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ABSTRACT. The paper deals with approximate ancillarity as discus-
sed by Efron & Hinkley (1978). In the multivariate i.i.d. case we
derive the second-order Edgeworth expansion of the MLE given a
normalized version of the second derivative of the log-likelihood
at its maximum. It is shown, that the Fisher information lost by
reducing the data to the MLE is recovered by the conditioning, and
it is sketched how the loss of information relates to the defi-!
ciency as defined by LeCam. Finally, we investigate some proper-
ties of three test statistics, proving a conjecture by Efron &
Hinkley (1978) concerning the conditional null-distribution of
the likelihood ratio test statistic, and establishing a kind of
superiority of the observed Fisher information over the expected

one as estimate of the inverse variance of the MLE.

Key words: ancillarity, deficiency, Edgeworth expansions, loss
of information, maximum likelihood, observed Fisher information,

second order asymptotics, Wald's test.



l. Introduction

The purpose of this paper is to investigate some properties re-
lated to the conditioning on asymptotic ancillaries as proposed
by Efron & Hinkley (1978). Since exact properties are hard to
derive in general, the investigation is carried out in terms of
second-order asymptotic distributions, i.e. including the n—l/2
terms in the asymptotic expansions. It may be noted, that first-
order asymptotics fails to discriminate between the conditional
approach and the usual (marginal) approach. Emphasig: will be
on the results, since the techniques used to prove these are

essentially well-known, but in Section 7 we shall sketch the

ideas of the proofs.

Since the arguments for conditioning on (approximately) ancil-
lary statistics are outlined in Efron & Hinkley (1978), we shall
not go too much into this discussion, but merely given an example,
essentially based on Pierce (1975), illustrating the advantages
of this approach. Let (2,?) be the avarage of n independent
two-dimensional normal statistics, each with the identity matrix
as covariance and with mean f£(B) € ]RZ, where B is a real para-
meter, and £ is some smooth function. For each B, 1let LB denote
the line through £f(g) orthogonal to the tangent at B. If é is the
maximum likelihood estimator of B, the the observation (§,§) must
be on the line Lg; see Efron (1978) for further geometrical
details. If n is large, we may for inferential purposes approxi-
mate f(B) locally by a segment of a circle (see figure 1). Let P
denote the center of this circle; then the lines LB will for B

near to B approximately go through P. Now, if we want a confidence

interval for B, a usual method will be to 'center' this interval



at é and let the length be approximately proportional to the
standard deviation of E, disregarding the position of (§,§) on
the line Lé' However, if the observations is (§l,§l) a displa-
cement of this by an amount § orthogonal to Lé would change the
estimate from é to él’ whereas, if the observation is (x2,y2), a

similar displacement would only change the estimate to 82. This

suggests, that the intrinsic accuracy of the estimate is in-

creasing with the distance of (§,§) from the center P. It may be
noted, that confidence intervals constructed using the likelihood
ratio test would certainly reflect this fact. In more general

cases similar considerations hold, but the geometrical picture is

not equally obvious.



f(g)

Fig. 1. Intrinsic accuracy of the maximum likelihood estimate.
Sensitivity of the estimate due to a displacement § of

the observation depends on the distance of (§,§) to P.



Several suggestions of 'ancillaries' capturing some of this addi-
tional information have been put forward (see Barndorff-Nielsen
(1980)), but except for one they are related to exponential models
or other specific classes of models, e.g. translation models. The
remaining one is essentially the second derivative of the log-
likelihood function at its maximum. This idea goes back to Fisher,
but was in more explicit form suggested by Efron & Hinkley (1978).
A problem is, that this second derivative may contain a lot of
information; however, after a suitable normalization, it will be
asymptotically ancillary; more precisely it will be a locally
second-order ancillary around the true parameter, see Cox (1980).
Also, as will be shown in Section 4, the Fisher information con-

tained in this statistic will tend to zero.

