ned by (26) is a di ffeomorph i srn of H+ (2p , JR.) 

onto H+(2P. JR.) which commutes with the action of GL (lP, C). Moreover, 



( 27) 
cv cv 

tor = t and IT 0 r = r 0 IT, 

where -r is the homeomorphism of Ap onto Ap given by 

( 28) 

cv 
The Jacobian of r is an invariant function and is given by 

(29) 

where (Al'0 .. ,Ap) = IT(S), A=A(A1,.·.,Ap) = {(a,S)la<S, Aa>AS}' 

B=B(A1,···,Ap) = {(a,S)la2-S, Aa=As>O}, C=C(A1,···,Ap) = 

{(a,S) la2-S, Aa = AS = O}, and Icl denotes the number of elements in C. 

Proof. It is seen from (25) that r(MTM', MRM') = Mr(T,R)M' for 

ME GL(p, C) and (T,R) E E. It follows from the representation (14) 

that M can be chosen such that MTM' = 12p and MRM' = Ro = 

11 

diag(Al, ... ,Ap,-Al,· .. ,-Ap)' Then Mr(T,R)M' = r(MTM',MRM') = r(I2p,Ro) = 

diag(r(Al), ... ,r(Ap),-r(Al), ... ,-r(Ap))" anditis seen that (T, r(T,R))EE. 

Using the isomorphism (23) it is then seen that ~(S) E H+(2p, lli), r 
corresponds to the mapping (T,R) ~ (T, r(T,R)) 

commutes with the action, and that (27) holds. 

cv 
of E into E, r 

cv 
The next step is to show that r is one-to-one. Si nce 

cv 
r commutes 

with the action of GL(p, C) it is enough to show that (T, r(T,R)) = 

(I2P' r(I2P' Ro)) implies that T=I 2P and R=Ro ' This means one has 

to show that r(I2p,R) = r(I2p,Ro) implies that R = Ro' Since r is 



one-to-one it follows that Rand Ro have the same eigenvalues w.r.t. 

I2p or in other words there exists ME GL(p, IV) such that MM' = I2p 

and MR W = R. Then Mr(I R )M 1 = r(MM' MR W) = r(I R) = o 2p' 0 ' 0 2p' 

r(I2p' Ro) = diag(r(Al),···,r(Ap),-r(Al),···,-r(Ap)), and since M is 

orthogonal, one has 

(30) 

For every odd polynomial· q, (30) implies that M commutes with 

diag(q(r(Al)), ... ,q(r(Ap}),-q(r(Al)), ... ,-q(r(Ap)))' Since q can be 

12 

chosen such that q(r(\~)) = \;1.' a=l, ... ,p, one obtains that M commutes 

wi th Ro and therefore that R = MRoM I = R MM I = R o o' Therefore 'V • r 1 s 

one-to-one. 

Since 'V r commutes with the action of GL (p, IV) and r is onto 

it follows from (27) that ~ also is onto. 

The fact that ~ commutes with the action gives that the Jacobian 

is an invariant function. It is therefore enough to calculate 

det Dr(S) when S = I2p + Ro' Using the isomorphism (23) the Jacobian 

of ~ is the same as the Jacobian of the mapping (T,R) + (T,r(T,R)), 

which again is the same as the Jacobian of R + r(T,R). Thus one has to 

find the absolute value of the determinant of the mapping 

m 2j 2j-k 
dR + I a. I Rk(dR)R 

j=o J k=o 0 0 
( 31) 

Since dR has the form (7), where C = (cas) and D = (das ), it is seen 

that the mapping (31) multiplies cas' a~S, by 



(32) 

(33) 

m 2J k 2j-k La. I Acy, AS 
j=o J k=o 

The Jacobian is therefore a product of all these factors. If (a,S) sB 

(32) is equal to Dr(Aa ) and (33) is equal to r(Aa)/Aa' If (a,S) se 

both (32) and (33) are equal to Dr(O). If (a,S) s A we have two 

geometric progressions, and it is seen that (32) is equal to 

Since (29) is positive it follows that r"'l is differentiable. 

Lemma 5. The measure K in Theorem 1 has the density (21) w.r.t. a 

Lebesgue measure on Ap' 

Proof., The invariant measure '1\,2p,N on H+(2p,:m.) has density 

/dets/-(2P + 1)/2 w.r.t. a Lebesgue measure ([11], ~P. 93), Since t:~ is a 

diffeomorPhism'r- 1('jz,2P,N) has the density 

(34) (det S/det t:(S))(2p+ 1)/2'detD~(S) / 

w.r.t. ~,2p,N' It follows from Lemma 4 and (16) that (34) is an 

invariant function g(rr(S)), SsH+(2p,:m.), where 

13 

o 
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(35) 

p 

If 
y=l 

2p + 1 ( ) 2 ( ) 2 () 

G -A ~ ] 2 21 Cl. r Aa - r \~ r Aa 
1-r(A)2 Dr(O) TT 2 2 Jf A Dr(A), 

y 'A A-A Ba· a 
a S 

Using (27) we obtain that v{:,p,N Qg 1"'" -l(K) = (1 xr -l)(v(C,P,N Qg K) = 

(1 xr -1)((t,rr)(vJR.,2P,N)) = (t,rr)('f-l(vJR.~2P,N)) = (t,rr)((g 0 rr)vJR.,2p,N) = 

V~,p,NQggK' so it is seen that 

and let II = (l/k)K. Then K has density k( > 0) w.r.t. 11 and it 

follows from (35) that r -l(ll) has density 

o r( 0 ) 21 C 1 TT Dr( A ) 
B a 

w.r.t. ll. By considering the restrictions of II to the "faces" 

where 1 s ml < ... < mq S p, q = 1,2, ... ,p, it follows from the 
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next lemma that ~ is a Lebesguemeasure on Ap. Hence ~ is concentrated 

on the interior of Ap' and on this subset k(A1,···,Ap) is equal to 

(21). 0 

Lemma 6. Let~ bea measure on the interior {(ol,···,Oq) E:JRqll>Ol>···>Oq>O} 

of Aq' q = 1,2,···, such that r -l(~) has density 

nO'. = 1,2,···,0'.= 1,···,q, w.r.t. ~ for any uneven polynomial r such 

that r(O) = 0, r(1) = 1, and or(x) >0, O<x<1. If ~ is not identicaHy 

zero then nO'. = 1, 0'. = 1,··· ,q, and ~ is the restriction of a Lebesgue 

measure to the interior of Aq . 

