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DISTRIBUTION OF EIGENVALUES
IN MULTIVARIATE STATISTICAL ANALYSIS

by

Steen A. Andersson®, Hans K. BrgnsT and Sgren Tolver JensenT

ABSTRACT

Ten invariant multivariate testing problems involving the real, complex, or
quaternion structure of covariance matrices are considered. In each problem the
the maximal invariant statistic and its distribution are described, as well
as the maximum likelihood estimators and likelihood ratio test statistics.

These results are obtained by means of a new, unified method based on

invariance arguments.

1LThe authors are Professors at the Institute of Mathematical Statistics of
the University of Copenhagen. A portion of Andersson's work was done while
visiting the Department of Statistics, University of Washington.



1. INTRODUCTION.

In this paper we consider ten testing problems in multivariate analysis.
These are the problems of testing that (a) a covariance matrix has complex
structure; (b) a covariance matrix with complex structure has real structure;
(c) a covariance matrix with complex structure has quaternion structure; (d) a
covariance matrix with quaternion structure has complex structure; (e) two sets
of variates are independent, when their joint covariance matrix has real, complex,
or quaternion structure; (f) two covariance matrices are identical, when both
have real, complex, or quaternion structure. See Andersson [1] for a definition
of these structures.

Some of these ten problems have been treated in the literature while the
others are new. Together they occur in a fundamental way in a general algebraic
theory of normal statistical models developed by Andersson, Brgns, and Jensen
[5].  The class of normal models considered in [5] includes most of the struc-
tured families of covariance matrices which have appeared in the literature.

It is shown in [5] that every testing problem where both the null hypothesis

H0 and the alternative hypothesis Hl(HoC: Hl) belong to this class of models
can be decomposed into simpler problems, each of which has the form of one of
the ten problems described in (a) - (f) above.

In the present paper these ten testing problems are treated in detail in
a unified manner suggested by the general theory. Each problem is invariant
under a group of linear transformations, and our main aim is to obtain a concrete
representation of the orbit projection, i.e., the maximal invariant statistic,

and to find a representation of its distribution in terms of a density with



ii

respect to the Lebesque measure. Furthermore, the maximum likelihood
estimators and likelihood ratio test statistics are obtained and their
distributions discussed.

For each problem the representation of the orbit projection is
obtained using results on simultaneous reduction of certain types of forms
on vector spaces, i.e., simultaneous diagonalization of matrices. The orbit
projection is thus represented in terms of eigenvalues of matrices with
certain structures. Many of these results on simultaneous reduction of forms
are well-known and all but one occur in Bourbaki [9]. The exception is
apparently new and is given here as Lemma 8.

Traditionally, distributions inmultivariate analysis are derived by
calculations involving Jacobians of high dimensions. To use this method would
require laborious calculations for each of the ten testing problems and, to
make the proofs rigorous, it would be necessary to use arguments from differential
geometry. In this paper a new method for obtaining the distribution of eigen-
values is presented in Lemmas 4, 5 and 6. This method, based on actions of a
set of certain polynomial transformations on a space of positive definite
symmetric matrices and on the space of eigenvalues, has several advantages over
the classical approach. The method once presented for one problem, is
readily adapted to all other problems. It is elementary, requiring only the
calculation of 2x2 Jacobians at most. Lastly, the method is rigorous, not
avoiding difficulties involving null sets of multiple eigenvalues.

In the existing Titerature about the complex normal and complex
Wishart distribution one usually treats complex variates. It is important
to note that in this paper all matrices considered have real elements; by
"matrices with complex or quarternion structure" we refer to real matrices

with certain additional structures defined by the corresponding complex and

quarternion matrices.



The ten testing problems are treated in Sections 2-7. In each of these
sections the joint density of ‘the eigenvalues is derived up to an unspecified
norming constant. The exact values of all norming constants are derived simul-
taneously in Section 8 using a new method involving recursion formulae. The
moments of each likelihood ratio test statistic are readily obtained from
these norming constants.

For the real case, the distribution of eigenvalues arising in problems (e)
and (f) was obtained in 1939 by Hsu [14], Fisher [12], and Roy [19], and are
treated in detail in Anderson [8]. For the complex case, the parallel results
in (e) and (f) can be obtained from work of Khatri [15]. For the quaternion
case these two results appear in the thesis of Gabrielsen [13] written under

the supervision of S. Tolver Jensen, obtained by methods similar to Khatri's.

Problem (b) was first treated by Khatri [16], while problem (a) first
appeared in Andersson [3], which also contains a statistical interpretation of
the eigenvalues and eigenvectors. Further results on problems (a), (b), (c),
and (d), including a study of the noncentral distributions, are given in

Andersson and PerIman [6], [7].

Related problems concerning distributions of eigenvalues have been
studied by mathematicians and physicists in the context of statistical

mechanics; c.f. Mehta [17] and Porter [18].



2. 'TESTING THE HYPOTHESIS THAT ‘A COVARIANCE MATRIX HAS COMPLEX STRUCTURE .

Let E be a p-dimensional vector space over the field € of complex
numbers. By restricting the scalar multiplication to the subfield IR of real
numbers E is also a 2p-dimensional vector space over R, and if el,...,ep

is a basis for E as a vector space over € then

(1) el,...,ep, 1e1,...,1ep

becomes a basis for E as a vector space over R. If f is a C-linear map
of E dinto E with matrix A+iB w.r.t. el,..,ep then f considered as a
R-Tinear map has matrix

A -B
B A

(2)

w.r.t. (1). Since composition of linear maps corresponds to multiplication of
matrices it is seen that the set GL(p, €) of nonsingular 2px2p matrices of
the form (2) for q=2p is a subgroup of the group GL(q,R) of all nonsingular
gxq matrices.

| Let ¢: ExE » C be a hermitian left sesquilinear or symmetric bilinear
complex form on E (see [9] or [1]) and C+iD= (¢(ea, eB)) the matrix of
o w.r.t. ejs..., ep. Then 8=Re o ¢: ExE +TR, where Re denotes the
real part of a complex number, is a symmetric bilinear real form on E.

The form ¢ 1is hermitian left sesquilinear if and only if C+1iD 1is

hermitian, i.e., C 1is symmetric and D 1is antisymmetric. In this case

the matrix of § w.r.t. (1) is



(3) e

Moreover, ¢ o (fxf) 1is also hermitian Teft sesquilinear and the matrix of

Re o (¢ o (fxf)) = (Re o ¢) o (FxF) w.r.t. (1) is

(4) A -B C -D A -B

Since ¢ is positive definite if and only if Re o ¢ 1is positive definite it

follows that the action

(5) 6L(p, €) x H'(p, €) + H'(p, C)
(M, T) > MTM',

where H%(p, €¢) is the set of positive definite matrices of the form (3),
is well defined. Itfollows from the first equation in (14) below that this

action is transitive. Furthermore, for q=2p the action (5) is a restriction

of the transitive action

(6) GL(g, R) xH'(q, R) » #™(q, R)
(M, S) > MSM'

where H*(q, R) 1is the set of all positive definite symmetric q x q matrices.

Since the action (6) is proper ([10], p. III.27) it follows that the action

(5) 1is also proper.



The form ¢ is symmetric bilinear if and only if C+1iD is symmetric,

i.e., C and D are symmetric. In this case the matrix of § w.r.t. the

basis (1) 1is

(7) cC -D

Moreover, ¢ o (fxf) 1is also symmetric bilinear and the matrix of

Re o (¢ o (fxf)) = (Re o ¢) o (fxf) w.r.t. (1) is

(8) A -B c -D A -B e S(p, )
B A -D -C B A
where  S(p, €) is the set of matrices of the form (7).

We are now ready to consider the first statistical problem. Let
Xpsenes Xys N>2p, be independently distributed observations from a normal

. . . 2 . . .
distribution on R P with mean vector 0 and unknown covariance matrix

T e H*(2p, R). A minimal sufficient statistic is the empirical covariance

matrix S = %— an>%', the maximum Tikelihood estimator, which follows a
Wishart distribution on H*(2p, R) with N degrees of freedom and parameter

,—i— %. This distribution has the density

N/2
) {SEE §] exp(-N/2(trz71s)), Seft(2p, R)

w.r.t. a measure v = vy N on #7(2p,R), which is invariant under the

action (6). Since this action is transitive v 1is uniquely determined by the

condition that the integral of (9) is 1.



Let HO denote the hypothesis that =:e#f*(p, €), i.e., that =
has complex structure. The statistical problem of testing Ho is invariant
under the restriction of the action (6) to the subgroup GL(p, €). Every

invariant test statistic has a unique factorization through the orbit

projection
(10) m: #(2p, R) » H(2p, R)/GL(p, C),

where the right hand side denotes the set of orbits. The main problem is
to find a representation of (10) as a function into R for some 2 and,

when Ho is true, to represent the distribution of 1 by a density w.r.t.

%
a Lebesgue measure on R.

Let

(11) J = JP =

where I_ is the pxp identity matrix. It is seen that the linear

map
(12) t: #H(2p, R) ~ H*(p, C)
+ -s
‘- Sy 512 ey S11+S22  S12-S2;
So1 So2 S21-S12 S11tS22

is well defined, because t(S) = 5(S+JSJ') ¢ H(p> €). | Since J s

— N}

the matrix (w.r.t. the basis (1) for scalar multiplication by 1, it

follows that J commutes with all matrices of the form (2), and thus also



that t commutes with the actions of GL(p, C). Moreover, the residual

- [S11 - S22 S12 t 5oy
(13) S-t(S)=1/2
So1 + 512 Soo - S1y

has the form (7).

