
Ib M. Skovgaard 

. A Second-Order Investigation 

of Asymptotic Ancillarity 

Preprint 
June 

1981 

7 
Institute of Mathematical Statistics 
University of Copenhagen 



Ib M. Skovgaard 

A SECQND..-QRDER INVESTIGATION 

OF ASYMPTOTIC ANCILLARITY 

Preprint No. 7 

INSTITUTE OF MATHE~1ATICAL STATISTICS 

UNIVERSITY OF COPENHAGEN 

June 1981 



ABSTRACT. The paper deals with approximate ancillarity as discus­

sed by Efron & Hinkley (1978). In the multivariate i.i.d. case we 

derive the second-order Edgeworth expansion of the MLE given a 

normalized version of the second derivative of the log-likelihood 

at its maximum. It is shown, that the Fisher information lost by 

reducing the data to the MLE is recovered by the conditioning, and 

it is sketched how the loss of information relates to the defi-' 

ciency as defined by LeCam. Finally, we investigate some proper­

ties of three test statistics, proving a conjecture by Efron & 

Hinkley (1978) concerning the conditional null-distribution of 

the likelihood ratio test statistic, and establishing a kind of 

superiority of the observed Fisher information over the expected 

one as estimate of the inverse variance of the MLE. 

Key words: ancillarity, deficiency, Edgeworth expansions, loss 

of information, maximum likelihood, observed Fisher information, 

second order asymptotics, Wald's test. 
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1. Introduction 

The purpose of this paper is to investigate some properties re-

lated to the conditioning on asymptotic ancillaries as proposed 

by Efron & Hinkley (1978). Since exact properties are hard to 

derive in general, the investigation is carried out in terms of 

second-order asymptotic distributions, i.e. including the n- l / 2 

terms in the asymptotic expansions. It may be noted, that first-

order asymptotics fails to discriminate between the conditional 

approach and the usual (marginal) approach. Emphasis~ will be 

on the results, since the techniques used to prove these are 

essentially well-known, but in Section 7 we shall sketch the 

ideas of the proofs. 

Since the arguments for conditioning on (approximately) ancil-

lary statistics are outlined in Efron & Hinkley (1978), we shall 

not go too much into this discussion, but merely given an example, 

essentially based on Pierce (1975), illustrating the advantages 

of this approach. Let (X,Y) be the avarage of n independent 

two-dimensional normal statistics, each with the identity matrix 

as covariance and with mean f (S) E JR 2, where S is a real para-

meter, and f is some smooth function. For each S, let LS denote 
A 

the line through f(S) orthogonal to the tangent at S. If S is the 

maximum likelihood estimator of S, the the observation (x,y) must 

be on the line LS; see Efron (1978) for further geometrical 

details. If n is large, we may for inferential purposes approxi-

mate f(6) locally by a segment of a circle (see figure 1). Let P 

denote the center of this circle; then the lines LS will for S 
A 

near to S approximately go through P. NOw, if we want a confidence 

interval for S, a usual method will be to 'center' this interval 
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at S and let the length be approximately proportional to the 

standard deviation of Sf disregarding the position of (x,y) on 

the line LS. However, if the observations is (Xl,Yl ) a displa­

cement of this by an amount 8 orthogonal to LS would change the 
A 

estimate from S to SI' whereas, if the observation is (x2 'Y2)' a 
A 

similar displacement would only change the estimate to S2. This 

suggests, that the intrinsic accuracy of the estimate is in­

creasing with the distance of (x,y) from the center P. It may be 

noted, that confidence intervals constructed using the likelihood 

ratio test would certainly reflect this fact. In more general 

cases similar considerations hold, but the geometrical picture is 

not equally obvious. 
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Fig. 1. Intrinsic accuracy of the maximum likelihood estimate'. 

Sensitivity of the estimate due to a displacement 0 of 

the observation depends on the distance of (x,y) to P. 
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Several suggestions of 'ancillaries' capturing some of this addi­

tional information have been put forward (see Barndorff-Nielsen 

(1980», but except for one they are related to exponential models 

or other specific classes of models, e.g. translation models. The 

remaining one is essentially the second derivative of the log­

likelihood function at its maximum. This idea goes back to Fisher, 

but was in more explicit form suggested by Efron & Hinkley (1978). 