Proof. The conditiDn on ~ is that 

(37) 

for any continuous function f with compact support. For a fixed f 

it follows from the Weierstrass approximation theorem that (37) even holds 

for any continuously differentiafule function r with r(O) = 0, r(1) = 1, 

and Or(x) >0, O<x<1. [If the polynomials q tend uniformly to vDf n 

on [O,IJ then the polynomials r (x) = JX q (t)2dt + x(1-J1 q (t)2dt ) non 0 n 

are odd, r(O)=O, ·n rn(1) = 1, and r and or tend uniformly to n n 

r and Or, respectively, on [0,1]. Hence Or (x) > 0, n 0.5.. x .5.. 1, 

for n sufficiently large.J By monotone convergence (37) is extended 
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to the case where f is an indicator function for a compact subset. 

and J = X[b , b + dNJ be two rectangles in a a a u, 

the interior of Aqwith sidelengths ca> 0, a = 1"" ,q. Since 

1 > a 1 + cl> a 1 > ... > ap + cp > ap > 0 and 1 > b 1 + Cl> b 1 > ... > bp + cp > bp> 0 

there exists a continuously differentiable function r with dO) = 0, 

r(l) = 1, and Dr(x) >0, 02x21, such that r(x) = x+ (ba - aa)' 

X E: [a • a + c J. a a a a= 1.···,q. Then Dr(x) = 1 for X E: [a • a + c J, a a a 

a=l,···,q, and if f is the indicator function of J itfollows 

from (37) that ]J(I) = ]J(J). Hence]J is translation invariant. If ]J 

is not identically zero it must be the restriction of a Lebesgue measure. 

and then it is clear that n = 1, a= 1,'" ,q. 
a o 

3. TESTING THE HYPOTHESIS THAT A COVARIANCE MATRIX WITH COMPLEX STRUCTURE 

HAS REAL STRUCTURE. 

Let Xlo"',XN, N~p, be LLd. observations from a normal distribution on 

JR2p with mean vector 0 and unknown covariance matrix 

It fo 11 ows from secti on 2 that the empi ri ca 1 covari ance matri x transformed 

by the mapping (12) is a minimal sufficient reduction which follows a 

complex Wishart distribution with 
1 

N degrees of freedom and parameter N~' 

This distribution has the density (19) w.r.t. v~ N' IV,P, 



For p> 1 we shall cons i der the hypothes isH that 1JJ = 0, o 
i.e., that E has a real. structure. The statistical problem of testing 

Ho is invariant under the restriction of the action (5) to the subgroup 

GL(p, JR) @ 12 = {diag(A,A) lA c: GL(p, JR)} of GL(P., C). The problem is 

to find a representation of the orbit projection 

( 38) 

and, when Ho is true, the distribution of TI. 

17 

The group GL(p,JR)@1 2 acts on H+(p,JR) @ 12 = {diag(H,H)IHc:H+(p,JR)} 

by restriction of (5). The linear map 

+ + t: H (p, C) -+ H (p, JR) @ 12 

S = [: -:] + [~ ~] 

commutes with the actions of GL(p,JR) @ 12, and the residual 

where 

and A( p, JR) is the set of all anti symmetri c p x p real matri ces. 
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Lemma 7. Let ~ be a positive definite symmetric bilinear real form 

and ~ an antisymmetric bilinearreal form on a p-dimensional real vec-

tor space. Then there exists a basis such that the matrices of ~ and ~ 

are 

0 -AI 0 0 0 

+Al 0 0 0 0 

(39) 11. = 0 0 0 -A2" . 0 

0 0 A2 0 0 

respectively, where AI2:..··· 2:..A[P/2J 2:.. o. 

Proof. Bourbaki [9J, p. 123. o 

+ An equivalent formulation of the lemma is that for every H EH (p, JR) 

and FEA(p,JR) there exists AEGL(p,JR) such that AHA' = 1p and 

AFA' = 11.. This yields another equivalent formulation in terms of 2p x 2p 

real matrices. For T == [~ ~)EH+(P,JR) @ 12 and R == (~-6)EA(P,JR) @J1 , 

there exists 

M _ [~ ~) E GL ( p, JR) @ 12 

such that 

(40) MTM' = 12P and MRM' = [~ -~l. 



It is seen from (40) that ±A 1,"',±A[p/2] are uniquely determined as 

the eigenvalues of R w.r.t. T, each with multiplicity two. (When 

p is odd 0 is always an eigenvalue with multiplicity two.) 

For T = t(S) and R = S - t(S) it now follows that there exists 

an ME GL(p, JR.) Q9 I2 such that 

( 41) [
I -A 1 MSM I = P 
A Ip 

and that (38) can be represented by 

(42 ) + 
rr: H (p,~) + A[p/2]' 

where rr(S) is the ordered family of the nonnegative eigenvalues of 
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S - t(S) w.r.t. t(S). As in section 2 it is seen that this representation 

is also topological. 

Theorem 2. The maximum likelihood estimator of L under Ho is t(S) 

and the likelihood ratio statistic for testing Ho is 

(43) 

where (Al,oo.,A[P/2]) =rr(S). Under the hypothesis Ho the statistics 

t(S) and rr(S) are independently distributed. The distribution of 

t(S) has the density 

(det T J N/2 + (44) det L exp(-N/2 tr(L-1T)), T EH (p, JR.) Q9 I2 
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w.r.t. a unique measure Vi which is invariant under the action 1R,p ,N 

of GL(p,1R) @ I2 on H+(p,1R) @ I 2. The distribution of n(S) has 

density (43) w.r.t. a measure K on A[p/2J which is uniquely defined by 

Furthermore, K has the density 

(45) 

where E: = p-2[p/2]. w.r.t. a Lebesgue measure on A[p/2]' 

Remark. The maximum likelihood estimator of r under Ho is H. 
+ + Since the mapping T=diag(H,H) -+H from H (p,1R) @ I2 onto H (p,1R) 

transforms vlli,p,N into vE ,p,2N' it is seen from (44) that H is 
1 Wishart distributed with 2N degrees of freedom and parameter 2Nr. 

