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Abstract 

Let {~t;t=1,2, ... } be a stationary normal sequence with zero 

means, unit variances, and covariances r t = E ~s~s+t I let {gt} be 
A 

independent and standard normal, and write Mn = max ~t' Mn = 
l;t;n 

A A 

max ~t. In this paper we find bounds on I P (Mn; u) - P (Mn ; u) I 
l;t;n 

which are roughly of the order 

(1:.) (l-p)/(l+p) 
n 

where p is the maximal correlation, p = sup{ 0, rI' r 2' ... }. It is 

further shown that, at least for m-dependent sequences, the bounds 

are of the right order and, in a simple example, the errors are 

evaluated numerically. Bounds of the same order on the rate of 

convergence of the point processes of exceedances of one or seve-

ral levels are obtained using a "representation" approach (iiVhich 

seems to be of rather wide applicability). As corollaries we ob~ 

tain rates of convergence of several functionals of the pOint 

processes, including the joint distribution function of the k 

largest values amongst ~l ~ . 
fl q, 0, "', n 

AM.S 1980 subject classification: Primary 60G15, secondary 60F05 g 

60GlO, 60F17. 

Key words and phrases~ Maxima of normal sequences, extreme val-
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1. Introduction and discussion of the results 

The asymptotic theory of extremes of independent and of statio~ 

nary normal sequences has found many applications as testified 

e.g. by the bo6ks by Gumbel (1958) and Leadbetter r Lindgren & 

Rootz§n (1982) and the references therein. However, for practi-

cal use of asymptotic -theory, it is important to know the rate of 

convergence. The aim of this paper is to study in some detail the 

rate of convergence in extremal results for dependen~ stationary 

normal sequences. For the independent case, the reader is refer-

red to the papers by Hall (1979) and Nair (1981). Related results 

for maxima of continuous parameter normal prqcesses have been 

obtained by Piterbarg (1978). 

Let Sl'S2' ... be a stationary normal sequence t which for conven­

ience will be assumed to have zero means and unit variances,and 

let r t = Eec be its covariance function. Further, let ssss+t 

sl,s2' .. ' be an "associated independen-t sequence", i.e. a sequence 

of independent standard normal variables, write M == max St' 
n l~t,;n 

A 

M == max St' and let qi be the standard normal distribution func-
n l<t<n 

tion.-The first main result of this paper (Theorem 3.1) is that, 

(1.1) sup IP(Mn;U) -P(Mn;;U) I ;4Rn 
u>u = n 

Here R depends on K and the covariances {r } in a rather compli-
n t 

cated way (given by (2.3) below). The leading term of R is de­n 

termined by the largest covariance p = sup{ 0, rI' r 2 f ••• } and for 

p > 0 it is of the order 

(-!) (l-p) / (l+p) (log n)p/ (l+p) 
n 

while for P = 0 the order is 
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1 log n 
n 

which is improved to the order l/n in the case when in addition 

only finitely many of the rt's are non-zero. Next, it is shown 

that if only finitely many r t I s are non-zero and if un -)- co in such 

a way that P{Mn ;; un) converges to a non-trivial limit (or equiva­

lently if n (1 - ~ (u )) -)- K, for some constant K > 0), then n 

P (M < u ) - P (M < u ) ....., e -K R 
n= n n= n n 

if p>O, and 

P(M <u ) -P(M <u ) 
n= n n= n 

-K - e R 
n 

if P == O. (Here A"", B has the standard meaning that A ;:;: B (1 + 0 (1) ) .) 

In particular this shows that the bound in (1.1) is of the right 

order, at least in these cases. 

For practical application of these results it may also be useful 

to have a feeling for the numerical size of the bounds for small 

values of n and for how well they perform compared to the actual 

approximation error. Clearly, for p zero or close to zero, the 

bounds normally are narrow, and the error in approximating 

A n 
P (Mn ~ u) by P (Mn ~ u) = q, (u) is quite small. However, for n small 

and p closer to one, the approximation error may not be negli-

gible, and in addition the bounds may be wide compared to the 

error. This is illustrated by numerical computations of the bounds 

and approximation errors in a simple example (an ARMA(l,l) pro-

cess). Further, a means of getting tighter numerical bounds and an 

improved estimate of P (Mn ~ un) for such cases is pointed out. 
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It is often instructive to consider u as a "level" and to study 

the exceedances of the level by {~t} - the connection with the 

maximum of course being that M is less than u if and only if 
n 

there are no exceedances of u by ~l' ... '~n. More generally, we 

will consider the time-normalized point processes of exceedances 

(1) (r) 
of r levels u ~ ... ~ u by ~l' ... '~n' defined for j =: 1, ... ,r 

as N~j) (B) = :lHt ~ 1; tin E B, ~t > u (j)} for Borel sets Bc [O,l] , 

where =l1={ ••• } is the number of elements in the set within brackets. 

The reader is referred to e.g. Kallenberg (1976) or to the appendix 

of Leadbetter, Lindgren & Rootzen (1979) for definitions and in-

formation about pOint processes. Further, we will write 

N = (N (l) , ... ,N (r)) and will consider it as a random variable in 
n n n 

the appropriate product space. The second main result (Theorem 

5.1) is a representation theorem for Nn . Let Nn be, defirlf.3d from 
A 

{~t} in the same way as Nn is defined from {i;t}' Then we show, 

using an idea of Serfling (1976), that there exist versions of 

Nand N such that n n 

(1. 2) P (N * ~ ) __ < l6r 2 R 
n n n 

and similarly N is approximated by a vector of "successive 
n 

more severely thinned Poisson processes". (It may deserve mention 

that this approach seems potentially useful also in connection 

with other problems than the one studied here.) One easy corolla­

ry concerns M~k), the k-th largest among ~l, .. "g~n and is that 

sup 
u(l» ... >u(r»u 

= = = n 

IP(M(l) 
n 

(1) M(r) =<u(r») < u I ••• , 
:= n 

A (k) 
where of course Mn is the k~th largest among ~l?.o'~n0 
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Much of the interest in extremes of normal sequences has been 

centered on the double exponential limit of the distribution of 

1: 
Mn' i.e. that, for a n = (210gn) 2, b =a -{log logn+ 10g-4rr}/(2a), 

n n n 

(1. 3) -x P (a (M - b ) .:s x) -+ exp{ - e } f n -+ 00 , n n n 

which is known to hold if r log n -+ 0, or in even more general 
n 

circumstances v see Leadbetter, Lindgren & Rootzen (1978). The re-

lation (1.3) can, to emphasize the connection with (1.1), be writ-

ten as 

for u = u (x) = x/a + b , and furthermore the same result hoJds n n n n 

also if an and b n are replaced by different constants , prc~ 

vided a '/a -+ 1 and a (b' - b ) -+ O. As was noted already by Fisher n n n n n 

& Tippet (1928) the convergence in (1.3) is extremely slow in the 

independent case. This was made precise in Hall (1979) in the 

following way: if an and b n are as above, then 

(1. 4) p (a (~ - b) ) - exp{- e -x .. rv ~ e -x exp{- e -x} (log log.n) 2 
n n n'; x _. 16 log n 

while if a' = b' and bn' is chosen to be the solution of n n 
2 2 

2rr b~ exp (b~ ) = n then 

(1. 5) 
A -x 

Cl/log n,; sup I P (a~ (Mn - b~) ; x) - exp{e } I ,; C2/log n 
x 

for some constants 0 < Cl < C2 ; 3 and n,; 3. Further, Hall shows that 

the rate l/log n cannot be improved on by choosing a~1 b~ diffe­

rently. This rate of convergence may be unfortunate if one e.g. 

in a statistical analysis wants to approximate the distribution 

of M by the limiting double exponential distribution, even if n 
1 -x -x . 

the factor Re exp{-e }In the righthand side of (1.4) is ra-
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ther small, and the approximation because of this starts out fair­

ly well - c.f. Leadbetter, Lindgren & Rootzen (1982). However, 

from a computational point of view it does not pose any problems, 

since of course P (Mn ~ u) = ij) (u) n is quite simple to evaluate di­

rectly. 

