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1. Introduction

Let Q(T) be the number of customers in the system at time
T in the M/G/1 queue with bulk arrivals and batch.service, cf.
Cohen [8] Ch. III. 2. The model involves amongst others the following
quantities: The intensity o for arrivals of bulks of customers;
the service times Ul’UZ"' with common distribution G; the
probabilities fh(n=1,2,...) of a bulk having size n; the batch
capacities X%z), Xéz),... and the gn=P(X£2)= n) (ZTgn=l) . For
simplicity, we exclude initial conditons with service in progress unless
otherwise stated and define 1t1(0)=0, t(n) as the nth departure
instant and the imbedded Markov chain YO?Yl"" by letting Yn=Q(T(n))
be the number of customers in the system just after t(n). The
number of customers arriving during the nth service period is denoted

by Xﬁl) i (arrivals during idle

periods are defined in terms of other r.v., c.f. C,D below). Thus

—Xéz) + Xﬁl) on {Yn_1>X£2)} (1.1)

YnzYn—l
andto complete the description of the model it only remains to specify
tlie behaviour of the system if the batch capacity exceeds the number of
customers when the server becomes idle. Four variants A,B,C,D

(cf. [8] p. 369-370) will be considered. In A,B a new service period
starts immediately at the end of the preceding one, whereas in C,D

(of any of which the simple M/G/1 queue is a special case) service

may be delayed:

>

: . (2)
A (the transportation problem [8] (ii)b). If Ocx Yn;1<<Xh

then the nth batch contains Yn—l customers (and may thus be empty),

and new customers must await completion of service of this batch.
Hence Y =X(1) and combining with (1.1), it follows that the transitions
n 'n

of ‘{Yn} are completely described by

_ (2),+ (1) 1.2A
Yo=Y X + X (1.24)
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B (accessible batches [8] III 2.6). New customers can proceed

immediately to service as long as the batch capacity is not fully

utilized. Combining with (1.1), we thus have

e (Yn—l—Xl'(lZ)+Xlgl))+ (1.2B)

Although somewhat too simple, this model incorporates features
‘relevant for the study of queues at traffic lights (e.g. Newell [21]).
A more realistic model (in some sense intermediate between A and

B) for that situation is offered some discussion at the end of
Section 5.

C ([8] (id1) a ) If 0 <Y < X(Z) , then the system behaves as in

n-1 n
(2)
—1<Xn

then the server remains idle until the next

5

A. If 0=y
n

group of customers of size (say) Cn arrives. Thus

X(l) on {0 <Y < X(Z)}

n n-1 n
y = (1.20)
n (2),+ (1 _ (2)

(Cn—X.n )+ X on {O—Yn_1<Xn }

D (delayed service [8] (i)) The server waits for arriving customers

until the batch capacity is reached. This model will only be studied

for bounded batch sizes, i.e. P(Xﬁz)e{l,...,p})=l for some p.

If Cn ; are independent r.v., with Cn 5 having the distribution
b 2

of the overshot of level i 1in a renewal process governed by
{fn} , then for i=1,...,p-

_ (1 (2) -
Y o= Cn,i+ X2 on {Xn -Y 1= i} (1.2D)

In the case f1=1 of single arrivals and gp=1 , Q{t) has a

standard interpretation as the number of phases present in Ep/G/l .



Finally we also consider the standard version of the GI/M/m queue
(é.g. Takacs [24] Ch. 2 or Kleinrock [17] Ch. 6). The introduction
of the model is deferred to Section 6.

Defining >\=EUn , the conditions

Condition 1.1 a§ nf < A"1§ ng (1.3)
n=1 n=1

Condition 1.2 There is no h>1 with both {fn} and {gn}

concentrated on {h, 2h, 3h,...}

are well-known to ensure the ergodicity of {Y }.i.e. Yn=’Ym (with =

denoting convergence in distribution)
for some Y  with distribution independent of initial conditions. The

analogue conclusion Q(T) & Q(~) holds also if in addition

Condition 1.3 1In models A,B,G 1is non-lattice

hﬁlds (in some of the traffic applications, G would rather be deterministic and
we treat this

case in Section 5). Note that the 1.h.s. of (1.3) represents the

expected number of arrivals within one time unit and the r.h.s. the

expected number of customers served when the system is working with

full capacity. Another important interpretation of (1.3) is

EXn=E(X§1)— X£2))< 0. In fact, (1.1) states that except at small values

the increments of {Yn} are the same as those Xn of the random walk

{Sn} = {X1+...+Xn} which will play a predominant role.

The object of the paper is to establish the type

1im  sup |s"P(q(mzNy -0y = o (1.4)
N N< T<wo ON 5

of tail behaviour. Here as usual & is the standard normal
distribution function, ¢6>1,C, p,oz are constants to be determined

. 2 . . .
later (with §&,u,0” the same in A,B,C,D , but C taking specific values

CA s CB’ CB’ CD) and finally (1.4) has the obvious interpretation



P(Q(=)2N)z C& N (1.5)

for the steady state T=» . Note also that it follows by Taylor's

formula and the boundedness of x®'(x) that (1.4) implies

lin  sup |6P(D=M-c(1-s"He (Y | - o (1.6)

1
3

N->c0 O}wa oN

Relations similar to (1.4) for the actual and virtual waiting time in

the GI/G/l/%ﬁSifobtained by the author [4] , in part motivated from
certain approximations in collective risk theory. It would seem
reasonable to think that such relations hold in a great variety of
queueing situations. However, the proofs are non-trivial already for the
model in [4] (having a simple relation to random walks) as well as for
the models of the present paper which, despite the fact that random
walks come in a rather more complicated way than in [4], do exhibit

the simplifying feature of imbedded Markov chains. The equilibrium
case (1.5) is somewhat easier than (1.4). Here (1.5) was derived by
Gaver [14] in models B,C with individual service (g1=1), using

poles and residues under additional analyticity conditions (the author
[3] gave a simple proof under minimal conditions in the simple

