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ABSTRACT. A large deviation expansion of the density of a maximum 

likelihood estimator is derived in the case of replications from a 

multivariate curved subfamily of a continuous exponential family. 

Apart from an exponentially decreasing term, the approximation de­

viates only by a relative error of order O(n- l ) from the true den­

sity in a fixed neighbourhood of the true parameter value. An ex­

ample is given which shows an excellent tail approximation even for 

small n. The results are specialized to the multidimensional non­

linear normal regression models! and it is shown, that in these 

models, the approximation may be improved to deviate only by an 

exponentially decreasing error term. 

Some key words: curved exponential family, density approximation, 

large deviations, maximum likelihood estimator, non-linear normal 

regression, saddlepoint approximation. 
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1. Introduction 

We shall derive an approximation to the density of the maximum 

likelihood estimator (MLE) of a vector parameter S in the case of 

a smooth subfamily of an exponential family of continuous type. The 

expansion is a large deviation expansion in the sense, that under 

simple replications the relative error of the approximation is 

O(n- l ) as n+ oo , uniformly in a fixed neighbourhood of the -true pa­

rameter value. This fact ensures a much better tail approximation 

to the distribution, than that obtained by an Edgeworth expansion, 

where the density is only approximated up to a fixed (not relative) 

error over the whole range. This may be sufficient for large n (or 

moderate n), but for small (or moderate) n other approximations are 

needed. 

The computational work required to derive the approximation is pro­

bably larger than that required to derive the first and may be the 

second term of the Edgeworth expansion, and also integration of the 

approximate density will usually have to be done numerically. How­

ever, in a very common class of models, namely the non-linear nor­

mal regression models, the result may be stated explicitely and is 

a very simple algebraic expression (see Section 6). Also, in any 

case, the complexity of the calculations is mainly determined by 

the dimension of the parameter space and does not increase with in­

creasing sample size. In fact, if n is the number of replications, 

the approximation to the density g(b) of S (the MLE) , takes the 

form In gl(b) exp{-ng2 (b)} , where gl and g2 are non-negative func­

tions. 

There are several ways of refining the approximation, some of which 

will be mentioned in the paper, but each, of course, at the prize 
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of an increased amount of numerical work. We shall be concerned 

mainly with the simplest version. 

The main ideas of the approximations are Lemma 4.2, which gives 

an exact, although not directly computable, expression for the 

intensity of the process of local maxima of the likelihood func­

tion, together with an application of the saddlepoint approxima­

tion, see Daniels (1954), to this expression. The paper has been 

restricted to maximum likelihood estimators within curved exponen­

tial families; it will, however, be clear, that the method may be 

applied to other estimators and other models. 

The paper has been restricted to the derivation of the basic ex­

pansion with only a few remarks on the (rather obvious) applica­

tions. More efficient use of the expansion in the construction of 

critical regions and confidence regions is probably possible, but 

a discussion of these problems would be beyond the scope of this 

paper. 

A few notational definitions, needed only for the multivariate al­

gebra in Sections 4,6 and 7, are given in Section 2. In Section 3 

we review the basic method, deriving the expansion in the one-di­

mensional non-linear normal regression model without attention to 

mathematical rigour. In Section 4, we shall derive the approxima­

tion rigorously in the general (multivariate) curved exponential 

family model, including the basic proofs, but postponing techni­

cal proofs to the Appendix. Section 5 contains an example illu­

strating the behaviour of the approximation for small n. For lar­

ge n the behaviour can be deduced from the theorems on its asympto­

tic properties. In Section 6 we obtain the approximation for the 

important class of multivariate non-linear normal regression models, 
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using the general results of Section 4. Finally, the Appendix con­

tains the more technical proofs, whereas, as mentioned above, the 

conceptually important proofs are included in Section 4. 
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2. Notation 

Most of the notation will be easily understood or explained, where 

it occurs. In Sections 4,6 and 7 we shall, however, use a slightly 

generalized matrix notation. Vectors, matrices and three-dimensio-

nal arrays of numbers are all regarded as matrices, e.g. A= (a ijk), 

i = I, ... f n; j = If' .. ,m; k = I, ... , ill, is an n x m x m ma tr ix . If 

B = (b ) is an m x n matrix, then AB is the matrix product with re­as 
spect to the last index of A and the first index of BT i.e. 

m 
(AB) 0 0 Q = L: a 0 0 kbk Q , 

1J fJ k=l 1J fJ 

which is an n x m x n matrix; etc. We shall some"times emphasize the 

dimensions of a matrix by writing these as subscripts, e.g. 