It is easily seen, by combining (1.1) with Hall's results (1.4), 

(1.5) that for dependent sequences the rate of convergence in 

(1.3) I under appropriate conditions, is of the order (log log n) 2/ 

log n or l/log n, i.e. equally slow as for independent sequences. 

For dependent sequences the quantity P (Mn ;; u), however, is more 

difficult to evaluate, and perhaps the most interesting conse­

quence of (1.1) is that it demonstrates that the approximation of 

P (Mn ~ u) by P (~n ~ u) = <p (u) n is reasonably accurate, at leas t when 

the maximal covariance p is not too close to one. Similarly, (1.2) 

measures how well quite complicated probabilities, concerning the 

point processes, can be approximated by assuming" independence. 

The organization of the paper is as follows. Section 2 contains 

some notation and three "technical" lemmas in which most of the 

necessary estimates are proved. In Section 3 the elementary case; 

the speed of convergence of the distribution of the maximum; is 

treated in a fairly complete way, and numerical illustrations and 

improved numerical bounds and estimates are given in Section 4. 

In the next section, Section 5, the representation theorem for the 

point processes of exceedances is established together with some 

corollaries, and finally, Section 6 contains a short discussion 

of the rate of convergence when nor~ing with estimated values of 

mean and standard deviation, and of possible avenues for finding 

improved approximations of the probabilities of interest. 
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Finally, a reader primarily interested in applications may perhaps 

find the most relevant parts to be the theorems and discussion of 

Sections 3,5,6, and the numerical example of Section 4, and can 

without serious loss of continuity skip Section 2 and the proofs 

of Sections 3 and 5. 
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2. Technical preliminaries 

The estimates of this section contain a number of constants, which 

we will collect here for easy reference. Some of the constants are 

unfortunately given by fairly involved expressions, which could 

easily be simplified by making somewhat rougher approximations, 

but since this would make them less suited for numerical use, we 

will not simplify further. With notation as in the introduction, 

let 

p = sup{ 0, ri' r 2 r ••• } 

and, in case p > 0, let v be the number of tis such that r t = p. 

We will throughout, without further comment, assume that the su-

premum is attained so that \! ~ 1. In particular this is the case 

if r t -+ 0 as t -+ 00, and then also \! < 00. If P = 0 let \! < 00 be the 

number of non~zero rt's. For the second order terms, define pi 

to be the supremum for t ~ 1 of the r t ! s which satisfy r t =1= p, if 

this quantity is positive, and zero otherwise, and let 

(2.1) 
1 

s=2(1+p' 
1 

l+p) 
= --:-='-. .=2-!.( -F-p...,.--:::-p_1 ..<-) -;-:­

(l+p) (l+p') 

Next, for p =1= 0, define 

( 2.2) cl(p) 
(1+p)3/2 = , cil(p) = 
(1_p)1/2 

(2-p) (l+p) ,c(p)= Cl (p) (47T) -p/(l+p) 
I-p 

and put cS = sup{ I r t I; t ~ 1, r t * p}. The main factor, Rn' in the 

bounds has a slightly different appearance in the two cases (i) 

p > 0, or p = 0, \! < 00, and (ii) p = 0, \! = 00, and in addition depends 

on a constant K, which will be introduced below, 

(2.3) 

(i) Rn=C(P,K,\!) (~) (l-p)/(l+p) (log n/K)-P/(l+P){l+Yn }, 

if P > ° or P = 0 I\!< 00 , 



- 8-

(ii) 
1 n 

R =c(K,o) nlogn E Irtl , if p=O, V=OO . 
n t=O 

Here 

( 2. 4) c(p,K,v) =C(P)K2/(1+P)v f c(K,o) =4K 2 (1- 02)-~ 

and Y n is def ined by Y n = 0 for p = 0 and 

(2.5) 

with 

C = K€2(2-p' )/(l+p') (4ft) €/2 (l-p) ~ (l+p) -3/2-l/(1+p') (1-0 2 ) -~v-l , 

and with El signifying that the summation is over all t in 

{I, 2, ... ,n} for which r t =l= p. 

As a starting point for the estimates we will use the important 

identity 

(2.6) P(M <u) -P(M <u) 
n = n = 

1 u' 
= E r s-t f f. -:. f fh (xs = x t = u) dx' dh 

l;s<t;n h=O - 00 

where fh (xs = x t = u) is the function of n - 2 variables which is 

obtained by putting Xs = x t = u in the density function of n statio­

nary normal random variables with zero means, unit variances, and 

covariances h r t , and where the "primes" signify that Xs and x t 

are deleted from the integrations, the intervals of integration 

each being (- oo,u]. The equation (2.6) is due, in various ways, 

to Slepian (1962), Berman (1964), and Cramer, and for a deriva-

tion of it see e.g. Leadbetter, Lindgren & Rootzen (1979), p. 

45-47. It is useful to write it in a slightly different form. 

Let 
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<P r (u) 
1 exp{- 1 (u 2 2 2 = 

2n(1_r2 )1/2 
- 2ru + u )} 2 2(1-r) 

1 2 
exp{- u = 

2n(1-.r2) 1/2 l+r} 

be the joint density of two standard normal variables with corre-

lation r, evaluated at the point (u,u), and let 

be the conditional density, given that the s-th and t-th variables 

equal u, in a n-dimensional normal distribution with zero means, 

unit variances and covariances hrt . The identity (2.6) can then 

be written as 

(2.7) P (Mn ~ u) - P (Mn ~ u) 

= 

Since f (x I I x = x = u) is a density function it is clear that h s t 

u' 
(2.8) o ~ f . -:. f fh (x' I Xs = x t = u) dx' < 1 

- 00 

The main proofs use the right-hand inequality in (2.8) to esti-

mate the expression in (2.7). However, we will also see that often 

not much is lost by this. 

Lemma 2.1 Let u > 0, suppose r =1= 0, Irl < 1, write p = max{O,r} and 

let c, c' be given by (2.2). Then 

(i) 1 2/(1+ ) 2 "() 1 
--2- {c'(r)e-u r _e-u }/{l+c 2 P } ~f<l>hr(u)dh 
2nu r u O· 

< 1 
2 21TU r 

2 2 
{c'(r)e-U /(l+r) _e-u } . 

Suppose that furthermore u > 1. Then 
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1 
(ii) 0 ~ J cjJhr (u) dh 

o 

~ 2(2+ P)/(l+p)C(p) Irl- l {(l-<I>(u»/uP}2/(l+p) 

and, if r.sp' for some constant O~p' <1, then 

( iii) 

1 
o ~ J cjJhr(u)dh 

o 
~2(2+P')/(l+P')(4'IT)-P'/(l+P') (l-r 2 )-1/2{(l_'P(u»u}2/(1+P") . 