M/G/1 case). Also in GI/M/m, the distribution of Q(x) is well-known

to be exact geometric modified in a finite number of terms. In practice,
time-dependence is most oftem neglected and the steady state used as
approximation. For a given T< «, a comparison of (1.4) and (1.5)

might then provide some numerical tests of the accuracy of this
procedure. Otherwise the interest in (1.4) arises largely from the

simple functional dependence on N,T compared to the difficulties in

studying exact solutions. Exact time-dependent expressions,

viz. for f e_BtE;Q(t)dt , are known in some cases (e.g. Takdcs [23] for
0

E /G/1 and De Smit [10] for GI/M/m), and explicit expressions for

Est or ESQ(m) in some further ones. They do not, however, reflect

properties of the distributions in any transparent manner and, as Neuts [19]



argues, '"have largely been ignored by the practitioner" .

Sections 2-5 of the present paper deal with the models A,B,C,D, and
Section 6 with the GI/M/m case, the study of which is essentially

just a Simplification of arguments from Sections 2-5. Section 2 gives
some preliminaries. In particular a certain associated transient
queueing system is introduced, based on the so-called associated or
conjugate random walk (e.g. Feller [13] p. 406-407, [4], Keilson [15]).
The expressions for p,oz and to some extent C will be in terms

of the parameters of this system. In Section 3 the précise conditions
for (1.4) are stated and the mainstream of proof given, with a number of
technical steps left out to Section 4. The approach is probabilistic
rather than based on traditional transform methods. Some of the basic
tools are the application of Anscombe's Theorem ({2]) to a first passage
problem, and extensions and applications (in a number of disguises)

of ideas from renewal theory. A difficulty of the approach is that
explicit expressions for C do not readily come out even in simple
cases. Instead we attack (1.5) directly in Section 5 and use the
validity for T=« of the proof of (1.4) to identify C. Section 5 also
has some further material on the imbedded Markov chain.

2., The associated transient queue

We recall the definition of fﬁ,gh,G from Section 1 and let f(s)=z snfrl
0

denote the p.g.f. and G(B) = L)eBXdG(x) the m.g.f. It is well-known
- v .~ .
and readily checked that h(s)=Ean = G[f(s)-1]).

The random walk associated with {Sn} is defined by first solving the

equation
L @) . . .
1=E6™n = Es*n EsMn = h(8)g(s H=6rr)g(s™ ) (8>1) 2.1)
where we have put y’=a[§(6)-1] , and next define the associated probabilities

b, ap(xn=i) = .alp(xn=i) , cf. Feller [13] p. 406-407. Then EX <0

. . a
implies "EX > 0 . We shall need



Condition 2.1 The equation (2.1) admits a solution & > 1 with the

additional property G"(y) < =, %"(6) < o,

This is essentially a restriction on the tails of G, {fn} and

automatic, e.g., if the distributions have bounded support.

Theorem 2.1 The 2P-distribution of Xn is the same as in a queueing

system with intensity aa=af(6) for arrivals of bulks, service time

distribution 2G(dx)= éYXG(dx)éIY) and probabilities afﬂ:6n/f(6),

agn = 6—ngn/§(6—1) for bulk size n, resp. batch capacity n.

Proof The p.g.f. of Xél), resp. Xn’ in the system described in the

theorem is
388 (35 s)-11)= SOl E(s)-1])
| | G(Y)

g(a[%(é)—1]+d[g(és)—§(6)]) _ G(a[£(8s)-1]) , resp.
G(Y) G(Y)

8(&[%(65)-1]) d.. -1, 8(a[§(as)-11). g(s'ls'l) _
g(s ) = ~

Gy G(Y) gs7h

Gl£s)-1D) g6 s = By = T K o=k . O
k=0

In view of aEXn> O this associated queueing system is easily seen to
be transient, i.e. aP(Q(t)—>°°)=1 [when passing from P to aP, we adapt

the convention of letting the distribution of Q(0) be unchanged]

We shall also need an auxiliary process {Q*(t)} defined by allowing for
negative values and ignoring the modifications needed when the batch
capacity exceeds the queue length. That is, Q*(O)=Q(O) and

Q*(t)—Q*(O)= Qi(t)-Qf(t) where {Qi(t)} is compound Poisson (in fact,
just the arrival process of {Q(t)}) and Qf(t) compound renewal

with epochs T*(n) ==Q1+s..fUn n>1 (except if the first epoch is specified

* * *
to have a distribution # G). Hence Sn = Q (Tt (n))-Q (0) and the paths of
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{Q(t)} and {Q*(t)} coincide on [0,T(n-1)) = [O,T*tg;l)) (in models

A, B even on [0,T*(n)) where

. 2
n = inf{n > 1 : Yn—l < Xé )} (2.2)
We let F* be the o-algebra spanned by Q*(0) , U.,...,U_, X(z) . s X(z)
n 1 n’ "1 °’ n
and the arrival process in [0,T*(n)) . Then Xfl),...,xél), Sl""’Sn etc.
are F;—measurable and n a stopping time w.r.t. {F;} . Also define

the first passage time

6*(N) = inf{t>0:Q*(t)>N} and let

V#(N) = infin:t*(n)>6*(N)}, BE (N) =Q*(T*(v*(N))) - N.