In Section 2 we provide the notation and the basic definitions.
In Section 3 we derive the second-order Edgeworth expansion of
the conditional distribution of the maximum likelihood estimator
given the asymptotic ancillary statistic, and some moments of
this distribution. In Section 4 we briefly investigate the loss
of Fisher information in the various statistics and establish an
implication of these results in terms of deficiencies as defined
by LeCam (1964). Section 5 contains some comparisons of the Wald
test statistics with the observed resp. the expected Fisher in-
formation as estimates of the inverse variance of the estimator.
It is proved, that the conditional null-distribution of the for-
mer converges more rapidly towards its limiting chi-square dis-
tribution, and that this test statistic also has the advantage

of being (marginally) stochastically closer to the likelihood



ratio test statistic than the latter. Section 6 contains a sim-
ple example, and in Section 7 we state the regularity conditions

and comment on the proofs.

Throughout the paper we are dealing with the i.i.d. case with
multivariate parameter space. The results may be generalized to
other cases along the lines of Skovgaard (1980a,b). Some impor-
tant references concerning approximate ancillarity are Pierce
(1975), Cox (1975, 1980), Efron & Hinkley (1978), Peers (1978),

Barndorff-Nielsen (1980) and Hinkley (1980).



§ 2. Notation and setup

We shall use a coordinate free notation, which will allow us to

handle the multivariate case almost as easily as the one - dimen-

sional case. The reader, who does not wish to consider the pro=-
blems arising in the multivariate case, will easily be able to
recognize the meaning of the notation in the one - dimensional

case without reading the first part of this section.

Let Vl and V2 be finite dimensional nofmed real vectorpaces and

let v,v, € V.. By Bj(vl,vz) we denote the vectorspace of j-linear

1 1
symmetric mappings of Vi = le...x\G- into V2, equipped with
the norm
Al = sup{llA(vJ)ll; HvIil=1}, A.€Bj(Vl,V2)
where v3 = (Vvy..ee,V)E Vi. CS(B,VZ) denotes the s times continuous-

ly differentiablé functions from an open set B ¢ vy into Vo and

if £ € ¢°(B,V,), then we define the k'th differential, k < s, of

f at v, € B by

1

k k k, _ ,
D f(vl) € Bk(vl’VZ) , D f(vl)(v ) = EEE:E(V1+JV)I

where € IR. Also moments and cumulants of a random vector
Y € Vl are regarded as multilinear forms, e.g. the k'th moment
*
My € Bk(Vl,ZR) of y is given by
k *
Uy (W) =E{<w,Y>k}, wEV
k 1
*
where Vl is the dual space to Vl, and <, > denotes the inner
product between a space and its dual. If Vl is Euclidean, it is
its own dual. An element A € Bk(vl’VZ) may in a natural way be
regarded as in Hom(Vl,Bk_l(Vl,Vz)) as the homomorphism given by

A(V)(Vi-l) = A(v,vi_l). We shall frequently use such natural



constructions with the same notation for the two mappings.
A: le...x\ﬁ<e V, the we use the (matrix-like) convention,
single argument refers to the last component of the domain

(i.e. Vk), such that A(v): led..zévk_l_a vV, v € Vk'

Let Xl”"’Xn be independent identically distributed random

If

that a

variables on some measurable space, the distribution of Xi being

a member of a family P B € B c V, where V is a Euclidean

BI

space

of dimension k € IN. We assume, that the family is dominated by

U, say, and let f(x;B) denote some version of the densities
also assume, that the conditions of § 7 are fulfilled, thes

essentially being various kinds of smoothness conditions.

Let B, € int (B) be the fixed true parameter value, and defi

- n 3
E.(8) + 5™ (g) =n"t r DI 1og £ (X,58)€ B.(V,R)
J J i=1 1 J
such that Ej(B) is non-random, and Sén)(B) has (PB) expecta

zero. Also, let

Xi.. (8 = cumy (5P ey, ..., s (M (8))

(1)

By, asiPe, dee

denote the joint (PB)_ cumulant of S
multilinear mapping of Bi(V,En x...xj%{(v,ﬂﬂ into IR. Final

define (omitting the argument B)

p2 log £ (X, ;8)

—
I
I
=

2 T X11 ¢

anq F € B2(B2 (VI]R) ’ ]R) by

F(az) = x22(a2) - I_l(xlz(a)z), a € BZ(V,IR)

. We

e

ne

tion

. a

ly we



Notice, that n I is the 'expected' and n I(n) the 'observed'
Fisher-information for the experiment, whereas F is the residual
variance of Sél) after regression on S{l). In the sequel we shall
use the convention, that if the argument B of a function is omit-
ted, then the fixed argument BO is understood, and the value of

a function at én’ the maximum likelihood estimator (MLE) of B8,
will be denoted by adding a circumflex, e.g. ;(n) = I(n)(én).