A problem is, that this second derivative may contain a lot of 

information; however, after a suitable normalization, it will be 

asymptotically ancillary; more precisely it will be a locally 

second-order anci.llary around the true parameter, see Cox (1980). 

Also, as will be shown in Section 4, the Fisher information con­

tained in th~s statistic will tend to zero. 

In Section 2 we provide the notation and the basic definitions. 

In Section 3 we derive the second-order Edgeworth expansion of 

the conditional distribution of the max~mum likelihood estimator 

given the asymptotic ancillary statistic, and some moments of 

this distribution. In Section 4 we briefly ~nvestigate the loss 

of Fisher information in the various statistics and establish an 

implication of these results in terms of deficiencies as defined 

by LeCam (1964). Section 5 contains some comparisons of the Wald 

test statistics with the observed resp. the expected Fisher in­

formation as estimates of the inverse variance of the estimator. 

It is proved, that the conditional null-distribution of the for­

mer converges more rapidly towards its limiting chi~square dis­

tribution, and that this test statistic also has the advantage 

of being (marginally) stochastically closer to the likelihood 



- 5 -

ratio test statistic than the latter. Section 6 contains a sim­

ple example, and in Section 7 we state the regularity conditions 

and comment on the proofs. 

Throughout the paper we are dealing with the i.i.d. case with 

multivariate parameter space. The results may be generalized to 

other cases along the lines of Skovgaard (1980a,b). Some impor­

tant references concerning approximate ancillarity are Pierce 

(1975), Cox (1975, 1980), Efron & Hinkley (1978), Peers (1978), 

Barndorff-Nielsen (1980) and Hinkley (1980). 
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§ 2. Notation and setup 

We shall use a coordinate free notation, which will allow us to 

handle the mul tivariate case almost as easily as the one - dimen-

sional case. The reader, who does not wish to consider the pro'-

blems arising in the multivariate case, will easily be able to 

recognize the meaning of the notation in the one-dimensional 

case without reading the first part of this section. 

Let VI and V2 be finite dimensional normed real vectorpaces and 

let v,vI E VI" B}1: 13j (VI ,V2 ) we denote the vectorspace of j-linear 

symmetric mappings of vi = V l:~' .. ~x VI into V 2' equipped with 

the norm 

j j s 
where v = (v, ... ,v)E VI" C (B,V2 ) denotes the s times continuous-

ly differentiable functions from an open set B C VI into V2 ' and 

if f E CS(B,V~), then we define the k'th differential, k < s, of 

f at vI E B by 

where h E lli. Also moments and cumulants of a random vector 

Y E VI are regarded as multilinear forms, e.g. the k'th moment 

* ]Jk E Bk (VI' JR.) of Y is given by 

* where VI is the dual space to VI' and < , > denotes the inner 

product between a space and its dual. If VI is Euclidean, it is 

its own dual. An element A E Bk (VI ,V2 ) may in a natural way be 

regarded as in Hom(VI,Bk _ 1 (VI 'V2 » as the homomorphism given by 

k-l k-l 
A(v) (VI ) = A(V'VI ). We shall frequently use such natural 
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constructions with the same notation for the two mappings. If 

A: Vlx ... ~Vk-+ V, the we use the (matrix-like) convention, that a 

single argument refers to the last component of the domain 

(i . e. V k)' such that A (v) : VI x ... x V k-l -+ V, v E V k . 

Let X , ... ,X be independent identically distributed random 1 n 

variables on some measurable space, the distribution of X. being 
1 

a member of a family PB, S E B s;;: V, where V is a Euclidean space 

of dimension k E ill. We assume, that the family is dominated by 

].1, say, and let f(x;S) denote some version of the densities. We 

also assume, that the conditions of § 7 are fulfilled, these 

essentially being various kinds of smoothness conditions. 

