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Abstract. 

Gaussian Markov Random Fields (GMRF) can be used to describe 

a family of textures (*). A solution to the segmentation problem 

is presented together with a brief summary on GMRF. 

Image processlng, 

Markov Random Fields. 

Image Segmentation 

Cluster Analysis 

Variable Selection Methods. 

(*) The term texture is used in image processlng as a name for 

whatever structure there is present in a part of a picture 

which are homogeneous in some sense. 
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Introducbion. 

A series of images of "Malmbj erget" in the Mestersvig area 

of Greenland has for some ·time been used for research in the 

field of digital image processing, see [5]. 

The images were originally obtained for geological purposes 

by "Gr<;t>nlands Geologiske Unders<;t>gelser" in order to try to locate 

areas where minerals are present. 

This project began as an attempt to use statistical models 

for image processing, models which also take into account some 

spatial dependence between image points (pixels). 

The work was carried out while the second author was visiting 

the Institute of Datalogy, University of Copenhagen. All program

mes used have been written by Yu Song Yu, while S. Holmgaard is 

responsible for the statistical part and the presentation of 

paper. 

This report will describe an attempt to solve the segmentation 

problem for greylevel images where the textures can be described 

as realizations of isotropic one dimensional Gaussian Markov 

Random Fields. 
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Description of the Segmentation Problem. 

We first start out with some notation: Let A be the index 

set for the pixel values which form the image. 

The image is then {Xt}tEA where A c z2, and the Xt's are 

the measured pixel values. 

In order to make segmentation meaningful we assume that 

there exist A1 , ... ,A_ such that A = t)1A and A. nA.= (2) if i*j 
--N n= n 1 J 

where each A only consists of one type of texture, i.e. 
n 

each A 'is homogeneous in some sense. 
n 

The segmentation problem .. is now simply the problem of 

finding A1 , ... ,~. 

In our case the textures are something like snow, ice, 

sediment, granite, etc. 

The segmentation problem can also be described as a 

special kind of clustering problem where one also uses the 

"geographical" information wh.en making clusters. 

Gaussian Markov Random Field (GMRF). 

Denote by z2 the lattice in the plane, so that each lat+ 

tice point corresponds to a pixel and thereby describes a 

location where a one dimensional normally distributed random 

variable is measured. 

Consider a Gaussian Random Field: 

x = (Xt )tEZ 2 where each finite set of Xt's has a normal distri

bution. 

We call X Markov, or say X has the Markov property, if for 

every finite AcZ 2 

~ ( (X t ) tEA I (X t ) tEA c) 

= l,( (X t ) tEAl (Xt)tE(lA) 

Here (lA is the edge of A in the following sense 

(lA ={tEAc/3UEA:jt-ul=1} 
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If we further assume that the GMRF is isotropic (translation 

and rotation invariant), that is assume 

(1 ) EX = C VtEZ 2 
t S I 

Cov (Xt , Xu) = R ( ! t-u! ) 
. 2 

V t, u EZ 

it may be shown that R(t), the covariance function, has the 

following form: (see £1]) 

(2 ) 

where pn(O,t) is the n'th iterate of the transition function 

for the symmetric random walk on Z 2, (52) ° and 10'.1 < 1 . 

From this one finds that for any tEZ2 

(3 ) 

where 

Note that the condition~0'.1<1 is necessary to ensure the 

existence of the GMRF over the infinite lattice, but lal~1 

is possible on finite subsets. 

Estimation in one dimensional GMRF 

Suppose that the GMRF is observed on a finite subset of 

The aim is to estimate the parameters O'.,~ and (52 I.n order to 

do this look at {X t }t6A for given {Xt}tE&A and choose A as 

the pixels denoted by "0" in the figure: 
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x 0 x 0 x 0 x 
x o x o x 0 x 0 x 

x 0 x 0 x 0 x 
x 0 x o x o x 0 x 

x 0 x 0 x 0 x 
x 0 x o x 0 x 0 x 

x x x x 

It is then seen that, conditional on {Xt}tEClA' Xt and Xu 

are independent for t,u EA, t*u. 

