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ABSTRACT 

A "pacemaker" neuron with the following properties is considered: 

After a firing, the membrane potential is reset to a constant 

value from which it increases to the firing threshold during a 

time to. The neuron receives strong synaptic input producing 

postsynaptic potentials which change the membrane potential to 

the reversal potential of the synapse, from which level the po­

tential increases to the firing threshold during a time tl" 

Provided that interarrival times for the PSPs are independent 

and identically distributed, successive interspike intervals in 

this class of model neurons can be described by a regenerative 

stochastic process simple enough to allow the derivation of 

tractable expressions for the limiting distribution of the 

interspike intervals, including a simple expression for the mean 

firing rate. A central limit theorem for the partial sumsof~ 

interspike intervals can also be proved. This class of models 

is a generalization of a model of the crayfish's stretch recep­

tors [1], a commonly used neuro-physiological system. In two 

examples the model is studied under varying temporal patterns 

for the PSPs to illustrate respectively' phaselocking and 

certain principles of summation of excitation and inhibition. 
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1. Introduction 

We consider a "pacemaker" neuron, for instance a slowly adapting 

sensory neuron under steady state conditions, recieving strong 

synaptic input with different temporal patterns. 

The neuron is assumed to have the following properties: After a 

firing, the membrane potential is reset to a constant value. If 

no synaptic activity interfer, the membrane potential increases 

to the firing threshold during a certain time to' The synaptic 

input to the neuron produces postsynaptic potentials (PSPs) which 

change the membrane potential to the reversal potential of the 

synapse, from which the potential increases to the firing threshold 

during a time tl (figure 1). 

The motives for studying this model may be summarized as follo,,/s: 

a) The model is a generalization of a model of the crayfish's 

stretch receptors suggested by Fenstad, Nja and Wall~e [1] on the 

basis of intracellular recordings reported in [2]. This is probably 

the mechanoreceptor system studied in the greatest detail. It has 

been used in studies of the morphology and physiology of sensory 

receptors, e.g. [3,4], summation of inhibition and sensory excita­

tion [1,2,5], lateral inhibition [6], and "phaselocking" [7,8,9]. 

b) To our opinion, phenomena related to phase locking provide use­

ful illustrations of likely constraints on the way the nervous 

system can transmit and transform information. In the present model 

the phaselocking-effects are particularly evident: when the input 

is sufficiently regular, the output spikes from the pacemaker may 

be "locked" to the input in such a way that for certain frequency 

intervals, an increase in the arrival rate of spikes causing inhi­

bitory postsynaptic potentials may increase the firing rate of the 
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pacemaker [7]. c) The behaviour of similar systems have been stu­

died earlier by simulation, [7], and, for nonrandom input, byana­

lytical methods [8]. However, provided the interarrival times for 

the PSPs are independent and identically distributed, successive 

interspike intervals in the pacemaker form a regenerative stocha-

stic process, simple enough to allow the derivation of tractable 

expressions for the limiting distribution of the interspike inter­

vals in the pacemaker, including a simple expression for the mean 

firing rate. A central limit theorem for the partial sums of inter­

spike intervals ~an also be proved and the relevant limiting quan­

tities computed. The latter quantities describe what could be termed 

time averages of the system, and do apply if we assume that the infor­

mation from the pacemaker is "averaged" over long time intervals. 

The model thus appears to provide an adequate description of an actual 

biological system where the steady state properties can be studied by 

means of stochastic process theory. In example 1 the model is used 

to illustrate phaselocking phenomena. Another application is given 

in example 2 where we extend some results from [lJ concerning the 

effect of inhibition on the sensitivity to changes in excitatory 

drive. 

The present model is in certain respects related to the selective 

interaction class of models (reviewed in [loJ and [llJ). 
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2. The model. 

Let Tl ,T2 , ••• denote the arrival times for the PSPs, and let 

n = 2,3, ... 

be the interarrival intervals for the PSPs. We assume X2 ,X3 , •.• 

to be a sequence of independent, identically distributed (i.i.d.) 

real valued random variables with distribution F. The initial 

conditions determining Xl will be chosen later. 