Also, the index n will usually be omitted.

We are now ready to define the (hopefully) asymptotic ancillary

statistic A = A(Xl,...,Xn) by

A A

(I-1)e W = B2(V,Iﬂ (2.1)

-1
2

A=+vnF

~ -L
which is just a normalized version of I. Here F *

= /?_l, where

v is any smooth left square root, i.e. YF € Hom(W,W) must satisfy
JF VFY = F € Hom(W,W). It is immaterial, which inner product on

W is used to identify W with its dual. It should be noted, that

it is required (see §7), that F is regular. Otherwise a generaliz-
ed inversed of vF should be used as F-%. This would not change
the results, but notational difficulties would arise. Note, that

-5 . . . . . .
F ? is not required to be symmetric, but is any linear variance

normalizing transformation, when F is the variance.
2 &




§ 3. Expansion of the conditional distribution.

In this section we shall expand  the conditional distribution of
Z = /ﬁ(én-go) given A under the distribution PBO. It is not hard
to prove, that Z and A are asymptotically independent. Thus to
obtain any interesting results, we must carry the expansion to

-1
second order, i.e. including the n * terms.

The first step is to expand the simultaneous distribution of
(Z,A). This is done in the following three steps. (i) Compute the
second order (stochastic) Taylor-series expansion in terms of
Sl’SZ’°" around 0,0,... . (ii) Compute the first three joint
cumulants of these approximating polynomials. These will be
functions of the Ej's and the X's. (iii) Using these cumulants,
write down the Edgeworth approximation to the joint distribution.
Since the expansion obtained in this way is the basis of all our

results, we shall state it in detail in the following theorem.

Theorem 3.1. Under Conditions 7.1 we have the following local

expansion for any c > 0

sup{l g_ (z,a) - ¥_(z,a)| , Il (z;@) Il £ clogn} =0 1) (3.1)

sup{l h_(a) - z_(a)l ; llall < clogn} = O(n 1), (3.2)
n n

where 9, @nd h are the densities of (Z,A) and A, and

v (z,a) = (21" 5/ 2(gee 1) % exp -5(1(z%) +1a1?))

L+, (1(2)) +k (a) +3 k< (1(2)7) + £ ¢ __(a)
ty o, (L) %a) = %< T,k (1(2)))> - 5<1, k__(a)>
= E< L, kgaa(a) >) (3.3)



_lo_

3

(@) = (2Tr)—d/2 exp{-% Il a Hz}(l'*Ka(a)'*% aaa (@)

<1

1
[N

W Kaaa(a) > ) (3.4)

where d = dim(W) and the k's are the formal cumulants of (Z,A) as

[N\

computed to order n ° from the second order Taylor series expan-

sion of (%Z,A) EE(SI,SZ). In particular

-1

/n kK, (I(2)) = =% <1 7, x771(2) +xyy(2) >
Aok (I(2)3) = - (2 (23) + 3y, (22)) (3.5)
N Kzzz X111 X12 .
. - 2 -3t
kg (12 a) = - F®, @) )
Remark 3.2. It turns out, that Kzaa = 0; otherwise the term

L Kzaa(I(z),az)— ¥ < lW’ Kaaz(l(z)) > should have been included

in (3.3).

Rémark 3.3. It is seen from (3.4) combined with the fact, that

-1 -
K, = O(n *), K oaa = O(n l), that A is not, in general, asymptoti-

cally second-order ancillary in the sense that the second order

approximation to its distribution can be chosen to be independent

of BO. A is, however, locally second-order ancillary in the sense

of Cox (1980), and this is the property, that turns out to be

important to avoid loss of information (see § 4).