Lemma 1. Let ¢ be a positive definite hermitian left sesquilinear form
and ¢ a symmetric bilinear form on E. Then there exists a basis for E
such that the matrices of ¢ and ¢ are respectively the identity matrix

Ip and a diagonal matrix

v
>
Vv
o

where X; > Xy > ...

Proof. Bourbaki [9], p. 123. |j

An equivalent formulation of the lemma is that there exists a C-linear
map f:E » E such that o¢o(fxf) and yeo(fxf) have matrices Ip and A resp.
w.r.t. the original basis el,...,ep. Since the matrices for Reo¢ and
Reoy transform according to (4) and (8) the Temma also has an equivalent
formulation in terms of 2px2p real matrices. Let T'sH+(p, €) and

ReS(p> €).  Then there exists an MeGL(p, €) such that

Ao
(14) MTM' = Lo and MRM' = [ -A]'



-+

It is seen from (14) that SOFTRRTLZML IS uniquely determined as the

eigenvalues of R w.r.t. T, 1i.e.,the solutions to the equation
(15) det(R - AT) = 0.

From (14) and (15) with T = t(S) and R = S-t(S) and the fact
that S = t(S) + (S - t(S)) 1is positive definite, it then follows that

there exists an MeGL(p, €) such that

(16) I +0 O
msm' = | P
0 I -1
p

and that (10) can be represented by

(17) 1:H (2p, R) ~ By

where A_ = {(xl,...,xp) eRPI1 > g > ... > A, >0} and 1(S) fis the
ordered family of nonnegative eigenvalues of S-t(S) w.r.t. t(S).

That the function 1 in (17) is continuous follows from

Lemma 2. The ordered family of eigenvalues of a symmetric mxm real

matrix R w.r.t. a positive definite symmetric mxm real matrix T

depends continuously on (T,R).

Proof. Let (Tn’ Rn) be a sequence of pairs of a positive definite

symmetric mxm real matrix and a symmetric mxm real matrix such that
(Tn’ Rn) - (T,R). One has to show that the ordered family (xln,...,kmn)
of solutions to the equation

m
det(Rﬁ-xTn)= anizl(x— Ahg =0
converges to the ordered family (Al,...,xm) of solutions to the equation
m
det(R-2AT)=a I (x—xi) = 0.

i

1]
—



Since the sequence (Tn,Rn) is bounded, the sequence (Aln,...xmn) is
also bounded. It is therefore enough to show that every convergent

subsequence (Aln"""lmn') converges to (Al,...,xm). But if

V) - (ul,...,u ) it follows that a m(x-2

m n 1.n.) converges to

(A )\

rp' 2 mn
both  am(x - xi) and am(x - “i)’ and the uniqueness of the roots of

a polynomial gives that (u,,...,u ) = (Al,...,xm). []

Remark. Since the action of GL(p, €C)° on H+(2p,]R) is proper it is
known that the final topology induced by 1 on H+(2p,ZB)/GL(p, ¢) is
Tocally compact ([111, p. 39). Since the right hand side of (16)

depends continuously on (kl,...,xp) € Ap, the Temma above shows in fact

that the representation of (10) by (17) is also topological, i.e., the
identification of H (2p,R)/GL(p, €) with A, s a homeomorphism.
Theorem 1. The maximum likelihood estimator of = under HO is  t(S)

and the Tikelihood ratio statistic for testing HO is

(1_ )\2)N/2

P
(18) i y

v =1

where (Al,...,xp) = 1(S). Under the hypothesis H0 the statistics t(S) and 1(S)

are independently distributed. The distribution of t(S) has density

(19) exp (- N/2(tr5 1), TeH (p, €

det T
det x

] N/2
w.r.t. a unique measure v, DN which is invariant under the action (5).

The distribution of 1(S) has density (18) w.r.t. a measure «k on Ap

which is uniquely defined by



(20) (t’H)(\ﬁR,Zp,N) = Ve, p,N ® Kk .

Furthermore, « has the density

(21) n(nZ - xé)
l<a<ps<p Y=1

w.r.t. a Lebesgue measure on Ap.

Remark. The distribution given by the density (19) is the complex

Wishart distribution with N degrees of freedom and parameter

%ZEH-*.(P; C).

Proof. The density of S is given by (9). Since GL(P> C) is a

group it follows that z~* eH'(p» €  when zeH (P, C)s and a direct
calculation shows that trz 'S = trr 't(S). Since t commutes with

the action of GL(p, €), the function det t(S)/det S, Ss:H+(2p,ZB),

is invariant. Using the representation (16) the density (9) can

be rewritten as

exp (-N/2 tr(z'lT)),

(1-2 det =

I
=1

/2 [det TJN/Z

(22) ,

y

where T = t(S) and (Al,...,xp) = 1(S). The first sentence of the theorem

follows from (22).
Next, the distribution of (t,m)(S) = (t(S),n(S)) has the density

+
(22), where TeH' (s €) and (A ...od)ehy, wrte (8.0)lg o ).

Since the action (5) is transitive, Ve, p,N

condition that the integral of (19) must be 1. The theorem now follows from

is uniquely determined by the

Lemmas 3 and 5 below. ID



Lemma 3. Let G be a locally compact group, which acts properly on a
locally compact space X and properly and transitively on a Tocally compact
space Y. Let furthermore t:X - Y be a continuous map which commutes
with the actions of G, and let 1:X - X/G denote the orbit projection.
Then the map (t,m) is proper. If v 1is an invariant measure on X and
Yo is an invariant measure on Y then there exists a unique measure «

on the locally compact space X/G such that (t,m)(v) = vy © K.

Proof. (Compare Bourbaki [11]. p. 39) Since the action of G on X

is proper the final topology on X/G is locally compact and every compact
subset of X/G has the form T(K), where K< X is compact. Thus every
compact subset of Y x X/G is contained in a compact subset of the form

L x n(K), where L <Y is compact. One has to show that (t,m) *(L xm(K)) < X
is compact. Since the action of G on Y is proper, the set

{geG|3zeK:gt(z) el} = {geG|gt(K) N L # @} = P(t(K),L) is compact,

(Bourbaki [107, p. I11.33). ~ Thus one has (t,m) '(Lxm(K)) =

{xeX|t(x)el, m(x) en(K)} = {xeX|t(x)el, 3zeK IgeG: x=gz} =

{gzeX|zeK, geG: gt(z) eL} = P(t(K), L)K, which is compact.

To prove the second assertion, Tet h and f be non-negative
continuous functions with compact supports on Y and X/G respectively.
Since t commutes with the actions it is seen that the positive Tinear
map h +—Jh(t(x)) f(n(x)) dv(x) defines an invariant measure on Y.
Because of the uniqueness of an invariant measure on Y there exists a

non-negative constant «(f) such that Vo(h)K(f) = ]h(t(x))f(n(x))dv(x).

a

[

It is easy to see that «k 1is a positive linear map, so that k 1is

measure on X/G.
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A11 assertions in Theorem 1 have now been proved except for (21).
To prove this we have developed a new method, based on invariance under
polynomial transformations, which also can be applied to the
eigenvalue problems in the following sections.
"

Since H (p, €)n- S(p, €) =@ and t(T) =T for TeH (p, ),

it follows that the 1linear map

(23) H(2p,R) ~ E
S - (t(S), S-t(S)),

where E = {(T,R) eH+(p, ¢) x S(p,C) |T+ReH+(2p,]R)}, is well-defined,
one-to-one, and onto. The fact that t commutes with the actions of
GL(p, €) gives that (23) also commutes with the actions of GL(p, C)

on H+(2p,JR) and E, the latter given by

(24) GL(p, €) xE ~ E
(M, (T,R)) » (MTM', MRM'),
m 29+1
which is well-defined because of (8). Let r(x) = ) a X J be an odd real
j=o
polynomial such that r(0) = 0, r(1) = 1,. and Dr(x) >0, O<x<1. Let
m Y
(25) r(T,R) = ¥ a.(RT"H)™JR, (T,R) ¢E,
PN
j=o
and
(26) (S) = t(S) + r(t(S), S-t(S)), SeH (2p, ).

Lemma 4. The map r defined by (26) is a diffeomorphism of H+(2p,IR)

onto H+(2p, R) which commutes with the action of GL(p, €). Moreover,
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(27) to¥=t and Tor="1om,
where r 1is the homeomorphism of Ap onto Ap given by

(28) r(r, voosn ) = (r(xl),...,r(xp)), (Al,...,xp) e Ay

- f\, - 0 . . 0 -
The Jacobian of r s an invariant function and is given by

| 2] - rO )% -r0)% _r(x)
(29) det DV(S) = Dr(0)*'~" T—= T 5 0r(hy) s
A B

2
)\OL }\6 o

where (A;,...,x ) = 1(S), A=A ang) = (osB) fa< s 2 >4,

BEB(AI,...,AP) = {(a,8) |0 <8, Ao =2g> 0%, Czc(xl,...,xp) =

{(asB)[a<ps 2 = A, =0}, and |C| denotes the number of elements in C.

Proof. It is seen from (25) that r(MTM', MRM') = Mr(T,R)M' for
MeGL(p, €) and (T,R)eE. It follows from the representation (14)

that M can be chosen such that MIM' = I2p and MRM' = R0 =

diag(ays..hpsmhysensma ). Then Mr(T,RIM' = r(MTM'MRM') = r(T, R() =

diag(r(xl),...,r(x ),-r(xl),...,-r(xp)), anditis seen that (T, r(T,R)) eE.