(a) for A or (co) for a vector c in~n. To make the no-ijk n x m x m 1 n 

tation as conventional as possible, we shall still regard vectors 

as column-vectors (i.e. c is an n x I matrix) unless otherwise in-

dicated, and write Cl for the transpose of c. Also BI is the trans-

pose of B. 

If f : ~m +~n is a differentiable function, we shall denote its 

differential by Df, i.e. 

( dfo) m 
D f (x) = dx ~ (x) ,x E ~ , 

J n x m 

and similarly D2f (x) is the n x m x m matrix of second partial deri-

vatives at x, etc. 
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3. The one-dimensional non-linear normal regression model 

Let X. =11.(13) +E., E."'-N(0,O' 2 ), SEBcJR,Bopen, 11. :B-+JR twice con-
l""l l l = ""l 

tinuously differentiable, i = 1, ... ,k and El' ... ' Ek mutually inde­

pendent. 13 is the unknown parameter; we shall consider 0'2 to be 

known, since this makes no difference in estimating S. We assume 

the existence of the maximum likelihood estimator 13 of 13, and to 

avoid technical details we shall also assume, that only one local 

maximum of the likelihood function can occur. Both of these assump-

tions will be relaxed in the next section. 

Let So EB be a fixed (true) value of the parameter, and let gO(b) 

denote the SO-density of 13 at an arbitrary fixed point b. For the 

various functions of 13, we shall use the convention, that if the 

argument is omitted, b is understood, whereas an index 0 means the 

function evaluated at SO. Define 

d j 
D. (13) = log f(x;S), j = 1,2 

J dS j 
(3.1 ) 

where X = (Xl' ... ,Xk ) and f is the density of X, and let QO be the 

So - distribution of (D l ,D 2 ) = (D l (b), D2 (b)). Then a formal compu­

tation yields 

-1 = lim (2E) PO{Dl (13) = 0 and D2 (13) < 0 for some 13 in ]b - E,b + d} 
E-+O 

-1 = lim (2E) PO{Dl + D2 (13- b) = 0 and D2 < 0 for some 13 in ]b - E,b + d} 
E-+O 

o 
= 1 im (2 E) -1 J 

E-+O -00 
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(3.2) 

where hO is the So - density of Dl , and I{ ... } denotes the indicator­

function of the set { ... }. Notice, that no approximations are in-

volved in this computation; the general version will be given in 

Lemma 4.2 and its proof in the Appendix. 

To compute (3.2), notice that the distribution of (Dl ,D 2 ) is bivari­

ate normal with parameters 

given by 

(3.3) 

, 
where fl(S) = (fll(S), ... ,flk(S» , and T(S) is the Fisher-information. 

A direct computation now gives 

-1: 2 
hO (0) = (27fT (b» 2 exp{ -~Yl/T (b) } (3.4) 

(3.5) 

where a =-E O{D2 iDl = O} = -Y 2 + 012Yl/T (b), T2 = VO{D2IDl}=o22"- 0f2/T (b), 

and ~,~ are the standardized normal distribution and density func-

tion , respectively. Insertion in (3.2) now gives 
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( 3. 6) 

which is exact and hence solves our problem completely, since also 

its computation is feasible. 

To illustrate the general approximation, we shall continue to 

approximate (3.6) by a simpler expression. We shall do this by ex­

panding eO as a function of a2 as a2 +0, which is mathematically 

the same asymptotics as obtained by replications of the experiment. 

Using the expansion tP (-x) '" (cp (x) /x) (1 - x -2) as x + +00 we obtain 

eO'" ex(l + o(exp{-c/a 2 })) as a 2 + 0 if ex> 0 for some constant c> 0 

depending on ex. Since ex = I (SO) if b = SO' ex will by continuity be 

positive in a neighbourhood of SO' which is independent of a 2 

Defining the approximation 

ex > 0 

(3.7) 

otherwise 

2 the relative error is 0 (exp{ -c/a }) for some c > 0 uniformly in 

b E BO' where BO is some compact neighbourhood of SO' Since the pro­

bability of S being outside BO is also decreasing at exponential 

rate as a2 + 0, we shall not worry about that part of the approxima-

tion. As a final result we have 

(3.B) 

which satisfies 

Theorem 3.1. There exists a constant c > 0 and a compact neighbour-

hood BO of SO' such that 

'" 2 gO(b) =gO(b) (l+o(exp{-c/a })) (3.9) 

uniformly in bE BO as a 2 + 0, where go is given by (3.4), (3.7) and 

(3.8). 
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Proof. Follows from Theorem 4.8. 

Corollary 3.2. There exists a constant c -> 0 such that 

~ 2 
0, ~ JAg 0 (b) db - JAg 0 (b) db = 0 ( exp { - c / a }) (3.10) 

uniformly in all Borel sets A ~ B 2 as a -+ 0, where go is given by 

( 3 • 4), ( 3 • 7) and ( 3 • 8) . 

