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Abstract 

Let {~t} be a stationary normal sequence with zero means, unit 
A 

variances, and covariances r t = E ~s ~s+t' let {~t} be independent 
A 

and standard normal, and write M = max ~t' !-1 = max ~t. In this 
n l~t~n n l~t~n 

paper we find bounds on I P (Mn ~ u) - P (Mn ~ u) I which are roughly 

of the order 

1 (l-p)/(l+p) 
(-) 
n 

where p is the maximal correlation, p = sup{0,r l ,r2 , ... }, and it is 

shown that, at least for m-dependent sequences, the bounds are of 

the right order. Further, bounds of the same order on the rate of 

convergence of the point processes of exceedances of one or seve-

ral levels are obtained using a "representation" approach (which 

seems to be of rather wide applicability) . As corollaries we ob-

tain rates of convergence of several functionals of the point 

processes, including the jOint distribution function of the k 

largest values amongst ~l ~ . , ... , n 
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1. Introduction and discussion of the results 

The asymptotic theory of extremes of independent and of statio-

nary normal sequences has found many applications as testified 

e.g. by the books by Gumbel (1958) and Leadbetter, Lindgren & 

Rootzen (1982) and the references therein. However, for practi-

cal use of asymptotic theory, it is important to know the rate of 

convergence. The aim of this paper is to study in some detail the 

rate of convergence in extremal results for dependent stationary 

normal sequences. For the independent case, the reader is refer-

red to the papers by Hall (1979) and Nair (1981). 

Let ~1'~2' ... be a stationary normal sequence, which for conven­

ience will be assumed to have zero means and unit variances,and 

let r t =E ~s~s+t be its covariance function. Further, let 

~1'~2' ... be an "associated independent sequence", i.e. a sequence 

of independent standard normal variables, write M = max· ~t' 
n l~t~n 

M = max ~t' and let 1> be the standard normal distribution func­
n l<t<n 

tion.-The first main result of this paper (Theorem 3.1) is that, 

for u given by n(l- q,(u ))=K, n n 

(1.1) sup I P (Mn =< u) - P (M < u) I < 4R 
u>u n = = n 
= n 

Here Rn depends on K and the covariances {rt } in a rather compli-

cated way (given by (2.3) below). The leading term of Rn is de­

termined by the largest covariance p=sup{O,r l ,r2 , ... } and for 

p > ° it is of the order 

(~) (l-p)/(l+p) (log n)P/(l+p) , 

while for p = ° the order is 
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1 log n 
n 

which is improved to the order l/n in the case when in addition 

only finitely many of the rt's are non-zero. Next, it is shown 

that if only finitely many rt's are non-zero and if un -+00 in such 

a way that P (Mn ~ un) converges to a non-trivial limit (or equi va­

lently if n (1 - <P (u » -+ K, for some constant K > 0), then 
n 

A 

P (M < u ) - P (M < u ) ,..., e -K R 
n = n n = n ~n 

if p>O, and 

P (M < u ) - P (M < u ) n= n n= n 
-K 

- e R 
n 

if P = O. (Here A,..., B has the standard meaning that A = B (1 + 0 (1) ) . ) 

In particular this shows that the bound in (1.1) is of the right 

order, at least in these cases. 

It is often instructive to consider u as a "level" and to study 

the exceedances of the level by {;t} - the connection with the 

maximum of course being that 1-1 is less than u if and only if 
n 

there are no exceedances of u by ;l".";n. More generally, we 

will consider the time-normalized point processes of exceedances 

(1) (r) 
of r levels u ~ ... ~ u by; l' ... ';n' defined for j = 1, ... I r 

as N~j) (B) ='#{t~l; t/nEB, ;t >u(j)} for Borel sets Bc[O,l], 

where #{ ... } is the cardinality of the set within brackets. The 

reader is referred to e.g. Kallenberg (1976) or to the appendix 

of Leadbetter, Lindgren & Rootzen (1979) for definitions and in-

formation about point processes. Further, we will write 

N = (N(l) , ... ,N(r» and will consider it as a random variable in n n n 

the appropriate product space. The second main result (Theorem 

4.1) is a representation theorem for N . Let N be defined from 
n n 
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A 

{~t} in the same way as Nn is defined from {~t}. Then we show, 

using an idea of Serfling (1976), that there exist versions of 

Nn and Nn such that 

(1. 2) P (N * ~ ) ~ 16r2 R n n n 

and similarly N is approximated by a vector of "successively 
n 

more severely thinned Poisson processes". (It may deserve mention 

that this approach seems potentially useful also in connection 

with other problems than the one studied here.) One easy corolla­

ry concerns M~k), the k-th largest among ~l' ... '~n and is that 

sup IP (M~l) ~ u (1) , ... ,M~r) ~ u (r)) 

u (1) > ... >u (r) >u 
= = = n 

A (k) A 

where of course Mn is the k-th largest among ~l' ... '~n. 

Much of the interest in extremes of normal sequences has been 

centered on the double exponential limit of the distribution of 
k 

Mn' i.e. that, for a n =(21ogn)2, bn=an-{log logn+log4n}/(2an ), 

(1. 3) -x P(a (M -b ) __ <x) -+exp{- e }, n -+ 00 , n n n 

which is known to hold if r log n -+ 0, or in even more general 
n 

circumstances, see Leadbetter, Lindgren & Rootzen (1978). The re-

lation (1.3) can, to emphasize the connection with (1.1), be writ-

ten as 

for u = u (x) = x/a + b , and furthermore the same result holds n n n n 

also if a and b are replaced by different constants al,b l , pro-n n n n 
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vided a' la -+ 1 and a (b' - b ) -+ o. As was noted already by Fisher n n n n n 

& Tippet (1928) the convergence in (1.3) is extremely slow in the 

independent case. This was made precise in Hall (1979) in the 

following way: if a and b are as above, then n n 

(1.4) 

while 

27T b l 

n 

(1. 5) 

if a' = lib I and b' is chosen to be the solution of n n n 
2 2 exp (b' ) = n then 

n 

, 

for some constants 0 < Cl < C2 ;, 3 and n.2: 3. Further, Hall shows that 

the rate lllog n cannot be improved on by choosing a~, b~ diffe­

rently. This rate of convergence seems unfortunate if one e.g. in 

a statistical analysis wants to approximate the distribution of 

M by the limiting double exponential distribution. However, 
n 

from a computational point of view it does not pose any problems, 

since of course P (Mn ;, u) = <1i (u) n is quite simple to evaluate di­

rectly. 