P
Using the isomorphism (23) it is then seen that ¥(S) eH+(2p,]R), ¥
corresponds to the mapping (T.,R) - (T, r(T,R)) of E idnto E, ¥
commutes with the action, and that (27) holds.

The next step is to show that ¥ is one-to-one. Since Y commutes
with the action of GL(p, €) it is enough to show that (T, r(T,R)) =
(IZp’ r(Izp, Ro)) implies that T= I2p and R= RO. This means one has
to show that r(Izp,R) = r(IZp,RO) implies that R = Ry Since Tr s
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one-to-one it follows that R and R0 have the same eigenvalues w.r.t.
IZp or in other words there exists MeGL(p, €) such that MM'= 2p
and MROM =R. Then Mr(Izp, RO)M = r(Mmm', MROM ) = r(Izp, R) =

r(Izp, RO) = diag(r(kl),...,r(Ap),—r(Al),...,-r(xp)), and since M is
orthogonal, one has

(30) M r‘(I2p o 2p° Ro

For every odd polynomial g, (30) implies that M commutes with
diag(q(r(xl)),...,q(r(xp)),-q(r(xl)),...,-q(r(xp))). Since q can be
chosen such that q(r(x,)) = r,, o=1,...,p, one obtains that M commutes
with R0 and therefore that R==MROM' = ROMM' = Ro' Therefore ¥ is
one-to-one.

Since ¥ commutes with the action of GL(p, €) and T is onto

it follows from (27) that Y also is onto.

The fact that ¥ commutes with the action gives that the Jacobian
is an invariant function. It is therefore enough to calculate
det DWS) when S = I2p + Ro' Using the isomorphism (23) the Jacobian
of ¥ is the same as the Jacobian of the mapping (T,R) - (T,r(T,R)),
which again is the same as the Jacobian of R - r(T,R). Thus one has to
find the absolute value of the determinant of the mapping

23-k
0

m

(31) dR - Z

2] K
a, ) RO(dR)R
J J k=0

0

Since dR has the form (7), where C = (C@B) and D= (daB)’ it is seen

that the mapping (31) multiplies Cug, @ <B, by
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m 23 .
(32) T o [ oakalik
Jj=o0 J k=0
and dae’o‘is’ by
m 2] .
(33) ) a; | Ag (-AB)ZJ'k
Jj=o k=0

The Jacobian is therefore a product of all these factors. If (a,B)cB

(32) is equal to Dr(Aa) and (33) is equal to r(r,)/r,. If (a,8)eC
both (32) and (33) are equal to Dr(0). If (a,B)eA we have two

geometric progressions, and it is seen that (32) is equal to

(r(x.) = r(x))/(x_ - X)) and that (33) is equal to (r(xa)+r(xs))/(xu+xB

ol B a B
Since (29) 1is positive it follows that ¥ 1 js differentiable. i

Lemma 5. The measure « in Theorem 1 has the density (21) w.r.t. a

Lebesgue measure on Ap.

Proof. The invariant measure VR, 2p,N on H+(2p,IR) has density

|det S| (2p+1)/2 w.r.t. a Lebesgue measure ([11], p. 93). Since ¥ is a

diffeomorphism'?"_l(u_IR 2p N) has the density
(34) (det S/det #(5)) (2P T 1)/2)4et 0¥ (s) |

w.r.t. VR 2p,N It follows from Lemma 4 and (16) that (34) is an

invariant function g(mu(S)), Se:H+(2p,]R), where
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(35) g(kls 3>\p) =
2pt1 2 2
p 252 5 L r(xa) -r AB) r(ig)
Bl o PR

Using (27) we obtain that Ve,p,N ®

(17 ") (1) (v 5o ) = (81 (¥ og o)

®gk, so it is seen that

\)(D,p,N
(36) ¥ l(k) = gk.
Let
, -(2p+1)/2
k(h,---,x)=ﬁ(1-xy) Wx ->\ Thd, (A1s...x ) el
p v=1 A p p

and Tet u = (1/k)x. Then «k has density k(>0) w.r.t. u and it

follows from (35) that ¥ ~1(u) has density

or(0)21¢1 Tror(a )

w.r.t. u. By considering the restrictions of u to the "faces"

p == == —eviz) =
A1s°®* sh R 1>\ =--0=) A =...o=) A =...=) =0
{(x p)e 1> m1> my+1 mq> M1 b }

of A_, where 15m1<...<mqsp,q=1,2,...,p, it follows from the
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next lTemma that u 1is a Lebesgue measure on Ap. Hence u s concentrated

on the interior of Ap, and on this subset k(Al,---,kp) is equal to

(21). i

Lemma 6. Letu bea measure on the interior '{(61,---,6q)eﬂ¥”].>61>--->6q:>0}

of Aq, q=1,2,+++, such that ¥ “!(u) has density

19[ Dr(s,)",

a=1

n,= 1,2,+++, a=1,---,q, w.r.t. u for any uneven polynomial ¥ such
that r(0) =0, r(1) =1, and Dr(x)>0, O0<x<1. If u is not identically

zero then n, =1, a=1,---,q, and u is the restriction of a Lebesgue

measure to the interior of Aq.

Proof. The condition on u 1is that

(37) [ - ff“‘(‘sl)”“’-”(“q”i Dr(5,)"™ duley,55,)

for any continuous function f with compact support. For a fixed f

it follows from the Weierstrass approximation theorem that (37) even holds
for any continuously differentiable function r with r(0)=0, r(1)=1,
and Dr(x) >0, 0<x<1. [If the polynomials q_ tend uniformly to /br
on [0,1] then the polynomials rn(x) = fg qn(t)zdt + x(1- fé qn(t)zdt)
are odd, rn(0)==0, rn(1)= 1, and r  and Dr = tend uniformly to

r and Dr, respectively, on [0,1]. Hence Drn(x):>0, 0<x<1,

for n sufficiently large.] By monotone convergence (37) is extended
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to the case where f is-an indicator function for a compact subset.

Let I = é[aa, a, * ¢yl and J = é[bd, b, + ¢,] be two rectangles in

the interior of Aq ‘with sidelengths ¢ >0, a=1,---,9. Since
1>a1-Fc1>a1>--->ap+cp>ap>0 and 1>b1+c1>b1>--->bp+cp>bp>0
there exists a continuously differentiable function r with r(0)=0,

r(1)=1, and Dr(x)>0, 0<x<1, such that r(x) = x+(b_ -a,),
x:;[au, aa-kcu], o=1,-++,q. Then Dr(x) =1 for xe [a,, a,*c, ],

a=1,"-+,q, and if f is the indicator function of J it follows
from (37) that u(I)=u(Jd). Hence u 1is translation invariant. If v

is not identically zero it must be the restriction of a Lebesque measure,

and then it is clear that n,= 1, a=1,---,q. []

3. TESTING THE HYPOTHESIS THAT A COVARIANCE MATRIX WITH COMPLEX STRUCTURE

HAS REAL STRUCTURE.

Let SPRRRIE N>p, be i.i.d. observations from a normal distribution on

]RZP with mean vector 0 and unknown covariance matrix

5 = [ i -i J e H(p, C)

It follows from section 2 that the empirical covariance matrix transformed
by the mapping (12) is a minimal sufficient reduction which follows a
complex Wishart distribution with N degrees of freedom and parameter %Z.

This distribution has the density (19) w.r.t. RRE
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For p>1 we shall consider the hypothesis HO that ¢ =0,

i.e., that = has a real structure. The statistical problem of testing

H, s invariant under the restriction of the action (5) to the subgroup

GL(p, R) ® I, = {diag(A,A)|AeGL(p,R)} of GL(p, €). The problem is

to find a representation of the orbit projection
(38) ' (p, €) > H'(p, €)/6L(p,R) @ 1,

and, when Ho is true, the distribution of 1.

The group GL(p, R)®1I, acts on H+(p,:R) ® I,={diag(H,H)|H eH+(p,]R)}

by restriction of (5). The Tlinear map

t: H(p, ©) > H (p. ) @ I,

commutes with the actions of GL(p,R) ® I,, and the residual

S - t(S) = [0 _F}EA(p,]R) ® J;s
F O

where

FeA(p, R) '

0 -F
A(p,R) ® J; = {F .

and A(p, R) 1is the set of all antisymmetric pxp real matrices.
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Lemma 7. Let ¢ be a positive definite symmetric bilinear real form
and ¢ an antisymmetric bilinear real form on a p-dimensional real vec-

tor space. Then there exists a basis such that the matrices of ¢ and vy

e I and
ar b

(0 -4, 0 0...0
9, 0 0 0...0

(39) A= |0 0 0 -rp...0 |,
0 0 2 0...0

respectively, where Ap> -+ >)rp 59> 0.

Proof. Bourbaki [9], p. 123. [

+
An equivalent formulation of the lemma is that for every He# (p,RR)

and FeA(p,R) there exists AeGL(p,R) such that AHA' = Ip and
AFA' = A. This yields another equivalent formulation in terms of 2px2p
real matrices. For T = {g SJ eH+(p,jR) ® I, and R = {g 'SJ eA(P, R) © J;,

there exists

(A0
0 A

] eGL(p,R) © I,

such that

0 -1
(40) MTM' = 12p and MRM' = [A OJ.
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It is seen from (40) that ikl,"',ik[p/z] are uniquely determined as
the eigenvalues of R w.r.t. T, each with multiplicity two. (When
p is odd 0 s always an eigenvalue with multiplicity two.)