Proof. If in section 2 one replaces GL(p, C) by GL(p, 1R) @ I 2 , 

H+(2p,1R) by H+(p, a;), H+(p, IV) by H+(p, 1R) @ I 2 , S(p, C) by 

A(p,1R)@J 1 , vlD ,2p,N by \! \! by Vi and (Al,···,Ap) 
-'It C,p,N~ C,p,N 1R,p,N 

by (Al,···,A[p/2])' then the proof is completely analogous to the proof 

of Theorem 1 except for the following changes: The determinant of the 

right hand side of (41) is 
[p/2] 2 
. n (1_A2) 

y=l Y 
which gives (43). The 

invariant measure \!~ N has density IU,P, 
I l-p/2 det S w.r.t. a Lebesgue 

measure on H+(p, C) (Bourbaki [11], p. 93) which gives 

the factor [P~2] (1- A2)-P in (45). 
Y=l y 

Finally, we shall show below that 

the Jacobian of 



where 

is 

m,l 2j 
dR + I a. I Rk (dR)R~j-k , 

j=l J k=O 0 

dR =[: -:] E A(p.lR) @J , and Ra = [: -;]. 

whenr 1> Al > ... > A[P/2] > 0, which gives the remaining factors in (45). 

To prove (46), first note that J~j+l = (":l)j J l implies 

I a. p (~ -It] k (0 -F) [0 -It) 2j - k = (0 -F 0) 
j= J k=o ° F ° A ° F ° ' o 

where F a ,(3 is 2x2, 1~_a,(32.Jp/2], and where if p is odd, 
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Fy ,[p/2]+1 is 2x1, 12..Y2..[p/2]. Then F for 1:::y:::[p/2] ; s of the y,y 

form tJl and is mapped into 

2j k 2j-k I a. ( -1) j I (0 -AY) (0 -t) (0 -Ay) = 

j = 1 J k =0 Ay ° t ° Ay ° 

which gives the factor Dr(Ay) in (46). For 1 ::: a < (3::: [p/2], F :: (v s) a,(3- w U 
is 



mapped into 

= 

where 

m 
a .(-l)j ~ [0 -~ark(~ 51[0 -AB 12j-2k I + 

j=l J k=o Aa U AS 0 

m . 1 
) 2k+l ( 5] [0 ABrj-2k-l 

aj(-l)j J~ (0 L k~O Aa 
-Aa V 

j=l o W U -AS 0 

m ! A~kA~j-2k(v ~) I a. 
j=l J .ki=lO w 

m j-l 2k+l 2j-2k-l(. ) 
L a. I -u w Aij As S -

j=l J k=o V 

la V + bu 

aw - bs 
as - bwj 
au + bv 

= 

a = (Aar(Aa) - Asr(As))/(A~ - A~) and 

b = (Asr(Aa) - Aar(As))/(A~ -A~). 
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The determinant of this mapping is (a2 - b2)2 = [(r(A )2 - r(A )2)/(1..2 - 1..2)12, a saS -' 

which gives the (a,S)'th factor in '(46). If P is odd then Fy,[p/2] + 1 ~ (~) 

is mapped into 

2E: 
which gives the factor (r(Ay)/Ay) in (46). o 



4. TESTING THE HYPOTHESIS THAT A COVARIANCE MATRIX WITH COMPLEX' 

STRUCTURE HAS QUATERNION STRUCTURE. 

Let 1:I denote the division algebra over JR. of quaternions 

and let l,i,j,k be a canonical basis; i.e., i2=j2=k2=-1, 
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i j = -ji = k, jk = -kj = i and ki = -i k = j. The conjugate of a quaterni on 

q = a + i b + j c + kd is denoted by Cl = a - i b - j c - kd. Defi ne the JR.-l i near 

map p of 1:I into 1:I by p(a+ib+jc+kd) = a+ib-jc+kd. It is 

seen that p is an involutive antiautomorphism of 1:I; i.e. 

p(p(q)) =q and P(qlq2) = P(q2)P(ql) for q,ql,q2 e: 1:I. Moreover, 

the set· {qe:Elp(q) =q} = {a+jcla,c e:JR.} is isomorphic to the field 

of complex numbers, so it is here denoted by C. (More generally, it 

can be shown that there is a one to one correspondence between the 

embeddings of the field of complex numbers into E and the involutive 

antiautomorphisms of E other than the conjugation operator.) 

Let E be a p-dimensional right vector space over E. Since 

E is a right vector space the scalar multiplication of an x e: E by 

q e: E is denoted xq. By restricting the scalar multiplication to 

the subalgebra of real numbers, E is also a 4p-dimensional vector 

s pace over JR., and if el'" ',e is a basis for E as a vector p 

s pace over E then 

becomes a basi s for E as a vector space over JR.. 

If f is an E-linear map of E into E with matrix 

then f cons i dered as an JR.-l i near 
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map has matrix 

A -Bl -B2 -B3 

Bl A -B3 B2 
(48) M = 

B2 B3 A -Bl 

B3 -B2 Bl A 

w.r.t. (47). Since composition of linear maps corresponds to multi-

plication of matrices it is seen that the set GLCp, E) of all 

nonsingular 4px4p matrices of the form (48) is a subgroupof GL(2p, a.:) 

Let <p:E x E -+E be a flerrhitian'left sesquilinear quaternion 

form on E (see [9J or [lJ) with matrix q,=C+i0 1 +j02+k03 = 

(<p(ea , eS))' Then C is symmetric and 01 ,02 and 03 are antisymmetric. 

Moreover, 0:: Re 0 <p, where Re denotes the real part of a quarterni on, 

is a symmetric bilineaY' real form on E and the matrix of 0 w.r.t. 

(47) is 

C -0 1 -02 -03 

01 C -0 3 O2 
(49 ) I::. = O2 03 C -01 

03 -02 01 C 

The form <p 0 (f x f) is a1:S'oherrhitiatl left sesqyn'inear and the matrix 

of Re 0 (<p 0 (f x f)) = (Re 0 <p) 0 (f x f) W • r . t . ( 47) i s 

(50) M' I::. M. 

Since <p is positive definite if and only if Re 0 <p is positive 

definite it follows that the action 

(51) GL~P, E) xH+( p, E) • -+ H+(p, Er 

(M , T) -+ MTM', 
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where + H (p, E) is the set of positive definite matrices of the form 

(49), is well defined. It follows from-the first equation in (59) 

below that this action is transitive. Moreover, since it is a 

restriction of the proper action (6) it is also proper. We remark 

that H+(P,1:I) is a subset of H+(2p,C). 

Next 1 et ~: Ex E + E be a hermi ti an 1 eft p-sesqui 1 i near 

quaternion form on E, i.e., ~(xq1' yq2) = P(q1) ~(X,y)q2' 

~(y,x) = p(~(x,y)), and ~(Xl +X2,Y) = ~(X1'Y) + ~(X2'Y)' q1,q2E: E , 

y,x,x1,X2E:E. If q,=C+i0 1 +j02+k03 = (~(ea.,eS)) is the matrix 

of ~ then C,Ol' and 03 are symmetric and 02 is antisymmetric. 