It is easily seen, by combining (1.1) with Hall's results (1.4), 

(1.5) that for dependent sequences the rate of convergence in 

(1.3), under appropriate conditions, is of the order (log log n) 21 

log n or lllog n, i.e. equally slow as for independent sequences. 

For dependent sequences the quantity P (Mn ;, u), however, is more 

difficult to evaluate, and perhaps the most interesting conse-

quence of (1.1) is that it demonstrates that the approximation of 
A n 

P (Mn ~ u) by P (Mn;' u) = <1i (u) is reasonably accurate, at least when 

the maximal covariance p is not too close to one. Similarly, (1.2) 

measures how well quite complicated probabilities, concerning the 
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point processes, can be approximated by assuming independence. 

The organization of the paper is as follows. Section 2 contains 

some notation and three "technical" lemmas in which most of the 

necessary estimates are proved. In Section 3 the elementary case, 

the speed of convergence of the distribution of the maximum, is 

treated in a fairly complete way. In the next section, Section 4, 

the representation theorem for the point processes of exceedances 

is established together with some corollaries, and finally, Sec­

tion 5 contains a short discussion of possible avenues for fin­

ding improved approximations of the probabilities of interest. 
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2. Technical preliminaries 

The estimates of this section contain some fairly involved con-

stants, which for easy reference we will collect here. With no-

tat ion as in the introduction, let 

and, in case p > 0, let v be the number of t' s such that r t = p. 

We will throughout, without further comment, assume that the su-

premum is attained so that v ~ 1. In particular this is the case 

if r t -+ 0 as t -+00, and then also v < 00. If P = 0 let v < 00 be the 

number of non-zero rt's. For the second order terms, define pi 

to be the supremum for t ~ 1 of the r t I s which satisfy r t :l: p, if 

this quantity is positive, and zero otherwise, and let 

(2.1) 1 1 
S=2(1+p' - l+p) = 

2(p-p') 
(l+p) (l+p') 

Next, for p:l: 0, define 

(2.2) d(p) 
(1+p)3/2 

= , c"(p) = 
(l-p) 1/2 

(2-p) (l+p) ,c(p)= Cl (p) (4'IT)-p/(l+p) 
I-p 

and put o=sup{lr11, Ir2 1, ••. }. The main factor, Rn' in the bounds 

has a slightly different appearance in the three cases (i) p > a, 

(ii) p = 0, v = 00, and (iii) p = 0, v < 00, and in addition depends on 

a constant K, which will be introduced below, 

( 2 .3) 

(i) R =C(p)K 2/(1+p)(l:) (l-p)/(l+p) (log n/K)-p/(l+p){v +r } 
n n n 

, 
l_ 
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(ii) R = 4K 2 (1 - 02 ) -1/ 2 ~ log n ~ I r t I 
n t=O 

if p = 0, \) = 00 

( iii) R = K2 1 \) , 
n n 

if p = 0, \) < 00 • 

As a starting point for the estimates we will use the important 

identity 

( 2.4) P (M < u) - P (M < u) 
n = n = 

1 u' 
= L:: r J J • -:. J fh (xs = x t = u) dx' dh 

l::;s< t::;n s-t h=O - 00 

- -

where fh (xs = x t = u) is the function of n - 2 variables which is 

obtained by putting Xs = x t = u in the density function of n statio­

nary normal random variables with zero means, unit variances, and 

covariances h r t , and where the "primes" signify that Xs and x t 

are deleted from the integrations, the intervals of integration 

each being (- oo,u]. The equation (2.4) is due, in various ways, 

to Slepian (1962), Berman (1964), and Cramer, and for a deriva-

tion of it see e.g. Leadbetter, Lindgren & Rootzen (1979), p. 

45-47. It is useful to write it in a slightly different form. 

Let 

w (u) 1 exp{-
'r -2n(1_r2)1/2 

1 
2 2 (l-r ) 

1 u2 
= . 2 1/2 exp{- l+r} 

2n (l-r ) . 

2 2 2 (u - 2ru + u )} 

be the joint density of two standard normal variables with corre-

lation r, evaluated at the point (u,u), and let 

f (x' I x = x = u) = f (x = x = u) /1)! 
h s t h s t hr t(u) s-

be the conditional density, given that the s-th and t-th variables 

equal u, in a n-dimensional normal distribution with zero means, 

unit variances and covariances hrt . The identity (2.4) can then 
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be written as 

(2.5) P (M < u) - P (M < u) 
n = n = 

1 u' 
= E r t ! 1jJh (u) !.-:.! fh(x'lx =xt =u)dx' dh . s- r s-
l~s<t~n h=O s-t - 00 -

Since f (x'lx =x =u) is a density function it is clear that h s t 

u' 
( 2.6) o ~ ! . -:.! fh (x I I Xs = x t = u) dx' ~ 1 . 

- 00 

The main proofs use the right-hand inequality in (2.6) to esti-

mate the expression in (2.5). However, we will also see that often 

not much is lost by this. 

Lemma 2.1 Let u > 0, suppose r =1= 0, I r I < 1, write p = max{ 0, r} and 

let c, c' be given by (2.2). Then 

(i) 1 2/ (1+ ) 2 "() 1 
{c'(r)e-u r _e-u }/{l+ c 2 P }~!1jJhr(u)dh 

2'ITu 2r u 0-

< 1 
- -c 2 _ .. 2'ITu r 

2 2 
{c'(r) e -u 1 (l+r) _ e -u } . 