~ 

Proof. The inequality follows from the trivial fact, that eO ~ eO' 

The second part follows from Theorem 3.1 and the fact, that 
A 2 

PO{S It BO} = o(exp{-cl/O' }) for some cl > 0, which is a concequence of 

the results in Berk (1972). o 
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4. Multivariate curved exponential families 

We shall now generalize the results of the previous section to mul-

ti-dimensional subfamilies of arbitrary exponential families of con-

tinuous type. In Section 3, we essentially used the normality via 

the normality of (D l ,D2 ) only. The idea in the general case is in­

stead to use a saddlepoint approximation to the distribution of 

(Dl ,D 2 ), or rather a simple version of the mixed Edgeworth - saddle­

point approximation, see Barndorff - Nielsen & Cox (1979). The re-

suIts will, of course, be somewhat more complicated than i'jil the nor-

mal case. 

Let us first shortly review the saddlepoint approximations; for 

more thorough accounts on this type of approximations, see Barn-

dorff - Nielsen & Cox (1979), Daniels (1954) and Feller (1971), XVI. 7. 

Let S=Xl + ... +Xn be a sum of n i.i.d. random vectors with density 

f on mP, and let f*n denote its n'th convolution with itself, i.e. 

the density of S. Define 

t 'Xi p 
gt(X) =f(x)e /cp(t) , tEm" (4 .1) 

where cp(t) = Jet xf(x)dx is the Laplace-transform of Xl; we shall not 

at the moment worry about its domain. Now, 

and for a particular s, we may choose t, such that g~ is 'centered' 
t 

at sin, i.e. 

D log cp (t) = Jxg (x) dx = sin . 
t 

( 4 .3) 

*n Applying the central limit theorem to g~ the saddlepoint approxi-
t 
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*n mation to f (s) follows from (4.2). Letting h denote the density 
n 

of U = Sin this yields 

p/2 ~ -1/2 ~ ~ n -1 
h (u) = (n/2n) is(t) i exp{-t'un}<jJ(t) (l+O(n » 

n 
( 4 .4) 

as n -+ 00, where IS (t) I is the determinant of 

2 d 2 
S(t) =D log <jJ(t)=(dt.dt. log <jJ(t» 

1 J P x P 

The remaining part of this section deals with the following setup. 

Let Xl" '.'Xn be i.i.d. random vectors in~k, the density of Xl with 

respect to some measure y on~k being 

f (x ; 13) = exp {x ' e ( 13) - \jJ ( e ( 13) ) } (4.5) 

where 13 E B ~~P, B open; e : B -+JRk has a range satisfying 

e(s) Eint8=int{eE~kl\jJ(e) = Jexp{x'e}y(dx) <oo} 

for all 13 E B. Further, let X = (Xl' ... ,X ), f the density of X and 
n n 

X = EXi/n. As in the previous section we define 

-1 
Dl(S) = n (D log f (X;S» 

n p 

-1 2 D2 (S) =n (D logf (X;S» n pxp 

where 1(13) = n(De (S»~Xk(D2\jJ(e(S»)k)(k(De(S»kxP is the Fisher 

information matrix. For later reference we shall need the following 

assumptions: 

Assumptions 4.1. 

(i) X has a continuous density with respect to the Lebesgue 
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measure on the closed convex support of Xl" 

(ii) e: B -+JRk is one-to-one, bicontinouus and three times diffe-

rentiable on B. 

(iii) The Fisher information matrix I (S) is regular for all SE B. 

Let So E Band b E B be fixed points, and let us again use the con­

vention, that if an argument is omitted, b is understood: whereas 

a subscript 0 means the value at SO' 

Due to the assumption in Section 3, that only one local maximum 

of the likelihood function could occur, the limit in (3.2) was 

equal to the density of S at b. In general this is not so, but we 

shall still consider the same quantity 

AO(b) =lim(EYA )-lp {f (X;S) has a local maximum within IIS-bil< E} 
E-+O P 0 n 

(4.6) 

where Ap=vol{S E JRP ! IISil< I}. Thus AO(b) is, when it exists, the 

intensity of the point process of local maxima of the likelihood 

function. Obviously, we have 

gO(b)~AO(b), bEB ( 4 • 7) 

when the MLE is formally defined as some external point, 00 say, if 

the likelihood function has no maximum. The following lemma now 

generalizes the equality (3.2)" 

Lemma 4.2. If Assumptions 4.1 are fulfilled, then 

(4 " 8 ) 

where hO is the So - densi ty of Dl and 

(4" 9) 
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Proof. See the Appendix. 