Proposition 2.1  (cf. [4] Lemma 2.2) For any events Fﬁefj*(N)

_ «N a rQ(0)-BX(N)
PF = S ELS 0 ,FN] (2.3)

Proof. Let the Tn (say) arrivals in [t*(n-1),Tt*(n)) be at times
. T
T*(n-l)+Di (Di <L .. < pnn) and let the corresponding bulk sizes be
Ei (G = 1,...,Tn). It then suffices to verify (2.3) for Fn = {Q*(0) = q;

1 k n
GN’ ce GN’ V*(N) = k} where the GN are of the form

&= U <um), xﬁz) - x(n), T =t(@),

D) < d(m,j), E) = e(,i) j=1,...,tm)} .
n - n
In fact, if q, k and the x(n)t(n),e(n,j) are fixed, then this class

of events spands a o-algebra, viz.the trace of E:*(N) on

Q*(0) = 4,v ) =k, D= xm), T =tm), B) = e,
n=1,...,k,j=1,...,t(n)}

(2.4)

and the class of events of the form (2.4) forms a FS*(N)_ measurable



countable partition of the basic probability space. With Hu,t(d(l),...,d(t))
the t-variate d.f. of the order statistics corresponding to t drawings

from a uniform distribution on [0,u), we have (suppressing n for

brevity and letting z = e(1) + ... + e(t))

183 t
_ -ay (ay) _
PGy = g, Jo e S Hu’t(d(l),...,d(t))fe(l)...fe(t)G(dy) =

a

gkz @ ' "ao‘y(a@‘}’jtﬂ a d(t))?f £ 4 (ay) =
gx 0 € '—— u,t( (),'--, ()) e(l)"- e(t) (Y) -

performing some elementary manipulations to express the 8> fe, G etc.

a a a

by the g, fe’ g - Now the occurrence of {v*(N) = k} depends
solely on the values of Q(0) and the Xﬁz), Tn’ Eﬂ n=1,...,k. Thus
either FN = (, in which case both sides of (2.3) are zero, or
1 k
{Q*(0) =q; GN;...;GN} C {v*(N) = k} so that
- T T NN 1 ko _
PE = P(Q*(0) =4d; Gy;..-36)) = P(Q*(0) = @) PGy ... PGy =
a < a xéZ)_Xél) n a5k 1 k
P(Q*(0) =q) I, ELS ;GN] = “E[§ ™;Q*(0)=g; GN;...;GN] =

Q(0)-B*(N)
0 sEL1 .

-S
a v*(N) | _ «Na
ELS ,FN] =3 ELS N

To conclude this section, we shall state some formulae for the first and
second moment of {Q*(t)} which will provide expressions for u,0%, in

(1.4). Define

W= 1im 2B ]QF (0=0)/t, 02 = Lim Var@Q*(t)|Q*(0) = 0)/t ,

toeo t->00

(2.5)



u:l, ug, u_l, wz in a similar manner so that u =~ = p - u o, .

The existence of these quantities is well-known and easily checked, and it

follows by elementary calculations that

U_l -3, aEX(l) _ ak—l aEX(Z) (2.6)
n n
w? = 3y Byar xD +(§0L3EX(1))2 + ey, x(@)
n n n
v 73 Ayar y (%Ex(2))2 (2.7)
n n
where A = aEUn . Note that u,wz have explicit expressions in terms
of a, f, g, G by means of formulae like
aEx§1)= 32,38 (1)=1asF1 (8),20 = 281 (0) = &)
G(Y)

_2A|| -1
Varx® = o+ g - p@? - 0D

~ro-1
§ 887
L speh  sTtpeth 2
~ -1 ~ -1 :
g(s ™) g )
3. Statement of result and somemain lemmata.  Mainstream of proof.

We recall that different initial conditions obtain by letting the
P-distribution of Q(0) vary, but that always the server commences to

work at time O [though actual service may first start later in models

C, D if Q(0) < xfz)] .
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Theorem 3.1  Suppose that Conditions 1.1, 1.2 and 2.1 are in force.

Then there is a C€(0,°), the value of which can be determined by algorithms

to be discussed in Section 5, such that whenever EGQ(O)<oo , then (1.4)

holds with o2 = pw? and p,w? given by (2.6), (2.7).

We proceed to give the main steps in the proof. The more technical details
are omitted in cases where the ideas are essentially the same as in [4] ,

and carried out in Section 4 otherwise.

The argument is based bn regenerative properties of the process as in [4],
but the situation is somewhat more complicated. For the simple M/G/1 case,
the obvious choice of the imbedded renewal process of regeneration points

is the successive ends of the busy cycles, viz. the T(n) with Yn =0,

so that the first regeneration point is

c=1(m) with m = infﬁ£>l:Yn =0} (3.1)

However, in general the concept of busy cycle is more ambiguous and

the definition (3.1) of the first régeneration point does not always seem

to lead to the simplest analysis. Thus we take this approach only for the

model B, whereas in A, C, D we are concerned with the T(n) with

Yn—l < Xﬁz) so that the first regeneration point is tT(n), cf. (2.2).

For the ease of notation, we let n=m in this and the following section.
For the models A, B , these instants form indeed a renewal process

of regeneration points, whereas for C, D we need to invoke the more

general concept of semi-regenerativity, cf. ginlar [7] Ch.10. 1In fact, if

Yn—l < Xﬁz) then the development of the post-t(n) process depends on the

distribution of Yn which may be of one of several types, say i=1,...,p.

In C we have p=2 and the two cases are described by (1.2(C) according

>0 (i=1) or Y =0 (i=2). In D0 we can take p

to whether Y
n- n-1

1

as the maximal batch size and i = Xéz) - Yn—l .
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We let Pi’Ei (i=1,...,p) vrefer to an initial distribution eof type i,

and use for convenience the same notation with p =1 in A, B . Let for

an arbitrary initial distribution P Hj(du) be the probability that t(n)
occurs at time wu and is of type j, and let Hi j(du) be the same
quantity with P replaced by Pi (similar notations are used in the following

), U= (U, .) = Ty E*n . Then letting

without further notice), H = (H i,
b

i,j
m = (ﬂj) be the stationary distribution for the Markov chain of transitions

i+j and

zy(T) = PQQTI>N),  z(T) = P(Q(T)>N, t < t(n)),

oo T
p |

El =j§1 fouHi’j(du), H*Z(T) = JOZCr—u)H(du) , Wwe get
P 3.2
ZN(T) - ZN(T) + J=1HJ j,N(T) ( . )
? * 3.3
Zi N(D = 54 Uy 5725 n(D (3.3)
13 r d 3.4
() = 57 gk |75 a1, (5.4)