Suppose that furthermore u > 1. Then 

1 
( i i) 0 ,;;; ! 1jJ hr (u) dh 

o 

and, if r,; P' for some constant O.s pi < 1, then 

( iii) 

1 
o ,;;; ! 1jJ hr (u) dh 

o 
,;2(2+ P ')/(1+ P')(4'IT)-p'/(1+p') (1-r 2 )-1/ 2{(1_cD(u))u}2/{1+p') • 
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Proof By partial integration 

( 2 .7) 
112 

2n J \~ (u) dh = J (1 - h 2r2) -1/2e -u / (l+hr) dh 
o hr 0 

2 2 1 1/2 2 
1 { I( ) -u /(l+r) _e-u } _~ J (2-hr) (l+hr) e-u /(l+hr)dh 

= u2r c r e u2 0 (l-hr) 3/2 

and the second inequality in (i) follows at once, since the last 

integral in (2.7) is positive. Moreover, (2-hr) (l+hr) 1/2 (l-hr) -3/2 

.::: c"(p) (1-h 2r2) -1/2, as is easily checked, and hence 

( 2.8) 
1 1/2 2 1 
J (2-hr) (l+hr) e-u /(1+hr)dh~2ncll (p) JWh (u)dh 
o ( 1-hr) 3/2 0 r 

Inserting (2.8) into (2.7) we obtain that 

1 2 2 
JW (u)dh{l+c"(P)}> 1 {c'(r)e-u /(l+r) _e-u } 
O hr 2 = 2 2 u nu r 

which proves the first inequality in (i). 

To prove (ii) we will use that 

( 2.9) 
2 2 2 

12n(1 _ <1>(u)) > exp{-u /2} ~> exp~-u /2} 
u l+u = u 

for u ~ 1. Thus, if r = p > 0, by part (i), 

1 ,2 
J W (u)dh< c(r) -u /(l+r) 
O hr = 2 e 

2nu r 

~ 2(2+p)/(l+p) (4n)-P/(1+p) Irl-lc' (p){(:1-<1>(u))/u P}2/(1+P) , 

and similarly, for r < 0, p = 0, 

1 1 
J Whr (u) dh ~ 2 
o 2nu Irl 

and hence (ii) holds in either case. Finally, it is immediate 

that, for u ~ 1, 
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1 1 -u 2/ (1 +p , ) 
6 ~hr(u)dh ~ 2~(1_r2)1/2 e 

~ 2 ( 2 + pi) / (l + pi) (4 ~) - P I / ( 1+ pi) (1- r 2 )-1/2 { (1 _ cP (u) ) u} 2/ ( 1 + pi) 

by (2.9), which proves (iii). o 

The main lemma now follows easily. In it we will only consider a 

restricted range of u-values (which may even be empty for small 

n). The remaining range of u's of interest to us is easier to 

treat, as shown in the proof of Theorem 3.1 below. 

Lemma 2.2 Suppose that for some constant K > 0, 

(2.10) n(l-CP(u» ~K 

and that 1 ~ u ~ 2 (1 + p) -1/2 (log n/K) 1/2. Then 

n 1 
(2.11) n L: I r t I f ~h (u) dh ~ 4R , 

t=l 0 r t - n 

for R given by (2.3) (i), (ii), and (iii) , respectively, for p > 0, 
n 

for p = 0, v = 00, and for p = 0, v < 00. 

Proof First, by (2.9) and (2.10), 

i.e. 

( 2 . 12) 

for u ~ 1. 

n 
I21T 

-u2/2 e 
2u 

< K , 

u 2 1 2 2 
log n/K ~ T{ 1 + 2" log 8~u } ~ 2u 

u 

Now, suppose that p > O.Using Lemma 2.1 (ii) to bound summands 

with r t = p and Lemma 2.1 (iii) to bound the remaining summands 

we have that 
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(2.13 ) 

n 1 
n I I r If ljJ ( u) dh ~ n 2 ( 2 + P ) 1 ( 1 + p) c ( p) { (1 - <I> (u) ) 1 uP} 21 ( 1 + P ) 
t=l t 0 hrt -

+ n 2 ( 2 + pi) 1 ( 1 + pi ) ( 41T) - p I 1 ( 1 + P , ) I I I r t I { (1 _ <I> (u») u} 21 ( 1 +p I) I 

(1_r2)1/2 
t 

where I' denotes surrunation over all tE{l, ••. ,n} such that r t =1= p. 

Since n(l - <I> (u» ~ K and (1/2 log n/K) ~ u ~ 2 (1 + p) -1/2 (log n/K) 1/2 

by assumption and (2.12), we have that 

2/(1+p) 
{ (1 - <I> (u) ) 1 uP} 21 ( 1 + p) ~ 2 pi ( 1 + p) (~) ( log n/K) - pi ( 1 + P ) 

and that 

{(1- <I>(u) )u}2/(1+p') 

,; 22/(1+p') (l+p)-l/ (l+ pl ) (~)2/(1+P') (10gn/K)1 / (1+ p ') • 

Inserting this into (2.13) we obtain, with 8=sup{lr11,lr21, ... } 

-1 -1 and € = 2 (p - p' ) (1 + p) (1 + P , ) , 

n 1 
n I Ir Ihp (u)dh~ 4c (p)K 2/(1+ p\!) (l-p)/(l+p) (log n/K)-p/(l+ P) 
t=l t 0 hr t - n 

n 
x {v + 16K€ (1 - 8 2 ) -1/2 I I r I (1) € (log n/K) 1+€/2} , 

t=l t n 

and comparing with (2.3) (i), this proves (2.11) for the case 

p > O. 

Next, suppose p=O. Then, using Lerruna 2.1 (iii), similar ca1cu-

1ations show that 
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proving (2.11) for the case p = 0, v = 00 • 

Finally, suppose p=O, v<oo, so that by Lemma 2.1 (ii) 

n 1 n 'r t I 2 2 1 
nE' r t ' J l/J h (u) dh ~ 4 n E -'--I (1 - <I> (u)) ,:;; 4 K v n 

t=l 0 r t t=l r t 
rt*O 

which shows that (2.11) holds also in this case. o 

Clearly (2.5) and Lemma 2.2 together will provide a bound for 

'P (Mn ,:;; u) - P (Mn ,:;; u) ,. However, for the point pro~esses of exceedan­

ces, some further estimates are needed. Let, as in the introduction, 

u (1) :i; ... :i; u (r) be r levels and define I~i) = I{~t > u (i)} where I 

is the indicator function, i.e. I~i) is one if ~t>u(i) and zero 

otherwise. Further, let BO be the trivial cr-algebra, and for t:i; 1 

let Bt=cr{I~i); l':;;i,:;;r, l,:;;s;t}bethecr-alg-ebra generated by the 

exceedances up to time t. 