Let SO(=O), Sl,S2' ... denote the epochs of the firings in the 

pacemaker neuron, and define 

n=1,2, .•.. 

Hence, Vl ,V2 , ..• are the length of the successive interspike 

intervals in the pacemaker. 

To avoid ambiguities we will assume that F has a density f. In this 

case with probability one no PSP will arrive at the epoch of a firing 

in the pacemaker neuron and the system is welldefined. 

If no PSPs interfere, Vn = to. After the arrival of a PSP at Ti , 

the neuron will fire at T i + t l , if Xi +l > tl (figure 1). Note 

that if tl ~ to the PSPs are inhibitory , while if .. ~ tl < to ~·the 

PSPs may also be excitatory. 

Note further that in the case F(tl ) = 1 the neuron never fires 

(except for a possible initial firing). We shall therefore 

assume F(tl ) < 1 throughout. 

At each point in time the future of the process depends on the 

history of the process only through the length of the interval 

from the last preceding PSP. At the epoch Sn this interval is 

equal to t l , if Vn has been affected by a PSP. Thus these 
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8 's constitute points where the process regenerates. 
n 

We shall prove the existence of limiting distributions for the 

sequences V1 'V2 ' .... and 81 ,8 2 ,." by means of the theory 

of regenerative processes. The theory was formulated by Feller (12] 

and 8mith [13]. In the paper we use results from [13] in the formula­

tion of 8tidham [14]. We adhere to the notation of [14]. 

3. The regenerative process VI' V2 , • .. . 

In this section we show that Vl ,V2 , ... is a regenerative process 

with the affected Vn's as renewal points. 

Let M be the set of indices for the affected 

n E M <=> 3 r > 1: 8 1 < T < 8 n- r n 

v 's 
n ' 

i. e. 

and let 0 = nO < n l < n 2 <... be the ordered elements of M. 

Define 

N. = n.-n. l' i = 1,2, ... 
l l l-

and define m. by the relation 
l 

m. 
l 

= m <=> T- 1 < 8 < T , 
rn- n i - l m 

where we take TO = O. 

i = 1,2, •.. 

N. will be the length of the i'th cycle and X will be the 
l rn, 

l 

interval during which firing number n. 1 l-
occurs. 

from figure 1 and section 2 that T <8 < T 
m. 1 n m. 
l- l 

i. e. all V in cycle i will start during X n m. 
l 

relation 

It follows 

for n i - l ~ n 

and we have 

< ni' 

the 

for n < n. 
l 

(3.1) 
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As initial conditions we assume that Xl starts at time -tl 

and is strictly greater than tl with distribution 

Note that this implies = 1 

mi+l-l 

F(t)-F(tl ) 

1- F(tl ) 

and 

L: X. = S 
j=l J n i 

With this notation we can write 

and 

(3. 2) 

i = 1,2, ... (3.3) 

and we can prove 

Theorem 1. Vl ,V2 ,... is a regenerative process with renewal 

sequence Nl ,N2 , ..•. 

Proof: Let 1 < S < n and take A a Borelset~ 

For n. 1 < n < n. we have from (3.1) and (3.2) 
1- 1 

P{V E A/n. 1· = s, {v ,m < s}} n 1~ m 

mi+l-l 
=p{toI{n<n.}+I{n=n.}(x -to(N.-l)+ L: X.)E:AI 

1 1 mi 1 j =m . + 1 J 
1 

j=l 
X. = Ss' Xm. > t 1 + to (n - s - I)} 

J 1 



m -1 
1 

L: 
j=l 

6 

m -1 
2 

L: 
j=ml+l 

X, = SO' X > tl + to (n - s - 1) } 
J Inl 

x. EAI 
J 

= P{Vn- s E AI Xl > tl + to (n-s-l)} = p{V E AIN l > n-s}, n-s 

since ml = 1. This justif-les the use of the terms cycle etc. in 

the preceding paragraphs. 

Note that the regenerations take place, when the interarrival time 

between two consecutive PSp's exceed tIn 

Since the process is regenerative we can compute all relevant 

asymptotic quantities from the first cycle. Hence in the rest 

of the paper we shall write N = N = n 1 1 and R = m2 - 2, i. e. 