Let SOE int (B) be the fixed true parameter value, and define 

-1 n 
= n L 

i=l 
Dj log f (X.; S) E B. (V,JR) 

1· J 

such that Ej(S) is non-random, and sJn) (S) has (PS) expectation 

zero. Also, let 

(1)(1) 
Xi ..• k (f:3) = cumS (Si ( S) , ... , Sk ( S) ) 

(1) (1) denote the joint (P S)- cumulant of Si (S) , ... ,Sk (S), i.e. a 

mul tilinear mapping of Bi (V, JR)>< ... X. Bk (V, JR) into JR. Finally we 

define (omitting the argument S) 

and 

1=- E 2 
( ) 1 n 2 

= XII ' I n = n L D log f (X. ; S) 
i=l 1 

F E B2 (B 2 (V,JR) , JR) by 
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Notice, that n I is the I expected' and n I (n) the I observed' 

Fisher-information for the experiment, whereas F is the residual 

variance of sJl) after regression on si l ). In the sequel we shall 

use the convention, that if the argument S of a function is omit-

ted, then the fixed argument So is understood, and the value of 

a function at 6 I the maximum likelihood estimator (MLE) of S, 
n 

will be denoted by adding a circumflex, e.g. i(n) = I(n) (6 ). ·n 

Also, the index n will usually be omitted. 

We are now ready to define the (hopefully) asymptotic ancillary 

A 1 A A 

A = In F-~(I-I)E W = B2 (V,lli) (2.1 ) 

which is just a normalized version of i. Here F-~ = IF- l , where 

I-is any smooth left square root, i.e. IF E Hom(W,W) must satisfy 

iF 1Ft = F E Hom(W,W). It is immaterial, which inner product on 

W is used to identify W with its dual. It should be noted, that 

it is required (see §7), that F is regular. Otherwise a generaliz-

- -k 
ed inversed of IF should be used as F 2. This would not change 

the results, but notational difficulties would arise. Note, that 

-k 
F 2 is not required to be symmetric, but is any linear variance 

normalizing transformation, when F is the variance. 
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§ 3" Expansion of the conditional distribution 

In this section we shall expand the conditional distribution of 

Z = ID. (Sn - So ) given A under the distribution P (3 • It is not hard 

° to prove, that Z and A are asymptotically independent. Thus to 

obtain any interesting results, we must carry the expansion to 

-1: 
second order, i.e. including the n 2 terms. 

The first step is to expand the simultaneous distribution of 

(Z,A). This is done in the following three steps. (i) Compute the 

second order (stochastic) Taylor-series expansion in terms of 

Sl,8 2 , ... around 0,0, .... (ii) Compute the first three joint 

cumulants of these approximating polynomials. These will be 

functions of the Ej'S and the X's. (iii) Using these cumulants, 

write down the Edgeworth approximation to the joint distribution. 

Since the expansion obtained in this way is the basis of all our 

results, we shall state it in detail in the following theorem. 

Theorem 3.1. Under Conditions 7.1 we have the following local 

expansion for any c > ° 
sup{1 gn (z,a) - yn(z,a) I,ll (z,':&) II < c logn} =O(n- l ) (3.1) 

sup{ I h (a) - L; (a) I ; II a II < clog n} = O(n01 ). n n -
( 3 • 2) 

where gn and h n are the densities of (Z,A) and A, and 

- (k+d) /2 1: 2 2 Yn (z,a) = (2'1f) (det 1) 2{exp -J..z (I (z ) + II all )} 

(1 + K (1(z)) + K (a) +-61 K (1(z)3) + 1 ( 3) z . a zzz '6 Kaaa a 

+ J..z 2 
K O(z) ,a) zza I, K (I(z}))>- J..z<I, K (a» zzz· zzza 

( 3 .3) 
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1;; n (a) = (2 'TT) -d/2 exp {- ~ It a 11 2} (1 + K a (a) + i K aaa (a 3 ) 

< lW' K (a) > ) aaa 
(3 .4) 

where d = dim(W) and the K'S are the formal cumulants of (Z,A) as 

-k 
computed to order n 2 from the second order Taylor series expan-

sion of (Z,A) in(Sl,S2). In particular 

-1 
<I , Xlll(Z)+X21(Z) > 

I-n 3 
v KZZZ(I(Z) ) = 3 3 

(2 XIII (z ) + 3 X12 (z )) (3.5) 

Remark 3.2. It turns out, that K = 0; otherwise the term zaa 

~ K (l(z),a2)-~< lw' K (l(z)) > should have been included zaa aaz 

in (3.3). 

Remark 3.3. It is seen from (3.4) combinedwiththe fact, that 

-k 1 
Ka = O(n 2), K = O(n- ), that A is not, in general, asymptoti-

aaa 

cally second-order ancillary in the sense that the second order 

approximation to its distribution can be chosen to be independent 

of SO' A is, however, locally second-order ancillary in the sense 

of Cox (1980), and this is the property, that turns out to be 

important to avoid loss of information (see § 4). 