Lemma 2. 3 ( i ) 

sup 'P({I~i) =O}B) _P(I~i) =O)P(B)' < 
BEBt _ l 

1 
< 2 rE' r t' J l/J (u (r) ) dh . 
= 12: s <t s- 0 hr s-t 

(ii) Suppose that u = u (r) satisfies the requirements of Lemma 

2.2. Then 

~ ~ EIP(I(i) =01' Bt - l ) _P(I(i) =0)' <16r2 R 
t=l i=l t t = n 

with R given by (2.3). 
n 

Proof (i) This follows from an extension of the proof of Lemma 

3.2 of Watts, Rootz§n & Leadbetter (1980). In fact, let in that 

proof £~ = 1, £n = 0, let BE Bt - l and write 
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(2.14) 

B=B {I(l) =O} UB {I(l) =l} 
10 s 11 s U ••• U B {I (r) = O} U B {I (r) = I} 

rO s rl s 

(instead of B = BO{ I . = O}U Bl { I . = I} in the cited proof), where 
n, J n, J 

each of BlO, ... ,Brl is a disjoint union of sets of the form 

n{Il j ) =xlj } where each xlj is zero or one and the intersection 

is over j = 1, ... , rand l = 1, 0 0 • , s - 1, s + 1, ... , t - 1. Proceeding as 

in the cited reference, each term B. {I (j) = k} leads to a term 
Jk s 

00 

(2.15) 
- _ (j) (i) 

f ... f fh (x s - u , x = u ) dx ' 
-00 t-

in the estimation of the quantity F' (h) defined there, where 

f (x = u (j) x = u (i)) is the function of t - 2 variables which 
h s ' t 

is obtained by putting x = u (j), x = u (i) in the density function 
s t 

of t stationary normal random variables with zero means, unit 

variances and covariances hrto Now, (2.15) is just the density of 

two standard normal variables, with correlation hr t evaluated s-

at (u(j) ,u(i)), and may easily be shown to be bounded by 

~hr (u(r)). Part (i) then follows at once, since there are 2r 
s-t 

terms in (2.14) and since by construction flF' (h)dh is equal to o 
P({I~i) =O}B) _P(I~i) =O)P(B). 

(ii) This follows easily if we show that 

EIP(I(i) =011 B ) _P(I(i) =0) 1 
t t-l t 

< 2 sup IP({I~i) =O}B) _P(I~i) =O)P(B) 1 
BEB t _ l 

since then, by part (i) and Lemma 2.2, 
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~ ~ EIP(I(i) = OIIB ) _P(I(i) = 0) I 
t=l i=l t t-l t 

n 1 
< 2 r L: 2 r L: I r I J 1J! (u (r) ) dh 

t=l l,;:;s<t s-t 0 hr s-t 

2 n 1 ( ) 
< 4 r n L: 1 r t I J 1J!h (u r ) dh 

t=l 0 r t 

< l6r 2 R = n 

However, for B = {P(I(i) = 011 B ) >P(I(i) = O)} E Bt - l , by standard 
t t-l t 

calculations 

E I P (I ( i) = 0 11 B ) - P (I (i) = 0) I = J {p (I (i) = 0 11 B ) - P (I (i) = 0) }dP 
t t-l t B t t-l t 

- J {p (I ~ i) = 0 11 B t -1) - P ( I ~ i) = 0) } dP 

BC 

={P({I(i) = O}B) - P(I(i) = O)P(B)}-{P({I(i) = O}Bc ) - P(I(i) = O)P(B)} 
t t t t 

.::: 2 sup IP({I~i) =O}B) _P(I~i) =O)P(B) I , 
BEB t _ l 

which completes the proof of part (ii). o 
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3. The rate of convergence of the maximum 

A 

The rate of convergence to zero of P (Mn ~ u) - P (Mn ~ u) now follows 

easily. To obtain efficient bounds we will, as in Lemma 2.2, re-

strict the domain of variation of u by requiring that 

n(l - 1> (u)) ~ K, for some fixed K > 0, or equivalently that u,; un' 

where un is the solution to the equation n (1 - 1> (un)) = K. Since 

this clearly implies that 

(3.1) P (M < u ) 
n = n 

-K -+e n-+ oo , 

and conversely, if (3.1) holds T then n (1 - 1> (u )) -+ K I as is easily 
n 

seen. Horeover, if P (Mn ~ un) - P (Mn ~ un) -+ 0, then of course the 

same equivalence holds for M replaced by M . 
n n 

Thus, since the bounds for the rate of convergence will be proved 

for u,; un' they will apply to the upper part of the range of vari­

ation of P (Mn ~ u), and by taking K large an arbitrarily large 

part of this range is covered j but at the cost of a poorer bound. 

Theorem 3.1 Let {~t} be stationary normal, with zero means, unit 

variances and covariances rt=E~s~s+t' Let p=sup{O,rl ,r2 , ... } 

and let v be the number of r t 's, t,; 1, with r t = p, in case p > 0 f 

and let v be the number of non-zero rt's, for t,;l, otherwise. 

Further I let 8 = sup{ I r 11 I I r 2 I , ..• } and let E > 0, c, C I I 

as defined in (2.1) - (2.3). Suppose that u 2: 1, and that 

( 3 .2) n(l-1>(u)) ~K , 

for some constant K, with n/K 2: e. Then 

and R be 
n 
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(3 • 3) I P (M < u) - P (M < u) < 4R 
n= n= = n 

or, more explicitly, writing L1n = I P (Mn ;;; u) - P (.[\1n ;;; u) I, if P > 0 

then 

L1n;;;4cll (P)K2/(1+P) (~) (l-p)/(l+p) (lOgn/K)-P/(l+P){v+rn }, 

with rn given by (2.3,i),if p =0 then 

n 
L1 .::;16K2 (1-o2)-1/2!logn/K L Irtl 

n - n t=O 

and if in addition v < co then 

2 1 L1 < 4K - v . 
n= n 

Proof By (2.5) and (2.6) 

1 
< L I r t I J~h (u) dh s- r 

l;;;s< t;;;n 0 s-t 

and it follows from Lemma 2.2 that (3.3) holds for u satisfying 

(3.2) and 1;;;U;;;2(1+p)-1/2 (log n/K) 1/2. 