N is the length of the first cycle and R + 1 is the number of 

PSPS affecting VN" Moreover, X shall denote the generic ele­

ment of the i.i.d. sequence X2 'X3 ' .... 

With this notation we have 

and from this follow 

(ii) Exk < + 00 <=> ENk < + 00 

(iii) L: P{N = n} = 
i=l 

L: P{tl + (n-l) to < Xl < tl + ntO} 
n=l 

(3 • 5) 
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4. The limiting distribution of Vl ,V2 , .... 

We can now prove 

Theorem 2. If p{X > t l } = P > 0, EX < + 00 and the distribution of 

N is aperiodic, then 

and 

(i) the sequence Vl 'V2 ' ... has a limiting distribution 

( ii) 

for n -+ 00 

lim p{V 
n n -+ co 

where Gl (t) 

co 

g (t) 
1 

L = 
p m=O 

has density 

f(t -I- tl + mtO)I{O < t to} < 
-

and G2 (t) has Laplace transform 

co 

cp (u) = J -ux 
t e dG2 (x) = 

1 tl 
1- J e-ux f(x)dx 

o 

(4.1) 

Proof: Assertion (i) follows from [14], Theorem 2, if P{N < + co} = 1, 

and that obtains by (3.5). 

To prove (ii) we note that for A a Borel set the same theorem 

yields 

co 

lim p{V 
n n -+ co 

E A} = 1 L p{V. E A, N > j} 
EN j=l J 

1 N 
= EN ELl {V. EA}. 

j=l J 

and from (3.3) follows 

n -+ co 

lim p{V 
n 

E A} 
1 N-l 1 

= EN ~Ll I{to E A} +EN E I{VN:·E)lJ 
J= 

(4.2) 
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EN - 1 1 . 
= EN r{ to E A} + EN P{VN E A} • 

'Thus it suffices to find the distribution of VN " By (3.3) 

we have 
R+l 

VN = Xl - tl - (N-l) to + i:2 Xi + t l , 

irlhere Xl - tl - (N-l) to 

determined by Xl" 

From (3.4) follm.ills 

and 
R+l 

L: 
i=2 

X, are independent since 
1 

00 

N 

(4.3) 

is 

L: p{tl+(n-l)to < Xl<t1 + (n-l)to+t} 
n=l 

H.+l 
To compute the distribution of L: Xi + tl we note that 

x=2 

Hence 

r+l 
{R=r} = ,n {Xi:;' t l }n{Xr + 2 > t l } . 

1=2 

r = 0,1, ... ; 

since x2 ,X3 , ••• are i.i.d., and we have 

R+l 
-u L: X, 

E e 

R+l 
-u L: X, 

, 2 1 1= ( i=2 1 = E E e 

tl R 
= E J e -ux f (x) dx 

o 
l-p 

== 
tl 

1- J e -uxf (x) dx 
o 

(4 " 4 ) 
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since R has the geometric distribution 1(4.4}. 

Hence the distribution of VN is given by the convolution of Gl and 

G2 defined in (ii), because of the independence of Xl - tl - to (N-l) 

R+l 
and l: X. + tl . 

i=2 1 

This completes the proof. 

Remark 1. The limiting distribution for Vl 'V2 ' ... has a con­

tinuous part for t > tl and a point probability in to with 

lim p{V 
n -+ 00 n 

Corollary 1. Let V have the limiting distribution of 

and 

(i) EVk < + 00 for k = 1,2, •.. 

(ii) EV = 

(iii) Var V 

EX 
pEN 

.(. EX \ 2 
= (EN - 1) \ pEN - to) + 

(4.5) 

(4.6) 

E~(var(Xl - toN) + l~P E(X2Ix~ t l ) +(l~P E(xlx1, tl~2 

Proof: To prove (i) we note that (4.2) entails 

We have 

= EN-l t k + ~ EVk 
EN 0 EN N (4. 7 ) 



since 

and 

where ERk < + 00 
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R+l 
o < ~ Xi < Rtl f 

i=2 

by (4.4). 