The likelihood function then becomes 

(4 ) 
x -I; ( 1 -a) -a Z 2 

L 2 = IT 1 1 _ %. ( t t) 
I; ,a, a tEA m- (J e a 

writing 1;(1-a) + aZ t = y + a(Zt-Z) 

one gets the following estimates with direct reference to 

standard regression analysis. See [3] for example. 

1\ 1\- 1\ 
= (y-aZ)/(1-a) 

Comparing GMRF's 

Suppose that we have observed n different GMRF's and we 

now want to see if they are equal in terms of distribution 
2 i.e. if they all can be described by the same s,a and a . 

It is then easy to see that if we condition on half 

the observations, e. g. the "x" 's we can use Bartlett' s test 
. 2 2 

to test the hypothesis that all a are equal to a common a . 

If all 0'2 are equal, the task of comparing the a's and 

the I;'s is the same as comparing lines in linear regression 

analysis, which can be done using an F-test, see [3]. 



Displaying Observations From a Lattice. 

In order to get a visual impression of the images, plots 

are made in the following way: 

Each pixel v,;liue is transformed into one of 16 different 

grey lev$ls, where white ~large values and black~ small values. 

In e~ch picture the grey" level scale is linear and with 

maximum contrast, more precisely: the interval between the 

max and mllin pixel value is divided into 16 equally long subin

tervals, where each interval corresponds to a specific grey 

level. 

Generating Pseudo realizations of a GMRF. 

Using the syrrrrnetry between the· "0" and "x" one may gene

rate pseudo GMRF realizations as follows: 

Take pseudo rando~ numbers wi-th mean 
<'; and variance 0" for all "0'" 's i.e. 
conditioning on all Xt = <';. 

The "0'" s are now known, so calculate 
the mean for all "x"'s as given by (3) 
and draw pseudo random numbers ~ith the 
ppropriate mean and variance 0" for all 

"x"'s. 

~ Repeat Q) interchanging the roles of 
"x" and "0". 

CD Repeat steps (3) and 0 a few times. 

In order to do this in a proper way one must at each step 

drop all "x" or "0" on the edge because it is not possible to 

calculate their mean. Hence, if one wants a 40 by 40 pixel 

square interacting step @ and Q) 3 times, one has to start 

out with a 52 by 52 square. 

Figure 1 shows 15 generated images with different values 

for <'; and a but all with 0" = 12. They were all generated with 

step CD and (]) repeated 3 times. 

It has not been proved that the above method converges 

in any s€.,use, but when estimating from the generated pictures 

the estimates are quite reasonable. 
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Image B with 5 subimages . 

B 1 Granite 

B 2 Rust 

B 3 Glad:.ier 

B 4 Snow 

B 5 Sediment 

Figure 2. 

Image B 
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The Images. 

Figure 2 shows image B from [5J together with 5 subimages 

which were pOinted out by a geologist as being homogeneous in 

a geological sense. 

One remark about subpicture B2, which is a little suspi

cious because of the white edge in the bottom right half of 

the picture. This part of the picture has been analysed by 

Johansen and Yu in [5] using other methods and it was found 

that it consists of two different homogeneous areas. 

The l'1odel. 

We specify our model for the image in such a way that 

a segmentation is a hypothesis in this model. 

Let B1 , ... ,BK Bi nBj = 0, i*j be an initial segmentation 

i.e. each Bk contains only one texture. 

The segmentation now consists of finding Bk's with the 

same texture i.e. 

A 
n 

so that A1 , ... ,~~ is a segmentation. 

n=1,- ,N 

Expressed in terms of Gl'1RF we assume that each Bk follows 

the Gl'1RF model with parameters sk' a k and (j. 