Proof By partial integration 

( 2 • 9 ) 
1 1 2 

2'IT J cp (u) dh = J (1 ~ h 2 r2) -1/2e -u / (l+hr) dh 
o hr 0 

2 2 1 1/2 2 
=_l_{ci(r)e-u /(l+r) -u} 1 J (2-hr) (l+hr) ~u /(l+hr)"h 

2 - e - 2 3/2 e a A 

u r u 0 (l-hr) 

and the second inequality in (i) follows at once, since the last 

integral in (2.9) is positive. Moreover, (2-hr) (1+hr)1/2(1_hr)-3/2 

~ c"(p) (1_h 2r 2 )-1/2, as is easily checked, and hence 

(2.10) 
1 1/2 2 1 
J (2-hr)(1;~~) e-u /(1+hr)dh<2'ITc" (p) Jcp.h (u)dh . 
o (l-hr) = 0 r 

Inserting (2.1m into (2.9) we obtain that 

which proves the first inequality in (i). 

To prove (ii) we will use that 

(2.11) 
2 2 2 

12 'IT (1 _ <I>eu)) > exp{-u /2} _u_> exp{-u /2} 
u 1+u2 = 2u 

for u;; 1. Thus, if r = p > 0, by part (i) f 
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1 I( ) -u2/(1+r) f .~ (u) dh .s c r e 
o hr - 2nu2 r 

and similarly, for r < 0, p=:O, 

1 1 
f ~'hr (u) dh ;; 2 
o 2nu Irl 

and hence (ii) holds in either case. Finally, it is immediate 

that, for u~li 

1 1 

~ ~hr(u)dh ~ 2n(1_r 2 )1/2 

2 -u / (l+p' ) 
e 

~ 2(2+p')/(1+p') (4n)-p'/(1+p') (1_r 2 )-1/2 {(1-tP(u))u}2/(1+P') , 

by (2.11), which proves (iii). o 

The main lemma now follows easily. In it we will only consider a 

restricted range of u-values (which may even be empty for small 

n). The remaining range of u's of interest to us is easier t6 

treat, as shown in the proof of Theorem 3.1 below. 

Lemma 2.2 Suppose that for some constant K > 0, 

(2.12) n(l-tP(u)) ~K 

and that 1 ~ u ~ 2 (1 + p) -1/2 (log n/K) 1/2. Then 

(2.13) 

f 'R ' b (2 3) (l') and (l' i), respectively, for p > 0 I or or n glven y . 

p =:± 0, \! < co, and for p = 0 f \! = co • 
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Proof First, by (2.11) and (2.12), 

Le. 

n 

12TI 

2 -u /2 e 
2u 

< K , 

(2.14 ) u 2 12 2 
log n/K,; y{ 1 + 210g 8TIU },; 2u 

u 

for u > 1. 

Now, suppose that p >O.Using Lemma 2.1 (ii) to bound summands 

with rt=p and Lemma 2.1 (iii) to bound the remaining summands 

we have that 

(2.15) 

n 1 
n E Ir 1J<j> (u)dh~n2(2+P)/(1+p)C(P){(1_<I>(u»/uP}2/(1+P)v 
t=l t 0 hrt -

where E' denotes summation over all t E {I, ... ,n} such that r t '*' p. 

Since n (1 ... <I> (u) ) ~ K and (1/2 log n/Kl 1 / 2 S u .$. 2 (1 + P 1 -1/2 (log n/Kl 1 / 2 

by assumption and (2.14), we have that 

/ 2/ (l+p) 
{(I - <I> (u» /uP}2/ (l+p),; 2 P (l+p) (~) (log n/K) -pi (l+p) 

and that 

{ (1 - <I> (u) ) u} 2/ (l+p') 

< 2 2/(1+p')(1+ )-l/(l+p') (K)2/(1+PI) l/(l+p') 
= P n (log n/K) 

Inserting this into (2.15) we obtain, with cS = sup{ I r t I ; t ~ 1, r t =1= p}, 

E = 2 (p - p ') (1 + p) -1 (1 + P , ) -1, and Cas in ( 2 . 5) , 
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n 1 
n l: Ir Ucjlhr (u)dh~4c(P)K2/(1+p) (1:.) (l-p)/(l+p) (log n/K)-P/(l+P)v 
t=l tot - n 

x{l+C l:'lrtl (~)E(log n/K)1+E/2} 

and comparing with (2.3) (i), this proves (2.13) for the case 

p > O. 

Next, suppose p = 0, v < 00, so that by Lemma 2.1 (ii) 

n 1 n I r t I 2 2 1 
n l: I r t I J cjl h ( u) dh ~ 4 n l: -I --I (1 ~ 1> (u» ~ 4 K v n ' 

t=l 0 r t t=l r t 
rt*O 

which shows that (2.13) holds also in this case. 

Finally, suppose p = 0, and v ~ m, Then, using Lemma 2.1 (iii) , 

similar calculations show that 

n 1 n Irtl 
n l: I r t I J cjl ( u) dh .::;. 4 n L { (1 _ 1> (u) ) u} 2 

t=l 0 hrt - t=l (1-r2) 1/2 
t 

n 1 
l: I r t I - log n/K 

t=l n 

proving (2.13) for the case p = 0, v =00 . o 

Clearly (2.7) and Lemma 2.2 together will provide a bound for 

I P (Mn ;; u) - P (Mn ;; u) I. However I for the pOint processes of exceedan~ 

ces, some further estimates are needed. Let, as in the introduction, 

u (1) ,; ••. ,; u (r) be r levels and define I~i) = I{ ~t > u (i)} where I 

is the indicator function, i.e. I~i) is one if ~t>u(i) and zero 

otherwise. Further, let BO be the trivial a-algebra, and for t,; 1 

let Bt=a{I~i); l;;i;;r, 1';; s;;t}be the a-algebra generated by the 

exceedances up to time t. 
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sup IP({I~i) =O}B) _P(I~i) =O)P(B) 1< 
BEB t _ l 

1 
~ 2 r L: I r t I f cp (u (r) ) dh 
- l,;;s<t s- Ohr s-t 

(ii) Suppose that u = u (r) satisfies the requirements of Lemma 

2.2. Then 

~ ~ EIP(I(i) =011 Bt - l ) _P(I(i) =0)1 <16r 2 R 
t=l i=l t t = n 

with R given by (2.3). 
n 

Proof (i) This follows from an extension of the proof of Lemma 

3.2 of Watts, Rootz~n & Leadbetter (1980). In fact, let in that 

proof ,t~ = 1, ,tn = 0, let B E Bt - l and write 

(2.16) 

B=BIO{I~l) =o} UBll{I~l) =l} Uooo U Bro{I~r) = O} U B {r(r) =1} 
:cl s 

(inst.ead of B=B {I ,= O}UB {I ,=I} in the cited proof), where o n, J 1 n I J 

each of BIO, ... ,Brl is a disjoint union of sets of the form 

n{Il j ) =x,tj} where each x,tj is zero or one and the intersection 

is over j = If ...• rand ,t == 1 f ••• ,s - 1, s + I g ••• y t ~ 1. Proceeding as 

in the cited reference, each term Bjk{I~j) =k} leads to a term 

(2.17) 

00 

-_ (j) (i) 
f . . . f f h (x s = u , x t = U ) d~ i 

-00 

in the estimation of the quantity F' (h) defined there, where 

f (x = u (j) x = u (i) is the function of t - 2 variables which 
h s ' t 

is obtained by putting Xs = u (j), x t == U (i) in the density function 

of t stationary normal random variables with zero means, unit 

variances and covariances hr t " Now, (2.17) is just the density of 
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two standard normal variables, with correlation hr t evaluated 
s~ 

at (u(j) ,u(i)), and may easily be shown to be bounded by 

$hr (u(r»). Part (i) then follows at once, since there are 2r 
s-t 

terms in (2.16) and since by construction J~F' (h)dh is equal to 

P({I~i) = O}B) _P(I~i) = O)P(B). 