For T =1t(S) and R =S-t(S) it now follows that there exists
an MeGL(p,R) ® I, such that
I -\
(41) MSM! = | P

A Ip

and that (38) can be represented by

+
(42) I: H (p, (D) - A[p/2]’

where T1(S) is the ordered family of the nonnegative eigenvalues of

S - t(S) w.r.t. t(S). As in section 2 it is seen that this representation

is also topological.

Theorem 2. The maximum likelihood estimator of £ under HO is  t(S)
and the likelihood ratio statistic for testing HO is

[p/2]
(43) il (1-x$)N,

Y=1

where (Al,---,x[p/z])= n(S). Under the hypothesis H, the statistics

t(S) and 1(S) are independently distributed. The distribution of

t(S) has the density

exp(-N/2 tr(z7T)), TeH (p. R) © 1,

(44)

det T
det

} N/2
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w.r.t. a unique measure v&R oo\ which is invariant under the action
L)

of GL(p,R) ® I, on H (p,R) ® I,. The distribution of m(S) has

density (43) w.r.t. a measure « on A[p/2] - which is uniquely defined by

(t’H)(vC,p,N) = VRp.N 8 «.

Furthermore, « has the density

[p/2] )
(45) TOa-25 T 225 (1-2)7P,
Y=1

1<a<B<[p/2]

where € = p-2[p/2], w.r.t. a Lebesgue measure on A[p/Z]'

Remark. The maximum 1ikelihood estimator of T under HO is H.
Since the mapping T= diag(H,H) +~ H from H+(p,]R) ® I, onto H+(p,]R)
it is seen from (44) that H s

transforms V:B,p,N into VILp,ZN’

Wishart distributed with 2N degrees of freedom and parameter é%ar.

Proof. If in section 2 one replaces GL(p, €) by GL(p,R)®I,,

+ +
#(2p,R) by H'(p,€), H'(p,C) by H(p,R)®I,, S(p,c) by

A(p, R) ®J1, VR,2p,N by Ve N Ve,p,N by VR,p,N and (Al,---,xp)

by (Al,-~-,x[p/2]), then the proof is completely analogous to the proof

of Theorem 1 except for the following changes: The determinant of the

[p/2] 2
right hand side of (41) is n (1- ki) which gives (43). The
’Y:

invariant measure Ve o N has density |det S['p/2 w.r.t. a Lebesgue
measure on H (p, C) (Bourbaki [111, p. 93) which gives
v [p/2] b - .
the factor m (1- xy) P 4n (45). Finally, we shall show below that
Y=1

the Jacobian of
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m 2J )
k 2j-k
dR -~ ) a. )} R (drR)R ,
j=1 Jk=0 ©° °
where
0 -F 0 -A
dR = e A(p, R)®J; and R_-= ,
F 0 0 A0
is
[p/2] A 2-1" A )2 2[‘/2] 2¢
(4) Tot) T Eh )
Y=1 Y 1_<_0(,<B [p/2] B Y=1 - Y

when: 1>x;>--- >A[p/2] >0, which gives the remaining factors in (45).

2j+1

To prove (46), first note that Jj = (-’1)J J, implies
m 23 (0 -n)k(o -F) (0 -n)2j-k _ (0 -F
Lag Ll w ofIF ofla o § °
J= k=0 F 0/°
0
m .2 .
where F_= 7} a. (-1)9 ) A F 287K Now partition F = (F_ ),
o £ 2 a,B
J=1 k=0
where Fa 8 is 2x2, 1l<a,B<[p/2], and where if p is odd,

Footp21+1 18 2x1s 1<y<[p/2]. Then Fo ., for 1=y=(p/2] is of the

form tJ; and is mapped into

et BT 3

ne~13s

J

2] 0 -t 0 -t

jgl 2 B[ E- o0 8 Y

- S 1
which gives the factor Dr(xy) in (46). For 1=a<g=[p/2], Fa,BE (x u] 15
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m . J 2k 2j-2k
Toa.(-1)9 ) {0 -Su} [V S][O ’SB} +
J.:_l J k=0 )\OL w u )\B
m N 2k+1 2j-2k-1
et £, 9
j=1 J k=0 )‘OC 0 w u -ABO
m J .
-7 &, Y A2k)\§3-2k[v s]
j=1 ka0 wou
m j-1 2k+1 2j-2k-1
- ) a; )Ly A ['“ W] =
j=1 Y k=o 8 > TV
‘av + bu as - bw
aw - bs au + bv) ,
where
- 2 2
a = (Aar(ku) -\ r(xB))/(Aa - AB) and
- _ 2 .2
b = (Asr(xa) A r(xB))/(Aa )\B)
The determinant of this mapping is (a2 -b2)? = [(r(xu)2 - P(AB)Z)/(Aé-Xé)]z,
. . , . , - (V
which gives the (o,8)'th factor in (46). If p s odd then Fy,[p/Z]~+1 —(S)
is mapped into
m . 2]
D a0 )70 - .

o€
which gives the factor (r(AY)/AY) in (46).
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4. TESTING THE HYPOTHESIS THAT A COVARIANCE MATRIX WITH COMPLEX"

STRUCTURE HAS QUATERNION STRUCTURE.

Let H denote the division algebra over IR of quaternions
and let 1,i,j,k be a canonical basis; i.e., i%2=j2=k%=-1,
ij=-ji=k, jk=-kj=1i and ki=-ik=j. The conjugate of a quaternion
g=a+ib+jc+kd is denoted by g=a-ib-jc-kd. Define the R-linear
mp p of H into H by p(a+ib+jc+kd) = a+ib-jc+kd. It is
seen that p is an involutive antiautomorphism of H; i.e.
o(e(a)) =g and o(q,q,) =0(a,)e(a,) for q.q ,q,c H. Moreover,
the set {qeH|p(q) =T} = {a+ jcla,c eR} is isomorphic to the field
of complex numbers, so it is here denoted by €. (More generally, it
can be shown that there is a one to one correspondence between the
embeddings of the field of complex numbers into H and the involutive
antiautomorphisms of H other than the conjugation operator.)

Let E be a p-dimensional right vector space over H. Since
E is a right vector space the scalar multiplication of an xeE by
ge H is denoted xq. By restricting the scalar multiplication to
the subalgebra of real numbers, E 1is also a 4p-dimensional vector

space over 1]R, and if el,---,ep is a basis for E as a vector

space over H then

9 e e b '30--9 .5 -9-¢-3 .3e k,..., k
(47) e, epserf episerd episer e,

becomes a basis for E as a vector space over RR.
If f 1is an H-Tinear map of E dinto E with matrix

A+iBy+jBy +kBs w.r.t. el,...,ep then f considered as an R-linear
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map has matrix

A By -B, -Bs
B, A -B; B,
(48) M= 18, B, A -B
By -B, B, A

w.r.t. (47). Since composition of linear maps corresponds to multi-

plication of matrices it is seen that the set GL(p, H) of all

nonsingular 4px4p matrices of the form (48) is a subgroup of GL(2p, €)
Let ¢:ExE +~H be a hermitian left sesquilinear quaternion

form on E (see [9] or [1]) with matrix ®=C+1iD;+jDy + kD3 =

(¢(ea, eB)). Then C 1is symmetric and D;,D» and D3 are antisymmetric.

Moreover, &=Ree°¢, where Re denotes the real part of a quarternion,

is a symmetric bilinear real form on E and the matrix of & w.r.t.
(47) 1is

C -D; -D, -Dj
D, C -Dsy D,
(49) A= b, by C -D
Dy -D, D, C

The form ¢ o (fxf) 1is also hermitian left sesquilinear and the matrix

of Reo(¢o(fxf)) = (Reo¢)o (fxf) w.r.t. (47) is
(50) M' A M.

Since ¢ is positive definite if and only if Ree°¢ is positive

definite it follows that the action

(51) 6L(p, E) xH (p, H) > H (p, H)
(M,T) > MTM!,
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where H+(p,IH) is the set of positive definite matrices of the form
(49), is well defined. It follows from-the first equation in (59)
beTow that this action is transitive. Moreover, since it is a
restriction of the proper action (6) it is also proper. We remark
that H' (p,H) is a subset of H# (2p, €).

Next let ¢:ExE-+ H be a hermitian left p-sesquilinear
quaternion form on E, i.e., ¢(xq;, yq2) = o(q1) ¢(x.¥)q2,
o(ysx) = o(o(x.y))s and o(x1+x2,y) = ¢(x15y) + ¢(x25¥)s Q1,92¢ H,
YsX>XpsXpe Eo If @=C+1iDy + 3D, +kD3 = (é(ey,eg)) is the matrix
of ¢ then C,D;, and D3 are symmetric and D, is antisymmetric.

Moreover, &=Reo¢ is a symmetric bilinear real form on E, and

the matrix of & w.r.t. (47) is

The form ¢ (fxf) 1is also hermitian left p-sesquilinear and the

matrix of Ree (¢ (fxf)) = (Reoo) o (Fxf) w.r.t. (47) is
(53) M'EMES(I’D,]H):

where S(p, H) is the set of matrices of the form (52).