0

cf.[7] p.346-347. The following two lemmata, to be proven in Section 4,

uHi(du) <o agnd lim 6N sup ZN(T)=O,

Lemma 3.1 If EGQ(O) < o _  then f
- N+  Q<T<o

0

Lemma 3.2 In any of the models A, B, C, D EiQ(O)cSQ(O)<oo i=1l,...,p,

1

will allow to restrict attention to the case P =P In fact, once (1.4)

is shown for this case, it follows that (uniformly in T)
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T-u-puN

1
>5
oN*

N, .. BT ~
§'Zy(M 2 L) fo co =, (au) 2

T (T
f co(HNH, (dw) +
1’9 onN? J

- Mg
I ™Mo

J 0(-DH, (dw)?
j j=1’o N?* J

CO

p
co (2K, i JDHj(du) + 0 = Co

T-uN
ONI/2

)

[

oN?

using Taylor's formula and the boundedness of @' for the second = ,

and dominated convergence for the third.

To study (3.3), write Iy T uN+vN with

u (T = P > N,t < t@-1)), vy(T) = PQ(T) >N t(n-1) <t < t(n))

In Section 4 we show

Lemma 3.3 If ESQ(O) < ,  then lim.GN sup U.

v (T) =0
Noroo 0<T<wo i,j N

so that we can replace Zj,N by uj,N in (3.3). Now Uy depends on the
law of {Q*(t)} only and can be evaluated by conditioning upon

{u = 6*(N)<t(n-1)}, the overshot bl = BI(N) = Q*(0*(N)) - N = Q(6*(N)) - N

and the residual service time b2 B;(N) = T*(v*(N)) - O*(N) at O*(N).

More precisely, defining

Ky(u,b; b)) = P(O*(N)<ut(n-1) ,B¥(N) < b ,BI(N) < b,l,

~ 1
)
KN(uN + oON u,bl,bz) ,

Ky (Wb, b))
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kN’brbz(t) = PQ*(t) >N, t <t(n-1)|Q*(0) = N+b , (1) = b,),

k lioﬂol kN’bl’bz(t) = P(Q*(t) > 0[Q*(0) = by, t*(1) = b,} ,

(t) =
by+P, N

we may write
t
u () = LJ
o o

T
* - ' * K
Ui,j uj,N(T) I J J Ui,j kN:blsbz(T u)kj,N(du,dbl,dbz) (3.6)

{oe] rOO

0 JokN’bl’bz (t-wKy(du,db, ,db,) (3.5)

o 00
T-

1
oN* -
r 1

= * _ _ 1/2
j Ui,j kN,b b (T-uN-oN u)Kj,N(du’dbl’de)
—co 0 0 1 2
interchanging the integrations w.r.t. Ui j and Kj N to derive the
B 3

first identity in (3.6) from (3.5). We shall need the following three

lemmata.

Let = denote convergence in distribution and (more generally) weak
convergence of bounded measures, i.e. convergence of all integrals of

functions f?ECb(T) (the bounded continuous functions on the underlying

metric space 7).

Lemma 3.4  There exist r.v. V*(®), Bf (=), B; (®) , with EB; (o) <o0

i =1,2 and V#*(~) standard normal and independent of the B;Gw), such that

K(u,bl,bz) = P(V¥*(») < u,Bf(w) < bl’ B;(W) < b2) has the following property:

For all P satisfying ESQ(O)<00 there exists a constant D(P)<x  (with

D(Pi) > 0) such that

N
8 Ky (du,db,,db,) = D(P)K(du,db,,db,))
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If furthermore EQ(O)éQ(O) < o , then also

N
S (x0+xlbl+x2b2)I<N(du,dbr?dbzq) = D(P) (x0+xlbl+x‘2b2)K(du,db1 ,db2)

- =
) -j ~
Lemma 3.5 Define kbl,bz = ﬂj } kbl,bz(t)dt/gg .

0

Then it holds uniformly in bl’bZ on compact sets that

lim sup, |U, .*k ) -k | =0.
Noo t>oN® 123 Nobpuby by-by

Lemma 3.6 There exist constants XO’XI’XZ such that

. ‘ ..
Ui,j kN,bl,bz(t) < X0+lelfx2b2 for all 1,J,N,b1,b2,T .

The first step in the proof of Lemma 3.5 is to note that Ui ; is a (delayed)

E

renewal function with Ui J.(t+a) - Ui j(t) - aﬂj/ﬂE so that by the key

[oe]

renewal theorem Ui j*k(T)—>aﬂj J k(t)dt/m £ whenever k is directly

>
0

Riemann integrable. The rest of the argument as well as the proof of
Lemma 3.6 follows [4] closely and is omitted. In contrast, the proof of
Lemma 3.4 presents a key step and is given in full in Section 4.