(ii) This follows easily if we show that 

EIP(I(i) =011 B ) _P(I(i) =0) 1 
t t-l t 

< 2 sup IP({I(i) =O}B) _P(I(i) =O)P(B) I 
BCB t t 

c t~l 

since then, by part (i) and Le~na 2.2, 

~ ~ EIP(I(i) = OIlB ) _P(I(i) = 0) 1 

t=l i=l t t-l t 

n 1 
< 2r l: 2r L: Ir tl J$hr (u(r»dh 

t=l l~s<t s- 0 s-t 

< 4 2 ~ 1 1 7,f, (u (r) ) dh 
r n r t 0'1' hrt t=l 

< 16r2 R 
= n 

However, for B={P(I~i) =011 Bt - l ) >P(I~i) =o)} EB t _ l , by standard 

calculations 

EIP(I~i) =01IB t _ 1 ) -P(I~i)=O)1 =J{P(I~i) =011 Bt - l ) _P(I~i) =O)}dP 
B 

- J {p (I ( i) = 0 11 B ) - P (I (i) = 0) } dP 
t t-l t 

BC 

= {p ( {I (i) = O} B) - P ( I ( i) = 0) P (B)} - {p ({ I (i) = O} BC) _ P (I (i) = 0) P (B cn I 

t t t t 

< 2 sup IP({I~i) =O}B) _P(I~i) =O)P(B) 1 , 
BEB t _ l 

which completes the proof of part (ii). o 
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3. 'I'he rate of convergence of the maximum 

I' 

The rate of convergence to zero of P (Mn ;, u) ~ P (Mn ,; u) now follows 

easily. To obtain efficient bounds we will, as in Lemma 2,2, re-

strict the domain of variation of u by requiring that 

n(l - CP (u) ;, K, for some fixed K > 0, or equivalently that 

where Un is the solution to the equation n (1 - c]) (un» :.::: K. Since 

n 1 n 
P(M <u) =CP(u) ={l--(n(l-q,(u ))} ( 

n= n n n n 

this clearly implies that 

(3.1) P (M < u ) 
n = n 

-K 
-+e n-+ oo , 

and conversely p if (3.1) holds f then n (1 - q, (u ) -+ K, as is easily 
n 

seen. f>1oreover, if P (M < u ) - P (M < u ) -+ 0, then of course the 
n= n n= n 

same equivalence holds for M replaced by M . 
n n 

Thus, since the bounds for the rate of convergence will be proved 

for u';;; un' they will apply to the upper part of the range of vari­

a tion of P (Mn ;, u) f and by taking K large an arbitrarily large 

part of this range is covered, but at the cost of a poorer bound. 

Theorem 3.1 Let {~t} be stationary normal, with zero means, unit 

variances and covariances r t = E~s~s+t. Suppose that u ~ 1, and that 

(3 • 2) n(l ~CP(u)) ~K , 

f or some cons tan t K, wi th n/K ~ e. Then 

(3 • 3 ) I P (Mn ;, u) - P (Mn ~ u) I ~ 4 Rn 

with R given by (2.3). More explicitly, writing 6 = n n 

IP(Mn~U) -P(Mn~u)l, if p=max{0,rl ,r2 , ... } >0 or p=O and 
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\) = =# { t ~ 1; r t i= o} < 00 then 

with c =c(p,k,v) and Yn given by (2.4), (2.5), and if p= 0 then 

t:, < c llog n/K 
n= n 

with c = c (K, 0) given by (2.4). 

Proof By (2.7) and (2.8) 

1 
I P (Hn ~ u) - P (Hn ~ u) I < E I r I J q, (u) dh 

l~s<t~n s-t Ohr s-t 

n 1 
~ n E I r t I J cP h ( u) dh , 

t=l 0 r t 

and it follows from Lemma 2.2 that (3.3) holds for u satisfying 

(3.2) and 1~U~2(1+P)-1/2 (log n/K) 1/2. 

To complete the proof we will show that (3.3), rather trivially, 

is satisfied also for u > 2 (1 + p) -1/2 (log n/K) 1/2. In fact 

(3 .4) I P (Mn ~ u) - P (Hn ~ u) I = I P (Mn > u) - P (Mn > u) I 

< P (M > u) + P (M > u) 
n n 

< 2n (1 - <I> (u) ) 

2 
by Boole' s inequality. Since 1 - <I> (u) ~ (21T) -1/2e ;.;;u /2/u , we have 

for u > 2 (1 + p) -1/2 (log n/K) 1/2 > 1 that 
= = 

l-<I>(u) ~ (21T)-1/2exp{-~(2(1+P)-1/2(10gn/K)1/2)2} (10gn/K)-1/2 

~ (21T)-1/2(~)2/(1+P) (log n/K)-1/2 , 

'and hence, by , ( 3 . 4) , 
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< 4R , = n 

by straightforward calculation. o 

As an easy corollary to the theorem we shall prove that an ana-

logue of Hall's result (1.5) holds also for dependent sequences, 

under appropriate conditions. 

Corollary 3.2 Suppose that {~t} is stationary normal, with zero 

means, unit variances, and covariances {r t } such that 

(3.5) 2 2 1 (l-p')/(l+pl) (log n) (log log n) (-) 
n 

as n + 00, where pi is defined on P. 6 

Then for a~,b~,cl' and C2 satisfying (1.5) 

{ -x } o < Cl ~ lim inf sup log niP (a~ (Mn - b~) ~ x) - exp{ - e } I 
n+ 00 x 

__ <limsup{suplogn IP(a l (r1 -bl) __ <x) -exp{-e-x}l} nn n n + 00 x 

and the order l/log n of convergence cannot be improved by choos-

ing other norming constants than ai, b l . In particular, for n n 

a = (21ogn)l/2, b =a -{log logn-log 4rr}/(2a ) , 
n n n n 

-x 1 (1 2 Pea (M -b ) <x) -exp{- e } .... 16 e-x exp{- e-x } og logn) 
n n n = log n 

Proof By (1.5) and (1.4) it is sufficient to prove that 

A 

(3.6) sup I P (Mn ~ u) - P (Mn ~ u) I = 0 (l/log n) 
-oo<u<oo 

We first note that (3.5) implies that o=sup{lrtl;t~l,rtf=p} <1 
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(since otherwise r t would be periodic, which contradicts (3.5)). 