Theorem 3.4. Under Conditions 7.1 we have the following expansion

of the conditional distribution of Z = /n(B - BO) given A = a,
P, {ZEBIA =a} =/ n_(zla)dz + Hn ") (3.6)

Bo
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uniformly over all Borel sets B <V and Il a H2 < (2+a0)log n,

for some o > 0, where

no(zla) = (2m) /2 (@et(1+F%(a)))* expi- % (I+F*(a)) (z7)}
(L+k (T(z)) +% . (I(z2)3) =% <1, «._ (I(z)) > )  (3.7)
pA ' 6 zzz 2 ' “ggz )

Remark 3.5. Although the expansion (3.7) is easily obtained by

dividing (3.3) by (3.4), it should be noted, that Theorem 3.4

does not follow from Theorem 3.1.

Remark 3.6. It is important to note, that the event

{1na H2 < (2+0) log n} has probability l-O(n_l), such that
Theorem 3.4 together with (3.2) implies, that

P {Z€eB} =

-1
S z. (a)f, n.(zla)dzda+0(n ™)
Bo hal? < n'"""B 'n

(2+a)log n
(3.8)
A local expansion of the conditional density of Z given A holding
uniformly only on a bounded set, would not suffice to prove (3.8),

and in this set the result would be incomplete.

There is a couple of things to note about the moments of N, The
first and third moment are (to second order) independent of a, and
the same as in the unconditional second-order expansion, gee
Skovgaard (1980b), whereas the variance depends ona. The theorem
says nothing about the conditional moments of the exact distribu-
tion, but if these are to be used as déscriptive quantities of the
distribution, then rather than expanding these, it is the moments

of the approximating distribution, that are relevant.

To second order we have



Yzila=a) Y = 1+n 2 Fia)~m I+1-1, (3.9)

where V is the variance of the approximate distribution. Thus it

is seen, that the error I -1 in approximating V‘l by I is the

A

same as the error in the usual (unconditional) approximation I of

V{Z}—l ~ I, If, in particular, the information is constant, then

we have the approximation

V(Z | A=a)~ 171

in accordance with the result in Efron & Hinkley (1978) concerning
the translation model. In fact, all that is needed for this to

hold is, that the derivative of I at BO vanishes.
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§ 4. Recovery of information

Fishers main reason for considering ancillaries and more specifi-
cally conditional distributions given ancillaries was, that by
the reduction to a single statistic, such as the MLE, one might
lose a certain amount of (Fisher) information, which might be

"recovered" by a conditional approach.

The total amount of Fisher information in the experiment is
rlI(BO)= int (X), say, where X = (Xl,...,Xn). In general we let
inf(f) denote the Fisher information (at 80) contained in the
experiment, where only T is observed. Also, we shall consider
the information inf(T | A=a) in the experiment, where A(X) = a
is fixed and T is observed, and its expected value ian =
E{inf(T | A) }. The well=known identity inf(T) = inf (X) -
E{V{r1S{n) | T1}}, see e.g. Fisher (1925),is useful in computing
inf(T). It is well-known, see Fisher (1925), that inf (X)- inf(é)
tends to a finite limit as n - «, which Efron (1975) identified
as Y2 I in the one-dimensional case, where Y is the curvature of
the model at BO. The following theorem shows, that this informa-

tion lost by the reduction of X to B is indeed recovered by

conditioning by A as defined in (2.1).

Theorem 4.1 Under Conditions 7.1 we have

inf(X)«-inf(é) = tr(I-lF)-FO(n_%) (4.1)

inf(X) - inf(8,A) = O(n" %) (4.2)
-1

inf (A) = O(n ?) (4.3)

S

inf, () = inf(X) - O(n—%) (4.4)
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1

where tr(I "F)E€ B2(V,Hn is given by (tr(I_lF))(vz) =

F(VII_l,V) 7 V € V.

Remark 4.2. The coordinate version of tr(I_lF) is (tr(I-lF))ij

_ kl _ -1 _ k1l
= i i Fiklj g ~, where F = (Fiklj) and 1 = (g~ 7) are the

coordinate versions of F and I_l.

A

Note, that (4.4) follows from (4.2) and (4.3), since ian(B) =

inf (B,A) - inf(A).