Moreover, <5 == Re 0 ~ is a symmetri c bil i near real form on E, and 

the matrix of <5 w.r.t. (47) is 

C -0 1 -02 -03 
-0 1 -C 03 -02 

(52) 8 = O2 03 C -01 
-03 02: -01 -C 

The form ~ 0 (fx f) is also hermitian left p-sesquiTinear and the 

matrix of Re 0 (~o (fx f)) = (Re o~) 0 (fx f) w.r.t. (47) is 

( 53) M '~M E: S ( p, 1:I) , 

where S(lp,1:I) is the set of matrices of the form (52). 

Let X1, ... ,XN, N~2p, be i.i.d. observations from a normal 

distribution on JR4P with mean vector 0 and unknown covariance 

matrix L:E:H+(2p, C).! As in section 3 one obtains as a minimal 

sufficient statistic an observation S from a complex Wishart 
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distribution on H+(2P, C) . with N degrees of freedom and parameter 
1 N L. This distribution has the density (19) (with p replaced by 

2p) w.r.t. vC,2p,N. 

Let Ho denote the hypothesis that LEH+(P,11), i.e., 

that L has quaternion structure. The statistical problem of 

testing Ho is invariant under the restriction of the action (5) 

(with p replaced by 2p) to the subgroup GL(p, 11). The problem 

is to find a representation of the orbit projection 

(54) + + n:H (2p, C) -+ H (2p, C)/GL(p,11) 

and, when·H is true, the distribution of n. 

Let 

0 0 0 -I 
P 

(55) J == J = 0 0 1p 0 
P 0 -I 0 0 

P 
1p 0 0 0 

It is seen that the linear map 

+ + t:H (2P, (D) -+ H (p, 11) 

Hll H12 -Fll -F12 Hl1 +H 22 H12-H 21 -Fll +F22 -F lrF21 

H21 H22 -F21 -F22 1 H21-HJ:2 H22+H ll -F21 -F12 -F22+F ll 
(56) S = Fll F12 Hll H12 -+2" Fll -F22 F12+F21 Hl1 +H 22 H12 -H21 

F21 F22 H21 H22 F21+F12 F22-F ll H21 -H 12 H22+H 11 

is well defined,because t(S) = i(S+JSJ ' ) £H+(p,11). i Since J 

is the matrix w.r.t. (47) for scalar multiplication by k, it follows 

that J commutes with all matrices of the form (48), and thus also 

that t commutes with the actions of GL(lp, 11). Moreover, the residual 
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( 57) H11 -H22 H12+H21 -F ll -F22 -F12+F21 ] 

_ 1 H21+H12 H22 -H 11 -F21+F12 -F22 -F 11 
S-t(S) - "2 ,Fll+F22 F12-F21 H11 -H 22 H +H rS(p, Er 12 21 

F21 -F 12 F22+F 11 H21 +H 12 H22-H ll 

Lemma 8. Let ~ be a positive definite hermitian left sesquilinear 

form on E and 1J; a hermi ti an 1 eft p-sesquil i near .form on E. Then 

there exists a basis for E such that the matrices of ~ and 1J; are 

Ip and A, respectively, where A is defined in Lemma 1. 

Proof. (See Bourbaki [9], p. 120.) Since ~ is positive definite 

there exists an additive map u of E into E such that 1J;(x,y) = 

~(u(x) ,y), x, y s E. For q sE, ~(u(xq) ,y) = 1J;(xq ,y) = p(q)1J;(x,y) = 

p(q)~(u(x),y) = ~(u(x)PTqT,y). Hence 

( 58) u(xq) = u( x)"pTv, q sE, x sE. 

Moreover, ~(u(x) ,y) = 1J;(x,y) = p(1J;(y,x)) = p(~(u(y) ,x)), and it 

follows that the orthogonal complement w.r.t. ~ of any u-invariant 

E-subspace S of E (i .e., u(S) SS) is also u-invariant. E is 

therefore a direct orthogonal sum of minimal u-invariant subspaces. 

Let S be one of these subs paces . Si nce P[qT = q for 

qs[::{a+jcla,cd1.}, it follows from (58) that the restriction of 

u to S is a C-linear map of S into S, and it must have an 

eigenvector. Therefore there exists A s Co and x E: S such that 

~(x,x) = 1 and u(x) = XA. Hence ,u(xE) ~x E and, since XE~S, 

S = xE. Since I~(x,x) = ~(XA,X) = ~(u(x) ,x) = 1J;(x,x) = p(1J;(x,x))= 

p(~(u(x) ,x)) = p(I~(x,x)) = ~(x,x)p(I), it follows that p(~) = i, 

and,since AS C, A s JR.. This shows that there exists an 



orthonormal basis e1, ... ,ep for E and Al'".,Ap E JR. 

such that u(ea.)=ea.Aa.' a.=l, ... ,p; i . e. the matrix of ~ is the 

identity matrix and the matrix of l/J is diag(A 1 , ••• ,Ap)' It can be 

assumed that each Aa.::: 0, for if Aa. < 0 we can repl ace ea. by ea. i 

and thus repl ace Aa. by -Aa. > O. o 
Since the matrices of Reo~ and Reol/J transform according to 

(50) and (53), the lemma has an equivalent formulation in terms of 
+ 4p x 4p real matri ces. Let T EH (p, E) and RE S( P. E) . Then there 

exists an M E GL(~~,,,lI) such that 

(59) MTM' = 14p and MRM' = diag(A,-A,A,-A). 

It is seen from (59) that ±Al, ... ,±Ap are uniquely determined as the 

eigenvalues of R w.r.t. T, each with multiplicity two. 

For T = t(S) and R = S - t(S) it now follows that there exists 

an M E GL(p, EL such that 

(60) MSM ' = diag(Ip+A, lp-A, Ip+A, lp-A) 

and that (54) can be represented by 

(61) 
+ . 

rr:H (2p, V) ~ Ap' 
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where rr(S) is the ordered family of non-negative eigenvalues of S - t(S) 

w.r.t. t(S). As in section 2 it is seen that this representation is 

also topological. 

Theorem 3. The maximum likelihood estimator of ~ under Ho is t(S) 

and the likelihood ratio statistic for testing Ho is 



( 62) 

Under the hypothesis H the statistics o 
t(S) and rr(S) are independently distributed. The distribution of 

t(S) has the density 

[det TJ N/2 -l-L 

(63) det 2: exp( -N/2 tr(2: T)), T G H' (p, E) 

w.r.t. a unique measure vB N which is invariant under the action ,p, 
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(51). The distribution of rr(S) has density (62) w.r.t. a measure K 

on Ap which is uniquely defined by 

(64) 

Furthermore, K has the density 

(65) 

w.r.t. a Lebesgue measure on Ap' 

Remark. The distribution given by the density (63) is called the 

quaternion Wishart distribution with N degrees of freedom and parameter 

1. +( N z; G Hp, E) . 