To complete the proof we will show that (3.3), rather trivially, 

is satisfied also for u > 2 (1 + p) -1/2 (log n/K) 1/2. In fact 

( 3 .4) I P (Mn ;;; u) - P (Mn ;;; u) I = I P (Mn > u) - P (Mn > u) I 

< P (M > u) + P (M > u} 
n n 

< 2n (1 - iP (u) ) 

by Boole IS inequality. Since 1 - iP (u) < (2n) -1/2 

for u ~ 2 (1 + p) -1/2 (log n/K) ~ 1 that 

2 
u /2/ e u, we have 
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1 - <I> (u) < (27T) -1/2 exp{- ~(2 (1 + p) -1/2 (log n/K) 1/2) 2} (log n/K) -1/2 

< (27T)-1/2(~)2/(1+p) (logn/K)-1/2 
n 

and hence, by (3.4), 

< 4R , = n 

by straightforward calculation. o 

As an easy corollary to the theorem we shall prove that an ana-

logue of Hall's result (1.5) holds also for dependent sequences, 

under appropriate conditions. 

Corollary 3.2 Suppose that {~t} is stationary normal, with zero 

means, unit variances, and covariances {rt } such that 

( 3 .5) 2 2 1 (l-p')/(l+p') (log n) (log log n) (-) 
n 

as n ~ 00, where p' is defined on P. 6 

Then for a~,b~,cl' and C2 satisfying (1.5) 

-x o < Cl ~ lim inf {sup log niP (a~ (Mn - b~) ~ x) - exp{ - e } I } 
n ~ 00 x 

~ lim sup{sup log n I P(a~ (Mn - b~) .:::: x) - exp{ - e -x} I} 
n ~ 00 x 

and the order l/log n of convergence cannot be improved by choos-

ing other norming constants than ai, b l • In particular, for 
n n 

a = (2 log n) 1/2, b = a - {log log n -log 47T}/(2a ) , n n n n 
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( ( b ) { -x} 1 -x exp{_e-X}(lOglOgn)2 P an Mn - n) ~ x - exp - e ......, 16 e log n 

Proof By (1.5) and (1.4) it is sufficient to prove that 

(3.6) sup I P (Mn ~ u) - P (Mn ~ u) I = 0 (l/log n) 
-oo<u<oo 

We first note that (3.5) implies that 8 = sup{ I r 11 , 1 r 2 I , ••• } < 1 

(since otherwise r t would be periodic, which contradicts (3.5)). 

Now, it is straightforward to check that if the constant K in the 

bound R is chosen as K = K = 2 log log n, and if (3.5) holds, then n n 

R = 0 (l/log n), so that 
n 

( 3 .7) sup 1 P (Mn ~ u) - P (Mn ~ u) 1 = 0 (l/log n) 
u>u = n 

for u given by n(l-!f.>(u)) =K =2loglogn. 
n n n 

Furthermore, for u < u , = n 

1 P (Mn ~ u) - P (Mn ~ u) I ~ 2P (Mn ~ un) + 1 P 01n ~ un) - P (Mn ~ un) I 

=2!f.>(u )n+o(l/logn), 
n 

and since 

n !f.>(u) = (1- (l-!f.>(u)) 
n n 

< -n(l-!f.>(u )) 
=e n 

-2 = (log n) 

it follows that 

A 

sup 1 P (Mn ~ u) - P (Mn ~ u) 1 = 0 (l/log n) 
u<u = n 

which together with (3.7) proves (3.6). o 

n 
From Theorem 3.1 follows that, supposing Lt=llrtl does not grow 

too rapidly, if p > 0 then the rate of convergence is at least of 
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the order 

1 (l-p) I (l+p) -pi (l+p) 
(-) (log n) 
n 

and that if p = 0, v < 00 , then the rate is at least of the order 

1 
n 

We will now find a precise asymptotic expression for P (Mn ;; u) 

P (Mn ;; u) in the case when r t = 0 if I t I > m, for some constant 

m < 00, i. e. when the sequence is m-dependent. This will show 

that, at least for such sequences, these rates are of the right 

order. 

00 
If p=O, v=oo, and Lt=Olrt l <00, the bound given by Theorem 3.1 

is of the order 

1 -log n 
n 

It seems unlikely that this is the correct order, but the loss 

does not seem important, since clearly the rate of convergence 

cannot be better than lln, in general. 

Theorem 3.3 Suppose {~t} is stationary normal, with zero means, 

uni t variances and covariances {r t} such that r t = ° for I t I > m, 

for some constant m < 00, and that 

Then, if p > ° 
(3.8) 

n(l-iP(u))+K>O, asn+ oo • 
n 

P(M <u )-P(M <u )""e-Kc(p)K2/ (1+P) (1) (l+P)/(l-P) (1 )-p/(l+p) n = n n;;;., n n og n V 

-K e R 
n 
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and if p = 0 , then 

(3.9) 
-K 2 1 -K 

P (.1\1 < u ) - P (M < u ) rv - e K - v rv eR. n= n n= n n n 

Proof The essential part of the proof consists of a closer evalu-

ation of the quantity 

u' 
J • -:. J fh (x I 1 Xs = x t = u) d~ I = P, say 1 

- 00 

which was estimated by one in (2.6), and in the proof of Theorem 

3.1. For this it is convenient to introduce a further stationary 

normal sequence, {~t} say, with means zero, variances one and 

covariance function hrt " Let 

so that, for u = un' 

P = P (M < u 11 ~ = ~ = u ) , n= n s t n 

and let I={kE [l,n]; Ik-sl <m or Ik-tl ,;m} andJ={l, ... ,n}n I C • 

By Boole's inequality 

(3.10) P (MJ < u 11 r = ~t = u ) - L P (~k > u 11 ~ = ~t = u ) ,; P 
= n s n kEI n s n 

Since {~t} is m-dependent, P (MJ ,; un 11 ~s = ~t = un) = P (MJ ,; un) and 

thus by a similar calculation 

P (M < u ) < P (M < u 11 C = C = u ) n = n = J = n Ss St n 

.:;: P (M .::; u ) + L P (~l~ > u ) . 
- n - n kEI .1'. n 

Now, since LkEIP (~k > un) ,; 4m (1 - <j) (un» -+ 0, and since, by Theorem 

rv n -K 
3.1, P (Mn ,; un) rv P (Mn ,; un) = <j) (un) -+ e . , n -+ 00 , it follows that 
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(3.11) P (M < u 11 ~ = ~ = u ) 
J= n s t n 

-K -+e as n -+ co , 

uniformly in s,t, and h. 