Formal proofs of (4.1) and (4.2) go back to Fisher (1925),
whereas Rao (1961) gave a strict proof of (5.1) in the multi-
nomial case; see Efron (1975), Section 9 for further discussion
and references. Strict proofs may be given under weaker assump-

tions than those of § 7, but we shall not elaborate on this point.

If one does not believe, as Fisher seemed to do, that the (Fisher)
information is an absolute measure of information, then it would
be natural to look for other interpretations or implications of
Theorem 4.1 and similar results; see LeCam (1975). A reasonable
possibility would be to measure the information lost in the
reduction from X = (Xl,...,Xn) to T = Tn(X) by the deficiencyv

the experiment (QB,B(EB) with respect to the experiment (PB,B €B),

when QB is the distribution of T; see LeCam (1964).

In agreement with LeCam (1956) (see also Michel (1978)) we shall
use the slightly different measure

S, (T,X)= inf sup ¥ Il P,-1Q, Il

K T BEK B B

= inf sup sup {IPB(A) - (H(gé a1y, KecB (4.5)
I BEK A
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where II varies over the class of Markov - kernels and A over all
measurable sets. Except for minor technical differences this is
the deficiency of (QB'B € K) with respect to (PB'B € K). Attention
is restricted to compact sets K < B, since uniform approximation
over B can hardly be obtained in general. Notice, that SK(T,X) =0
if T is sufficient, and in any case the measure tells how well

any test based on X can be reconstructed from T by a randomisa-

tion.

A

Let us now assume, that B is a function of T, although another

A

first order efficient estimator might do as well as B, and let us

define II = Pg , i.e. the UIQB)-conditional distribution of X

given T = t is Pg, where Pg is the PB_ conditional distribution

of X given T = t. We shall give a formal proof, that SK(T,X)

is asymptotically bounded by the maximum over K of the square

root of the relative loss of Fisher information. More precisely

P

IA

g - Tl v@&rR&ﬂ)%(l+oﬂH (4.6)

where k = dim V and Ry (T) = inf(X)_l(inf(X)—infB (T)) is the

relative loss of Fisher information.

Let ft(x;B) denote the density of PE with respect to y. The proof

of (4.6) then goes as follows

IIPB -IHQBII= Ir Ift(XﬁB)fﬁft(kr%)ﬂ d11(xhiQB'ﬁj‘x

~ 11 (D, log £%(xi8)) (B=B) I dn (x)dQ, (t)
-3 . 5
< ST TE (D, Tog £5(xi8)) I I T(8) % (8-8) 1l du(x) dQy(t)
1

< (B, LI(B) (B=0)°H ¥ (B {< (nT (8))71, inf (x 11>}

< R(E e (1) o dnfy(x 11))})
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- L
= VK (tr (inf (X) l(infB(X)-infB(T))))z
where the second ineduality folloWs from ﬁélders inequality.

Using this result together with Theorem 4.1 we see, that

~ -1 A -
6 (B,X) = 0(n %) and &,.((8,8),X) = O(n 1y, which has been proved

more generally in Michel (1978). We also see that in the case

T = B, we have

L - - L
Rl P -Tog Il < /R(< T(B) ", tr1(B) 'F(B)>)" (4.7)
(= vk X F.. gll gjk in coordinates)
.. ijkl
which reduces to the curvature | y(B) | in absolute value in the

case k=1; see Efron (1975) for the definition and discussion of

the curvature of a model.
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§ 5. Comparison of test statistics

Consider a hypotheses of the form HO: HB = ho, where H: V - V0

is a known linear function and h0 € VO a known point. The most
interesting example of this kind is testing that a coordinate of

B takes a fixed value. Let B be the maximum likelihood estimate

t

* *
under H and let H: V0 -» V Dbe the transpose of H. We shall

OI
consider the following three test statistics of the hypotheses

H

0 n .
L =2 I (logf(X;, B8) — log f(Xi,@)
i=1
wo= (1Yo @®,u%) T (me-hy) ?)
W, = (1o ", E%) Tt ((m-ny) ?)

I, is the likelihood ratio test statistic, and W and Wc are quadra-

tic test statistic in (HB—hO) mormalized with different estimates

of its variance. W is the Wald test statistic and Wc a modified

Wald test withI-l as variance estimates of B instead of I-l.