+ Proof. If in Section 2 one replaces GL(p, le) by GL(p,E), H (2p,JR) 

by H+( 2p, c), H+(p, 0::) by H+(p, E), S(p, le) by S(p, E), 

VJR 2 N by V,ro 2 N' and V iTt N by vB N' then the proof is , p, 'lI, p, \V,p, ,p, 

completely analogous to the proof of Theorem 1 except for the following 

changes: The determinant of the right hand side of (60) is rr(1- A~)2, 

which gives (62). The invariant measure vlC ,2p,N has density Idet SI-2p/2 



w.r.t. a Lebesgue measure on H+(2p, C) (Bourbaki [llJ, p. 93) 

which gives the factor n(1- A~)-2p in (65). Finally the Jacobian of 

m 2j k 2· k 
dR + I a. I R (dR)R J- , 

j=l J k=o 0 0 

where dR has the form (52) and Ro = diag(A, -A, A, -A), is 

p r 2 2 2 (66) n Dr(Ay) (r(Ay) n (r(Aa~ - r~AB) ) .. 
y=l Ay l~a<S~p Aa - AS J 

when 1> AI> ... > A > 0, which gives the remaining factors in (65). p 

The proof of (66) is analogous to the proof of (29). 0 

5. TESTING THE HYPOTHESIS THAT A COVARIANCE MATRIX WITH QUATERNION 

STRUCTURE HAS COMPLEX STRUCTURE. 

Let E be as in Section 2, f a ~-linear map of E into E, 

q,:E x E + ~ an antisymmetric bi1ineaY1. complex form on E, and C + iD = 

(<1>(ea , eS)) the matrix of <1> w.r.t. el, ... ,ep. Then C and Dare 

anti symmetri c. Moreover Re 9 <1> is an anti symmetri c bil i near real form 

on E, the matrix of Re 0<1> w.r.t. (1) is given by (7), (<1> 0 (fx f)) 

is also antisymmetric bilinear, and the matrix of Re 0 (<1> 0 (fx f)) = 

(Re 0 q,)o(fx f) w.r.t. (1) is given by 

(67) lA -B]I [C -D] [A -B] 
B A -D -C B A E A(p, ~), 
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where A(p,~) is the set of all antisymmetric matrices of the form (7). 
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Let Xl"" ,XN' N::: p, be i.i.d. observations from a normal dis­

tribution on JR4p with mean vector 0 and unknown covariance matrix 

r -Y I -Y2 -Y3 

L: = YI r -Y3 Y2 

Y2 Y3 r -Y 1 

Y3 -Y2 YI r 

It foll ows from Secti ons 2 and 3 that the empirical covariance matrix 

trans formed by the mappi ngs (12) (with prep 1 aced by 2p) followed by 

(56) is a minimal sufficient statistic, which follows a quaternion Wishart 

distribution with N 1 degrees of freedom and parameter N L:. 

distribution has the density (63) w.r.t. v N • E, p, 

This 

For P> 1 we shall consider the hypothesis Ho that 1jJ2 = 1jJ3 = 0, 

i.e., that Z has a complex structure. The statistical problem of 

testing Ho is invariant under the restriction of the action (51) to 

the subgroup GL(p, 1D)®1 2 = {diag(A,A)!AEGL(p, ID)} of GL(p,E). 

The problem is to find a representation of the orbit projection 

and, when Ho is true, the distribution of IT. 

The group 
+ H (p, 1D)®1 2 -

linear map 

GL(p, (C)®1 2 acts on 

{diag(H,H)!HEH+(P, ID)} by restriction of (51). 

+ + t:H ([1, H) -+ H (p, (D) ® 12 

The 
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commutes with the.actions of GL(p, C) ® 12 , and the residual 

where 

Lemma 9. Let ~ be a positive definite hermitian left sesquilinear 

complex form and ~ an antisymmetric bilinear complex form on a 

p-dimensional complex vector space. Then there exists a basis ~uch that 

the matrices for ~ and ~ are 1p and A respectively, where A 

is defi ned in (39). 

Proof. Bourbaki [9J, p. 123. o 
Since the matrices for Re 0 ~ and Re 0 ~ transform according 

to (4) and (67), respectively, an equivalent formulation of the lemma 
+ is that for every HE H (p, Q;) and FE A(p, Q;), there exists 

AEGL(p, (CL such that AHA' = 1p and AFA' = A. This can be reform­

ul ated in terms of 4p x 4p real matri ces. For 

there exi s ts 

M - [~ ~) E GL(p, Q;)®1 2 

such that 

(69) MTM 'I d MRM' = [~ ~ - ~ ~l = 4p an A 0 0 0 
o -A 0 0 . 



It is seen from (69) that ±Al, ... ,±A[p/2] are uniquely determined 

as the eigenvalues of R w.r.t. T, each with multiplicity four. 

(When p is odd 0 is always an eigenvalue with multiplicity four.) 

For T = t(S) and R = S - t(S) it now follows that there exists 

an M e GL(p, C) 01 2 such that 

I 
P 

0 -A 0 

(70) MSM ' 0 Ip 0 11. = 
11. 0 I 

P 
0 

0 -11. 0 I 
P 

and that (68) can be represented by 

( 71) + 
TI:H (p,JH) -rA[p/2]' 

where TI(S) is the ordered family of non-negative eigenvalues of 
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S - t(S) w.r.t. t(S). As in section 2 it is seen that this representation 

is also topological. 

Theorem 4. The maximum likelihood estimator of L under H o 

and the likelihood ratio statistic for testing H is o 

( 72) 

is t(S) 

where 

t(S) 

t(S) 

(Al, ... ,A[p/2]) = TI(S). Under the hypothesis Ho the statistics 

and TI(S) are independently distributed. The distribution of 

has the density 

(73) 
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w.r.t. a unique measure VI which is invariant under the action of C,p,N 

GL(p, c) ® 12 on H+(p, IV) ® 12, Theddistribution of n(S) has density 

(72) w.r.t. a measure K on A[p/2J which is uniquely defined by 

Furthermore, K has the density 

[p/2 ] 
(74) n (A~ - A~)4 n A~+4E (1- A~)-2P+l, 

l~a<S~p y=l 

where E=p-2[p/2], w.r.t. a Lebesgue measure on A[p/2]' 

Remark. The maximum likelihood estimator of (~l-~lJ under Ho is H. 