Let X1svnesXys N>2p, be i.i.d. observations from a normal
distribution on R'P with mean vector 0 and unknown covariance
matrix = eH+(2p, C). As in section 3 one obtains as a minimal

sufficient statistic an observation S from a complex Wishart
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distribution on H+(2p, €) with N degrees of freedom and parameter

%— 2. This distribution has the density (19) (with p replaced by

2p) w.r.t. Ve, 2p N°

Let HO denote the hypothesis that ZE:H+(p,IH, i.e.,
that = has quaternion structure. The statistical problem of
testing H s invariant under the restriction of the action (5)
(with p replaced by 2p) to the subgroup GL(p, H). The problem

is to find a representation of the orbit projection
+ +
(54) m:H (2p, €) ~H (2p, €)/GL(p, H)

and, when H 1ds true, the distribution of 1.

Let
0 0 0 -
(55) RN 0 I, 0
0 -I. 0 0
L o o
p

It is seen that the Tlinear map

+
t:H"(2p, €) > H' (p, B)
Hyp Hip -F11 -Fp2 HyitHoo Hyop-Hap -FpptFan -Fio-Foy
S Hor Hap -Fo1 -Fap| g [H2i-Hyo HootHyy -Foi-Fio -FootFyy
(56) T IFyy Fip Hyy Hio| 7 2 |Fiy-Fpp FiotFpp HyptHoo  Hip-Hoy
Fo1 Fa2 Hyp Hop Fo1tF1o Foo-Fy1 Hop=Hyp HpptHpy

is well defined, because t(S) = %{S-FJSJ') eH+(p,Iﬂ. - Since J

is the matrix w.r.t. (47) for scalar multiplication by k, it follows
that J commutes with all matrices of the form (48), and thus also

that t commutes with the actions of GL(p, H). Moreover, the residual
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(57) Hip-Hpo HyptHap -Fii-Fop ‘F12+F21]
1 [H21tHi2 Hoo-Hyp -Fop+Fyp -Fop-Fyy .
2 YF11#Fop Fip-Fpp Hyp-Hpp HyptHy =S(p, H).
Fa1-F12 FootFyy HogtHio Hop-Hyy

Lemma 8. Let ¢ be a positive definite hermitian left sesquilinear
formon E and ¢ a hermitian left p-sesquilinear form on E. Then
there exists a basis for E such that the matrices of ¢ and vy are

Ip and A, respectively, where A 1is defined in Lemma 1.

Proof.  (See Bourbaki [9], p. 120.) Since ¢ is positive definite
there exists an addifive map u of E into E such that wv(x,y) =
o(u(x),y)s x, yeE. For qeH, ¢(u(xq).y) = vixq.y) = ola)v(x.y) =
e(@)o(u(x).y) = ¢(u(x)e(q),y). Hence

(58) ' u(xq) = u(x)e(q), qeH, xekE.

Moreover, ¢(u(x),y) = v(x,y) = o(v(y,x)) = o(6(u(y),x)), and it
follows that the orthogonal complement w.r.t. ¢ of any u-invariant
H-subspace S of E (i.e., u(S)<=S) is also u-invariant. E s
therefore a direct orthogonal sum of minimal u-invariant subspaces.
Let S be one of these subspaces. Since p(q)=q for
geC={a+jcla,ceR}, it follows from (58) that the restriction of
u to S dis a C-linear map of S into S, and it must have an
eigenvector. Therefore there exists Ae € and xeS such that
¢(x,x) =1 and u(x)=xxr. Hence u(xH)cxH and, since xHcS,
S=xH. Since x¢(x,x) =¢(xr,x) = ¢(u(x),x) =v(x,x) =p(v(x,x)) =
o(o(u(x),x)) =p(Xe(x,x)) = ¢(x,x)p(X), it follows that p(1) =2,

and,since re ¢, Ae R. This shows that there exists an
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orthonormal basis el,...,ep for E and Al,...,xp e R

such that u(e,) =egly> a=1,...,p; 1i.e. the matrix of ¢ is the
identity matrix and the matrix of ¢ is diag(xl,...,xp). It can be
assumed that each 220, for if X <0 we can replace e, by e,i

and thus replace A, by -xy>0. [

Since the matrices of Ree¢ and Reey transform according to
(50) and (53), the lemma has an equivalent formulation in terms of
4px 4p real matrices. Let T'eH+(p,:H) and ReS(p,H). Then there

exists an MeGL(p, H) such that

I and MRM' = diag(A,-A,A,-A).

(59) MTM ap

It is seen from (59) that ixl,...,ixp are uniquely determined as the

eigenvalues of R w.r.t. T, each with multiplicity two.

For  T=t(S) and R=S-t(S) it now follows that there exists

an M e GL(p,H), such that

60 MSM' = di I 40, T -A, T +A, I -A
(60) iag( 0 b 5 b )
and that (54) can be represented by

(61) m:H (2p, ©) > as

where TII(S) {s the ordered family of non-negative eigenvalues of S - t(S)

w.r.t. t(S). As in section 2 it is seen that this representation is

also topological.

Theorem 3. The maximum likelihood estimator of 2 under Ho is  t(S)

and the Tlikelihood ratio statistic for testing Ho is
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p
(62) m(1-22
’Y:

where (Ay,...,A ) =TI(S). Under the hypothesis H, the statistics

t(S) and 1(S) are independently distributed. The distribution of

t(S) has the density

N/2 N
(63) {ggﬁ ;] exp(-N/2trE " 1)), Te H (b, H)

w.r.t. a unique measure T which is invariant under the action
(51). The distribution of T1I(S) has density (62) w.r.t. a measure «

on Ap which is uniquely defined by
(64) (t’n)(vC,Zp,N) = \)]H,p,N ® k.
Furthermore, « has the density

p -
(65) T (A2-22)21 A2(1-32)7°F
l=a=<B=p Y=1

w.r.t. a Lebesgue measure on Ap.

Remark. The distribution given by the density (63) is called the

quaternion Wishart distribution with N degrees of freedom and parameter

%Z’sHWp,]H).

Proof. If in Section 2 one replaces GL(p, C) by GL(p,H), H+(2p,Iﬂ

by H'(2p, €), #H(p, €) by H (p,H), S(p, €) by S(p,H),

YR, 2p,N by Ve, 2p,N° and Ve,p,N by VH,p,N’ then the proof is

completely analogous to the proof of Theorem 1 except for the following
changes: The determinant of the right hand side of (60) is TI(1- A$)2,

which gives (62). The invariant measure Vg, 2p,N has density |det SI'ZP/2
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w.r.t. a Lebesgue measure on H+(2p, C) (Bourbaki [117, p. 93)
which gives the factor 1(1-22)"*P in (65). Finally the Jacobian of

m
dR - _2 a

2] .
i Ry (dR)RCT,
J=1 =0

where dR has the form (52) and R, = diag(A, -A, A, -A), 1S

2
(66) £ oor(a )[w )2 . [rmf - r(g)?
Y=1 Y KY 1=a<B<p Au - AB

when 1>X;>... >Ap > 0, which gives the remaining factors in (65).

The proof of (66) is analogous to the proof of (29). i

5. TESTING THE HYPOTHESIS THAT A COVARIANCE MATRIX WITH QUATERNION

STRUCTURE HAS COMPLEX STRUCTURE.

Let E be as in Section 2, f a C-linear map of E into E,
¢$:ExE - € an antisymmetric bilinear complex form on E, and C+iD =
(¢4(eys €g)) the matrix of ¢ w.r.t. el,...,ep. Then C and D are
antisymmetric. Moreover Ree ¢ is an antisymmetricbilinear real form
on E, the matrix of Reo¢ w.r.t. (1) is given by (7), (¢ o (fxf))

is also antisymmetric bilinear, and the matrix of Reo (¢ (fxf))

(Reo¢)o(fxf) w.r.t. (1) is given by
A -BY'{C -D|(A -B
(67) {B A [—D -C [B a) < Alps 0,

where A(p, €) is the set of all antisymmetric matrices of the form (7).
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Let X1seesXys N=zp, be i.i.d. observations from a normal dis-

, . n . ) .
tribution on R P with mean vector 0 and unknown covariance matrix

It follows from Sections2 and 3 that the empirical covariance matrix
transformed by the mappings (12) (with p replaced by 2p) followed by

(56) is a minimal sufficient statistic, which follows a quaternion Wishart

%. This

=

distribution with N degrees of freedom and parameter
distribution has the density (63) w.r.t. VH,p N
For p>1 we shall consider the hypothesis HO that yo=93=0,
i.e., that 7 has a complex structure. The statistical problem of
testing H = is invariant under the restriction of the action (51) to
the subgroup GL(p, €)®I, = {diag(A,A)|AeGL(p, €)} of GL(p,H).

The problem is to find a representation of the orbit projection
+ +

and, when H0 is true, the distribution of T1I.

The group GL(p, ¢)®I, acts on
H(p, €)®1, = {diag(H,H)[HeH (p, €)} by restriction of (51). The

linear map

et (oo B) > H(p, 0)el,

ol RN
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commutes with the actions of GL(p, €)®I,, and the residual

5-t(s) = (g 'g) e Alp, €)@J;,

where
Ap, yes, = {7 ] 1F e 4. o).

Lemma 9. Let ¢ be a positive definite hermitian left sesquilinear
complex form and ¢ an antisymmetric bilinear complex form on a
p-dimensional complex vector space. Then there exists a basis such that

the matrices for ¢ and ¢ are Ip and A respectively, where A

is defined in (39).