The index c means 'conditional', althougrh.I-l is not in general
the conditional variance of /E(BvBO) given A. The following

theorem confirmes a conjecture by Efron & Hinkley (1978); see

also Cox (1980).

Theorem 5.1 - Under Conditions 7.1 and the assumption, that 7.1

(vi) holds for the restricted model HO,'we-havevthe<following

expansions under Hor i.e. if HBy = ho,
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P, {L <t | a=al=qyx2(t) +0(nh (5.1)
P {W_ <t | A=a}l=y2(t) +0{(n ) (5.2)
BO c - ‘ p

P W<t | A=a)=x2(t) + 0(n”%) (5.3)

0

uniformly in t > 0 for all a in {[l a H2’§ (2+a) log n}, where Xp

is the chi-square distribution function with p = rank (H) degrees

of freedom.

The statement concerning W is in a sense negative and stated for

comparison only. The important thing is, that the error is not in

l).

general O(n~

Note, that marginally all three test statistics are asymptotical-
ly chi-square distributed with error O(n-l), see Chandra & Ghosh

(1979) .

Although this result indicates, that L and Wc behaves more like
conditional tests than W -does, it says nothing about the (margi-
naly properties of the tests. A possibility would be to compare
the (asymptotic) powers of the tests) but a uniform superiority
ofrany-of:-these could hardly ‘be expected. If one takes the stand-
point in accordance with the example in § 1, that L is theoreti-
cally preferable to W and Wc’ although L is harder to compute,
then one could compare W and Wc by their performance relative to

L. This leads to the following result.

Theorem 5.2 '~ Under the conditions of Theorem 5;1.Wé'is‘st00hasti-

function h: R - [0,0[, H(0) =0, h.(xz)__ > h,(xl), if o0 <Ky <X, OF X< X< 0,



we have

PB {h(/ﬁ(wc-L)) < h(/n(w-L))} = §(h) + o(l) (5.4)
0

with 6(h) > %, and §(h) = % if and only if F = 0, and hence

W--Wc = O(n-l) with probability l-O(n_l).

Both of the theorems suggest, that Wc should be preferred to W,
whereas it is hard to see any reason for preferring W to Wc in
general. In particular cases there may, of course, be reasons

for preferring W.
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§ 6. An example

To illustrate some of the results we shall use the example at
the end of the paper by Hinkley (1980). We shall not verify the
Conditions 7.1, but it is a trivial matter apart from the regu-

larity of F, which is not satisfied here. This causes however no

problems.

Let (Yi,Zi) be i.i.d. bivariate normal variables with Zi distri-
buted as N(el,l) and Yi = 62 Zi+-ei, where e; is N(0,1). By

simple compulations we get

e} - A _ 2
6, =2 =1x2;/n, 0, =32,Y, /35
) 2 o . 2
I1(8) = dlag(l,l-+61), I = diag (1,: Zi,/n).
Since I -1 = diag (0, Z(Zi-Z)z/n-l)has one - dimensional support,

we only compute the corresponding element of F, i.e. F2222 = 2,

and define (see(2.1))

A= (z(z; -%)° -n) //En.

"~ A
A is seen to be exactly ancillary and (0,A) is sufficient. 61 is

independent of A, and since the conditional distribution of @2

l), it follows, that

A A

given % 2, is N(ezi(/5h1\+11CL+ gi))—

AR
to second order the conditional distribution of.(@l,ezl given

A = a is normal with-mean:.zero and

V{(6,,6,)} ~ diag(n ', (VZma+n(l+63)) 1)
=ntax+r-17t
in agreement with (3.9). © . Also, as noted by Hinkley,

= 2 : . . .
L=w,= n(Z-el) + (ZﬁZiei)z/’ZZi is exactly distributed as X%,

-1
whereas W deviates by an amount of order n *(cf.Theorem 5.1 ahd 5.2).
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Conditions and proofs

VConditions 7.1. Let BO € int (B) be a fixed parameter value, then

(1)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

If x €{x; f(x;60)>r0}, then f(x; ) is 7 times continuously

differentiable in a neighbourhood of BO.

I(BO) and F(BO) are regular, I is five and F four times

continuously differentiablde in a neighbourhood of BO.