Since the mapping T=diag(H,H) -+ H from H+(p, C)®I 2 onto H+(p, rv) 

transforms vC,p,N into vC,p,2N it is seen from (73) that H follows a complex 

Wishart 'distribution with 2N degrees of freedom and parameter 2~ (~l ~~l). 

Proof. If in section 2 one replaces GL(p, C) by GL(p, IV)®1 2 , 

+ + + + 
H (2p, JR.) by H (p, 11), H (p, C) by H (p, a;)® 12, S(p, C) by 

A(p, C)®J 1 , v 2 N by v N' v N by VI Nand' (Al, ... ,Ap) JR, p, JH, P , C , P , C , P , 

by (Al, ..• ,A[P/2]) then the proof is completely analogous to the proof 

of Theorem 1 except for the following changes: The determinant of the 

right hand side of (70) is n(1- A~)4, which gives (72). The invariant 
1 

measure vJH N has dens ity 1 det S 1- (p -"2 ) /2 w. r. t. a Lebesgue measure 
, p, 

on H+( p, 11) (Bourbaki [llJ, p. 93) which gives the factor 

n(1- A~)-2P+l in (74). Finally the Jacobian of 

m 2j k . k 
dR -+ I a. I R (dR)R2J -

j=l J k=o 0 0 
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where 

[ 
0 O-C D] [0 0 -A 0] OODC " OOOA 

dR = C -D 0 0 £ A(p, IV) ®J l and Ro = Aaa 0"' 
-D -C 0 0 0 -A 0 0 

is 

( 75) 
[p/2] r(A ) r(A )2 _ r(As)2- 4 [p/2] (r(A ))4~ 

IT Dr( A) Y IT [ aI IT . Y 
Y=l Y Ay l:::a<S:::p . A~ - Ai J y=l Ay 

when 1> AI> ... > A [p/2] > 0, which gives the remaining factors in (74). 

The proof of (75) is completely analogous to the proof of (46). o 

6. TESTING INDEPENDENCE OF TWO SETS OF VARIAIES WHERE THE SIMULTANEOUS 

COVARIANCE MATRIX HAS REAL, COMPLEX, OR QUATERNION STRUCTURE. 

Let JO denote JR, C, orE and set 0= di mJRJO , i.e.~ 0=1,2, or 4. 

Let M(P2, PI. JO) denote" the set of all P2 x PI real matrices when' 

ID= JR.; the set of all 2P2 x 2Pl real matrices of the form (2), where 

A and 8 are P2 x Pl matrices,when :D=C; and the set of all 4P2x4Pl 

real matri ces of the form (48), where A, 81 , 82 and 83 are P2 x PI matri ces, 

when JO = E. Let El and E2 be right vector spaces over :D of dimensions 

PI and P2, respectively, g: El + E2 a JO-linear map, and 1/J: E2 x El +JD 

a left sesquilinear JO-form. The oP2 x oPl real matrices of g and 

Re ° 1/J w.r.t. bases for El and E2 considered as vector spaces over JR 

are both of the form (2) when :D = IV and of the form (48) when JO = E, 

hence belong to M(P2, PI' ID). If f 1 : El +El and f 2: E2+E2 are 

JD-linearmaps, then 1/Jo(f2 x f l ) is a left sesquilinear JO-form, and 
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since Re 0 (1jJ 0 (f2 x f l )) = (Re 0 1jJ) 0 (f2 x f l ), it is seen that 

Let x be an observation from a normal distribution on ~op with 

covariance matrix + Z E: H (p,ID) and let p = PI + P2 with 

Partition x into 0 p-dimensional subvectors x , et et=l, ... ,o, 

corresponding to the partition of L: into p x p submatrices given by 

its " ID-s tructure" (see (3) and (49)). Furthermore, partition each X et 
into xl and x2 consisting of the first PI and the 1 ast P2 coordinates et et 
of x et' respectively, et=l, ... ,o. Permuting these 20 subvectors into 

the order I I 
xI""'\)' 

2 2 
xI""'xo' one transforms L: into the form 

(76 ) 

where + 
L:22 E: H (P2, ID) , L21 E: M(P2' PI' ID), and 

The set of positive definite matrices of the form (76) is 

here denoted + H (PI' P2, ID). We shall discuss the problem of testing 

the independence of (x~, ... , x~) and (xf, ... , x~). 

Let Xl"'" xN' N~p>l, be i.i.d. observations from a normal 

distribution on ~op with mean vector 0 and unknown covariance matrix 

+ 
L E: H (PI' P2, ID). The maximum likelihood estimate S of L: also has 

the form (76), 

and it follows from the preceding sections that S is ID-Wishart distributed 
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with N degrees of freedom and parameter ~I. 

The statistical problem under consideration is that of testing the 

hypothesis 

action 

(77) 

This problem is invariant under the 

MlS12M~l 
M2S22M~ , 

If one permutes the coordinates as above it is seen that 

GL(Pl, ID) EB GL(P2' JD) becomes a subgroup of GL( PI + P2' JD) and 

thus (77) is a restriction of the actions (6), (5), or (51) in the cases 

JD =]\,1[;, or E, respectively. 

The linear map 

commutes with the action (77) and the transitive action 

(78) 

( M, T) -+ MTM I , 

where 

Lemma 10. Let h: E1 xE 1 -+JD and ~2: E2xE2-+JD be positive definite 

hermitian left sesquilinear forms and g: E2-+El aJD-linear map. Then there exist 
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ID-bases of El and E2 such that the matrices of h and ~2 are 

I and I respectively, and the matrix of 9 is 
PI P2 

where 

Proof. It follows from Lemma 11 in the next section that there exists 

a basis f I •... ,fp2 of E2 such that the matrix of ~2 is Ip2 and 

the matrix of ~l 0 (gxg) is diag(A2l , ...• A2 ). where Al~ ... ~A ~O. 
. P2 P2 

Set ei =9(fihiI for Ai >0; these ei 1s are orthonormal w.r.t. ~I 

and they can therefore be extended to a basis el, ... ,e 
PI 

which is orthonormal w.r.t. ~l' i.e., the matrix of ~l 

for El 

is I Since 

= e.A., 
1 1 

i=1, ... ,P 2 • the lemma follows. 

In terms of real matrices the lemma states that for 

PI 

+ + <PI EH (PI' ID), <P2 EH (P2. ID), and G E M(P2, PI' ID), there exists 

o 

such th a tAl <P 1 A ~ = I , 0 I ~ • 
Pl U 

A2 <P2 A~ = Ip2 0 10 , and (AZ)-l G Al = A0I o. 