Now, it is straightforward to check that if the constant K in the 

bound R is chosen as K = K = 2 log log n, and if (3.5) holds, then n n 

R = 0 (l/log n), so that n 

(3 .7) sup I P (Mn ~ u) - P (Mn ~ u) I = 0 (l/log n) 
u>u = n 

for u given by n (1 - ~ (u )) = K = 2 log log n . n n n 

Furthermore, for u < u , = n 

I P (Mn ~ u) - P (Mn ~ u) I ~ 2P (Mn ;:; un) + I P (Mn ;:; un) - P (Mn ;; un) I 

=2~(u )n+o(l/logn) , 
n 

and since 

qJ(u ) = (1- (l-qJ(u ))n 
n n 

< -n(l-<I>(u )) 
=e n 

-2 = (log n) 

it follows that 

sup I P (Mn ~ u) - P (~n ~ u) I = 0 (l/log n) 
u<u = n 

which together with (3.7) proves (3.6). o 

n From Theorem 3.1 follows that, supposing Lt=llrtl does not grow 

too rapidly, if p > 0 or p = Q, \) < 00 then the rate of convergence 

is at least of the order 

1 (l-p)/(l+p) (log n)-p/(l+p) 
(-) 
n 

We will now find a precise asymptotic expression for F(Mn ;; u) 

P (Mn ;; u) in the case when r t = 0 if I t I > m, for some constant 

m < co, i. e. when the sequence is m-dependent. This will show that, 
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at least for such sequences, this rate is of the right order. 

00 

If p=O, v=oo, and Lt=Olrtl <00, the bound given by Theorem 3.1 

is of the order 

1 - log n . 
n 

It seems unlikely that this is the correct order, but the loss 

does not seem important, since clearly the rate of convergence 

cannot be better than Iln, in general. 

Theorem 3.3 Suppose {~t} is stationary normal, with zero means, 

unit variances and covariances {rt } such that r t = 0 for It I >m, 

for some constant m < 00, and that 

n (1 - 4> (u )) -+ K > 0, as n -+ 00 • 
n 

Then, if p > 0 

( 3.8) 

A -K 
P(M <u )-P(M <u )""e c(p,K,V) n= n n= n ( 1) (l+P)/(l-P) (1 )-Cll(l+p) n ~og n '. 

-K e R 
n 

with c(p,K,v) given by (2.4), and if p == 0, then 

( 3 .9) -K 2 1 -K 
P (M < u ) - P (M < u ) "" - e K - v '" -e R n= n n= n n n 

Proof The essential part of the proof consists of a closer evalu-

ation of the quantity 

u' 
f . -:. f fh (x' I Xs = x t = u) d~' = P, say, 

- 00 

which was estimated by one in (2.8), and in the proof of Theorem 
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3.1. For this it is convenient to introduce a further stationary 

normal sequence, {~t} say, with means zero, variances one and 

covariance function hr t . Let 

MI =max ~t 
tEI 

so that, for u = un' 

p = P (M < u 11 ~ = ~ = u ) n= n s t n 

and let I={kE[l,n); Ik-sl ~m or Ik-tl ~m}andJ={l, ... ,n}nIc. 

By Boole's inequality 

(3.10 ) P (M < u 11 ~ = ~ = u ) - E P ('t'k > u 11 ~ = ~t = u ) ~ P 
J = n s t n kEI n s n 

< P (M < u lie = C = u ) = J = n Ss St n 

Since {~t} is m-dependent, P(MJ~un"~s=~t=un) =P(MJ~Un) and 

thus by a similar calculation 

~ P (M ~ U ) + E ~ (~" > u ) 
- n - n kEI 1'_ n 

Now, since EkE1P (E:k > un) ~ 4m (1 - cP (un» -+ 0, and since, hy Theorem 

rv " n -K 
3.1, P(Mn,;;Un ) rv P(JI.1n~un) =1l(un ) -+e ,n-+ oo , it follows that 

(3.11) -+e -K as n -+ 00 I 

uniformly in s,t, and h. 

Next, given that '" ~ = t = U , Sk is normal with variance not excee~ 
s t n 

ding one and mean un (hrk _ s + hrk _ t ) / (1 + hr s-t). We will temporari-

ly assume that 
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(3.12) 

for some constant E which does not depend on k,s,t, or h. Then 

L: P (~k > u 11 t = ~t = u ) < 4m (1 - if> (EU )) -+ 0 ff as n -+ 00 , 

kEI n s n = n 

and by (3.10) and (3.11), 

(3.13) 

as n -+ 00, uniformly in Sit, and h. 

Now, if p=O then (3.12) is satisfied, with E=l, and hence, by 

( 2.7) and (3.13), 

(3.14) 
u' 1 - n 

P(M <u ) -P(M <u ) = L: r tfrhJ,. (u)f ... ffh(x'lx =xt=u )dx'dh n = n n = n s- 'Y rlr S n-
l~s<t~n 0 s-t - 00 

-K n 1 
,..., e n t:l r t ~ !Phrt (u) dh 

2 
-K 1 -un 

"'e n--e 
2rru 2 

n 

-K 2 1 
"'-e K -:-\!, 

n 

(- \!) 

where we have used Lemma 2.1 (i) in the fourth step and that 

-u 2/2 
(2rr) -1/2 e n lu '" 1 - 1> (u ) "'Kin in the last step. n n 

This proves (3.9) I and we next suppose that p > 0 and let I r 1 

denote the sum over Sit such that 1';:; s < t,;:; nand r s - t = p. In the 

same way as in (3.14) we then have that 
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-K ( ) (1) (l-p)/(l+p) (1 )-p/(l+p) v, 
~ e c p n og n 

since u ~ 12 log n, and since for s, t such that r t=P the con-n s-

di tion (3.12) is clearly satisfied for some suitable E: > O. Since 

the sum of the remaining terms is 0 (n-(l-p)/(l+p) (log nrp/(l+p», 

as was seen in the proof of Lemma 2.2, this shows that 

u' 
1 -n 

L: r t J <P h ( u ) J •.• J f h (x' I x s = x t = un) d~' dh 
s- 0 r s-t n _ co 

-K ( ) (1) (l-p)/(l+p) (1 ) -p/(l+p) 
~ e c p n og n v 

and hence by (2.7) that (3.8) holds. o 

Comparing the asymptotic expressions for P U'1 < u ) - P (M < u ) n= n n= n 

with the bounds of Theorem 3.1 we see that the bounds asymptoti-­

K cally are too large by a factor 4 e . Here the factor 4 is due 

to inaccuracies in the estimates (2.ll) and (2.14) and could 

easily be reduced by restricting the range of u further. The 

factor e K is due to the estimate (2.8) f as was seen in the proof 

of Theorem 3.3, and could conceivably be reduced along similar 

lines as in that proof, but perhaps at the expense of a conside-

rable increase in the complexity of proofs. 
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4. A numerical example 

In this section we will illustrate the results of Theorem 3.1 

numerically, and consider some alternative bounds (given by (4.1) 

below) which, although quite intransparent, may be preferable for 

numerical work. Further, we study numerically one way of getting 

an improved estimate (equation (4.2) below) of 6n = F(Mn ~ u) - <p (u) n 

and hence of F(Mn ~ u). From a practical point of view, for p equal 

to zero~ or close to zero, the bounds usually should be suffi­

ciently narrow to show that P(Mn ~ u) can be approximated by <p (u) n 

without appreciable loss. Hence, we have only chosen examples with 

p well above zero for numerical study. 