Remark 4.3. It is clear from the proof, that Lemma 4.2 is not re-

stricted to exponential families, but we have chosen this framework, 

since in these cases the results are fairly simple and almost no 

extra conditions are needed to prove their validity. 

Our next step is to approximate hO(O) using the saddlepoint approxi­

mation. Since the expectation of Dl is usually different from zero, 

the outcome Dl = 0 is a I large deviation', and the usual normal approxi­

mation or the Edgeworth expansions could not be expected to give use-

ful results. 

Lemma 4.4. Let Asumptions 4.1 be fulfilled, and let BO ~ B be any 

compact neighbourhood of SO' then 

as n -+ 00 (4.10) 

uniformly in b E BO' where T (8) = Dtj; (8), t is the unique solution to 

(T(8)-T(8))'(D8)=0, 8=8 +(D8)tE8 o 

and S(t) is given in (4~14) below. 

(4.11) 

Proof. If n=l, the Laplace transform of Dl and its first two lo­

garithmic derivatives are 

cp (t) = EO { exp ( t I D 1) } = exp { tj; ( 8 0 + (D 8 ) t) - ljJ ( 80 ) - T ( 8) , (D 8 ) t} , t E lRP 

(4.12) 

D log cp (t) = (T (8 0 + (D8) t) - T (8)) 'D8 (4.13) 

D2 log cp (t) =( S (t) ) = (D8) I (D2tj; (8 0 + (D8) t) ) D8 pxp (4.14 ) 

Hence the equation defining the saddlepoint, cf. (4.3), becomes 
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(4.11). t may be recognized as the MLE in the model 8 E {8 0 + (D8) t}, 

which is an affine hypothesis in the canonical parameter 8. This 

fact ensures the existence and uniqueness of a solution to (4.11) 

satisfying 8 E 8, since T (8 (b» belongs to the relative interior of 

the closed convex support of Xl' The result (4.10) now follows di-

rectly from (4.4). o 

The approximation to eO' stated below, is derived from a simple 

kind of the mixed Edgeworth-saddlepoint approximation, see Barndorff-

Nielsen & Cox (1979), expanding the joint distribution of Dl and D2 

around the same point 8 as used to approximate hO(O). 

Lemma 4.5. Let Assumptions 4.1 be fulfilled and define 

Y2 = (T(8) - T(8» I (D 2 8) - I(b)/n (4.15 ) 

l-y2 1, if Y2 is neg. definite 

e = o (4.16) 

o otherwise 

then 

....., -1 
eO = eO (1 + 0 (n » as n -+ <Xl (4.17) 

uniformly on any compact set BO ~ B on which Y 2 is negatively defi­

nite, where eO is defined in (4.9). 

Let f 8' 8 E 8 denote the 8 - densi ty of X induced by (4.5) with 8 (13) 

replaced by 8. For fixed d l let tl be the solution to 

(4.18) 

i. e. tl is the saddlepoint corresponding to Dl = d l , when approxi­

mating the distribution of Dl . Then, by (4.2) 
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Since tl only depends on x through d l , so does the entire exponen­

tial factor, and since d l is an affine function of x, it follows, 

that the conditional So - density of X given Dl = d l is proportional 

to fS{ (x) on the affine support of X given Dl = d l . In particular, 

we may approximate conditional moments, such as eO' using a normal 

approximation to fs . Since this approach takes the 'large devi-
l 

ation' event Dl = 0 into account, it is preferable to a direct nor-

mal approximation. The result becomes 

(4.20) 

uniformly in b in any compact set. Since the variance and higher 

cumulants of D2 given Dl = 0 are 0 (n -1) f while y 2 is independent of 

n, (4.17) follows easily. o 

Remark 4.6. In some cases it may be possible to evaluate 

f(-d2)q~(0,d2)d(d2)' which would provide a better approximation to 
e 

eO' Only in the one-dimensional case, however, would it be feasible 

to restrict the integration to the set, where (-d2 ) is possitively 

definite. Other improvements are possible, e.g. by including vari-

ance-terms in the evaluation of the determinant rather than just 

computing the determinant of (-Y2)' 

On combining Lemma 4.2 with Lemma 4.4 and Lemma 4.5, we now have 

Corollary 4.7. Let Assumptions 4.1 be fulfilled, and let BO ~ B 

be any compact set on which Y2 is neg. definite, then 

Ao (b) = 1'0 (b) (1 + 0 (n -1) ) uniformly in b E BO (4.21) 

where 
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(n/2n)p/2 1 B(t) 1-1 / 2 exp {- n[1)1(8 0 ) -1)1(8) + T(8) I (D8)t]}I~Y21, 

if Y2 is neg. definite (4.22) 

o otherwise 

Proof. Trivial. 