Proof. Bourbaki [9], p. 123. [

Since the matrices for Reec ¢ and Reeoy transform according
to (4) and (67), respectively, an equivalent formulation of the lemma

is that for every H eH+(p, ¢) and FeA(p, €), there exists
AeGL(p, €¢). such that AHA' = Ip and AFA' = A. This can be reform-

ulated in terms of 4px4p real matrices. For
H O + _ {0 -F
T = [O HJ e H (p, €)®I, and R = (F O]e Alp, €)®J,,

there exists

A O
M = {O A) e GL(p, ©)®1,
such that 0 0 -1 0
- v - 10 0 0 A
(69) MTM' = I4p and MRM' = | 5 4 g
0-pr 00
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It is seen from (69) that ixl,...,ix[p/Z] are uniquely determined
as the eigenvalues of R w.r.t. T, each with multiplicity four.
(When p s odd 0 1s always an eigenvalue with multiplicity four.)

For T=t(S) and R=S-t(S) it now follows that there exists

an Me GL(p, €)®I, such that

Ip 0 -~ 0
(70) msmr = [0 I, 0 A
A0 I.0
p
0 -» 0 1
p
and that (68) can be represented by
+
(71) H (p, H) > Ly 5

where TII(S) 1is the ordered family of non-negative eigenvalues of

S-t(S) w.r.t. t(S). As in section 2 it is seen that this representation

is also topological.

Theorem 4. The maximum likelihood estimator of < under H0 is  t(S)

and the likelihood ratio statistic for testing HO is

[p/2]
(72) (N}
¥=1 Y

where (Al,...,k[p/z]) = 1I(S). Under the hypothesis H, the statistics

t(S) and 1I(S) are independently distributed. The distribution of

t(S) has the density

(73) [M] N/2

ot T exp(-N/2 tr(z7'T)), Te:H+(2p, ¢)el,
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w.r.t. a unique measure vé DN which is invariant under the action of
+ . . . .
GL(p, €)®I, on H (p, €)®I;. Theddistribution of TI(S) has density

(72) w.r.t. a measure «k on A[p/2] which is uniquely defined by

(t,H)(v]H,p,N) = vC,p,N ® k.

Furthermore, « has the density

[p/2] }
1=0<B=p y=1

where e=p-2[p/2], w.r.t. a Lebesgue measure on A[p/2]'

Remark. The maximum 1ikelihood estimator of [il_ﬁl] under H s H.
Since the mapping T=diag(H,H) - H from H+(p, €)®I, onto H+(p, ¢)
trans forms “é N into Ve .o 2N it is seen from (73) that H follows a complex

Wishart distribution with 2N degrees of freedom and parameter é%—{g ‘gl],
1

Proof. If in section 2 one replaces GL(p, €) by GL(p, €)®I,,

+ + +
H(2p,R) by H (p,H), H (p, €) by H (p,€¢)®I,, S(p, ) by

Alp, C)&Jy, VR, 2p,N by v]H,p,N’ vC,p,N by \)C,p,N and | (xl,...,xp)

by (Al,...,k[p/z]) then the proof is completely analogous to the proof
of Theorem 1 except for the following changes: The determinant of the
right hand side of (70) is m(1- x%)”, which gives (72). The invariant

1
measure vy oy has density |det S|'(p 2 /2 w.r.t. a Lebesgue measure

on H+(p,ZH) (Bourbaki [11], p. 93) which gives the factor

m(1-22)7P*" in (74). Finally the Jacobian of

m
dR - Z aj

23 .
LN CLI
Jj=1 k=0
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where
0 0-C D 0 0-0 0
- 0 0 D C . 10 0 0 »a
R =l _p o ol cAlps C)®JIyandR =1, 0 4 g|s
-D-C 0 O 0-»r 00
is
2 he
(75) [pé ]Dr(l yrOy) o r(re)® - r(Ag) %4 [pr/lz][r(lx)]
Y=1 Ty 1=a<g=p xé-ﬂe 4y=1 Ay

when 1>x;>... >>‘[p/2]>0’ which gives the remaining factors in (74).

The proof of (75) is completely analogous to the proof of (46). i

6. TESTING INDEPENDENCE OF TWO SETS OF VARIATES WHERE THE SIMULTANEOUS

COVARIANCE MATRIX HAS REAL, COMPLEX, OR QUATERNION STRUCTURE.

Let D denote R, €, or H and set cS=d_1'm]R]D, i.e., §=1,2, or 4.
Let  M(p2, p;» D) denote: the set of all pyxp; real matrices when
ID=R; the set of all 2p,x2p; real matrices of the form (2), where
A and B are ppxp; matrices, when D= C; and the set of all 4p,x4p,;
real matrices of the form (48), where A, B;, B, and B3 are p,xp; matrices,
when D =H. Let E; and E, be right vector spaces over D of dimensions
p; and p,, respectively, g: E; ~ E, a D-linear map, and ¢: EpxEy~>1D
a left sesquilinear D-form. The &py,xd8p; real matrices of g and
Re o ¥ w.r.t. bases for E; and E, considered as vector spaces over TR
are both of the form (2) when D = ¢ and of the form (48) when D =H,
hence belong to  M(pp, py, D). If fy: E;~E; and fy: Ex~Ey are

ID-Tlinear maps, then yo (f,xf;) 1is a left sesquilinear D-form, and
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since Reo (Yo (fyxfy)) = (Reoy)o (fyxfy), it is seen that
MpeMy e M(pos py, D)

for M; ¢GL(py, D), My e GL(p,,D)> and ¥ e M(p2, py;, D).

Let x be an observation from a normal distribution on ROP with
covariance matrix 2 e H+(p,JD) and let p=p;+p, with o<p,=p;.
Partition x into & p-dimensional subvectors X,s o= 1,...,8,
corresponding to the partition of :® into pxp submatrices given by
its " D-structure" (see (3) and (49)). Furthermore, partition each X,
into xé and xi consisting of the first p; and the Tast p, coordinates
of X, respectively, a=1,...,8. Permuting these 2§ subvectors into

2 :
the order x%,...,xé, x%,...,x6, one transforms 3z into the form

(76) 5 = {211 Z12}
221 222)

where X11 € H+(P131D), Loo € H+(p2, ]D), Loy € M(sz pl,ID), and

Z12=23;. The set of positive definite matrices of the form (76) is

here denoted H+(p1, Py, D). We shall discuss the problem of testing

the independence of (xi,..., xé) and (x%,..., xg).
Let Xy,...5 Xy > N>p>1, be i.i.d. observations from a normal

distribution on Zﬁ§p with mean vector 0 and unknown covariance matrix

T € H+(p1, P,» D). The maximum 1likelihood estimate S of = also has

[311 512)
" {S21 S22) s

and it follows from the preceding sections that S

the form (76),

is IDD-Wishart distributed
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with N degrees of freedom and parameter %{.

The statistical problem under consideration is that of testing the

hypothesis H_ = that 1;,= t,1=0. This problem:is invariant under the

action

+ +

GL(pl5]D)@GL(p25 ]D)XH (pla P2 s ]D) -~ H (pls P2 ]D)

(77) 1 1

[Ml 0 } [511 512] [M1512M1 M1S12M2
>

0 My),(S21 S22 MaSoiM1  MaSooMy)

where  GL(p;, D) ®GL(p,, D) = {diag(M;, My)|M; ¢ GL(p;> D), My ¢ GL(p2, D)}.
If one permutes the coordinates as above it is seen that
GL(p;, D) ® GL(ps> D) becomes a subgroup of GL(p; +p,» D) and
thus (77) is a restriction of the actions (6), (5), or (51) in the cases
D =R, €, or H, respectively.

The Tlinear map

+ +
t: H (pys p2sD) > H (py» D) @H (p,, D)

. - [511 312] [511 0 J
T {S21 Sa2) 70 S22

commutes with the action (77) and the transitive action

(78) 6L(py, D) ®6L(ps, D) xH (py, D) ®H (ps, D) +H (p1, D) @H (p,, D)

(M, T) - MTM',

where H+(p1,ID)@H+(p2,ID) = {diag(zy, %) | eH+(p1,]D), 225H+(p2,]D)}.

Let ¢;: EyxE;> D and ¢,: Eo xEo+~1D be positive definite
Then there exist

Lemma 10.

hermitian left sesquilinear forms and g: E,+E; aID-Tinear map.
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D-bases of E; and E; such that the matrices of ¢; and ¢, are

Ip and Ip respectively, and the matrix of g is
1 2

v
o

where X;z...2 Ap
2

Proof. It follows from Lemma 11 in the next section that there exists
a basis fy,...,f of E, such that the matrix of ¢, is Ip and
2

the matrix of ¢, o (gxg) 1s diag()\z,...,)\2 ), where A, =z...zx_ =0.
1 Py 1 Ps

Set e1.==g(f1.)>\;1 for A, >0; these ei's are orthonormal w.r.t. ¢,

and they can therefore be extended to a basis el,...,ep for E,;
1

which is orthonormal w.r.t. ¢, i.e., the matrix of ¢, is Ip Since

1
g(f:) = e, i=1,...,p,, the lemma follows. [

In terms of real matrices the Temma states that for
<I>laH+(p1,]D), <I>2eH+(p2,JD), and GeM(p,, p;, D), there exists
an A, eGL(py;, D) and an A, eGL(p,, D) such that A; o; A1= Ip‘@)Ia’

1
T 1y~ 1 (-

A2 ®y AZ = Ip2®15’ and (Az) G Al = A®Ia.