2 4 In Table 4.1 below, the bounds ± 4 R. for 6 , for n = 10 and n = 10 
n n 

are shown for two ARMA(l,l) processes 

where the et's are independent normal, with mean zero and variance 

{I + (a - b) 2/(1 - a 2 ) }-l. The parameters considered are, in the 

first process a = .5, b =-.5, which makes the first five covariances 

equal to 1,-.714,.357,-.179,.089, and in the second process 

a = -.5, b = .5, which makes the first five covariances equal to 

1,.714, .357, .179,.089. In addition, actual values of 6n have been 

obtained by straightforward simulation of values of M . (The simu­
n 

lated values should be taken with caution, since the quality of 

the random number generator seems rather crucial for this kind of 

simulations. Further, the last digit is of course quite uncertain 

due to the sampling standard deviation.) The two processes have 

rather high correlations, and the bounds are quite wide (and in 

several cases worse than the trivial lower and upper bounds zero 
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and one for probabilities). There are three reasons for this; 

K 
(i) the bounds can be expected to be too wide by a factor 4 e , at 

least asymptotically, as noted at the end of Sections 3, (ii) the 

approximation y of the remainder term in (2.3,i) is rather 
n 

crude, and (iii) for some parameter combinations 6 itself is not n 

small, and then the bounds cannot be narrow. 

n = 10 2 n = 10 4 

K ±4R R R+ 6 ± 4 R - R+ 6 ni R n' n n n n n n 

a=.5,b=-.5 .1 ±.040 -.000, .003 -.005 ±.002 -.000, .000 -.007 

p= .357 1 ±1.7 -.028,.108 .031 ±.087 -.000., .009 -.003 

p'= .089 3 ±10 -.260, .623 .013 ±.537 -.003,.046 .001 
, I 

a=-.5,b= . 5 .1 ±.196 -.000, .030 .015 ±.050 -.000,.009 
1 

.0091 
t 

P = .714 1 ±3.9 -.000,.653 .125 ±.972 -.000,.159 .0441 
1 

pi = .357 3 ±16 -.000,3.1 .099 ±4.1 -.000,.637 . 026 1 

Table 4.1 - + Bounds ±4Rn and (R ,R ), with k = 10, together with 
n n 

simulated values of 6 (based on 10 4 replications, and 
n 

hence with the last digit quite uncertain) for two 

ARMA (1,1) processes ~t + a~t-l = et + bet _ l . 

Often one is interested in small values of K (or equivalently, 

large values of u), e.g. when testing whether observed values are 

too large , and then the bounds may be sufficiently narrow even 

for rather correlated processes, but in other situations it may 

be interesting to have more accurate numerical bounds. Let k.::: 1 

be a suitably chosen integer, write f(r,u) for the right hand side 

of (i) of Lemma 2.1, i.e. 

1 f(r,u) =--=-,..-
2 

2nu r 

2 2 
{ I ( ) -u / (1 +r ) -u} c r e - e 
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t>k 
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2 n 

R= 2rr(1:O~)~ exp{ -l~Ok}t=~+llrtl . 

It then follows from (2.7) I (2.8) ,Lemma 2.1 (i), and the simple 

-1 2 -:k: 2 
estimate I~hr(u) I ~ (2rr) (l-r) 2 exp{-u /(1+ Irl)}, for Ihl ~l, 

- n + 
that Rn ~ P(Mn ~ u) - ~ (u) ~ Rn' where 

(4.1 ) 

+ k + 
R =n 2: rtf(rt,u) +R 

n t=l 

k 
R-=-n 2: r~f(rt'u) -R , 

n t=l 

wi th r ~ = max (0, r t)' r ~ = max (0, - r t) . 

These bounds, computed for k = 10, are also given in Table 4.1. In 

all cases, the remainder R is less than 10-3 , and hence nothing 

would be gained by using a larger value of k. As can be seen in 

the examples, these bounds are better than ± 4 R by about a factor 
n 

5-15, but still are roughly a factor e K too wide, as could be 

expected. 

For cases when ~ cannot be neglected, it may be of interest to 
n 

have not only bounds, but also some estimate for the value of ~n' 

and then also of P (Mn ~ u). For p > 0 (which is the case we are 

primarily interested in here) a simple estimate is given by the 

-K 
leading term of e Rn' viz. 

(4.2) li'n(u) =e-Kc(p,K,V) (~) (l-p)/(l+p) (log n/K)-P/(l+P) 

n rv 

with c(P,K,v) given by (2.4). The resulting estimate w(u) +~n(u) 

of P (Mn ~ u) is given in Table 4.2 below, together with <P (u) nand 
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the simulated values of F(Mn'; u) from Table 4.1, and can be seen 

to be fairly accurate. We have also investigated numerically some 

more elaborate estimates of 6 (u), constructed analogously to 
n 

(4.1), but they did not seem to perform better than the simple 

estimate (4.2) 

n = 10 2 n = 10 4 

A A 

I P (Mn ~ u) K <p(u)n P P (M < u) <p(u)n P n= 

a= .5,b=-.5 .1 .906 .908 .901 .906 .906 .899 

p= .357 

p = .089 

a=-.5,b= 

p = .714 

pl= .357 

Table 4.2 

1 .367 .395 .398 .372 .374 .369 

3 .048 .068 .061 .051 .053 .052 

.5 .1 .906 .924 .921 .906 .913 .915 

1 .367 .500 .493 .372 .418 .416 

3 .048 .120 .147 .051. .075 .077 

A n 
Values of P(Mn ,; u) = <p (u) and of the approximation 
A 

n '" p = <p (u) + 6 (u) together with simulated values of 
n 

F(M < u) (same as those in Table 4.1), for two ARMA n= 

(1,1) processest;t + a';t-l = et + bet_I' 

Finally, it should be pointed out that the improved numerical 

bounds and estimates for 6 , directly lead to correspondingly 
n 

improved estimates for the point process probabilities which will 

be discussed in the next section. 
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5. A representation for the point processes of exceedances 

Let N = (N(l) , ... ,N(r) be the vector 
n n n 

of time-normalized excee-

dances of the levels u (1) ~ .•• ~ u (r) , . l,(i) 'E) 4{tOC ' (i) 
l ° e. ;, n ( == iT I L, t / U I 

tin E B}, for any Borel set B ~ [0,1], and let N~, = (~(l) , ... ,I~ (r») 
d n n 

be defined similarly, with {~t} replaced by the associated inde-
"-

pendent sequence {~t}' It is known, see Leadbetter, Lindgren & 

Rootz§n (1979) I that under weak conditions (the same as those 

commonly used to establish (1.3)) N converges in distribution 
n 

to a certain successively more severely thinned Poisson process 

(which will be described below). To formulate results about the 

rate of convergence of the distribution of N , and, more generally, 
n 

to find useful ways to measure the distance between the distribu-

tions of two point processes,seems to be an interesting and non­

trivial question. Here we will partly circumvent this issue 

by using a "representation" approach. More precisely, we will con-

struct two processes which have the same distribution as Nand 
n 

Nn , respectively, and whose realisations are identical with high 

probability. Following common usage, we will refer to these pro-

cesses as ve~~ionJ of Nand N and, since it does not lead to n n 

any confusion, we will use the same letter to denote processes 

which are versions of one another. 

The limiting process N = (N (l) , ... ,N (r» can be described in the 

following way. Let 0 <T(l) < ... <T(r) be given parameters, and 
= = 

let N(r) be a Poisson process in [0,1], with parameter T(r) and 

pOints {ok}' Let {Sk} be independent random variables, independent 

also of N (r) and taking values in 1, ... , r with probabilities 

P (Bk = i) = (T (r- i + 1) _ T (r- i) ) IT ( r) , 

=T(l)/T(r) 
i=l, ... ,r-l 

i == r . 
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(r~l) (r-S +1) 
For each k such that Sk > 1 let N , ... f N k have points 

at ok' to complete the definition of N:= (N(l) f'." rN(k)). Thus, in 

particular, each N(i) is a Poisson process with intensity T(i), 

but the dependence between the component processes does not have 

a Poisson character. 