Next , given that F: = F: = u , "€k is normal with variance not excee­s t n 

ding one and mean un (hrk _ s + hrk _ t ) / (1 + hr s-t). We will temporari-

ly assume that 

(3.12 ) 0< E ~ I-max h(rk _ s +rk _ t )/(l +hrs _t ) , 
k=l=s,t 

for some constant E which does not depend on k,s,t, or h. Then 

2: P (~k > u 11 F: = F:t = u ) < 4m (1 - q, (EU » -+ 0, as n -+ co , 
kEI n s n = n 

and by (3.10) and (3.11), 

U 

(3.13) 
-n -K 

P = J • •• J fh (x' 1 Xs = x t = un) dx' -+ e 
- co 

as n -+ co, uniformly in s,t, and h. 

Now, if p=O then (3.12) is satisfied, with E=l, and hence, by 

( 2 . 5 ) and ( 3 . 13) , 

(3.14) 

1 
2: r s-t J 1J!hr (u) e-Kdh 

l~s<t~n 0 s-t 

-K n 1 
roJ e n 2: r t J 1J!h (u) dh 

t=l 0 r t 

-K 1 "'e n--e 
2'lTu 2 

n 

2 -u 
n 

-K 2 1 
"'-e K -:-\), 

n 

(- \» 
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where we have used Lemma 2.1 (i) in the fourth step and that 

-u 2/2 
(21T) -1/2 e n /u '" 1 - 1> (u ) '" K/n in the last step. n n 

This proves (3.9), and we next suppose that p>O and let I" 

denote the sum over s, t such that 1;;; s < t ;;; nand r s-t = p. In the 

same way as in (3.14) we then have that 

-K .( ) (1) (l-p)/(l+p) (1 )--p/(l+p) '" e C p n og n v I 

since u '" 12 log n, and since for s, t such that r t=P the con-n s-

di tion (3.12) is clearly satisfied for some sui table € > O. Since 

the sum of the remaining terms is a(n-(l-p)/(l+p) (log n)P/(l+p», 

as was seen in the proof of Lemma 2.2, this shows that 

u' 1 -n 
I r t f 1iJh (u ) f ... f fh (x I I Xs = x t = un) dx I dh 

s- 0 r s-t n _ co 

-K .( ) (1) (l-p)/(l+p) (1 ) -p/(l+p) '" e c p n og n V 

and hence by (2.5) that (3.8) holds. o 

Comparing the asymptotic expressions for P (M < u ) - P (M < u ) 
n= n n= n 

with the bounds of Theorem 3.1 we see that the bounds asymptoti­

K cally are too large by a factor 4 e . Here the factor 4 is due 

to inaccuracies in the estimates (2.9) and (2.12) and could 

easily be reduced by restricting the range of u further. The 

factor e K is due to the estimate (2.6), as was seen in the proof 

of Theorem 3.3, and could conceivably be reduced along similar 

lines as in that proof, but perhaps at the expense of a conside-

rable increase in the complexity of proofs. 
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4. A representation for the point processes of e~ceedances 

Let N = (N(l) , ... ,N(r)) be the vector of time-normalized excee-
n n n 

dances of the levels u(l) ~ ... ,;u(r), i.e. N~i) (B) =:j:{t;~t >u(i) I 

t/nEB}, for any Borel set B~[O,l], and let ~ = (~(l) , ... ,N(r)) 
n n n 

be defined similarly, with {~t} replaced by the associated inde-
A 

pendent sequence {~t}. It is known, see Leadbetter, Lindgren & 

Rootzen (1979), that under weak conditions (the same as those 

commonly used to establish (1.3)) N converges in distribution 
n 

to a certain successively more severely thinned Poisson process 

(which will be described below). To formulate results about the 

rate of convergence of the distribution of N , and, more generally, 
n 

to find useful ways to measure the distance between the distribu-

tions of two point processes seems to be an interesting and non-

trivial question, but here we will partly circumvent this issue 

by using a "representation" approach. More precisely, we will con-

struct two processes which have the same distribution as Nand 
n 

Nn , respectively, and whose realisations are identical with high 

probability. Following common usage, we will refer to these pro-
A 

cesses as ve~~ion~ of Nand N and, since it does not lead to 
n n 

any confusion, we will use the same letter to denote processes 

which are versions of one another. 

The limiting process N = (N (1) , ... , N (r)) can be described in the 

following way. Let 0 < T (1) ;; ... ;; T (r) be given parameters, and 

let N(r) be a Poisson process in [0,1], with parameter T(r) and 

points {ok}' Let {Sk} be independent random variables, independent 

also of N (r) and taking values in 1, ... ,r with probabilities 

P (Sk = i) = (T (r- i + 1) _ T (r-i) ) / T (r) , 

=T(l)/T(r) 
i=l, ... ,r-l 

i = r . 
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(r-l) ~(r-S +1) . 
For each k such that Sk > 1 let N , ... , N k have pOlnts 

at ok' to complete the definition of N = (N(l), ... ,N(k)). Thus, in 

particular, each N(i) is a Poisson process with intensity T(i), 

but the dependence between the component processes does not have 

a Poisson character. 

Since, for each if N(i) is concentrated on the set {l/n"."n/n} 
n 

while the probability is zero that N(i) has a point in 

{l/n, ... ,n/n}, it is not possible to construct versions of Nand 
n 

N with realizations which are identical with a probability ten-

ding to one. However, such a construction is possible if N is 

"'(i) first discretized as follows; for each i, l;i; r, let Nn be con-

centrated on {l/n, ... ,n/n} with N(i) ({t/n}) =N(i) « (t-l)/n,t/n)), 
n 

t = 1, ... f n. Thus N is obtained from N by "discretizing" by pla­
n 

cing all the points of N in the intervals «t - 1) /n,t/n] at the 

endpoints tin of the intervals. 