Theorem 3.4. Under Conditions 7.1 we have the following expansion 
"'-

of the conditional distribution of Z = fn(S- SO) given A = a, 

Ps {Z E B 1 A 
o 

(3.6) 
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uniformly over all Borel sets B c V and 11 a 112 < (2+a) log n, 

for some a > 0, where 

-k/2 k k k 2 n (zla) = (2'IT) (det(1+F 2 (a»)2 exp{-!:2(I+F 2(a»(z)} 
n 

(l+K (I(z») +1: K(I(z)3) 
z 6 zzz < If K (1(z» > ) zzz 

(3 .7) 

Remark 3.5. Although the expansion (3.7) is easily obtained by 

dividing (3.3) by (3.4), it should be noted, that Theorem 3.4 

does not follow from Theorem 3.1. 

Remark 3.6. It is important to note, that the event 

{II A 112 ~ (2 + a) log n} has probability 1 - 0 (n -1), such that 

Theorem 3.4 together with (3.2) implies, that 

f 
11 a 112 < (2+a)log 

(3 .8) 

A local expansion of the conditional density of Z given A holding 

uniformly only on a bounded set, would not suffice to prove (3.8), 

and in th~s set the result would be incomplete. 

There is a couple of things to note about the moments of n . The n 

first and third moment are (to second order) independent of a, and 

the same as in the unconditional second-order expansion, see 

Skovgaard (1980b), whereas the variance depends on a. The theorem 

says nothing about the conditional moments of the exact distribu-

tion, but if these are to be used as d~scriptive quantities of the 

distribution, then rather than expanding these, it is the moments 

of the approximating distribution, that are relevant. 

To second order we have 
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-1 1 A A 

= I + n 2 F 2 (a) '" I + I - I, (3 .9) 

where V is the variance of the approximate distribution. Thus it 

",-1 
is seen, that the error I - I in approximating V by I is the 

A 

same as the error in the usual (unconditional) approximation I of 

v{z}-l", I. If, in particular, the information is constant, then 

we have the approximation 

A_I 
V(Z I A=a)", I 

in accordance with the result in Efron & Hinkley (1978) concerning 

the translation model. In fact, all that is needed for this to 

hold is, that the derivative of I at So vanishes. 
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§ 4. Recovery of information 

Fishers main reason for considering ancillaries and more specifi-

cally conditional distributions given ancillaries was, that by 

the reduction to a single statistic, such as the MLE, one might 

lose a certain amount of (Fisher) information, which might be 

"recovered" by a conditional approach. 

The total amount of Fisher information in the experiment is 

n I (SO) = int (X), say, where X = (Xl'." ,Xn ). In general we let 

inf(T) denote the Fisher information (at Ba) contained in the 

experiment, where only T is observed. Also, we shall consider 

the information inf (T I A = a) in the experiment, where A (X) = a 

is fixed and T is observed, and its expected value infA = 

E{inf (T I A) }. The well::";known identity inf (T) = inf (X) -

E{V{nsin) I T}}, see e.g. Fisher (1925)., is useful in computing 

inf(T). It is well-known, see Fisher (1925), that inf (X)- inf(S) 

tends to a finite limit as n ~ 00, which Efron (1975) identified 

2 as y I in the one-dimensional case, where y is the curvature of 

the model at SO' The following theorem shows, that this informa-

tion lost by the reduction of X to S is indeed recovered by 

conditioning by A as defined in (2.1). 

Theorem 4.1 Under Conditions 7.1 we have 

inf(X)·- inf(S) 

inf (X) - inf (S ,A) 

-1: 
inf(A) = O(n 2) 

-1: 
= 0 (n 2) 

( 4 .1) 

(4.2) 

(4 .3) 

( 4 .4) 
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where 
-1 -1 2 

tr (I F) E B2 (V, JR) is given by (tr (1 F)) (v ) = 
-1 F (v, 1 , v) , v E V. 

Remark 4.2. The coordinate version of tr(I-lF) is (tr(I-lF» .. 
1J 

= ~ i Fiklj gkl where F = (F iklj ) and 1-1 = (gkl) are the 

coordinate versions of F and I-I. 

Note, that (4.4) follows from (4.2) and (4.3), since infA(S) = 

inf (S ,A) - inf (A) . 