-1 ( 1)-1 For <Pl=Sll' <P 2 =S22, G=S2I' Ml=A 1 • and M2 = A2 ' one 

obtains that there exists an ME GL(p , ID) 0GL(p ,ID) such that 

(79) 

Hence the orbit projection corresponding to the action (77) can 

be represented by 



where n(s) is the ordered family of the first P2 non-negative 

eigenvalues of S - t(S) w.r.t. t(S) each with multiplicity o. 

(0 is always an eigenvalue with multiplicity at least 8(Pl - P2))' 

Theorem 5. The maximum likelihood estimator of ~ under Ho is 

t(S) and the likelihood ratio statistic for testing Ho is 

(80) ~2 (1 _ A~) oN/2 , 
Y=1 

where (Al, ... ,A ) = n(S). Under the hypothesis. H the statistics 
P2 0 
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t(S) and n(S) are independently distributed. The distribution of t(S) 

has densi ty 

(81) 

w.r.t. a unique measure vJD N ®vID N which is invariant under 
,PI' "P2, 

+ + the acti on of GL(Pl' JD) $ GL( P2, ID) on H (PI' ID) $H (P2' ID). The 

distribution of n(s) has density (80) w.r.t. a measure K on A which 
P2 

is uniquely defined by 

Furthermore, K has density 

(82) 

w.r.t. a Lebesgue measure on A • 
P2 
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Remark. The maximum likelihood estimators for ~11 and ~22 are S11 

and S22, respectively, and it is seen from (81) that these are 

independently distributed and that S .. follows a JD-Wishart distribution 
11 

with N degrees of freedom and parameter ~ ~ i i' i = 1,2. 

Proof. 

nant of 

\! JD, P ,N 

The proof is analogous to the proof of Theorem 1. The determi­

(79) is rr(1- A2)0, which gives (80). The invariant measure 
y 

on H+(p,JD) has density Idetl S-(p-l+i)/2 w.r.t. a 

Lebesgue measure, and that gives the first factor in (82). The Jacobian 

of 

( 83) 
m 2j k . k 

dR + I a. I R (dR)R2J -
j=1 J k=o 0 0 

[0 GI) [0 A'®I) where dR = GO' GEM(Pl, P2,JD) and Ro= A®Io' 0 0 , is 

(84) 

when 1> Al > ... > A > 0, which gives the remaining factors in (82) .. 
P2 

We shall indicate the proof of (84) in the case JD= 11: Recall that 

G is of the form (48). Under the mapping (83) the (y,y)'th element of 

A is multiplied by Dr{Ay) , the (y,y) 'th elements of 81,82, and 83 

are multiplied by r(Ay)/Ay ' and for S> P2 the (y,S) 'th elements of 

A, 81, 82, and 83 are multiplied by r{Ay)/Ay . For 1~a<S~p2 the 

pair of elements (tas , t sa ) of A, 81, 82, and 83 are mapped into 

the pair (atas + btSa' atSa + btaS) , where a and b are as in the proof of 

Theorem 2; this mapping has the determinant 

o 



7. TESTING THE HYPOTHESIS THAT TWO COVARIANCE MATRICES WITH REAL. 

COMPLEX. OR QUATERNION STRUCTURE ARE IDENTICAL. 

As in section 6 we denote by ID eitherE. (C. or E. and 

o=dimEID. Let SI and S2 be independent observations from 
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ID-Wishart distributions with NI and N2 degrees of freedom and para­

meters ~1'~2 c:H+(p. ID) respectively. p~ NI and p~ N2. Since 
op , + 

v is invariant and det(NS) =N det(S) for Sc:H (p.ID). it ID.p.N 
follows from the preceding sections that the distribution of (SI' S2) 

has density 

[
det SI]Nd2[det Slf2/2 '_1 

det ~ 1 . det ~iJ exp( /2 

w.r.t. o 0 
VID • p.N 1 ® VID • p .N2• where p~ Ni' i=I.2. 

Let Ho denote the hypothesis that ~1 = ~2. The statistical problem 

of testing Ho is invariant under the action 

( 85) + 2 + 2 GL ( P. ID) x H (p, ID) -+- H (p, ID) 

The linear map 
+ 2 + 

t:H (p,ID) -+-H (p,ID) 

(SI' S2) -+- SI + S2 

commutes with the actions (85) and (6), (5), or (51), respectively. 

Lemma 11. Let ~ be a positive definite hermitian left sesquilinear 

ID-form and ~ a ~ermitian left sesquilinearID-form on a p-dimensional 
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vector space over D. Then there exists a basis such that the 

matrix of ~ is Ip and the matrix of ~ is A=diag(Al, ... ,Ap)' 

where 

Proof. Bourbaki [9J, p. 123. o 
In terms of ap x ap real matrices the lemma implies that there 

exists an MsGL(p,ID) such that M(Sl+S2)M ' =I ap ' and MS 1M' =A0I a . 

Then MS 2 M' = (I - A) ® la' and it is seen that the orbit projection 

corresponding to the action (85) can be represented by 

where rr(Sl' S2) = (Al, ... ,Ap) and l>Al~ ... ~Ap>O are the 

eigenvalues of SI w.r.t. SI +S2, each with multiplicity a. 

Theorem 6. The maximum likelihood estimator for z (the common value 

of Zl and Z2) under Ho is (NIl N2) t(Sl, S2) and the likelihood 

ratio test statistic for testing Ho is 

(86) 

where (AI"" 'Ap) = rr(Sl' S2)' Under the hypothesis Ho the statistics 

t(Sl' S2) and rr(SI' S2) are independently distributed. The distri­

bution of t(Sl' S2) has density 

(<:jet T) aet z: 



w.r.t. The distribution of IT(5 1,52) has density (86) 

w.r.t. a measure which is uniquely defined by 

( t , IT)( vJDo NO vIDo N) = v])o N +N 0 K. 
,P'l ,P,2 ,P'12 

Furthermore, K has density 

(87) 

w.r.t. a Lebesgue measure on Ap. 

Proof. The proof is analogous to the proofs for the other theorems. 

For (87), one defines r(5 1, 52) = (r(5 1, 51 +52), 51 +52 - r(5 1, 51 +5 2)), 

where 
m 

r(R,T) = I aJ.(RT- l )2j R. 
j=1 

The determinant of 

where 

when 

m 2j 
dR 7 I a. I R~(dR)R~j-k , 

j=l J k=o 

+ dRsH (p,])) and 

1>)..1>'''>).. >0. p 

is 

o 
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8. THE NORMING CONSTANTS. 