If no natural initial segmentation exist it is reasonable 

to choose the Bk's as small as possible because this gives a 

detailed segmentation, the problem with small Bk's is that 

estimates of the parameters are poor i.e. they have large 

variance. 
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Preliminary Image Analysis~Model check). 

Before going deeper into the segmentation, some prelim

inary analyses were performed: 

a) A goodness of fit test, 

for normali ty . 

b) Checking the model, at local level, 

against a second order Markov model. 

c) Checking that a fixed 0 2 and varying 

~ and a can describe image B. 

A Goodness of Fit Test for a GMRF. 

In order to check the model, the usual goodness of fit 

test can be used to check the normality: 

Choose a division of the real line 

- 00 = u < o u 1 < ••• <uk = 00 

and denote by 

and 

and use the test statistic 

(6 ) 
k 

T =. L1 
:l= 

i = 1,-,k 

dy 

The asymptotic distribution of T will lie between X2 (k-1) 

and X2 (k-4). See [7J. 
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The u. 's must be chosen such that E.> 5 i = 1,-,k in order to 
l l 

assure that the X2 approximation is valid. 

This test was used on images B1-B5, and all except B2 

were accepted at significance level 5%. 

Test of First-order Markov Property 

Against Second-order Markov Propert~ 

A given lattice point "0" can be defined to have an edge 

at with either 4 or 8 pixels, called the neighbour pixels. 

l8l X l8l 

X 0 X 
l8l X l8l 

The figure shows the usual 4 neighbours denoted by "x" 

with the additional 4 neighbours denoted by "l8l". 

The second-order or 8-neighbour model can now be described 

by its conditional distribution: 

(7) 

where Zt are the average pixel values over the neighbour "x" 

and Yt the averages over the neighbour "18!". 

The model with~,at=4 is called first-order Markov and 

the model with~at=8 is called second-order Markov. For ref

erence, see [2]. 

Estimation in this model can then be performed by condi

tioning on both "x" and 1~18!", that is 3/4 of all pixels. The 

test of the first-order model against the second-order model 

is now the same as tes ting the hypothesis "6= 0" and this can 

be done using an F-test, see [2]. It is important that when 

estimating under "0=0" one only uses the "0'" s as observations. 

This test was again used on images B1-B5 and only B2 was 

rejected at 5% level. 
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Test For Uniform Variance Over Image B. 

In order to check that a large image has the same 0 2 in 

every part, image B was divided into 152 8x8 squares ani t;" a 

and 0 2 were estimated separately for each square. Then Bart1ett's 
2 

test is used to test whether all 0. are equal to a common value. 

The test on image B was accepted at the 5% level. 

One could also note that s2, the estimated 0 2 , has a 

02X2/f distribution for all small squares, so one can compare 

the empirical distribution function of the s2,s with the 02X2/f 
2 distribution with 0 equal to the common estimated value. 

The Suggested Solution to the Segmentation Problem. 

The precedi-ng analysis shows that the GMRF model fits 

quite nicely on selected areas, and assuming that it fits on 

small areas then the variance is the same anywhere on an image. 

This then leads to the following algorithm: Start out by 

dividing the image into small areas and then merge areas which 

are most alike, etc. 

More precisely: 

CD Compare all pairs of areas provided 

they are physical neighbours, 

(they have one cuttiling edge in common) . 

(d) If no pair of neighbours is sufficiently 

alike, then stop. 

Otherwise merge the pair which is most 

alike, and let their union be a new area. 

G> Repea t from step CD. 

In all cases, we start by conditioning on half the pic

ture, the "x"'s, and cutting as follows: 

Leaving four 110" in each 

small square. 



- 12 -

This has the advantage that no cutting line goes through 

an "0", so when merging two neighbouring areas into one, no 

extra "o"'s are added, This would be the case if the cuts were 

horisontal or vertical. 

The reason for choosing the squares with four "0" in each 

square is the wish to make the segmentation as detailed as 

possible. 