Formal proofs of (4.1) and (4.2) go back to Fisher (1925), 

whereas Rao (1961) gave a strict proof of (5.1) in the multi-

nomial case; see Efron (1975), Section 9 for further discussion 

and references. Strict proofs may be given under weaker assump-

tions than those of § 7, but we shall not elaborate on this point. 

If one does not believe, as Fisher seemed to do, that the (Fisher) 

information is an absolute measure of information, then it would 

be natural to look for other interpretations or implications of 

Theorem 4.1 and similar results; see LeCam (1975). A reasonable 

possibility would be to measure the information lost in the 

reduction from X = (Xl, ... ,Xn ) to T = 

the experiment (QS' S E B) with respect 

T (X) by the deficiBuCV n -

to the experiment (P S' S E B) , 

when QS is the distribution of T; see LeCam (1964). 

In agreement with LeCam (1956) (see also Michel (1978» we shall 

use the slightly different measure 

0, (T ,Xl= inf sup ~ 11 Ps - 11 QS 11 
K 11 SEK 

= inf sup sup { 1 Ps (A) - (11 Q J (A) I } , K c B 
11 SEK A 

(4.5) 
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where IT varies over the class of Markov - kernels and A over all 

measurable sets. Except for minor technical differences this is 

the deficiency of (Q(3' (3 E K) with respect to (P (3' (3 E K). Attention 

is restricted to compact sets K ~ B, since uniform approximation 

over B can hardly be obtained in general. Notice, that O~(T,X) = 0 

if T is sufficient, and in any case the measure tells how well 

any test based on X can be reconstructed from T by a randomisa-

tion. 

Let us now assume, that (3 is a function of T, although another 

first order efficient estimator might do as well as (3, and let us 

define IT = Pg , i. e. the (IT Q(3) - conditional distribution of X 

given T = t is P~ where pt 13' (3 is the P(3- conditional distribution 

of X given T = t. We shall give a formal proof, that 0K(T,X) 

is asymptotically bounded by the maximum over K of the sguare 

root of the relative loss of Fisher information. More precisely 

where k = dim V and R(3(T) = inf(X)-l(inf(X)-inf(3 (T» is the 

relative loss of Fisher information. 

(4.6) 

Let f t (x;(3) denote the density of P~ with respect to ~. The proof 

of (4.6) then goes as follows 

t A 

.-v I I I (DS log f (x; (3) ) ((3-(3) I d ~ (x) d Q(3 (t) 

< 1111 I (S)-~ (D(3 log ft(x;S» 11 11 I(S)~(S-(3)11 d~(x) d Q(3(t) 

A 2 k -1 k 
< (ES{ (nI ((3» ((3-6) }) 2 (E's{ < (n I (13» , infS (X IT) >}) 2 
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1 k = Ik (tr (inf (X) - (inf S (X) - infS (T)))) 2 

"I' 

where the second inequality follows from Holders inequality. 

Using this result together with Theorem 4.1 we see, that 
A -1< A -1 

0K(S,X) = O(n 2) and o-"K( (p',A) ,X) = O(n ), which has been proved 

more generally in Michel (1978). We also see that in the case 
I 

A 

T = S, we have 

k -1 1 k 
n 2 11 Ps - IT Q S 11 ~ Ik « r ( S) , tr r (S) - F ( i3) > ) 2 (4 .7) 

(= Ik il 'k L Fijkl g gJ in coordinates) 
i,j,k,l 

which reduces to the curvature 1 y(S)1 in absolute value in the 

case k = 1; see Efron (1975) for the definition and discussion of 

the curvature of a model. 
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§ 5. Comparison of test statistics 

Consider a hypotheses of the form HO: HS = hO' where H: V ~ Vo 

is a known linear function and hO E Vo a known point. The most 

interesting example of this kind is testing that a coordinate of 

S takes a fixed value. Let S be the maximum likelihood estimate 

t * * under HO' and let H : Vo ~ V be the transpose of H. We shall 

consider the following three test statistics of the hypotheses 

n '" 
L = 2 L (logf(X., S) -log f(xi,rB)) 

i=l l 

L is the likelihood ratio test statistic, and Wand W arequadra­c 

tic test statistic in (HS-hO) mormalized with different estimates 

of its variance. W is the Wald test statistic and W a modified c 
"'_,1 '" A_I 

Wald test with I as variance estimates of 6 instead of I . 
A_I 

The index c means 'conditional', although I is not in general 
"'-

the conditional variance of 1r1(6-So} given A. The following 

theorem confirmes a conjectur~e by Efron & Hinkley (1978); see 

also Cox (1980}. 