Since; for each iu N(i) is concentrated on the set {l/n, ... ,n/n} 
n 

while the probability is zero that N(i) has a point in 

{l/n, ... ,n/n}, it is not possible to construct versions of Nand 
n 

N with realizations which are identical with a probability ten~ 

ding to one. However, such a construction is possible if N is 

first discretized as follows,; for each i, 1 ~ i ~ r, let N (i) be con~ 
n 

centrated on {l/n, ... ,n/n} with N(i) ({t/n}) =N(i) (( (t~l)/nvt/n]), 
n 

t = 1, ... ,n. Thus N is obtained from N by "discretizing" by pla~ 
n 

cing all the points of N in the intervals ((t - 1) /n,t/n] at the 

endpoints tin of the intervals. 

Theorem 5.1 Let {~t} be stationary normal with zero means, unit 

variances and covariances rt=E~sl;s+t' let Rn be given by (2.3) 

and let u (1) > ~ u (r) ,; l. 

(i) If 

(5 .1) 

for some constant K with n/K ~ e f then there exist versions Nn and 

Nn of the vectors of time~normalized point-processes of excee­

dances of u(l) ~ ... ~u(r) by {l;t} and {~t} respectively? such that 

(2L2) 

(ii) Let N = (N (1) , ... ,N (r) ), be the thinned Poisson process de­

scribed above, with parameters T(l) ~ ... ~T(r) and let Nn be ob-

(i) (', 
tained from N by "discretizing". Write T = n (1 ~ <P 1-1.' lj ) f 

n 
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i = 1, ... , r, and suppose that (5.1) is satisfied. Then there exist. 

versions of N,~ such that n n 

(5.3) 

Proof (i) We will use the main idea of Serfling (1976) in the 

proof. Let (n,F,p) be a probability space which supports inde-

pendent variables nl, ... ,nn which are uniformly distributed on 

[0,1], write p(i) =P(Sl~u(i») =<p{u(i), i=l,o . .,r u and recall 

the notation I ( i) = I { t" > u (i)} ; (i) = I { ; > u (i) } and 
t "'t ! -t "'t ' 

Bt=a{I~i); l~i~r, l,;k,;t}. Thus p~i) =P(It=OII Bt - l ) is a 

(i) (i) (1) (r) (1) (r) 
function, Pt =P t (1 1 I ••• ,I t _ I ), of 11 f ••• ,I t _ l " We will 

first use Serflingis construction to define suitable versions of 

(') "(') 
the processes {I t 1 } and {I t 1 } on (n,F,p). A version of the 

latter process is obtained by setting 

and further it is readily seen that by defining 

I (i) =I(n >p(i») =ICnt>pCi», l' 1 r 1 t 1 = , ... , , 

and then recursively, for t = 2, ... ,n, i = 1, ... ,r, 

one obtains a version of the former process. 

Hence, defining N~i), r~~i) by N~i) ({t/n}) = I~i) I ~n ({t/n}) 

i=l, ... ,r, t=l, ... ,n, and N~i) ({l/n, ... ,n/n}c) = 
"'·(i) c, _ (1) (r) 
N ({l/n, ... ,n/n} ) = 0 1t follows that N - (N , ... ,N ) and n n n n 

Nn = (N (1) I ••• ,N (r) have the same distributions as the pOint 
n n 

(1) (r) 
processes of exceedances of the levels u , ... , u by {St} and 

{St} respectively. Furthermore, 
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and since 

it follows by Lemma 2.3 (ii) that (5.2) holds for 

u (r) ~ 2 (1 + p) -1/2 (log n/K) 1/2 . Further, for u (1') > 

1/2 1/2 2 (1 + p) - (log n/K) 

P (N n *' N n) ,;; P (Mn > u (1'» + P (~n > u (1') ) 

< 4R = n 

as was shown in the proof of Theorem 3.1, and hence (5.2) holds 

also in this case. 

The proof of part (ii) is quite similar. For i = 1, ... ,1' let 

n(i) =L: oo exp{- T(i)/n}. (T(i)/n)k /k ! be the probability that a 
m k=m 

Poisson variable with mean T(i)/n is larger than m, and define 

11(1), ••. ,In(r) by requiring that rei) =m on the set n(i) < n < rr(i). 
t m+l t = m 

It is then immediate that N = (N( 1) , ... ,N(r» has the . d n n n requlre 

distribution if N~i) Js defined by N~i) ({tin}) ==I~i), t = 1, ... ,n, 

..... (i) c 
and Nn ({ l/n, ... ,n/n} ) = o. Furthermore, 

P(N Ci ) t=N(J» < ~ p6(i) 'i=r(i» 
n n t=l t t . 

<n(ln(i) _p(i) I +n(i» 
= 1 2 

,;;n( iT(J) In - T~i) 1nl + (T(i) In)2) 

= I T(i) _ T(i) 1+1:( T(i» 2 
n n 
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where we have used that 17T~i) ~p(i)!""ll_e~T(i)/n_T~i)/nl~ 

(i) (i) (i) 2 (i) (i) 2 . 
IT In-T n 1nl + (T In) 12 and that 7T2 ~ (T In) 12 ln the 

third step. The inequality (S.3) now follows at once from part 

(i) f since P (Nn * Nn ) ;: P (Nn :1= ~n) + L~=l P (~~i) :1= N~i)) . 0 

The variation dis>cance i d I between the distributions of two 

r-dimensional integervalued random variables X:= {X (k); 1;: k ;; r} 

and Y = {Y (k); 1'; k ,; r} is defined as 

L IP(x=z) ~P(Y=z) I , 
i=Zr z~ 

where Zr is the r-dimensional integer la·ttice. It is immediate 

that d is a metric on the set of distributions on zr, and that it 

is a metric for convergence in distribution. The interest and 

usefulness of the metric can be seen from the easily obtained 

relations 

(5.4) d(X,Y) 
1 = 2 sup 

Ihl,;l 
I Eh (X) - Eh (Y) I 

= sup I P (X EA) - P (Y E A) I 
.A. 

> sup Ip(x.::;z) ~P(Y .::;z) I 

zEZ r 

The distance d only depends on the marginal distributions of X 

and Y, but if X and Y have a joint distribution it follows from 

the second inequality in (5.4) that 

(5 .5) d(XjY) ,;P(X *Y) 

This at once gives the first part of the following corollary to 

theorem 5.1. 

Corollary 5.2 Suppose that the hypothesis of Theorem 5.1 is 

satisfied, let A. 0 f j = I, 0 •• ,k., i = 1, .. 0 ,r be Borel subsets of 
1J 1 
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[O,l], and write v = {N(i) (A. ,); j = 1, ... ,k., i = 1, ... ,r} and 
n n 1J 1 

"-

let v ,v ,v be defined similarly, but with N replaced by N , N , 
n n n n 

and N, respectively. 