The disadvantage of choosing the squares as small as pos~ 

sible is of course that the parameters are badly determined. It 

is obvious that one should try with larger init~al cuttings 

in order to get better initial estimates, but this has not 

been done. 

Verbal Description of the Algorithm. 

In view of the preceding description we only have to 

devise a reasonable distance measure and a way of choosing the 

stop criterion. 

The suggestion is to use the F-statistic for two neigh

bouring areas having the same ~ and a as the distance measure, 

and stop if all F values are larger than the appropriate 1-0 

fractile, e.g. 0=5%. 

The~e are no problems when merging the two first areas but, 

when ~erging for the second time one must decide whether to pool 

the variances or not. 

The problem "pool or not" does not affect which pair to 

merge but only when to stop, because the ranking of the F .. 1J 
values is the same. 

Technical Description of the Computational Procedure . ..--- . 

We must first introduce some notation. 

Let A c z2 such that all "0" in the image are indexed by 

a tEA,'and set M =:tfA. 

We look at the situation at some step in the algorithm, and 

assume that 
N 

A ='U1 A. 
1= 1 

n. 
1 

and A. = 'U1 A .. 1 J= 1J 
where A .. are 

1J the original small squares with #A.. = 4 and 
1J 

A. are the areas 
1 

opera tions. 

which have been formed by the successive merging 
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Let X ~ (X t ) tEA be the observations and P . (X) be the 
. B 1 ' •• ~ , Bm 

projection on the meanvalue subspace of 

take m different values each belonging to 
m 

XtE Bl. EX t = a. + y.Zt. Finally .U1B. l l l= l 

if i :j: j. 

Now define the following SSD's 

(8 ) N SSD .. 
lJ 

RN where a and y 

a Bi' i.e. for 

= A and B. n B. = 0 
l J 

SSD 2 
=tLA(Xt-PA A A A_~_ (X)t) 

E 11'-' 1nu 21'-' -TI1'-' --N~ 

and note that in step N-1 we have 

(9) SSD~-1 = SSD~ + SSD~j 

after merging A. and A .. 
l J 

We are now ready to write up the F values: 

i) pooled case: 

1 '2" SSD .. 
-A1--------~l~J-----~ F(2,M-2N) 
M_2N(SSD + SSDs) 

ii) non-pooled case: 

1 
(11 )F 1::2M-2 (N-1) (SSD l. J' + SSDS) 

ij = ~F(~M-2(N-1) ,~M). 
1 SSD 
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The nice thing about this algorithm is that it is only 

necessary to compute some SSD .. in each step in order to 
lJ 

choose which pair to merge, i.e. the SSD .. belonging to lJ 
areas which are neigbours to the area formed by the last 

merge operation. 

It is immediately seen that the ranking ot the F .. 's is 
lJ 

the same as that of the SSD .. 's both in case i) ans ii) so 
lJ 

the difference between the two methods is only in the stop 

criterion. 

In order to describe the different stop criteria, the 

following may be said: 

In the pooled case, we stop if the next step is unreason

able provided that all previous steps are correct decisions. 

In the non-pooled case, we stop if the next step gives 

a total segmentation which is unreasonable compared with the 

initial segmentation. 

Note that M very well can be very large e.g. for images 

P.l-P15:800 and for image B: 5120. This means that F .. ~F(2,ro) 
2 lJ 

= X (2)/2 in the pooled case, and F .. ~ F(ro,ro) = s(1) in the 
lJ 

non-pooled case where s(1) is the measure with mass 1 in 1. 

This means that it is only possible to direct the stop 

criterion using the significance level in the pooled case, 

because the non-pooled case ends wi th stop when .all F .. > 1 . 
lJ 
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Experiments. 

In the following pages results from experiments are shown. 

In figure 3 the first picture shows the result of run

ning the algorithm on P1 from figure 1. The remaining 3 exam

ples in figure 3 are made form joining the middel part of 2 

pictures from figure 1 and then running the algorithm. 