We can now easily prove (1.4) with P = Pi and thereby Theorem 3.1. The
argument follows [4] closely, but in view of its central place we give it
for the sake of self-containedness. Define C = Cl ool + Cp with

C. = D(P.) J J iJ K(du,db. ,db.)
j j o Jo . bl’b2 1’772

From O<D(Pj)<oo s EB;(W) < o and Lemma 3.6 one easily checks 0 < Cj < o
and it follows from (3.3) and the above discussion that it suffices to show

L
GNUi j*uj N(T) > CjQC(T-Np)/oNZ) uniformly in T. Let
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- N, *
qy (T,N) = 670, *U; ((T) (cf. (3.6)) ,
L
TN _ %
ON? © .0
L) = | LU v (T-uN-oNu) 67K, - (du,db. ,db.)
q_z( > ) - J_oo . . i,] N,bl,bz M J,N > 1° 2 )
T-uN -4
- N
oN? o o
f .
(T,N) = i sN¢.  (du,db. ,db.)
3t bsb IS At Rt
-0 0o 7o 2
T-uN
1/
oN7? o oo
q (T,N) = ] N
4 kb b S Kj,N(du’dbl’de) ,
—~00 0 ) 1 2
T-uN
i
oN®
] T-Nu
q; (T,N) =f f J k) D(P)K(du,db ,db,) = C.0(-D) ,
o 0 0 1°72 J J ONZ
e = lim sup |q.(T,N) - q, ,(T,N)|
1 N0 O<T<°° 1 i+l

(with some obvious interpretations and simplifications for T = o« ,
cf. e.g. (3.4), Lemma 3.5). From Lemma 3.6, the continuity of V*(«)

and the last part of Lemma 3.4 we may conclude that

s <13 ,db,) =0
g S lim sup J J J (x0+x1bl+x2b2)6 Kj’N(du,dbl 2) (
N=oo  —oco<x <00 1
X—N_ﬁ 0 0
=)
and ¢, = 0 follows by the same argument combined with k S X +X. b +X b_ .
3 . bl,b2 0171 272
: -]
For g = 0 we have also to combine with kb b being continuous in
1°72
bl’%re]N x [0,9) as is easily seen. ‘Finally
€, < 1im o sup, |U *k (t) ij léNK (du,db,,db,) = 0
£ 1/ . . - . ) ) -
2 Nooo J o N i,j N,bl,b2 bl’b2 j,N 12772

—o 0 0

by tightness and Lemma 3.5 .
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4.  Details of proof.

The proof of Lemma 3.1 is deferred to the end of the section, so

we start by the

Proof of Lemma 3.2.  Since Xél) is independent of n in all models,
(1)

. (1) 1) Jn .

its p.g.f. is that of X so that EX 78 = = Shr(§) < .  This

proves the lemma in models A, B as well as for the case i=1 in C .

For i=2 in C ,
¢ ax( ¢ xM Ne))

Q0) (I)ycn 'n A N, . N (D) n -
EZQ(O)a \‘E[(CQ+X@ )§ = - ]Yg_l—O]—ECnﬁ ES +EXh $ ECn<

C .
n,1i

and for D it suffices similarly to show ECn ié <o | But since

3

fb = 0, 1level i 1is reached in at most i steps so that C i is
3

stochastically dominated by the sum Ti of i independent bulk sizes

T.
satisfying ETiG Tew, O

Proof of Lemma 3. 3. We consider only the more complicated cases of models

c, D. Let 0 be the instant in [T(E;l),T(E)) where service starts

and I, = [t-1),0), I, = [o,1@), M= sup Q(t), vi(t) = P(QUEI™N, tEL)
‘ : tEIk

so that vy = v; + V; . From Ui . being a delayed renewal function,

it follows that there are k_,k such that U. . (t+a)-U. .(t)sk,+k,a and
1’72 1,] i,] 12

3

hence
K & >N 1S dt) < EI(MSN) (k. +k }
Ui’j vy (T = EJ L(Q(T-t)>N, T-t€L ) Ui’j( t) <EI( )k + 2]1k|
0
(4.1)
(with ]'I denoting Lebesgue measure) so that it suffices to show (4.1)

being 0(6_N) for k = 1,2 .
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To deal with case C, note first that

P(Y ZN) < P(Sn_l = N,XIEZ) >N for some n) <

n-1

(4.2)
¥ P(S >N)P(X(2)>N) = o(1)E ¥, I(S. >N) = o(cS'N)
n=1 ‘"n-1 n n=l"""n-1

because of the last expectation being 0(E6Q(O)_N) as follows from random

walk theory. Since M1 = Yn-l is independent of the exponential r.v. |I1‘ s

the assertion for the case k=1 follows in C and it is also automatic
in D since here Ml<p so that even (4.1) vanishes for N > p. For

k = 2, we have in both models M2 = Qo) + Xél) with Q(o) independent
- <D
of |12[ so that it suffices to show P(Q(0)=N) = O(S_N),E6 n ']IZI < oo,

Conditioning upon the length t of the service time IIZI , the last

assertion follows at once from
x (1) o R
E§ & |1, = Jeat[f(a)_l]th(t) = G'(y)< = .

0

2

Finally P(Q(0)=N) = O(G-N) follows in C from Q(0) = Yn—l + Cn,(4.2)
C ‘ n

and ES % = f(§) <, and in D from

C . A
O D R I TR DA U R I R

The following two lemmata in conjunction with Proposition 2.1 constitute

the main steps in the proof of Lemma 3.4 :

Lemma 4.1  There exist r.v. B;(w) (i=0,1,2) such that

B*(N) = (BS(N),B;(N),B;(N)) = B¥(») w.r.t. ., Furthermore, for i = 1,2

-B¥ () QC0)-BF(N) ~B¥ ()
Br(=)s ' <o ond if BESC )<=, then s - -EsP%s 07,
while if in addition EQ(O)SQ(O)< o then also

B3 (=)

2560 B Mg ) + 56O 2pps ()
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ap

Lemma 4.2 No matter initial conditions, it holds that (i) O*(N)/N> u ;

(i1) V*(N) = (0*(N) - uN)/ONl/z==> V*() (mixing) w.r.t. % with V* ()

standard normal.

In the proof of Lemma 4.1, we need

Lemma 4.3 If Sl,Sz,,.. is a random walk adapted to {Fn} with E§f< o

and ESl $+ 0, and v is a stopping time w.r.t. '{Fn} with Ev < |

then Esi <o if and only if Ei < o
which follows from L2 = {X:EX2< ©} being a linear space in conjunction with

- S 3 -4-
Sv \)ES1 L2 (Neveu [19] IV 4-21).