To compute EV and Var V we note that 

and 

(
R+l \ 

E ~ Xi + tlJ = 
i=2 

-cjJ I (0) 

tl 

J xf(x)dx 
o 

p 

tl 
2 J x f(x)dx 

( R+l ) 
Var ~ Xi = 

\i=2 
cjJU (0) _ (cjJ' (0) ) 2 = o 

p 

E (X 1 - t 1 - to (N -1)) = E (X I X > t 1) - t 1 - to (EN - 1) • 

Therefore by (4.7) 

= 

and 

EX 
pEN 

(l-p)E (Xl Xi t 1 ) 

p 

( 4. 8) 
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Var V 
') 

= (EN-l)(· EX _ t ).<.. + 1 pEN 0 EN Var VN 

= (EN-I) ( EX )2 1 ( R+l \ 
\pEN - to + EN Var (Xl - toN) + Var E Xi) 

i=2 

( iii) follows by sUbstitution of ( 4 • 8) for 
R+l 

Var E 
i=2 

It follows from (i), that Var (Xl - toN) exists even if i. 

X .• 
1 

Var X = + 00. In this case we have EXN = + 00, i.e. X and N 

have an "infinite positive correlation". 

Note - that Var (Xl - toN) can be computed from (3.4), when the 

distribution F is known. 

Note further that EX < + 00 entails the existence of a stationary 

version of the process with distribution given by (4.1), see [14], 

Theorem 2. The condition that Nl ,N2 , ... be aperiodic ensures 

that this stationary distribution is also limiting distribution 

for the sequence Vl 'V2 ' .... The renewal sequence Nl ,N2 , ... is aperi~ 

odic, if p{ tl < x: < tl +to} ;> O. This follows irrmediately from the 

relation {N = I} = {tl < Xl < tl+tO}. 

The limiting distribution for the interspike intervals of the pace-

maker gives an appropriate description of system behaviour if decoding 

is "instant", that is if the interspike intervals are decoded one by 

one. In the next section we derive a central limit theorem for the 

partial sums of interspike intervals. The limiting mean arrival rate 

is (of course) the same as above, but the variances differ in general, 

since the interspike intervals are in most systems dependent. The 

partial sums describe "time averages" of the system and do apply if 

information is averaged over long time intervals. 
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5 .. The.limitingdis.trihution.o.f 8 1 ,82 ,... • 

In this section we discuss the aSlmptotic distribution of 

s = 
n 

n 
L: 

i=l 
V .• 

1 
In the terminology of [13] is a cumulative 

process relative to the sequence Nl ,N2 , .... We can therefore apply 

Theorem 9 of [13] to get the following 

Theorem 3. 

where 

Proof. Let 

If Var X < +00 and p{X 

S 
EX -n -.. -

L n pEN 
-7 N(O,l) for 

am 

2 = 1 (EX2 (EX) 2EN 2 
a EN ---p + 2 2 

- p (EN) 

Z = 
N EX 
L: Vi - N pEN. 

i=l 

> t l } = p > 

n -7 00, 

2EXEXl N\ 
pEN ) 

To apply Theorem 9 of [13] \"e have to ver ify 

and 

where Z is 

and 

EZ = 0, 

",2 
EZ < + 00 

the variation process. We have 

R+l 
EX 

Z = Xl + L: X. - N pEN , 
i=2 1 

EZ E (X I X > t l ) l-p E(xlx~ t l ) -, = +--
P 

Var Z 
EX R+l 

= Var (Xl - N pEN) + Var 2: X. 
i=2 1 

EX -
P 

0, then 

(5.1) 

= 0 



Moreover 

Hence 
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( EX \ 2 . EX R+I 
= Var X1+\'pEN) Var N - 2 pEN Cov (Xl ,N) + Var E Xl 

i=2 

(EX) 2EN 2 

p2 (EN) 2 

2EX 
pEN EXIN. 

R+I 
~ EX 
Z < Xl + \' X + N 

L. i L pEN 
i=2 

since and N have second moments by the 

assumption Var X < + co and R has moments of all orders. 