Theorem 5.1 Under Conditions 7.1 and the assumption, that 7.1 

(vi) holds for the restricted model HO' we have the following 

expansions under HO' i. e. if H'EO = hO' 
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Ps {L < t 1 A = a} = 2 (t) + O(n- l ) - Xp 
0 

(5.1 ) 

Ps {W 1 a} 2 (t) -1 
< t A = = + O(n ) 

o c - Xp (5.2) 

{W < X~ (t) 
-k 

Ps t [ A = a} = + O(n 2) 
0 

(5.3) 

uniformly in t ~. o for all a in {I 1 a It 2 < (2+a) log n}, where X~ 

is the chi-square distribution function with p = rank (H) degrees 

of freedom. 

The statement concerning W is in a sense negative and stated for 

comparison only. The important thing is, that the error is not in 

general o(n- l l. 

Note, that marginally all three test statistics are asymptotical­

ly chi-square distributed with error O(n-l ), see Chandra & Ghosh 

(19791. 

Although this result indicates, that Land W behaves more like 
c 

conditional tests than W 'does, it says nothing about the (margi-

rralt--properbiesof the tests. A possibil:i;ty' 'would be to' compare 

the (asymptotic) powers of the tests~l.but a uniform superiority 

of?auy:,of::::these ~cpuld hardly -be. expected. If one takes the stand-

pOint in accordance with the example in § 1, that L is theor'et'i-

cally preferable to Wand Wc' although L is harder to compute, 

then one could compare Wand W by their performance relative to c 

L. This leads to the following result. 

Theorem 5.2 Under the conditi'ons of Theorem 5.1. W 'isstochasti­c 

cally closertoL,than W is,in the sense that for anycontinous 
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Ps {h(I:n(Wc-L») < h(/ll(W-L»} = 8(h) + 0(1) 
o 

with 8(h) > ~, a:nd 8(h) = ~ if and only if F = 0, and hence 

-1 -1 
W - W = 0 (n ) with probability 1 - 0 (n ). c 

(5.4) 

Both of the theorems suggest, that W should be preferred to W, c 

whereas it is hard to see any reason for preferring W to W in c 

general. In particular cases there may, of course, be reasons 

for preferring W. 
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§ 6. An example 

To illustrate some of the results we shall use the example at 

the end of the paper by Hinkley (1980). We shall not verify the 

Conditions 7.1, but it is a trivial matter apart from the regu-

larity of F, which is not satisfied here. This causes however no 

problems. 

Let (Y. ,Z.) be i.i.d. bivariate normal variables with Z. distri-
l l l 

buted as N(8 1 ,l) and Y. = 82 Z. + E., where E. is N(O,l). By ; 
l l l l 

simple compulations we get 

I (8) = 

2 
=~z.Y./~Z. 

l l l 

2 A 

diag (1,1 +8 1 ), I = diag (l,~ zi / n) . 

Since I - I = diag (0, ~ (z.-z)2/n-Jilhas one-dimensional support, 
l 

we only compute the corresponding element of F, i.e. F2222 = 2, 

and define (see(2.1)1 

A A 

A is seen to be exactly ancillary and (8,A) is sufficient. 81 is 

independent of A, and since the conditional distribution of §2 

given Zl' ... 'Zn is N( 82-i .. (finA+·n(1+ e~i))-l) , it follows,_ that 
A A 

to second order the conditional distributioB of~ (8 1 ,8 2 ) giLven 

A = a is normal withmean'.zero and 

-1 2 -1 diag(n , (l2i1a+n(1+81 }) ) 

-1 A A --I 
= n (I+I-IL 

in agreement with (3.9}. 

L = W c 
- 2 2 2 = n (Z- 81 ) + (~Z. E.) / ~ Z . 

l l l 

whereas W deviates by an amount of 

Also, as noted by Hinkle~, 

is exactly distributed as x~, 
-k 

order n 2 (cf. Theorem 5.1 ahd 5.2) . 
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§ 7. Conditions and proofs 

Conditions 7.l.Let So E int (B) be a fixed parameter value, then 

(i) If x E{x; f(x;SO) > o}, then f(x; } is 7 times continuously 

differentiable in a neighbourhood of SO. 