One immediately notices that stopping at the 5% level in 

the pooled case seems quite unreasonable, but good enough in 

the non-pooled case. 
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Pooled Non-Pooled 

P1 

P1-P2 

P1-P13 

P1-P15 

Figure 3. 

Result of algorithm run on test pictures, and stopped at the 

5% significans level. 



Before the first merge: 

Image D1 from [5]. 

Plot of estimated y values. 

Plot of estimated a values. 

Plot of a against y. 

Plot of F .. values. 
1J 

Figure 4. 
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Top Part of Image B. 

: ~~~i:~:'~ ......... . " ...... . ":::::::: 
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:::= ::3 
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Plot of top part of image B. 

Plot of initial 

Results of Segmentation 

with stop at~ 

F(2,oo) = 4.61 

F(2,oo) = 100 

F(2,oo) = 1000 

Figure 5. 

( 1 % ) 

F .. values. 
1J 

Pooled case, 

Resul t of Segmentation Non-pooled 

case and stop at the 5% level. 
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In figure 3 note also that when trying to separate 

images p1 and P13, which have the same s but different a's, 

the algorithm fails. 

This can be explained by the fact that a is not determined 

very exactly in the early stages of the algorithm. 

(1 2) V(&) = D(V(&!Zt;tEA)) 

+ V(E(~!Zt;tEA)) 

= E 
2 

a 

where IIR:jllby assuming that 

L - 2 2 2 
tEA (Zt -Z) R:j -%- X (*A -1 ) 

and because~A=4 in the initial stages of the algorithm it 

will be quite impossible to find which observations belong 

where. 

It seems that this does not matter much because most of 

the information necessary for segmentation is present in s , 
see Figure 4. 

All the same, a is not the same for the whole picture, 

a test for this hypothesis on image D1 rejects it. 

The Plots of the Initial F. . values. lJ 

Plots of the initial F .. values were made in order 
lJ 

to find out how good they are at indicacing edges. 

The results from Fig. 4 and 5 suggest, that one could 

perhaps start by combining all areas with F .. below a certain 
lJ 

level. This, however, would give the following uniqueness 

problem: What should be done if we have the following situation 

where I indicates a significant edge and 

edge. 

a non-significant 
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Conclusion and Final Comments. 

I think that the presented method works quite nicely 

especially when using the non-pooled stop criterion. The 

problem of being unable to segmentate areas with the same S 
but different a does not seem to be a serious drawback, and 

could be solved by enlarging the initial square size. 

The fact that there is actually no information in the 

a's also suggests that one estimates a single a for the 

whole picture, and then starts segmentation on the basis of 

Xt-~Zt' which can be considered as the observations compensated 

for spatial effects. 

This paper mainly serves as an Ilustration of the method, 

the practical importance lies in solving the multivariate case. 

Simon Holmgaard. 
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Suggestions for Further Work. 

1) Try to make a supervised version of the algorithm i.e. 

start out with traLrUng- areas and then try to classify 

the small squares. Of OJurse the poorly determined et I s 

will also give problems. 

2) Try to solve the multidimensional problem, using the 

presented algorithm but with multivariate response in 

each pixel. However, this is not just an ordinary mul

tivariate analysis of variance: 

The estimation problem will be the following: 

Estimate S, ~ and ~ from 

E(Xtl(~)UEat) = (J-~)~ + ~~t 

V (X t I (~u) u Eat) = ~ 

subject to the condition that ~L and ~ are symmetric 

positive definite. 

The last condition follows from the fact that 

00 n n~ / 
~(t) =n~oP (O,t) ~ = 

must be symmetric and positive definite for t=o. 

This can be solved using an iterative procedure which 

shifts· between estimating one of ~ and ~, keeping the 

other fixed. But then there is still the test problem. 

4) Try to use better methods for estimation see e.g. [4J. 

for approximations to the likelihood function. 

5) It would be wise to study some of the literature on 

variable .selection methods and pluster analysis. 
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