E {lle log £(X;8 )II7}< w , 1 <3< 7
Bo 0 -7 =

3 60 >0:

E, {(sup{ll D’ log £(X;8) 11 ; Ilig=85 1l < 6,1} < o
0

The characteristic function of U(S{l),...,sél)) belongs to

Lm for some n € N, where U is a linear function mapping

the affine support of (S{l),...,sél)) bijectively onto a

real space, such that Vé {U} equals the identity.
0

For sufficently large n the MLE Bn of B exists with

PB - probability one, and for all ¢ > 0
0

—5/2) .

PBO{“‘ i-/h(fgn-so) Il.2 >clogn} = o(n

Expectations with respect to PB of all linear and bilinear
0
functions of D log f(X;BO), D2 log f(X;BO) and

D3 log f(X;BO) may be differentiated by differentiation

under the integral sign.

We have not tried to minimize the assumptions of each theorem;

instead, since the purpose of this section is to outline the

techniques, they are a compromise between the demand that they
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should be easily verifiable, and the desire to avoid too great
technicalities. In particular the regularity of F is assumed for
convenience only, and without this assumption the‘results would
still hold with obvious modifications. In the same way in (vi)
probability one could be replaced by probability l-o(n_5/2). In
the sequel we shall refer to the assumptions as (i)-(vii), and
it should be clear from the proofs, what the purpose of each as-

sumption is. Before going on to these we shall state a lemma of

some independent interest.

Lemma 7.2. Let P be a probability measure and Q a finite signed
measure both dominated by a measure p on some measurable space

(E,A). Let £ = dP/du and g = dQ/du denote the densities. If

Q(E) =1 and a set A € A exists, such that for some €1 2 0,
€, 2 0
(a) sup{| £(x) -g(x) | ; x € A} < g,
(b) {AdaLg(x) ldu(x) < e,
then
sup{| P(B) -Q(B) | ; B € A} < 2(e u(B) + =,) (7.1)

Proof. | P(B) -Q(B) < |P(BnA) -Q(BNA) [+ | P(BNAS) - Q(BNA®) |

< e U@ +1-P(A) e, < 2(equ (B) +&,) . o

We shall now proceed to comment on the proofs, avoiding details,

which may in essence be found elsewhere.

Expansion of the distribution of (Sl,...,S7). By the conditions

(iii) and (v) we may apply Theorem 19.2 of Bhattacharya & Rao

(1976) to oObtain an asymptotic expansion in powers of n ? of the
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L -
density of n”* U(S(n) ..,Sén)), the error term being o(n )

1 '

uniformly over the whole set.

Proof of Theorem 3.1. We shall use Theorem 3.2 of Skovgaard

(1980a) to transform the local expansion of U to a local expansion
of (Z,A). This theorem is stated in terms of distributions, but
since it is proved by the use of local expansions, it may be
applied here in modified form. The technigque was first used by
Bhattacharya & Ghosh (1978) to derive an expansion of the distri-
bution of Z under similar, but more general, assumptions. In
Theorem 3.1 only the second - order expansions are stated, but to
prove Theorem 3.4 we need to establish the validity of a local
-2-6

Edgeworth expansion with error term O (n ) for some § > 0. To

do this a Taylor - series expansion of the form

-5/2 —5/2)

-}
7 ~ Al(sl)_ + n Az(sl,sz) +...+ n A6(sl,...,s6) + o(n

uniformly in llU(Sl,...,S7) H2 < clogn, is required. This is

constructed as in Bhattacharya & Ghosh (1978) using conditions
(i), (iv) and (vi). A similar expansion is needed for A, and this
is obtained by expanding around é = Bo using the expansion of Z
and conditions (i), (ii) and (iv). The expansion of A is only
needed up to an error of order O(n-z_a). On transforming the
expansion of U, the validity of local Bdgeworth expansions of
(Z,AL‘and A including the 1'1-2 terms is established, the errors

being o(n 6). Condition (vii) is needed to compute the second -

order expansions; whereas we need not compute the higher - order

expansions.

There is a slight technical problem in computing the differential

-1k ~ 5 ~
DF 2(6—802 of F * in the direction B-8,.