(iil I (SO) and F(SO) are regular, I is five and F four times 

continuously differentiable in a neighbourhood of SO. 

(iii) ES {Il Dj log f(X;SO) 117} < 00 , 1 ~ j~ 7 
o 

(iv) 300>0: 

(v) 

(vi) 

EQ {(sup{ 11 D7 log f (X; S) 11 
""'0 

(1) (1) 
The characteristic function of U(Sl , •.. ,S7 ) belongs to 

L for some n E ill, where U is a linear function mapping 
m 

th ff ' t f (S (I) S (I}) b" t' 1 t ea lne suppor 0 1' ... ' 7 .. lJec lve y on 0 a 

real space, such that Vi {U} equals the identity. 
o 

For sufficently large n the MLE S of S exists with n 

P - probability one, and for all c > 0 
BO 

(vii) Expectations with respect to Ps of all linear and bilinear 
2 0 

functions of D log f(X;SO)' D log f(X;SO~ and 

3 D log f(XiS O) may be differentiated by differentiation 

under the integral sign. 

We have not tried to minimize the assumptions of each theorem; 

instead, since the purpose of this section is to outline the 

techniques, they are a compromise between the demand that they 



- 22 -

should be easily verifiable, and the desire to avoid too great 

technicalities. In particular the regularity of F is assumed for 

convenience only, and without this assumption the results would 

still hold with obvious modifications. In the same way in (vi) 

probability one could be replaced by probability 1-o(n-5/ 2 ). In 

the sequel we shall refer to the assumptions as (i)-(vii), and 

it should be clear from the proofs, what the purpose of each as-

sumption is. Before going on to these we shall state a lemma of 

some independent interest. 

Lemma 7.2. Let P be a probability measure and Q a finite signed 

measure both dominated by a measure ~ on some measurable space 

(E,A). Let f = dP/d~ and g = dQ/d~ denote the densities. If 

Q(El = 1 and a set A E A exists, such that for some sI ~ 0, 

s2 > ° 
(a) 

(bl 

then 

sup{ I. f (xl - g (xl r x E A} < sI 

f -: I g (xl I. d~ (x) < s2 
AC 

(7.1 } 

Proof. I P(Bl -Q(Bl ~ I. p(BnA} -Q(BnAl I. + I p(BnAcl -Q(BnAc }[ 

2 sI 11 (A) + 1- P (A) + s2 ~ 2 (sIll (Al + s2) . o 

We shall now proceed to comment on the proofs, avoiding details, 

which_ may in essence be found elsewhere. 

Expansion of the distribution of (Sl' ... 'S7 1• By the conditions 

(iiil and (vI we may apply Theorem 19.2 of Bhattacharya & Rao 

-k 
(1976) to bbtain an asymptotic expansion in powers of n 2 of the 
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density of 
k (nl (nl -5/2 n 2 U (8 1 ' ... , 8 7 ~), the error term being 0 (n . 1 

uniformly over the whole set. 

Proof of Theorem 3.1. We shall use Theorem 3.2 of Skovgaard 

(1980a) to transform the local expansion of U to a local expansion 

of (Z,A). This theorem is stated in terms of distributions, but 

since it is proved by the use of local expansions, it may be 

applied here in modified form. The technique was first used by 

Bhattacharya & Ghosh (1978) to derive an expansion of the distri-

bution of Z under similar, but more general, assumptions. In 

Theorem 3.1 only the second - order expansions are stated, but to 

prove Theorem 3.4 we need to establish the validity of a local 

-2-0 Edgeworth expansion with error term O(n 1 for some 0 > O. To 

do this a Taylor - series expansion of the form 

-~ -5/2 -5/2 
Z ~ Al (8 1 1 + n A2 (8 1 ,S2) + ... + n A6 (8 1 , ... ,8 6 } + o(n 1 

2 uniformly in IIU(81 , ... ,8 7 ) I.l < clogn, is required. This is 

constructed as in Bhattacharya & Ghosh (1978) using conditions 

(il, (iv1 and (viI. A similar expansion is needed for A, and this 

is obtained by expanding around B = 60 using the expansion of Z 

and conditions (il, (iil and (iv). The expansion of A is only 

-2-0 
needed up to an error of order O(n ). On transforming the 

expansion of U, the validity of local Eidgeworth expansions of 

(Z,Al and A including the n-2 terms is established, the errors 

-2-0 
being 0 (n ). Condition (vii) is needed to compute the second-

order expansions; whereas we need not compute the higher - order 

expansions. 