(i) Then 

and if furthermore the A .. 's are intervals, then 
1J 

d(v ,v) ~16 r2R + ~ IT(i) _T(i) I +1. ~ {2k. T(i) + (T(i»2}. 
n - n i=l n n i=l 1 

(ii) Suppose r == 1, and write N == N (1) for the time-normalized 
n n 

pOint process of exceedances of the level u = u (1), let N be a 

Poisson process with parameter T, and suppose that T = 
n 

n(l - <P (u» ;;; K, with n/K ~ e. Further let h : [O,l]->-IR be bounded by 

one, I hi;;; 1, and have modulus of continuity IS (s) = 

sup{ I h (t) - h (t ') I; t, tiE [0,1], It - t I I ~ s}. Then 

Proof (i) The first two bounds follow at once from Theorem 5.1 

and (5.5). Furthermore, 

r k. 
( 5.6) Pc'v :f:v) < L: L: 1 peN (A .. ) =l=N(A .. » n 

i=l j=l n 1J 1J 

r k. (i) 
< L: L: 1 2 (1 - e -T In) 
= i=1 j=l 

r (i) 
< L: 2k. T , 

i=l 1 

"'(i) (.) 
since clearly N (A .. ) = N (A .. ) if N 1 does not have any points 

n 1J 1J 

in the two intervals ((t - 1) In, tin] which contain the endpoints 

of the interval A. '. The last inequality in part (i) is an 
1J 
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immediate consequence of (5.6) ,the second inequality in part (i) r 

and the triangle inequality for the metric d. 

( ii) 

(5 .7) 

By (5.3) there exist versions of N , N such that n n 

P (N =1= N ) < l6R + IT - T I + T2 In 
n n = n n 

Furthermore, recalling the definition of N from the Poisson pro­
n 

cess N with intensity Tt we have 

and hence 

(5 .8) 

n tin 
fhdN - fhdN ~ L: f I(h(t/n) - h(s»jdN(s) 

n - t=l s= (t-l) In 

< 
n 
L: 8(1/n) 

t=l 

tin 
f dN (s) 

s=(t-l)/n 

= cS (l/n)N([O,l]) , 

P(ifhdN -fhdNI >f)'::: L: e-TTk/k~. 
n - k>sl8 (l/n) 

Part (ii) now follows at once from (5.7) and (5.8). o 

As a last corollary we will give an approxi~ation of the joint 

distribution of the M(k) 's n f the k-th largest of ~l"'.'~n. The 

proof is inmediate from Corollary 5.2 (i) and the obvious rela-

tion 

{M~l);;U(l) , ... ,M~r)~U(r)} ={N~l) ([0,1]) ~O, ... ,N~r) ([0,1]) ;;r-l} 

A (k) A 

and its counterpart for Mn ,the k-th largest amongst ~l/"'~n' 

Corollary 5.3 Suppose that the hypothesis of Theorem 5.1 is 

satisfied. Then 
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and 

I p (M~l) ~u (1) , •.• IM~r) ~Ur) -p (N (1) ([ 0, I)) ~O f ••• ,N (r) ([ 0 i 1]) ~r-l) I 

<16r 2 R + ~ IT(i)-T(i)I+! ~ (T(i))2 
= n i=l n n i=l 

In particular f for T = n Cl - <P (u» ~ K, n 
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6. Some further remarks 

This section contains comments on three different problems; 

(i) on improving the approximations, (ii) on unknown means and 

standard deviations, and (iii) on the location of extremes. 

(i) The next step in the analysis in Sections 3 and 4 would be to 

try to find bounds for some "second order approximation" of 

n rv 

F(Mn ~ u), say for the approximation by qJ (u) + 6n (u) given by 

(4.2). This, although perhaps feasible, seems likely to incur 

considerable extra complications to the already somewhat involved 

calculations of this paper. 

Another possibility would be to approximate Mn by the maximum, 

say Mn' of some other dependent stationary sequence {~t} which in 

some way is easier to handle than the original sequence {~t}' If 

{~t} has zero means, unit variances, and covariances r t =E~S~S+t' 

an analogue of (2.6) is valid, viz. 

1 u 
P(M <u) -P(M <u) = L: {r t -r t} J J.-:.Jfh(x =xt::::u)dx'dh n = n = s- s- s -

l~s<t~n 0 - 00 

where fh (x s = x t = u) no", is obtained by putting Xs = x t = u in the 

density function of n standard normal variables with covariances 

hr t + (1 -h)rt , c.f. e.g. Leadbetter, Lindgren, & Rootzen (1979), 

p. 47. Let p,p' be as on p. 6 and define p,p' similarly from 

{l\}. Calculations parallel to those in Sections 2 and 3 then 

show that, under suitable conditions, the rate of convergence to 

zero of P (Mn ~ u) - P (Mn ~ u) is similar to that of P (Mn ~ u) -

P (Mn ~ u), but with p replaced by max (p, p) if p =1= p, and by max 

(p',p') if p=p, pi *p'. Thus, the order of the approximation is 
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improved only if the maximal covariance p in the approximating 

process is exaQ~ly equal to p. 

(ii) Above it has throughout been assumed that the mean m and 

standard deviation ° of the stationary normal process {~t} are 

known and equal to zero and one respectively (or, equivalently, 

the distribution of (M - m) /o has been studied). However, in app­
n 

lications m and ° would often be unknown, and would have to be 

estimated, say by some estimators m and o, and then the distri-

but ion of (M - m) /o is of interest. We shall here assume that m 
n 

and ° are based on nl observations (which mayor may not be the 

~IS which make up M ), and make some quite crude calculations 
t n 

which bound the difference between the distribution functions of 
A 

(M - m) /o and of (M - m) /o to the order (log n log n I) / 1nl. How-n n 

ever, it may be seen that the difference is of smaller order in 

many cases, e.g. roughly of the order l/n' if ~l""'~n are inde-

pendent and independent of m,0, so the bound is coarse. For prac-

tical purposes, it seems likely that one usually can replace 

P ( (Mn - m) /o ;, u) by P ( (Mn - m) /o ;, u) without loss. A more detailed 

analysis will appear elsewhere. 

Here, we will only show that under fairly general assumptions, 

(the most important being (6.2) below) 

(6.1) 

< ~ log n log n I 

C 
(1+0(1)) 

as n-+oo,n l -+ oo , if n(l-<ll(u )) ....... K>O, and C satisfies (6.2). In 
n 

the analysis it will as usual, without loss of generality, be 

assumed that m = 0, 0=1. As a starting point we will assume that, 
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for some constants C,D, 

( 6 .2) A -cv'Il' x 
P ( I (0' - 1) + m/un I > x) ;; De, x > 0 • 

For standard estimators this typically holds with C 

and D of moderate size. It follows simply that, for E > 0, 

(6.3) P ( (Mn - m) /0' ;; un) ;; P (Mn ;; un + E) + P ( I (0' - 1) un + m I > E) 

-cv'Il' E/U 
< P (M < u ) + {p (M < u + E ) - P (M < u )} + Den 
= n= n n= n n n= n 

Now, if {E } are positive constants satisfying u E -+ 0, 
n n n 

P(M <u +E ) -P(M <u) <n{<iJ(u +E ) -<iJ(u)} 
n= n n n= n = n n n 

2 
-1/2 -un /2 

u E n(2rr) e /u 
n n n 

U E Kt as n -+ 00 , n n 
2 

-1/2 -un /2 
since n (2rr) e fUn rv n (1 - <P (un) ) rv K, by assumption. Further, 

it is easily checked that u rv (2 log n) 1/2. Thus, choosing 
n 

E = E = u log n' / (2c 1i1') in (6.3), if u E -+ 0 (i. e. if n n n n 
2 log n (log n') /n' -+ 0), we have that 

= K lognlogn' (1+0(1)) 
C 

which is precisely the upper bound of the difference in (6.1), 

for m = 0, 0' = 1. The lower bound is proved in the same way. 
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(iii) One consequence of the convergence of Nn for any r, is that 

asymptotically the locations of the k-th largest values are uni­

formly distributed. An interesting question is to find a bound 

for the rate of this convergence, which is conjectured to be of 

the same order as the convergences treated in this paper. 
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