Proof of Lemma 4.1. Let aﬁ, % refer to initial conditions with
NG
n

Q*(0) distributed as recall that Tt*(v*(1)) is the time of the

E4

first downwards jump after {1,2,...} has been hit, and define

Ny = sup{Q*(t) :0 st sT*(v*(1))} = Q*(T*(v¥(1))-0)

Then the aE—distribution of Nl—Q*(T*(v*(l)))is that of —Xﬁz) and it is
easily seen that (;B_*(N))N220 regenerates itself at N1 and that the d.f.

of N1 is aperiodic. Thus the first part of the lemma, with the distribution

of the limit given by

N

1 a %
E Nélf(g_(N)) (4.3)

BE(B* (%) = —
EN1

will follow from the theory of discrete time regenerative processes
(Feller [11],[12] Ch.IX) if we can show aENl < oo,
With the convention aE(Q*(O—O) =0) =1, {Q*(t*(n) - 0)} is a random walk
with finite variance, N1 is the (strict) ascending ladder variable and
v¥(1) the corresponding ladder epoch. Thus from well-known facts on random
walks, we may even infer aﬁNi < o and, appealing to the 'only if' part of
Lemma 4.3, 2Ev*(1)° < ® which then implies 2ET*(v*(1))°< ® by using
instead the 'if' part. The finiteness of the expectations follows now

easily from (4.3) and the independence of XSi%l) of the process before
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(2)
T*(v*(1)). In fact, for N=1,...,N1 we have BS(N)2>— Xv*(l) and hence
v a BEE) . 1 -5 (N)
3 * (o0 = ] * <
LN1 EBl( )8 E Nél Bl(N)6 <
(@) @)

~ * ~ ~ A -
aENi s V() _ aENi A M aENi/g(d’ L e,

N

N B () . 1 -B*(N)
a a w18 0 _a 0 <
BN, “EB3()$ = "B I, B3NS
(2)
- -B*(N) - - 1 X
%EN, T* (w5 (1)) 077 < [aENi Arr(vr(1))%1% %86 M < |

using Cauchy-Schwarz' inequality.

By general results on regenerative processes,

; ~B* (N) -B* () .
aEB;(N)é 0 N aEB;(W)G 0 For an arbitrary initial

distribution with EQ(O)SQ(O) < ® , write aEB;(N)gQ(O)'Bg(N) as

Q(0)-By (N) (

"EBY(N) 8 1(Q0)+x{ V=)

- - -B*(N-n)
+ % nEOI(Q(O)+X§1) = n, N > n)s?® "B (N-n)6 °

Here the second term has the asserted limit by dominated convergence, whereas

a
in the first the integrand P%O and is bounded by the r.v.
(1 QO #x? Q(0)+x?
(Q0)+X; )8 i=1, U3 i=2
Q(0)-BX(N) -B5 ()
with finite expectation. The proof of ) 0" ESQ(O) s 0 subject

to EéQ(O)< o is similar (though simpler).
0
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- L

Define A(t) = (Q*(t) - | lt)/t2 and A+(t),A_(t) in a similar manner,
cf. (2.5). Then A+(t), A (t) are well-known to be asymptotically
normal w.r.t. °P with variances wi, wf and hence A(t) = wV#*(~) with
V#(~) standard normal. The condition

lim lim aP(sup{lA(t)—A(T)I: T<t<T(1+8)}>€) = 0 for all €>0

§¥0 T
introduced by Anscombe [2] is well-known to be of basic importance in
central limit theorems with random indexing and has been extensively studied,

cf. e.g. Aldous [1] and his references. Since we could not find a reference

covering {A_(t)} , we need to prove

Lemma 4.4 If {Q*(t)} is a compound renewal process with finite

1

variances and u: the linear growth rate of EQ*(t), then

_ 1
{(Qf(t) - u_lt)/té} satisfies Anscombe's condition.

Proof. For ease of notation, we suppress *,- and it can also be assumed

without loss of generality that the increments are non-negative. Define

ACE) = QO-r'6)/t? and

-1
1 _  sw QO-QM-p (t-T) 2 _ . [P
MEs T m<e<T(1+6) & s Mps thrn(:‘m)qct) Q(? L (t-T)
t

PP
2 2
t2-T

35 sSup t-T° _ sup )
Mp s = r<e<w(1+6) R [Apls My s=rcear 146y [A(B)-AMD |

1 2 3 . . — .k
1 >
Then MT,6<MT,6+ MT,6+MT,6 so that it suffices to show llmP(MT,G e)}v0

T
as & >0 for k =1,2,3. The case k=3 1is immediate from the asymptotic

normality of A(T). For k=1, define

o = inf{t:Tst<T(1+8), Q(t)-Q(T) -1 (t-T)>et?},

= o jif no such t exists. If 0 <, then 0 1is necessarily an arrival
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instant. If q(t) is the probability of the event {Q(t)QWflt} subject

to initial conditions with the first arrival governed by the interarrival
distribution, it follows from the asymptotic normality that q(t)»% so that
q(t)=% for t=a say. Define ﬁ%’6= (Q(T(l+6))—Q(T)-u_l(TG—a))/T%.

~1
Then M g > € on {T(1+68) -a S OST(1+6)} whereas on {T<OST(1+68) -a}

- 1
the conditional probability of (Q(T(1+8)) - Q(T) -u lTd)/T2 and hence

MT to exceed € is at least X4.