It remains now only to be shown, how the approximation to AO(b) 

provides an approximation to gO(b). The answer is simple. Since the 

probability of a local maximum in a neighbourhood of BO not being 

global tends exponentially to zero, the difference between gO(b) 

and AO(b) tends rapidly to zero, such that Xo(b) also approximates 

Theorem 4.8. Let Assumptions 4.1 be fulfilled, then for some neigh-

bourhood BO of BO and some constant c > 0, 

go (b) = A 0 (b) (1 + 0 ( exp { - c n } ) ) 

'" -1 =AO(b) (l+O(n )) as n-+ co (4.23) 

uniformly in b E Ba. 

Proof. See the Appendix. 

Notice, that since BO is independent of n, (4.23) is valid for 

large deviations of the type I1 III (b - BO) 11 = 0 (Ill) in the normalized 
A 

variable III (B - BO) . 

Corollary 4.9. Let Assumptions 4.1 be fulfilled, then there exists 

a constant c > 0, such that 

= 0 (n -1 ) fAg 0 (b) db + 0 ( exp { - c n }) as n -+ co (4.24) 
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uniformly in the class of Borel sets A. 

Proof. Follows easily from Theorem 4.8 and the fact, that for any 

neighbourhood BO of SO' a constant c > 0 exists, such that 
A 

PO{S ~ BO} = 0 (exp { - cn}) as n -+ 00 , which follows from the results 

in Berk (1972). 

Remark 4.10. The advantage of this approximation compared to the 

normal or Edgeworth approximations is, that apart from the expo­

nentially decreasing term the relative error is O(n- l ) uniformly 

in all sets A. This makes the approximation particular useful for 

calculating tail probabilities. 

o 

Remark 4.11. The relative error may be improved from O(n- l ) to 

o(n-3/ 2 ) by a renormalization. There are several ways of doing this; 

the simplest is to divide X by its integral over B, but this may be 

infinite. Another method is to adjust X such that at b= SO' it 

equals the value of the third order Edgeworth expansion, i.e. in­

cluding the O(n- l ) terms; but the computational work is rather large. 

A simpler method, which is always valid, is to divide Xo by its in­

tegral as approximated by a Gauss-Hermite sum. In the one-dimensio-

nal case (p = 1) only 4 terms are required, and the approximation be-

comes 

4 2 
I = E w. Xo (b .) exp {x. } 12/1 ( SO) 

. 111 1 1= 

(4.25) 

where b i = So + X i /2/I (SO) and wi,xi ; i = 1, ... ,4 may be found in 

Abramowitz & Stegun (1964), Table 25.10. We shall not prove, that 

this formula yields a valid asymptotic normalization improving the 
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o(n- l ) error to O(n- 3/ 2 ). The proof relies on the fact, that for­

mula (4.25) yields the exact integral, if Xo is a third order 

Edgeworth expansion. 

Remark 4.12. In calculating tail probabilities the best use of the 

approximation is probably to calculate the tail area rather than 

its complementary part. The reason is, that essentially the relati-

ve error is bounded, such that small probabilities give smaller er-

rors.However, one must convince oneself, that the truncation in-

troduced in (4.16) is of no great importance, This may be indica-

ted by a small density at the boundary, where the truncation be-

comes effective. 
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5. An example 

To illustrate the performance of the approximation for small n, we 

shall use an example, chosen not because of practical relevance, 

but rather as a case, where none of the steps in the approxima-

tion are 'too accurate' as in the normal regression, where the 

saddlepoint approximation (4.10) is exact, and at the same time 

the computation of the exact density is feasible. The example is 

one-dimensional, since this makes pictures easier to look at. 

Let (Y,Z) be normally distributed with expectations zero and co-

variance matrix 

\' = 02(lp p) 2 0 I I L.. 1,0>,- <p< 

and consider the subfamily given by 0 2 = 1. Defining 

2 2 8(p) = (8 1 ,8 2 ) = (-l/(l-p ),p/(l-p)) 

the model is of the form of Section 4 with p being the unknown pa-

rameter corresponding to S. Consider n independent replications, 

then 

and 

n 2 2 
X = ( L (Y. + Z. ) /2n, 

. III 1= 

n 
L Y.Z./n) 

. III 1= 

2. 2 2 I(p) =n(l+ p )/(1- p ) . 