In Theorems 1-6 we have represented the distribution of the orbit 

projection IT by a density w.r.t. a Lebesgue measure on Aq for 

appropriate q. This density is the product of the likelihood ratio 

statistic 9 and the density f of a measure K with respect to that 

Lebesgue measure. (In Theorem 1, for example, the density of IT is the 

product of (18) and (21).) In order to find the density of IT w.r.t. 

the usual Lebesgue measure d~(A):: ITdA i , one must evaluate the norming 

constant (f9(A)f(A)d~(A))-I. We shall first evaluate the norming 
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constants associated with Theorems 5 and 6 by a simultaneous recursion 

argument. The remaining norming constants are easily obtained from these. 

We shall use the same notation as in sections 6 and 7. The 

distribution of rr in Theorem 6 has density 

( 88) 

w.r.t. ~, where m=p-l+ ~ and b(8,p,N 1 ,N 2 ) is the norming constant. 

In fact, b is defined for all real values of NI' N2 E [m, 00). Let 
+( 0 vJD,p be an arbitrary invariant measure on H p, JD). Then v]),p,N = 

C(8,p,N) vJD,p' where C(8,p,N) is a constant. Since (t,IT)(v~'P,NI®v~)'P,N2) = 

vJDo N +N ® b(8,p,N I ,N 2) f~, where f is given by (87), we obtain 
,p, 1 2 

(t,rr)(v ® v )= v. ® f~. It follows that [
b(8,P,N 1 ,N2 ) c(8,p,NI+N2) ] 

JD,p l),p l),p c( 8,p ,NI) c( 8,p ,N2) 

( 89) 
C(8,p,N I)c(8,p,N2 ) 

c(8,p,N I+N 2 ) 
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where k1 (8,p) is a constant only depending on 8 and p. 

In Theorem 5, IT has density 

(90) 

w.r.t. 11, where; P=Pl +P2 and a(8,Pl,P2,N) is the norming constant. 

In the same manner as in the derivation of (89), it is shown that 

( 91) a(8,Pl,P2,N) = 
C(8,Pl + P2,N) 

where k2(8,Pl,P2) is a constant only depending on 8,Pl' and P2' 

( _ 8p N/2 0 _ 8p N/2 ( ) ) 
Recall that v]D,p,N - N v]D,p,N - N c 8,p,N v]),P . 

Since a(8,p,1,N) = 2r(8N/2)/(r(8p/2)r(8(N-p)/2)) and c(8,1,N) = 

Co(8/2)8N/2/ r (8N/2), where Co is a constant which depends on v]),l' 

it follows by induction from (91) that 

(92) C(8,p,N) = ko(a,P)(8/2)8NP/2/d(8,P,N), 

where 

P 
(93) d(8,p,N) = IT r(8(N-y+1)/2) 

y=l 

and ko(8,p) is a constant only depending on 8 and p. 

If (92) is substituted into (89) one obtains 



(94) 

where 

Since both sides of (94) are rational functions in NI and 

N2 it follows that (94) in fact holds for all real values of NI' N2 E 

[m, 00) • (It then follows that b(p,N1 ,N2) is defined for all 

real values of N1 ,N2 E (p-1, 00).) 

By making the substitutions Al =Yl and \ =Yl yy, Y = 2 ... ,p, 

in (88) and integrating over Yl it is seen that b(o,P,P-1+t,P-1+t) 

- [( p-1) J [ 2 2 J - P 2 + 1 b o,p-1,p-2+-;s,p+-;s . If (94) is substituted into 

this expression one obtains after a reduction that k(o,p) = 

k(o,p-1)r(o/2)/r(op/2), and it follows that k(o,p) = 

k3(o)[r(o/2)]P/d(p,p), where k3(o) is a constant only depending on 

o. Since b(o,1,N 1 ,N2) = r(o(N 1 + N2)/2)/(r(oNr/2)r(oN2/2), it 

follows that k3(o) == 1, so that 

[r(o/2)]Pd(o,P,N 1 +N2) 
b(o,p,N 1 ,N2) = 'J ) . 

d(o,p,p)d(o,p,N 1)d(o,p,N2) 
(95) 

Finally, by making the substitution yy = A~' y=1, ... ,P2' in (90), 

one obtains that 

and that a(o,Pl,P2,N) in fact is defined for all real values of 

PI E (P2-1, 00) and all real values of NE (Pl+P2-1, 00) • 
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It is now a simple matter to obtain the norming constants 

as soci ated with Theorems 1 - 4. These are: 

(97) a(1,p+1,p,N+1) = 2Pb(1,p,p+1,N-p), 2p:::N, 

(98) 

(99) IIp 1 a(2,p+2" ,p,N-"2) = 2 b(2,p +2' p, N-p), 2p:::N, 
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( 100) 

E.. . 

a(4,p - [%J - ~ , [%J, N - ~) = 2 [2\(4, [%J, P-f%J - i, N-p+[%n, p::: N. 

For each of the ten testing problems the a'th moment, a:=:O, of the 

likelihood ratio test statistic is readily obtained from these norming 

constants. For the problem associated with Theorem lone obtains 

a(1, Q+1, 
a(1, p+l, = 

( 101) 
P 
IT 

y=l 

and similarly for the problems associated with Theorems 2 - 6 

( 102) 

( 103) 

[%J r(N-y+ t) r (Na+N-p+[~J-y+1) 
IT 

y=l r(Na+N-y+ t) r (N-p+[~J-y+1) 

P 
IT 

y=l 

r (N-y+ t) r (Na+N-p-y) 

r (Na+N-y+ 1 ) r (N-p-y) 



r-P-J r(2N - 2Y+l)r(2(Na+N-p+[~J-y+1)) 2 
( 104) IT 

y=l r( 2Na + 2N - 2y+l) r( 2( N-p+ [tJ -y+l)) 

P2 r(8(N-y+l)/2)r(8(Na+N-Pl-y+l)/2) 
(105 ) IT 

y=l r(8(Na+N-y+l)/2)r(8(N-Pl-y+l)/2) 

and 

p r(8(Nl+N2-y+l)/2)r(8(Nla+Nl-y+l)/2)r(8(N2a+N2-y+l)/2) 
(106 ) IT 

y=l r(8(Nla+N2a+Nl+N2-y+l)/2)r(8(Nl-y+l)/2)r(8(N2-y+l)/2) 

Acknowledgement: We wish to thank M.D. Perlman for his help in improving 
the presentation of this paper. 
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