5
~

1

1 - 1 '
> < > . - -
£) \.4P(MT,(S £) and since MT,6 is easily seen

T,S
to be asymptotically normal with variance w26 , the claim follows for

It follows that P(M

M% 5 - The case k=2 follows rather similar lines.
? [l

Proof of Lemma 4.2. Since Q*(’l:)/t—*u—1 a.s.w.r.t. aP, (i) follows

from
N QO B ay 9
= U -0=u",
8*(N) 0*(N)
using BT(N)='Bi(w) and O*(N) - o« . Similarly
-1,
A(O*(N)) = N:E_$£L£E1.= - wV*(N)
WN

so that it suffices to show A(O*(N))=w V*(~) (mixing). Now it is well-
known that {A+(t)} satisfies Anscombe's condition [this is also a special
case of Lemma 4.4] and that the normal convergence is mixing [these facts
follow, e.g., from {Qi(t)} having stationary independent increments

either by copying the proofs for sums of i.i.d. r.v. or by the method

of discrete skeletons] . The mixing combined with the asymptotic normality
of A (t) 1is easily seen to imply A(t) = A+(t) - A (t) = wV*(x) (mixiﬁg)
Since Anseombe's condition holds for both of A+(t),A_(t), it holds for

A(t), and Th. 8 of Csorgd and Fischler [9] completes the proof.
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Proof of Lemma 3.4. By an argument just along the lines of the proof

of [4] relation (5.3), we may deduce from Lemmata 4.1, 4.2 that
(B¥(N),V*(N),I(6*(N) < T(n-1)))= (B*(®), V*(»), I(n=x)) (4.4)

w.T.t. aP, where B¥*(®), V*(~) are mutually independent and

independent of (Q(0),I(n =*)) [mixing is a convenient but not crucial

way to get the independence of V*(®) and (Q(0), I(n=~)) : a direct proof
is not difficult]. Now let gGECbGRS) and suppose EQ(O)SQ(O)< ©

Then by Proposition 2.1

rOOOOOO
N _
5 lil (%o *x;b +¥,b,)g(u,b b )K (du,db ,db)) =

6V (x+x B (N) +1,B5 (N)) g (V* (V) ,BE (V) ,BE (D) T(@* () < T(n-1)) -

%5 61O BE 00 (x B0 +x,BE () g (V* (N) ,BE () ,BE () T (0% (N) <t (n-1))
(4.5)

It follows from Billingsley [6] Th. 5.4 and the last part of Lemma 4.1

that the r.v.
{SQ(O)_BS(N) (X0+x1Bi(N) + XZBE(N))}

are uniformly integrable. Hence the integrand in (4.5) is so.
Furthermore, it converges in distribution, cf.(4.4). Thus using [6]

Th.5.4 once more, it follows that the limit of (4.5) exists and is

_B*(oo)
“£[6%00) jn=e] ®B6 0 (x x BE(=) + X BE(=))g(VE(%) B} (=) ,B5(=)) =

rOO CO {oe]
C(P)J [ J (x0+x1b1+x2b2)g(u,bl,bz)K(du,dbl,dbz) where

-0 0 0

K(u,by,b,) = P(V*(2)<u,B(®) S b ,Bj(x) <b,) =

o B ) . B
gl 0 " Lvr(e)<u, BY () <b,,B5(=) <b,1/ ES ,



_23-

C(P) = aE[6Q(O);n=°°] aEs'BS(m) . That V*(«) is normal and independent

of (BI(@), B;(W)) w.r.t. P follows from V*(») being normal and independent
of B¥*(») w.r.t. 4 | Similarly EBI(W)< N EB;(m) is a consequence of the
last part of Lemma 4.1. Thus we have proved the last convergence statement

in Lemma 3.4, and the proof of the first is similar, deleting factors like

* *
x0+x1B1 (N) + x2B2 N

It thus only remains to prove C(Pj) > 0, which will follow from

an(g;W) > 0 . In the model B, an(E;W) = aP(Sn >0 all n) > 0 because

of aEXn > 0. In A,C,D it follows from finite means that Sn/n-*aEXn >0

and that X(Z)/n + 0 a.s.w.r.t. aP. . Hence T = inf{S - X(Z) :n =0} >-
n Jj n n+l

and thus since Y =2Y_ + S
n 0 n °’

a . a (2) . a .
=00 = = > > = >
P(n [YO_ i) P(Y, =X} all n>0 | YO i) = “P(T>1) > 0

for i large enough, say i =>1i_ . But in all cases YO is stochastically

0
larger than Xﬁl), which has unbounded support. Thus an(YO 2’i0) > 0,

completing the proof.
O

It only remains to give the

Proof of Lemma 3.1. The first part is an easy consequence of

00

)
Z? J uHi(du) = ET(n) combined with the easily checked relations
0

E[t(n) - t(n - 1)] < ®, ET(n-1) <E inf{t20:Q*(t)<0} = 0(EQ(0))

o (8N

For the second part, note that the estimate VE(T}< P(M%PN)

in the proof of Lemma 3.3 implies that it suffices to show 6NuN(T) -0

uniformly in T. We use (3.5). Given € > 0, it follows from Lemma

3.4 that we can find bg,bg with
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N 00 0O 00~ (o] rOO 00
' <egsN K <
5 f I J KN(du,dbl,de)\E,,,cS.J J f Ky (du,db,db)) < e
b 0

0 0 0
0
b2

= o

0

for all N, and it is easy to see that for some t kN b. b (t) Se
)1}2

0 0 0
v = < <
whenever t=t ’bl\\bl’ b2\b2 .

i <
Hence since kN’bl’bz(t) <1

—

~ [ ~ -
uN(T)< ek (®,2,%) + J, f I 1(T-u<t0)1<N(du,dbl,db2)+26 Ne,
1]

1im  sup GNuN(T) <
N7 OSI<®

eD(P) + lim  sup SNP(T-tO<{W(N)<¢) + 2¢ = eD(P) + 2¢e ,
N-oo O<T<0

using Lemma 3.4 once more for the last identity. Let €4 0.