Let us first briefly sketch the derivation of the approximation 

(4.22), (4.23) to the density gp (r) of p at r E ]-1,1[, when p is 

the true parameter. 
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The saddlepoint equation (4.11) becomes 

'" 2 t - b = a t - 2abt + c (5.1) 

where 

2 2 2 a=r/(l-r), b=(2r-p(1+r ))/(l-p), 

c = - r(l- r 2 )/(1- p2). ( 5 • 2) 

If r = ° then t = b, otherwise the saddlepoint is 

t= (1 + 2ab - (4a 2b 2 + 1- 4ac)1/2)/2a, r * 0, (5.3) 

for the other solution to (5.1), e is outside the range of e. 

A straightforward computation now gives the approximation r (r) 
p 

defined in (4.22), 

1/2 2 (n-2)/2 2 
(n/21T) (1 - p ) (1 - 2p ), I p I 2: 1/12 

r (0) = (5.4) 
p 

r (r) = 
p 

where 

gl (p,r) = 

g2 (p,r) = 

g3 (p,r) = 

° I pi> 1/12 

(n/21T)1/2 gl(p,r) /'/g2 (p,r)) exp{-ng3 (p,r)}, r=l=O, (5.5) 

(4r 3 + p (1 - 4r2 - r 4 )) / (r (1 - r2) (1 - p2) ) + t/ (r (1 - r2)), if 

positive 

otherwise 

'" 2 2 2 2 2 2 
(t-b)(l-r )/r+(2(1+r) +8pr(pr-l-r ))/(l-p 

'" 2 2 '" 2 ~ .. log [ (b - t) (1 - p ) / (r (1 - r ))] - tr/ (1 - r ), 

and b is given in (5.2), t in (5.3). Although the expression seems 

complicated, it is quite explicit and quickly calculated on a com-

puter. 
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The exact density, g (r), is derived from the Wishart-distribution p 

of X on integration along the estimation lines, see e.g. Barndorff-

Nielsen (1980), Example 1. The result is 

00 2 2 2 (n-2)/2 
f (r) =J (r + (l-r )s)(s +qs+1/4) exp{-n(a+(3s)}ds 

p 0 

(5. 6) 

where 

2 2 q=(l+r )/(l-r) 

2 2 
a=~(l-r )/(l-p), 2 2 (3= (l+r -2rp)/(1-p). 

If n is even, the integral may be calculated explicitely. In par-

ticular, if n = 2 we obtain 

2 2 2 2 g p (r) = (41 (1 - p » [r 1 ( 2 (3) + (1 - r ) / ( 2 S ) ] exp { - 2 a} . 

Note, that here, the computational work increases rapidly with n. 

We shall compute the exact and approximate density in three cases, 

and for comparison also give the usual normal approximation given 

by 

A 

g p (r) 
1/2 2 1/2 2 n 2 2 2 2 = (n/2rr) (l+p) 1 (l-p ) exp { - 2" (r-p) (l+p ) 1 (l-p ) } (5.7) 

We have also calculated the renormalized approximation 

1 
A (r)1 J r (r)dr. 

p -1 P 
(5.8) 

The three cases are 

I. p = 0, n = 10. Small n, symmetric distribution. 

11. p=0.9, n=lO. Small n, skew distribution. 
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Ill. P = 0, n = 2. Extremely small n, symmetric distribution. 

The results are given in Fig. 1-3 and Table 1-3 below. Rather 

than stating the densities of p themselves, we have stated the den­

sities of the normalized variable /n(p - p) as functions of p. These 

are obtained from (5.4), (5.6) - (5.8) on division by In. 

Fig. 1. Approximations to the density of In (p - p) with p = 0, 

n=lO. Exact density (solid), approximation (5.4) (dashes) and nor­

mal approximation (dot-dash). 
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Fig. 2. Approximations to the density of m(p-p) with p=0.9, n=lO. 

Exact density (solid), approximation (5.4) (dashes) and normal ap­

proximation (dot-dash). 

Fig. 3. Approximations to the density of m(p - p) with p = 0, n=2. 

Exact density (solid), approximaiton (5.4) (dashes), renormalized 

approximation (5.8) (dots) and normal approximation (dot-dash). 

1--
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Table 1. Comparison of approximations to the density of m(p - p) at 

13 = r, when p = 0, n = 10 . 

r exact normal approx renorm 

0.00 0.3505 0.3989 0.3989 0.3453 

0.10 0.3366 0.3795 0.3853 0.3357 

0.20 0.2996 0.3266 0.3477 0.3010 

0.35 0.2244 0.2162 0.2645 0.2290 

0.50 0.1476 0.1143 0.1720 0.1489 

0.70 5.355.10- 2 3.443.10-2 5.917·10 -2 5.122.10-2 

0.90 2.176.10- 3 6.951 0 10-3 2.270 0 10-3 1.965.10-3 

0.99 3.859.10-7 2.969.10- 3 3.933.10- 7 3.405.10- 7 

Table 2. Comparison of approximations to the density of m (p - p) at 

13 = r, when p = 0.9, n = 10. 