Since -1t -} -1

and

DF T (8-B,) = - F T (DF(B-By))F

we obtain by the product rule

(-8 F 2+ (55T DFT (65

Il

(DF - v or(e-gE T,

which turns out to be all that is needed. Note that the right
hand side is independent of which square root is used. Based on
the Taylor — series expansions the computations of the «k's and the

second — order expansions are straight forward, see e.g. Skovgaard

(1980Db) .

Prpof of Theorem 3.4. The method used to prove this is essen-

tially the one given in Michel (1980). (3.7) is obtained by

dividing (3.3) by (3.4); the problem is to prove the validity.

To do this we need the expansions of gn(z,a) and hn(a) with error

terms O(n_z-é) as constructed above. The ratio of these will on
-1

expanding in powers in n ? and keeping only the first and second-

order terms give the same result as the ratio of the second-

order expansions. The point is now, that if o in Theorem 3.4 is
sufficiently small, then the relative error of the higher - order
expansion of h_(a) within the set Il a 12 < (2+a) logn is

O(n_l—e) for some € > 0. On this set also the error of the higher-
order expansion of g _(z,a) is O(n_l_g), when divided by h (a).

The theorem then follows from Lemma 7.2.

Proof of Theorem 4.1. We shall not comment on the main computa-

tions, which are quite similar to those in Fisher (1925), but

only give a technical comment. Using the Edgeworth expansions,



the variance of S{n) given B or (R,A) is easily calculated, except
that we need to show that a region nlISll12> ¢ logn may be neg-
lected. This follows however easily from the fact, that this is

so in the marginal distribution of Sl'

Expansions of L,W and W . In the proofs of Theorem 4.1 and

Theorem 4.2 we shall confine ourselves to the case of a simple
hypotheses, i.e. HO: B = BO’ since the ideas of the proofs are
the same in the more complicated setting. Note, that we then have
W = E((é—BO)Z) and Wc = E((E-BO)Z). The Taylor - series expansion

to second order of L,W and Wc are obtained as

3
)

[N

-y X 2 - 3 2
L~ (I+n *F(A)(27) +n *(x,(27) + 3 x99 (2

N

W~ T(2%) + 077 (23, (2%) + xqq,(20)) (7.2)

-

W ~ (I + n

5 2 -% 3 3
- FP(8)) (2°) + 07 (2, (2°) + xyq7(2])

the error being O(n_l)ED(A,Z) with probability l-O(n_l) uniformly
on each set of the form II(Z',A)II2 < clogn, where p is a poly- -
nomial independent of n. These expansions are the key to the
proofs of the two theorems of Section 4. Notice, that the guadra-
tic terms in Z are the sguared length of Z as measured by the

inverse conditional wvariance (cf. (3.9)) in L and Wc' whereas the

unconditional variance is used in W.

" 'Proof of Theorem 5.1. (5.1) and (5.2) follows from Theorem 1 of

Chandra & Ghosh (1979), see their Remark 2.2. Their condition
(2.2) is not exactly fulfilled, because it only holds in sets of
'size' O(logn) in stead of O(/h), but it makes no essential dif-

ference in the proof. (5.3) is obvious, and it is seen, that
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L -

-1
since n ? F?(A) is in general not O(n l), neither is the error in

(5.3).

Proof of Theorem 5.2. Consider the differences

D=W=-1L~n *(-F?a) (29 + x.,(2°) + 3 x;;,(2°)

- W - -% 3, .1 3
D= W= Lo~ n “(xy,(27) + 3 X377 (27))

-1 e
both being of order O(n *). To a first approximation Z and F?* (&),
are indpendent, normally distributed with means zero and variances

1 -L
l, V{F?(A)} ~ F. Thus, to order n *, the conditional

vi{z} ~ 1
distribution of vynD given Z is normal with mean /EI%: and varian-
ce F(Z4), while Dc is a function of Z. In this approximate dis-

tribution it is seen, that the probability of h(vn D) being greater

than h(ﬂTDc) is at least %, since the probability of the event,
. 1 .
that this occurs with D and Dc of the same sign equals 5- Since

the other part of the event {h(/nD) > h(/HDc)} has probability

1

zero if and only if F is zero and hence W = W, + Oo(n ~), the

theorem follows.
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