Theorem 4.1 Let {~t} be stationary normal with zero means, unit 

variances and covariances rt=E~s~s+t' let Rn be given by (2.3) 

and let u (1) > ~ u (r) ~ l. 

(i) If 
(4.1) 

for some constant K with n/K ~ e, then there exist versions Nn and 

N of the vectors of time-normalized point-processes of excee-
n 

dances of u (1) > 2: u (r) by {~t} and {~t} respectively, 

(4.2) P (N =1= N ) < l6r2 R 
n n = n 

(1) (r) . 
(ii) Let N = (N , ... ,N ), be the thlnned Poisson process de-

scribed above, with parameters T (1) ~ ... ~ T (r) and let Nn be ob­

tained from N by "discretizing". Write T~i) = n(l - qJ (u (i))) , 
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i = 1, ... ,r, and suppose that (4.1) is satisfied. Then there exist 

versions of N,~ such that n n 

(4.3) 

Proof (i) We will use the main idea of Serfling (1976) in the 

proof. Let (~,F,p) be a probability space which supports inde-

pendent variables nl, ... ,nn which are uniformly distributed on 

[ ,(i) (i) (i), 
0,1], wr1te p =P(~l;;;u ) =cJ?(u ), l=l, ... ,r, and recall 

the notations I~i) =I{~t>u(i)}, i~i) =I{~t>u(i)}, and 

Bt=a{I~i); l;;;i;;;r, l;;;k;;;t}. Thus p~i) =P(It=OII Bt - l ) is a 

(i) _ (i) (1) (r) (1) (r) 
function, Pt -Pt (1 1 , ..• ,I t - l ), of 11 , ..• ,I t - l . We will 

first use Serfling's construction to define suitable versions of 

(') "(i) 
the processes {I t 1 } and {It } on (~,F,p). A version of the 

latter process is obtained by setting 

i=l, ... ,r, t=l, ... ,n f 

and further it is readily seen that by defining 

I (i) =I(n >p(i)) =I(n >p(i)), l' -1 r 1 tIt - , ... , I 

and then recursively, for t = 2, ... ,n, i = 1, ... ,r, 

one obtains a version of the former process. 

Hence, defining N~i), ~~i) by N~i) ({tin}) = I~i), ~n({t/n}) = i~i) , 

i=l, ... ,r, t=l, ... ,n, and N~i)({l/n, .•• ,n/n}c) = 
A(iJ c (1) ( ) 
Nn ({l/n, ..• ,n/n} ) = 0 it follows that N = (N I ••• ,N r ) and 

n n n 
A _ "(1) A(r) 
N - (N , ... IN ) have the same distributions as the point n n n 

processes (1) (r) 
of iexceedances of the levels u ' ... /U by {~t} and 

{~t} respectively. Furthermore, 
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=EIP(i) _p(i) I 
t 

it follows by Lemma 2.3 (ii) that (4.2) holds for 

u (r) S 2 (1 + p) -1/2 (log n/K) 1/2 . Further, for u (r) > 

2 (1 + p) -1/2 (log n/K) 1/2 

P (N =1= N ) < P (M > u (r)) + P CM > u (r)) 
n n = n n 

< 4R = n 

as was shown in the proof of Theorem 3.1, and hence (4.2) holds 

also in this case. 

The proof of part (ii) is quite similar. For i = 1, ... ,r let 

'TT(i) =L: oo exp{- T(i)/n}. (T(i)/n)k/k! be the probability that a 
m k-m 

Poisson variable with mean T(i) /n is larger than m, and define 

I'i l ) , ... ,I~r) by requiring that I~i) =m on the set 'TT~!i < nt ~ 'TT~i) . 

rv rv(l) ,rv(r) 
It is then immediate that N = (N , ••• ,N ) has the required n n n 

distribution if N(i) is defined by N(i) ({t/n}) =It(i), t = 1, ... ,n, 
n n 

and N~i) ({l/n, ... ,n/n}c) = O. Furthermore, 

P(N(i) .:J::N(i)) < ~ p6(i).*r(i)) 
n n t=l t t . 

~n(I'TTii) _p(i) I +'TTi i )) 

~n( IT(i) /n - T~i) /nl + (T(i) /n)2) 

= I T(i) _ T(i) I +1.( T(i)) 2 
n n 
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where we have used that I 'IT ii) - p (i) I = 11 - e -T (i) In - T ~i) In I.;; 

IT(i) In _T~i) 1nl + (T(i) In) 2/2 and that 'IT~i) ;; (T(i) In) 2/2 in the 

third step. The inequality (4.3) now follows at once from part 

(i), since P(N =l=N) <P(N =I=~) +l:~ 1 p(~(i) =l=N(i)). 0 
n n = n n 1= n n 

The variation distance, d, between the distributions of two 

r-dimensional integervalued random variables X = {X (k); 1;; k ;; r} 

and Y = {Y (k); 1;; k;; r} is defined as 

_1 
d(X,Y) -"2 l: IP(X=z) -P(Y=z) I , 

zEZ r 

where Zr is the r-dimensional integer lattice. It is immediate 

that d is a metric on the set of distributions on zr, and that it 

is a metric for convergence in distribution. The interest and 

usefulness of the metric can be seen from the easily obtained 

relations 

( 4 .4) d(X,Y) = 1 sup I Eh (X) - Eh (Y) I 
2 Ihl~l 

= sup I P (X EA) - P (Y E A) I 
A 

> sup IP(X;;z) -P(Y~z) I 

zEZ r 

The distance d only depends on the marginal distributions of X 

and Y, but if X and Y have a joint distribution it follows from 

the second inequality in (4.4) that 

(4.5) d (X, Y) ~ P (X =1= Y) 

This at once gives the first part of the following corollary to 

theorem 4.1. 