r exact normal approx renorm 

0.50 1.284.10-5 1.074.10-17 6.950.10.- 6 6.893.10-6 

0.70 1.088.10-2 1.247.10-4 8.547.10- 3 8.477.10-3 

0.80 0.2983 0.2303 0.2761 0.2738 
0.85 1.152 1.509 1.130 1.121 
0.88 2.118 I 2.555 2.130 2.113 

I 

I 0.90 2.777 2.825 2.825 2.802 
0.92 3.089 2.555 3.167 3.141 
0.95 

I 
2.109 1. 509 2.172 2.154 

0.99 2.494.10- 2 3.708.10-1 2.547.10- 2 2.526.10- 2 

Table 3. Comparison of approximations to the densityofm(p-p) at 

13 = r, when p = 0, n = 2 . 

r exact normal approx renorm 

0.00 0.2601 0.3989 0.3989 0.2813 
0.20 0.2611 0.3833 0.4069 0.2869 
0.40 0.2748 0.3400 0.4340 0.3060 
0.60 0.3264 0.2783 0.4950 0.3491 
0.80 0.4511 0.2104 0.6041 0.4260 
0.95 0.6258 0.1618 0.7208 0.5083 
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In case I (p=O, n=lO), it is seen (Fig. 1, Table 1), that except 

for the extreme tail, the normal approximation does quite well. The 

approximation (5.4) is slightly worse in the main part of the di-

stribution, but keeps the shape better leading to an excellent re-

normalized approximation, which has not been drawn since it is hard-

ly distinguishable from the exact density. Note, that the approxi-

mation (5.4), renormalized or not keeps its degree of approximation 

throughout the range. No truncation (see (4.22) and (5.4)) is need-

ed, when P = 0 . 

In case II (p = 0.9, n = 10) the distribution is skew, and the nor-

mal approximation is useless. The approximation (5.4), however, 

does quite well throughout the range. Here, the effect of renorma-

lization is vanishing, since the integral of the approximation is 

1.008. In this case the approximation is truncated at 0.35324 at a 

-7 density of approx. 10 . 

In case III (p=O, n=2), n is so small, that hardly any approxi-

mation can be expected to work. Both (5.4) and the normal approxi-

mation are numerically useless as direct approximations (Fig. 3, 

Table 3), but the approximation (5.4) again has the right shape, 

and its renormalized verion does surprisingly well. 

The comparison with the normal approximation has only been included 

to give an impression of the magnitude of the deviations. In a 

thorough investigation of the behaviour it would be more relevant 

to compare with the second-order Edgeworth expansion, which has an 

error of order O(n- l ), and which better approximates skew distri-

butions. Its tail behaviour is, however, not in general better than 

that of the normal distribution. 
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It seems, that the approximation (5.4) behaves similar to the saddle­

point approximation on which it is based, see Daniels (1954); name­

ly keeping its relative error fairly constant throughout the range, 

such that the renormalized approximation works extremely well. When 

calculating tail probabilities of magnitude 0.01, say, a relative 

error of 50% is often of no great importance, and the approximation 

may safely be used directly, unless the truncation is of importance. 
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6. The multi-dimensional normal regression model 

In this section, we shall specialize the results of Section 4 to 

obtain a simple explicit approximation to the density of the MLE 

of the (multivariate) parameter in the important class of nonlinear 

normal regression models. As in Section 3 we shall consider the 

asymptotics obtained by letting the variance tend to zero, which 

is equivalent (mathematically) to simple replications. 

Let X= (Xl, ... ,Xk ) be normally distributed with expectation vector 

].l (13) = (].ll (13), ••• ,].lk (13» and covariance matrix L =O'2Ik x k' where 

13 E B ~m.p is the unknown parameter, B is open, 0'2 is considered to 

be known, and].l B +m.k is a known function. 

As previously, 13 is the ~1LE of 13; 13 0 E Band b E Bare arbitrary fix-

ed points, and 

1(13) = (D (13»'D (13)/0'2 
].l ].l 

(6.1) 

is the Fisher information matrix. Since the density of X is of the 

form 

2 
f (X; 13) = c ( 13) • {exp ].l ( 13) 'Xl a } 

this is a curved exponential family model as discussed in Section 

4. The Assumptions 4.1 are equivalent to 

Assumptions 6.1. 

(i) ].l : B +m.k is one-to-one, bicontinuous and three times diffe-

rentiable. 

(ii) The Fisher information matrix 1(13) is regular for all 13 EB. 