There is a slight technical problem in computing the differential 

-k 1\ -k 
DF 2(6-6 01 of F 2 in the direction 6-6 0 . 
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Since -k t -k -1 
(F 2) F 2 = F 

and 

we obtain by the product rule 

which turns out to be all that is needed. Note that the right 

hand side is independent of which square root is used. Based on 

the Taylor - series expansions the computations of the K I S and the 

second-order expansions are straight forward, see e.g. Skovgaard 

(1980b). 

proof of Theorem 3.4. The method used to prove this is essen-
~j 

tially the one given in Michel (1980). (3.71 is obtained by 

dividing {3.31 by (3.4); the problem is to prove the validity. 

To do th~is we need the exp_.ansions of g (z,a) and 11. (a) witherror n n . 

terms o(n- 2-o1 as constructed above. The ratio of these will on 

-k 
expanding in powers in n 2 and keeping only the first and second-

order terms give the same result as the ratio of the second­

order expansions. The point is now, that if a in Theorem 3.4 is 

sufficiently small, then the relative error of the higher - order 

expansion of hn (a) within the set It a [12.:::. (2+a) log n is 

-l-E 
O(n 1 for some E > O. On this set also the error of the higher-

order expansion of g (z,a) is o(n-l-sJ, when divided by h (a). 
n n 

'rhE :the:o.nem :iblren follows from Lemma 7.2. 

Proof of Theorem. 4.1. We shall not comment on the main computa-

tions, which are quite similar to those in Fisher (1925), but 

only give a technical comment. Using the Edgeworth expansions, 
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the variance of sin) given S or (S,A} is easily calculated, except 

that w.e need to show that a region n " SI 112 > clog n may be neg­

lected. This follows however easily from the fact, that this is 

so in the marginal distribution of Slo 

Expansions ofL,W an.d W. In the proofs of Theorem 4.1 and 
--~------------~------~c 

Theorem 4.2 we shall confine ourselves to the case of a simple 

hypotheses, i.e. HO: 13 = SO' since the ideas of the proofs are 

the same in the more complicated setting. Note, that we then have 
A A 2 A A 2 

W = 1 ((S-SO) ) and Wc = I ((S-SO) ). The Taylor - series expansion 

to second order of L,W and Ware obtained as 
c 

L '" (1 

W rv 

C 

(7 .2) 

the error being o(n- l ) p (A,Z) with probability 1- o(n- l ) uniformly 

on each set of the form "(Z ,A) ,,2 ~ clog n, where p is a poly-

nomial independent of n. These expansions are the key to the 

proofs of the two theorems of Section 4. Notice, that the quadra-

tic terms in Z are the squared length of Z as measured by the 

inverse conditional variance (cf. (3.9U 

unconditional variance is used in W. 

in Land W , whereas the c 

Proof of Theorern.5.l. (5.11 and (5.21 follows from Theorem 1 of 

Chandra & Ghosh (19791, see their Remark 2.2. Their condition 

(2.2t is not exactly fulfilled, because it only holds in sets of 

'size' O(lognl in stead of O(ip ), but it makes no essential dif­

ference. in the proof. (5.31 is obvious, and it is seen, that 
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-k k -1 
since n 2 F2(Al is in general not O(n ), neither is the error in 

(5.3) . 

Proof of Theorem 5.2. Consider the differences 

-k k 
both being of order 0 (n "2). To a first approximation Z and F 2 (AL 

are indpendent, normally distributed with means zero and variances 

vIz} ~ 1-1 , V{F~(A}} ~ F. Thus, to order n-~, the conditional 

distribution of /ll D given Z is normal with mean ID. D and varian­c 

ce F(Z4), while Dc is a function of Z. In this approximate dis-

tribution it is seen, that the probability of h(/ll D) being greater 

than h( In D) is at least 12 , since the probability of the event, 
c· 

1 
that this occurs with D and Dc of the same sign equals 2. Since 

the other part of the event {h(/nDt> h(IDDc1} has probability 

zero if and only if F is zero and hence W = Wc + O(n- l ), the 

theorem follows. 
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