Corollary 4.2 Suppose that the hypothesis of Theorem 4.1 is 

satisfied, let A .. f j = 1, ... ,k., i = 1, ... ,r be Borel subsets of 
1J 1 
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[0,1], and write v ={N(i) (A .. ); j =l, ... ,k., i=l, ... ,r} and 
n n lJ 1 

let v ,V ,v be defined similarly, but with N replaced by N , N , 
n n n n 

and N, respectively. 

(i) Then 

d(v,v)<16r2 R, 
n n = n 

and if furthermore the A .. 's are intervals, then 
lJ 

d (v , v) < 16 r2 R + ~ I T (i) - T (i) I + 1: ~ {2k, T (i) + (T (i) ) 2} . 
n = n i=l n n i=l 1 

(ii) Suppose r = 1, and write N = N (1) for the time-normalized 
n n 

point process of exceedances of the level u = u (1), let N be a 

Poisson process with parameter T, and suppose that T = 
n 

n(l- <r?(u)) ,;;K, with n/K ~ e. Further let h : [O,lJ~JR be bounded by 

one, I hi,;; 1, and have modulus of continuity cS (E) = 

sup{ I h (t) - h (t I ) I; t, t' E [0,1 J , It - t I I .:s: E}. Then 

Proof (i) The first two bounds follow at once from Theorem 4.1 

and (4.5). Furthermore, 

r k, 
(4 .6) P (v :j: v) < E El P (N (A,,) :j: N (A. ,) ) 

n 
i=l j=l n lJ lJ 

r k, ( i) 
< E El 2 (1 - e -T In) 
= i=l j=l 

r (i) 
< E 2k, T , 
= i=l 1 

":'(i) (') since clearly N (A, ,) = N (A, ,) if N 1 does not have any p.oints 
n lJ lJ 

in the two intervals «t -1) /n,t/nJ which contain the endpoints 

of the interval AijO The last inequality in part (i) is an 

1-
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immediate consequence of (4.6) ,the second inequality in part (i), 

and the triangle inequality for the metric d. 

( ii) 

(4.7) 

By (4.3) there exist versions of N , N such that 
n n 

P (N * N ) < l6R + IT - T I + T2/n • n n = n n 

Furthermore, recalling the definition of Nn from the Poisson pro­

cess N with intensity T, we have 

and hence 

(4.8) 

n tin 
fhdN - fhdN < l: f I{h(t/n) -h(s»!dN(s) 

n = t=l s= (t-l) In 
n 

~ l: cS (l/n) 
- t=l 

tin 
f dN (s) 

s=(t-l)/n 

= cS(l/n)N([O,l]) , 

P{lfhdNn -fhdNI >£) ~ l: e-TTk/k:. 
k>£/cS(l/n) 

Part (ii) now follows at once from (4.7) and (4.8). o 

As a last corollary we will give an approximation of the joint 

distribution of the M(k) 's 
n ' the k-th largest of ~l' ... '~n. The 

proof is immediate from Corollary 4 .. 2 (i) and the obvious rela-

tion .. 

{M~ 1 ) ~ u (1) , ... , M~ r) ~ u (r) } = {N ~ 1 ) ([ 0 , 1]) ~ 0, ... , N ~ r) ([ 0 , 1]) ~ r - I} 

A(k) A A 
and its counterpart for Mn ' the k-th largest amongst ~l' ... '~n. 

Corollary 4.3 Suppose that the hypothesis of Theorem 4.1 is 

satisfied. Then 
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IP(M(l) <u(l) , ••. ,M(r) <u ) _p(~(l) <u(l) , ... ,}"1(r) <u ) I <16r2R , 
n = n =r n = n =r = n 

and 

IP(M(l)<u(l) , ... ,M(r)<U )_P(N(l) ([O,l])<O, •.. ,N(r) ([O,l])<r-l) I 
n = n =r = = 

In particular, for T =n(l-<l:J(u)) 2:K, 
n 

k-l -T . 
I P (M~k) ~ u) - L: e n T~/i! 

i=O 
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5. A comment on improved approximations 

As noted above, the approximation errors in Theorems 3.1 and 4.1 

(l-p)/(l+p) . } are roughly of the order (l/n) ,wlth p=max{O,r l ,r2 , ... , 

provided r t decreases sufficiently fast as t -+ 00. For p small, this 

seems quite satisfactory, but for p close to one it would be use-

ful to have more accurate approximations. Considering e.g. 
A 

P (Mn ,; u), and P (Mn ,; u) as a first order term in the approxima-

tion of it, one possibility would be to find a second order term, 

similar to the right hand side of (3.8), and then to find a bound 

for the error in the second order approximation of P (Mn ,; u). This, 

although perhaps feasible, seems likely to incur considerable 

extra complications to the already somewhat involved calculations 

of this paper. 

Another possibility would be to approximate Mn by the maximum, 

say Mn' of some other dependent stationary sequence {tt} which in 

some way is easier to handle than the original sequence {~t}. If 

{tt} has zero means, unit variances, and covariances rt=Etsts+t' 

an analogue of (2.4) is valid, namely 

1 u 
P (M < u) - P (M < u) = 2: { r t - r t} f f . -: . f f 1 (x = x t = u) dx I dh n = n = . s- s- ;1 s -

l,;s<t,;n 0 - 00 

where fh (xs = x t = u) now is obtained by putting Xs = x t = u in the 

density function of n standard normal variables with covariances 

hr t + (l-h)rt , c.f. e.g. Leadbetter, Lindgren, & Rootzen (1979), 

p. 47. Let p,p' be as on p. 6 and define p,p' similarly from 

{rt }. Calculations parallel to those in Sections 2 and 3 then 

show that, under suitable conditions, the rate of convergence to 

zero of P (Mn ,; u) - P (Mn ,; u) is similar to that of P (Mn ,; u) -

P (14n ,; u), but with p replaced by max (p, p) if P =I: p, and by max 
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(p' ,pi) if p = p, pi * pi. Thus, the order of the approximation is 

improved only if the maximal covariance p in the approximating 

process is eX~QX£Y equal to p. 

One consequence of the convergence of N for any r, is that 
n 

asymptotically the locations of the k-th largest values are uni-

formly distributed. An interesting question is to find a bound 

for the rate of this convergence, which is conjectured to be of 

the same order as the convergences treated in this paper. 
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