A direct computation, either by insertion in the results of Section 

4 or using the normality of (Dl ,D2 ) in combination with Lemma 4.2, 
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now shows, that the approximation (4.22) becomes 

Ao (b) = (2n) -p/2 1 I (b) i -1/280 

= (2n) -p/2 1 I (b) 1-1 / 2 eO . exp {- 2~2 IIPb (]J (SO) -]J (b))11 2 }, ( 6.2 ) 

where Pb is the projection matrix onto the subspace spanned by the 

columns of D]J(b), and 

if Y2 is negatively definite 

( 6. 3) 

otherwise 

= (6.4) 

Remark 6.2. 

The asymptotic behaviour of this approximation is stated in Theorem 

4.8 and Corollary 4.9. There are, however, less approximations in-

volved in this case, since the approximation (4.10) to hO(O) here 

is exact, and also Y 2 is exactly equal to EO {D 2 I Dl = O}. Both of 

these approximations contributed with a relative error of order 

O(n- l ) in the general case. Hence, it might be worthwhile also to 

-1 
remove the last O(n ) - error by including the variance terms in 

the approximation to eO' Even the higher-order terms (in powers of 

-1 
n ) may be removed in this way, leaving only exponentially decreas-

ing errors, but if the dimension p is large, this requires quite a 

lot of computation. We shall not state these refined expansions, 

which are easily written down for a specific p. 
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7. Appendix 

Proof of Lemma 4.2. The event M1(E), say, that f(X;B) has a local 

maximum at some B in {I 1 B - b 11 < E} is the same as the event, that 

Dl (B) = 0 and D2 (B) is negatively definite for some B in the same 

set, except if Dl (B) = 0 and D2 (B) = 0, which may be disreg-arded be­

cause of Assumption 4.1(i). We shall show, that furthermore Ml(E) may 

be replaced by the event 

M2 (E) = {SI (B) = 0 for some B in {II B-bil < E}, and D2 (b) is neg. 

definite} 

where SI (B) = Dl (b) + D2 (b) (B - b) = Dl + D2 (B - b) is the linear approxi­

mation to Dl (B) around B = b. 

SiX 
Observe, that since the Laplace transform EO{e } exists in a 

neighbourhood of zero, there exists a Kl > 0, such that 

and for some positive constants K2 ,K3 we have 

-1 
E 

if IIx-T(e)11 -1 
< Kl log E 

Now, let 0 < cS < 1 be fixed, then 

(1 + cS)p lim (EPAp ) -lpo (Ml (E) 
E-+O 

= (1+ cS)p' lim (EP(l+ cS)PAp)-lPo(Ml(E(l+ cS))) 
E-+O 

(7.1 ) 

(7 .2) 

(7.3) 

(7 .4) 
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- -1 
But, if Sl(Sl) =0, Ilsl-bll <Sf and IIX-T(8)11 < Kl log s , then 

{Sl (S) Ills - slll < os} ~ {y E:1l:~.Plllyll < AOs} 

where A is the smallest eigenvalue of D2 , such that by (7.2), 

which contains zero if A > K2 s log s -1/ 00 Since also 

P -1 p. -1 p =o(s) +O((K3slogs ) o(K 2slogs /0» =o(s) 

as s ~ 0, proving that 

P -1 P -1 
lim(s A) Po (Ml (s» ~ lim(s A) Po (M2 (s», 
s~O p s~O p 

(7.5) 

since 0 was arbitrary. The other inequality follows similarly. 

By Assumptions 4.1, we may write D2 = A (D l ) + Y - I (b), such that A 

is a linear function and (Dl,Y) has a continuous density ~O(dl'Y)' 

say, on its closed convex support, which contains (O,EO{YIDl = a}) 

as an interior point. Thus by continuity, we have 

=f iI(b) -YI~O(O,y)dy=hO(O)eO 
y- I(b) neg.def. 

where Bs={XEJRPlllxll<s}' and hO and eO are defined in the Lemma. 
o 
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Proof of Theorem 4.8. If X = T (8 0 ), then the likelihood function 

has a global maximum at SO' Hence, by continuity, if Dl(SO) = 0 and 

X lies within a certain neighbourhood of T(8 0 ), the local maximum 

at So will also be global. By another continuity argument, using 

Assumption 4.1 (ii), there is a neighbourhood B~ of SO' and for 
I 

~ach b E BO a neighbourhood T (b), such that if Dl (b) = 0 and X E T (b) , 

then the likelihood function has a global maximum at b. Now, for 

some constant c(b), 

Po {X Et T (b) I D 1 (b) = O} = 0 ( exp { - c (b) n} ) as n -+- 00. 

This proves the first equality of (4.23), since also the uniformi-

ty follows by continuity. The second equality follows by Corollary 

4 . 7 . o 
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