For © =Sy, 0,=S55, G=S,, My=A;, and My=(A})"", one
obtains that there exists an MeGL(p ,D) ®GL(p ,D) such that
I ®I A eI
(79) msM' = { P19 8

A ®I§ Ip2®16

Hence the orbit projection corresponding to the action (77) can

be represented by
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+
I:H , , D A .
(p1> p2>D) » 0

where TI(S) is the ordered family of the first P, non-negative
eigenvalues of S-t(S) w.r.t. t(S) each with multiplicity .

(0 is always an eigenvalue with multiplicity at least &(p;-p,)).

Theorem 5. The maximum Tikelihood estimator of £ wunder H0 is
t(S) and the likelihood ratio statistic for testing Hy is
Py

(80) n’ (1-22)8N2
Y=1

where (Ay,...,1_ ) = 1(S). Under the hypothesis H, the statistics

P2
t(S) and 1m(S) are independently distributed. The distribution of t(S)

has density

N/2 ,
(81) (g—gﬁ———;—] exp(-N/2 tr (z7s)), SeH' (p1, D) @H (p, D)

w.r.t. a unique measure ‘%D,pl,N ®\ﬁD,p2,N which is invariant under
+
the action of  GL(p;, D) ®GL(p,, D) on H+(p1,]D)®H (po, D). The

distribution of T1I(S) has density (80) w.r.t. a measure «k on Ap which
7
is uniquely defined by

(t, H)(vJD,p,N) = (V]D,pl,N ® v]D,pz,N) ® k.

Furthermore, « has density

(82) I (l-AY) Ay m (a g

w.r.t. a Lebesgue measure on Ap .
2
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Remark.  The maximum Tikelihood estimators for £;; and I,, are Si;
and S,,, respectively, and it is seen from (81) that these are
independently distributed and that Sﬁ follows a ID-Wishart distribution

with N degrees of freedom and parameter %Zﬁ, i=1,2.

Proof. The proof is analogous to the proof of Theorem 1. The determi-
nant of (79) is 1I(1- xi)s, which gives (80). The invariant measure

2
on #(p,D) has density ]detIS"(p_ler)/2 w.r.t. a

\)]D,p,N
Lebesgue measure, and that gives the first factor in (82). The Jacobian
of
m 2j .
(83) R~ ] a. ] RE(RIRITE,
j=1 J k=0

0 G 0 AMRIT .
where dR = [G 0), GeM(py, p2, D) and Roz[l\®16 o 6], is

(84) I Dr(AY) [T

when 1>x;>... >Ap2>0, which gives the remaining factors in (82).

We shall indicate the proof of (84) in the case D=H: Recall that
G 1is of the form (48). Under the mapping (83) the (vy,y)'th element of
A is multiplied by Dr(x,), the (v,y)'th elements of B, B, and Bj
are multiplied by r(AY)/xY, and for g>p, the (vy,8)'th elements of
A, By, B,, and B3 are multiplied by r(AY)/AY. For l=a<g=p, the
pair of elements (tae’ t ) of A,B;, B,, and B; are mapped into

Ba

. + .
the pair (at@B btsa’ atBa B) , Where a and b are as in the proof of

Theorem 2; this mapping has the determinant

+bt
o

(a2-b2)° = [(r(2 )" - r0)")/0Z-30)1° . 0

(¢4
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7. TESTING THE HYPOTHESIS THAT TWO COVARIANCE MATRICES WITH REAL,

COMPLEX, OR QUATERNION STRUCTURE ARE IDENTICAL.

As 1in section 6 we denote by D eitherR, €, or H, and

6=d1mI§D. Let S; and S, be independent observations from

D-Wishart distributions with N; and N, degrees of freedom and para-
meters zl,zzs:H+(p, D) respectively, p=N; and p=N,. Since
is invariant and det(NS)=N(Sp det(S) for Se:H+(p,JD), it

VILp,N
follows from the preceding sections that the distribution of (S;, S,)

has density

det S N1/2 (et SlNZ/Z + 2
[ J [ ] eXp("l/Z tY‘(Z{lsl + Zglsz))9(sl3sz) et (palD)

det I, - |det I
0 .0 0 - SpN. /2 = N. 1=12'
w.r.t. \)]D,p,N1®v]D,p,N2’ where V]D,p,Ni (1/N1.) 1D ouN, p=N.» =1,2.

Let H0 denote the hypothesis that :;=1:,. The statistical problem

of testing H0 is invariant under the action

(85) GL(p, D) xH' (p, D)2 +H (p, D)?

(M, (S1, Sp)) » (MS{M', M S,M').

The Tlinear map
2 +
t:H+(p9]D) +~ H (pa:lD)
(S15 S2) =S +Sy

commutes with the actions (85) and (6), (5), or (51), respectively.

Lemma 11. Let ¢ be a positive definite hermitian left sesquilinear

D-form and ¢ a hermitian left sesquilinear D-form on a p-dimensional
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vector space over D. Then there exists a basis such that the
matrix of ¢ is Ip and the matrix of ¢ is A=diag(k1,...,kp),

where Xx;z...z Ap.

Proof. Bourbaki [9], p. 123. []

In terms of ¢6pxé&p real matrices the Temma implies that there
exists an MeGL(p, D) such that M(S;+S,)M'= IGp’ and MSlM'=.A@>16.
Then MS, M'=(I - A)®Is’ and it is seen that the orbit projection

corresponding to the action (85) can be represented by
m:H (p, D)2 hys

where TI(S;, S,) = (xl,...,kp) and 1>x;=...2 Ap>—0 are the

eigenvalues of S; w.r.t. S;+S,, each with multiplicity s.

Theorem 6. The maximum likelihood estimator for = (the common value

. 1 N
of Z; and Z,) under H, s zWEf;maj-t(Sl, S,) and the 1ikelihood

ratio test statistic for testing HO is

P
8Ny /2 SNy /2
Iy (1-2,)

(86) Y=1

E]

where (Al,...,Ap) =1(S;, So). Under the hypothesis H0 the statistics

t(Sys So) and 1(S;, Sp) are independently distributed. The distri-

bution of t(S;, S,) has density

(N, +N,)/2 1
[det T] C (=172 tr 27T, Ted(p, D)

det =



woret. 2 The distribution of T(S;, S,) has density (86)

\):[Dsp’Nl"'NZ |

w.r.t. a measure k on A which is uniquely defined by

p
0 0 _.0
(t,m)( v]D,p,Nf‘o \)JD,p,Nz) _\)]D,p,Nl N,

Furthermore, « has density

p ~5(p-1+5)/2 5
(87) T (y(1-2))) (2, = 2g)

Y=1 ¥ 1=o<B=p

w.r.t. a Lebesgue measure on Ap.

Proof. The proof is analogous to the proofs for the other theorems.

For (87), one defines (S, Sy) = (r(Sy, S;+S2), S;1+S,-1r(S;s S;+S2)),

where
m 1,2
r(R,T) = ) a,(RT )" R
=1 Y
The determinant of
m 2j .
R T oa; I RSARIRZITE,
J=1 J k=0

where dReH (p,D) and R, = A®1,, is

when 1>A1>...>>\p>0.

43
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8. THE NORMING CONSTANTS.

In Theorems 1-6 we have represented the distribution of the orbit
projection 1T by a density w.r.t. a Lebesgue measure on Aq for

appropriate q. This density is the product of the Tikelihood ratio

statistic g and the density f of a measure «k with respect to that

Lebesgue measure. (In Theorem 1, for example, the density of 1 1is the
product of (18) and (21).) In order to find the density of 1T w.r.t.
the usual Lebesgue measure du(A) sndxi, one must evaluate the norming
constant (fg(x)f(x)du(x))'l. We shall first evaluate the norming
constants associated with Theorems 5 and 6 by a simultaneous recursion
argument. The remaining norming constants are easily obtained from these.
We shall use the same notation as in sections 6 and 7. The
distribution of 1 1in Theorem 6 has density

G(Nl-m)/Z . 6€N2-m)/2 &

p
(88) b(8,psN1sN2) TT Ay (1-2y) T (a,-2,)
B
Y=1 1<o<B=p

and b(8,p,N;,No) is the norming constant.
Let

w.r.t. u, where m=p-1+ -%
In fact, b is defined for all real values of Nj, Ny e [M, ),
+
be an arbitrary invariant measure on H (p,ID). Then v%)p N
, where c(6,p,N) dis a constant. Since (t, H)( D,p, Nfg ]),p Nz)_

N vp
® b(s,p,N;sNy) fu, where f s given by (87), we obtain

( )( | b(63p9N1’N2) c(6,p,N1+N2)
t.I) (v ® v ®
D.p -~ "D.p DsP c(8,p,Ny)  c(8,psNy)

I)
c(s,
0
I)p N +N2

:{ fu. It follows that

C(éspaNl)C(GapsNZ)
C(G,p,N1+N2)

(89) b(5,p,N1,N2) = kl(éap)a
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where k;(8,p) is a constant only depending on & and p.

In Theorem 5, II has density

P2 8(py-py*1)-1 §(N-p+1)/2-1 8
(90) a(8,p1spasN) T A (1-22) I (Aé-ké)
y=1 Y v 1<0<B=p,

w.r.t. u, wherei p=p;+p, and a(8,p;,ps,N) 1is the norming constant.

In the same manner as in the derivation of (89), it is shown that

C(Gspl + P2 3N)
(91) a(69p19p2,N) = k2(5sP1,P2),
C(69p1 sN)C(GspZ aN)

where ko(68,p;,p2) 1s a constant only depending on &,p;, and ps.