This completes the proof. 

Remark 2. Note that Theorem 3 obtains also in the periodic case. 

Remark 3. It is not essential for the results in section 4 and 5 that, 

the process starts just after a regeneration at time O. If this is not 

the case we will have a delayed regenerative process and the asympto-

tic results remain unchanged. 

Reniark 4. In many actual nervous systems, including the muscle recep-

tor organs of the crayfish, a negative serial correlation is obser-

ved between consecutive inters pike intervals. Hence, one might expect 

2 Var V < 0 It is, however, in general not possible to state anything 

-::2 about the relative size of Var V and 0 ~ • In example 1 we show 

situations with Var V < 0 2 and Var V > 0 2 , respectively. 
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6. Applications. 

Example 1: Phaselocking. 

As mentioned in the introduction, pacemaker systems are vulnerable 

to phaselocking. This phenomenon is knm'ITn to occur in situations 

where the arriving train of action potentials is sufficiently 

"regular". 

with mean 1 
X 

To illustrate this we take X to have a r-distribution 
1 

and a variance SA2. Note that by varying s, we 

obtain spike trains with the same mean, but with different levels. 

of "regularity". The r-distribution fits certain of the actually 

observed spike trains in the "accessory neurons" providing the inhibi-

tory input to the stretch receptors of the crayfish [9). 

From (3.2) we get 

where 

g (x,m) = 

and 

= m} = 1 J g (x ,m) dx, 
P A 

exs)sxs - l 

res) 

00 (AS)SX s - l 
r (s) dx. 

From (4.5), (4,6), and (5.1) follow 

EV 1 = -ry , 
s 

Var V = 

and 

2p \ s, 
- y s } 

where 
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co r-l 
I (r, z) = f ~ (r) e -xdx (the incomplete gamrna function ratio) , 

z 

T 
S 

= 

co co 

L: 
m=O 

co 

I(s,z ), 
m 

L: (m+l) I (s'Zm)' 
m=O 

and 

L: 
m=O 

I(8+l,z ), 
m 

m=O,l, .... 

For the special case s = 1, i.e. Poisson input, we get 

and 

Ee-uV = A+ued(A+u) 

tl(A+u) 
1..+ ue 

At 
EV = 1..- 1 (e 1 _ e Ad) 

( 6 .1) 

2 -2 2Atl 2Ad 1 At 
0- = Var V = A (e - e ) - 21..- (t l e 1 _ deAd) , 

where d = tl - to. 

The relation (6.1) was derived in [1] for to = tl by a different 

method. Note that for s = 1, V V . . d d h l' 2'··· are 1.1. • an ence-

forth have the same distribution as V. This also explains the 

equality of 2 
0-

In figure 2, l/EV 

and Var V. 

is shown as a function of A for selected 

values of s and for tl = to and tl = O. StO· For tl = to 

we have the model of the stretch receptors suggested by Fenstad 

et al. [1], while the case tl = O.Sto is included to illustrate 

certain theoretical aspects of phaselocking. 
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For regular input (s = (0) an extreme degree of phaselocking 

occurs, and the frequency curve contains large "paradoxical 

segments", where increased inhibition causes higher output fre-

quencies (see also [7] and [8] ). It is seen that as the "irregu-

larity" of the spike train increases, i.e. s decreases, the 

paradoxical segments gradually disappear. Note that for tl < to 

(figure 20), the "average" effect of the PSPs may be both 

inhibitory and excitatory depending on A. Note also that for 

certain intervals of A, the response of the pacemaker for high 

s-values is equal for tl = to and tl = O.8tO. This illustrates 

the locking of the output spikes to the input spikes. 