(Recall that v =N(Sp N/ZVO = N‘Sp N/2 o(

D,p,N D,p,N G,p,N)v]) )

1Y

Since a(8,p,1,N) = 2r(s8N/2)/(r(sp/2)T(8(N-p)/2)) and c(8,1,N) =
c (6/2)6N/2
0

it follows by induction from (91) that

/T(8N/2), where <, is a constant which depends on VD1

(92)  c(6.p.N) = k (8,0)(5/2) NP/ Z/d(s,p.M),
where
(93)  dls.pN) = 1 r(s(N-y+1)/2)

Y=1

and ko(a,p) is a constant only depending on & and p.

If (92) is substituted into (89) one obtains
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_ k 6, d 6, ,N )
(94) b(8,p,Ny,Ny) = dES,E),Nﬁ)d?a,Q,NZy

where k(8,p) = ko(G,p)k1(5,P)-

Since both sides of (94) are rational functions in N; and
N, it follows that (94) in fact holds for all real values of Nj, N, ¢
m, «) . (It then follows that b(p,N;,N,) is defined for all

real values of Niy,N, e (p-1, «).)

By making the substitutions Xx;=y; and AY_=y1 Yys Y=2...5P,

in (88) and integrating over y; it is seen that b(6,p,p-14~§,p-14-%)

= p[—iEéll-+ 1] b[d,p—l,p-z-Fg-,p+~§}. If (94) is substituted into

this expression one obtains after a reduction that k(¢&,p) =
k(s,p-1)r(8/2)/T(8p/2), and it follows that k(s,p) =
k3(5)[F(6/2)]p/d(p,p), where ks3(8) 1is a constant only depending on
6. Since b(s,1,Np,Np) = T(8(Ny +Ny)/2)/(T(8Ny/2)T(8Ny/2) , it

follows that k3(68) =1, so that

[r(5/2)1°d(5,p,N, +N,)

(95) b(sspaleNz) = R 5
d(8,p,p)d(8,p,N;)d(8,p,N,)

Finally, by making the substitution Yy = Ai, y=1,...,p2, in (90),

one obtains that

(96) a(éspl’pZaN) = 2p2b(6sp29plsN'p1)

and that a(s,p;,py,N) in fact is defined for all real values of

p;e (pp-1,«) and all real values of Ne (pytpo-1,=«) .
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It is now a simple matter to obtain the norming constants

associated with Theorems 1 - 4. These are:

(97) a(1,p+1,p,N+1) = 2Pb(1,p,p+1,N-p), 2p=N,
(98) a(2,p-121 - 1, & N--l) = 2[gqb(2 Dyo-12) - L np+ R ), p=N
,P 2 2: 2: 2 9[2]sp [2 2: 'P [2] ap- )
(99) a(2,p+%,p,N-%J = 2pb(2,p4~%,p,N-p), 2p=N,
p,_1 p 1 [gq | P p,_1 p
(100) a(4sp' [2] '?s [2]9 N'?) =2 b(4s[2]s p'[f] '?a N'p+[2])3 pr-

For each of the ten testing problems the a«'th moment, «>0, of the
likelihood ratio test statistic is readily obtained from these norming

constants. For the problem associated with Theorem 1 one obtains

a(l, p+l, p, N+1) _d(1, p, N+1)d(1, p, NotN-p) _
a(l, p+tl, p, NotN+1) ~ d(1, p, NetN+1)d(1, p, N-p)

P r((N-y+2) /2) T ((NotN-p-v+1)/2)
(101 1 Rty ) 7T ((p=r 1) /2)

and similarly for the problems associated with Theorems 2 -6

3
(102) 20 TNyt 2)T (NoN-pri51-v+1)

p T(N-vy+ )T (NatN-p-v)
(103) YEI I(NotN-y+ 4) T (N-p-v)




2
2 F(ZN--2Y+1)F(2(No¢+N-p+[g-]_y+1))

(104)
y=1 F(ZNa-+2N-2y+1)r(2(N_p+[gi_Y+l))

P2 r(6(N-y+1)/2)T(5(NotN-p,-y+1)/2)

(105) I
v=1  T(8(NotN-v+1)/2)T(8(N-p, -v+1)/2)

and
T(8(N +N,=v+1)/2)T(8(Nja+N,-y+1)/2) T (8(N,a+N,-v+1)/2)

o

(106) _ :
1 T(8(Nja+Na+N N, -y+1)/2)T(8(N -v+1)/2)T(8(N,-v+1)/2)

2
i

Acknowledgement: We wish to thank M.D. Perlman for his help in improving

the presentation of this paper.

48



[1]

[2]

[3]

[4]

[5]

(6]

[71]

[8]

[91

[101]

[11]

[12]

[13]

49

REFERENCES

Andersson, S.A. (1975). Invariant normal models. Awn. Statist. 3.,
132-154.

Andersson, S.A. (1978). Invariant measures, Technical Report 129.
Stanford University, Department of Statistics, Stanford, California.

Andersson, S.A. (1978). Canonical correlations with respect to a
complex structure, Preprint 13. Institute of Mathematical Statistics,

University of Copenhagen.

Andersson, S.A. (1981). Distributions of maximal invariants using
quotient measures, Technical Report No. 7. Department of Statistics,
University of Washington, Seattle.

Andersson, S.A., Brgns, H.K., Jensen, S.T. (1982). An algebraic
theory for normal statistical models. In preparation.

Andersson, S.A., Perlman, M.D. (1982). Two testing problems relating
the real and complex multivariate normal distribution. To appear in
J. Multivariate Analysis.

Andersson, S.A., Perlman, M.D. (1982). Two testing problems relating
the complex and quarternion multivariate normal distribution. In

preparation.

Anderson, T.W. (1958). An Introduction to Multivariate Statistical
Analysis, Wiley, New York.

Bourbaki, N. (1959). E1éménts de Mathématique. Algébre, Chap. 9.
Hermann, Paris.

Bourbaki, N. (1960). Eléments de Mathématique. Topologie general,
Chap. 3 a 4. Hermann, Paris.

Bourbaki, N. (1963). Eléments de Mathématique. Integration.
Chap. 7 & 8. Hermann, Paris.

Fisher, R.A. (1939). The sampling distribution of some statistics
obtained from non-Tinear equations, Ann. Engin. g, 238-249.

Gabrielsen, G. (1975). Fordeling af egenvaerdier i reelle,
komplekse og kvaternion - Wishart - fordelinger. TheS!S in
Danish. Institute of Mathematical Statistics, University of

Copenhagen.



[14]

[15]

[16]

[17]

[18]

[19]

50

Hsu, P.L. (1939). On the distribution of roots of certain determin-
antal equations. Ann. Engin. 9, 250-258.

Khatri, C.G. (1965). Classical statistical analysis based on
certain multivariate complex distributions. Ann. Math. Statist. 36,

98-114.

Khatri, C.G. (1965). A test for reality of covariance matrix in
a certain complex Gaussian Distribution. Awnn. Math. Statist. 36,

115-119.

Mehta, M.L. (1967). Random Matrices and the Statistical Theory of
Energy Levels. Academic Press, New York.

Porter, C.E., (Ed.), (1965). Statistical Theories of Spectra:
Fluctuations. Academic Press, New York and London.

Roy, S.N. (1939). p-statistics or some generalizations in analysis
of variance appropriate to multivariate problems. Sankhya 4,
381-396. -



PREPRINTS 1981

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE
INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5,
2100 COPENHAGEN ¢, DENMARK.

No.

No .

No,

No.

No.

No.

No.

No .,

No.

No.

No,

No.

1

10

11

12

Johansen, Sgren: Asymptotic Inference in Random Coeffi-
cient Regression Models.

Asmussen, Sgren: On the Role of a Certain Eigenvalue in
Estimating the Growth Rate of & Branching Process.

Lauritzen, Steffen.: Time Series Analysis in 1880. A
Discussion of Contributions made by T.N. Thiele.

Asmussen, S¢gren: Conditioned Limit Theorems Relating a
Random Walk to its Associate, with Applications to
Risk Reserve Processes and the GI/G/l Queue.

Joharnsen, Sgrent The Statistical Analysis of a Markov
Branching Process.

Asmussen, Sg¢gren: Time - Dependent Approximations in some
Queueing Systems with Imbedded Markov Chains Related
to Random Walks.

Skovgaard, Ib M.: A Second - Order Investigation of
Asymptotic Ancillarity.

Rootzén, Holger: The Rate of Extremes of Stationary
Normal Sequences.

Skovgaard, Ib M.: Large Deviation Approximations for
Maximum Likelihood Estimators.

Jensen, Ulla Funck: A Stochastic Projection Model with
Implications for Multistate Demography and Manpower
Analysis.

Johansen, Sgren: An Extension of Cox's Regression Model.

Skovgaard, Ib M.: Edgeworth Expansions in Statistics.



PREPRINTS 1982

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE
INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5,
2100 COPENHAGEN (9, DENMARK.

No. 1 Holmgaard, Simon and Yu, Song Yu: Gaussian Markov Random
Fields Applied to Image Segmentation.

No. 2- Andersson, Steen A., Br¢ns, Hans K. and Jensen, S¢gren
Tolver: Distribution of Eigenvalues in Multivariate

Statistical Analysis.



	no 2 forside
	no 2 del 1
	no 2 del 2
	no 2 del 3