The stretch receptors show phaselocking behaviour if they receive 

(artificial) regular input. However, under physiological conditions, 

there appears to be specific neuronal mechanisms which cause the 

system to operate with a level of "irregularity" high enough 

to avoid paradoxical segments ([9,16]). However, it might be 

expected that this way of obtaining "smooth" frequency-curves 

incurs certain costs, for instance unappropriate levels of vari-

ation in interspike interval lengths in the stretch receptor. Al-

though the nature of the decoding mechanism is only fragmentarily 

known, the two measures of variation,:Var V (" s hortterm") .and 

2 cr ("longterm"), should provide relevant information. Table 1 

shows the values of these measures for t = t = 1 o 1 
and selected 

values of sand Ao It is seen that for moderately strong in-

hibition, the variation in interval length is fairly low. Thus, 

variation does not appear to be a serious obstacle to the "use" 

of irregularity as a means to avoid phaselocking. 
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Note from Table 1 that depending on A, 
2 2 

Var V > a or Var V < a , 

i.e. there is no general "order" of these measures. We also observe 

that in the middle of the paradoxical segments, high s-values im-

ply low values of variation, while the variation may increase as a 

f 'f d the "l'umps" between the paradoxical seg-unct~on 0 s aroun _ . 

ments. 

Example 2: Summation of excitation and inhibition. 

In many neuronal systems, the summation of inhibition and excitation 

has been observed to obey the following rules (for references, see 

[1]): a). The frequency reduction caused by the inhibition is 

approximately proportional to the inhibitory frequency. b). For 

a constant inhibitory frequency, the frequency reduction is al-

most independent of the excitatory drive, i.e. the sensitivity of 

the neuron to changes in excitation is not changed during inhi-

bition. 

Granit, Kernell, and Lamarre [17], suggested that this kind of 

behaviour would occur in certain systems where the inhibition 

hyperpolarized the neUron without any concomitant shunting of 

the excitatory currents. Fenstad et al. [1] showed experimentally 

that the stretch receptors of the crayfish obeyed the above mentioned 

summation principles, and argued on the basis of intracellular 

recordings that the inhibitory process works in the way suggested 

by Granit et al. As mentioned earlier, their description of the 

inhibitory process lead to the model discussed here with tl = to. 

Fenstad et al. [1] computed the expected output frequencies under 

Poisson arrival of the PSPs. These frequencies fitted the experi-

mentally observed frequencies well,.except at the lowest levels of 

excitatory drive. 



18 

Under the experimental conditions studied by Fenstad et al. (and 

probably under many normal physiological conditions) the input 

to the stretch receptors appears to be better described by gamma 

distributions more regular than the Poisson process [9J. Using 

the expressions from example 1, it is seen that with these 

"improved" input distributions the frequency reduction caused 

by the inhibition follows the discussed summation principles al­

most perfectly, (see figure 3, s = 4). Thus, to our opinion, 

the system provides an illustrative demonstration of how this 

kind of summation of excitation and inhibition can arise. 

In Figure 3b, the behaviour of some model neurons with tl < to 

is shown. Note that for low values of tl ( f::3 high reversal 

potential) the inhibition is very efficient at low levels of 

excitatory drive. 

t-- --



Figure 1. Idealized electrophysiological activity in a neuron 

which could be represented by the models discussed here. 

Wo: resetting membrane potential. Wr = reversal potential. WT ! 

firing threshold. S.: firings in the neuron. V.: interspike inter-
l l 

vals in the neuron. T.: arrival times for the PSPs (marked with 
l 

arrows). X.: interarrival times for the PSPs. 
l 

Figure 2. Values of l/EV ("firing frequency") in the model neuron 

as a function of the frequency (A) of the PSPs. The interarrival 

intervals for the PSPs are assumed to be independent and r-distri-

buted with mean 
-1 

A and variance The curves corre-

spond to different values of the parameter s. In 2a, tl = to 

and in 2b, tl = O.St O· 

Figure 3. Values of l/EV ("firing frequency") in the model neuron 

as a function of the excitatory drive (l/tO). The interarrival 

intervals for the PSPs are assumed to be independent and r-distri­

buted with mean A-I and variance (sA 2)-1. The broken lines 

correspond to different values of the parameters s and tIe 

(For l/tO + 00, it can be shown that l/EV converges towards 

.\( tl/tO - l;z), i. e. the frequency reduction caused by the inhibition 

is proportional to A). The fully drawn lines represent the 

response predicted from the suwmation principles discussed in 

example 2. 