5. The imbedded Markov chain, the steady state and the evaluation of C.

We start by pointing out

Proposition 5.1. Suppose that Conditions 1.1, 2.1 are in force. Then

in all of the models A, B, C, D there exists a constant € such that
Y
whenever E§ 0 ¢ o , then

, N T (K-IN
lim sup |§ P(YK>N) - Co( E )| =0 (5.1)
ON 2 ~ '

N-oo  OsKse0 5

with & as in Sections 2-4 and

it aExél) - aEXIEZ), 52=ﬁ3{aVarX£1) + *Var Xéz)} (5.2)
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In fact, the proof is just a discrete time analogue of the proof of

Theorem 3.1. In some cases, however, Proposition :5.1 and in particular

the steady state case

P(Y, >N) =GN (5.3)

comes out more directly by reference to random walks. Define

MK = max{Sn :0S<Sn<K}), M= max {Sn : 20}, let {¢ﬁ} be .the

distribution of the strictly ascending ladder variable, ¢ = Z? n @n

and recall the estimates

P(MN) = s N (5.4)
S(1-¢.-¢_-...)
a--1.w -n a B 1 2
D="¢ nEO § k§n+1 ¢k N 6-1)%% (5.5)
§ o 1 a
= ——— expl- I, = {P(5_>0)+ P(S <0)}]
(s- l)aEXn n=1l n n n
lin  sup ]6NP(MI%N) - by - (5.6)
N0 OKSe0 oN?

(see e.g. [4] for references). Then, letting g denote equality in

distribution:

Proposition 5.2 (1) The relation Yn = (Yn_1+X.n)+ in B implies

that Y_ g max( Y + S}, Y, d M. Hence C=D; (ii) The relation

- Xlgz))+ + Xél) in A and in ¥ with single arrivals (f1=1)

Yn = (Yn~1

. . d 1 2) .+ 1 .
implies that Yn = max{Mn_l + Xé ), (YO-Xé )) + Sn—l + Xé )} (n=>1) with

the Xél) mutually independent, independent of the Xéi) (n=1) and Xéi)

Xﬁl). Hence Y d M + Xél) d max{Sn A2t o+ X{Z) and

distributed as

~

C = GH)D .
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Proof: (i) is well-known, cf. e.g. [13] VI. 9. For (ii), define

L (D (@) _ (1) :
Xn = Xn - X Z =Y - X . Then Zn = (Zn_1 + X') n=1,2,...

n+l °’ n n+1 n+1 n

so that from (i)

Q. y 1 _ 1 (2) + 1
Z max{Mn, Z0 + Sn} = max{Mn, (YO - X ) o+ Sn} s
_ (1) d (1) d (1) (2),+
Y = - = = -
. Zn-l X 1t XO max{Mn_1 + XO ,(YO XO )
(1)
*S v X )

Since Sn > -0 Mn 4 M, it follows by letting n - e that

d (1) x%l) + S xWPis _s

(1
M + XO max{Xl s 5 Sl’ 1 3 100

= max{Sn :n =1} + X£2) s

0 P(Xo(l) =n) P(M > N-n)=

118

POY>N) = P(M + xgl) >N) =

-N @ n (D _ oo -N
D§ " Ly S P(Xy = n) = G(y)DS .

O

Cf. also Prabhu [22]p.127. In cases where the proposition applies,

(5.1) follows, of course, easily from (5.6). The Ep/G/l case is covered

by D with single arrivals, but general bulks in 0 seem to present

C could be determined
Y
for @(s) = Es (here and in

somewhat more complicated problems. In C,

from the expression [8] p.382

the following wn = P(Y, =mn)) in conjunction with the standard Abelian

theorem

N = C = 1in(1-s)§(ss) = lim(l-sé_l)ﬁi(s) .7

stl s4$

IR

Yy

with the limit evaluated by 1'Hospital's rule after heavy calculations.

Note in this connection that, given an explicit form of @(s), the
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Tauberian argument produces only a weaker form of (5.3), viz. an
estimate of %? ann . However, (5.3) could be derived by imposing
analyticity conditions somewhat stronger than Condition 2.1, using

poles and residues (cf. Gaver [14] and Le Gall [17] ).

We next turn to the continuous time case, viz. the study of C rather
than § . The problem is closely connected to the discrete time case

in view of the following proposition.

Define m = inf{n =1 : Y o= 0}, ¢ =1t(m, cf. (3.1), and let Py, »Eg

refer to the case Q(0) = YO =0.

Proposition 5.3 . Under the assumptions of Theorem 3.1 it holds that

C = C(G(Y)-l)/wOYEOE (5.8)

Proof. It is more convenient to relate P(Y_=N) to P(Q(»®) = N)
than to consider the tails. Let F(t) denote the event that the next
departure instant after t 1s one of the semi-regeneration points

considered in Sections 3-4. Then, using (3.4) and Lemma 3.3,

. p -
P(Q(®) = N; F(®)) = 1 2o T, f v, . (t)dt = o(6 n) so that
T & =l ] 0 jsN
A c 1 < c
P@@)MD=P@@)=MF@))=F;EOJI@ﬁﬁm;ﬂﬂ)&
0= 0 (5.9)
T(n)
_ 1 o N N _ _ > (2)
= Foe Eq z, I where Jo= 1(Q(t) = N)dtI(Yn_l/Xn ,NSn)
n= T(n-1)
using instead the returns to zero as regeneration points. Now let

00

p (1) = e T at)Y K, £ = | P () (1-G(t))dt. Then, letting £ pe

the kth convolution power of f, it holds on {Yn—l = i} that
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!

E(JII\II | Y i) = E(JI;I | Yg = 1) = P(Xl(z) <1i) E, J I(Q(t) = N-i)dt =
0

P <) fkoz_oo p (0 £ (-6e)ar =
01
P(xl(Z) < i) kgo fl\glf% 3

It is a standard fact from Markov chain theory that E #{n;lsbﬁﬁb Y o= it = wi/wo .

0
Hence
N V. o
N V.
1 © i (2) . x)
— L& I —P(X <i) £
B0 k=0 ¥ i=0 Yo 1 N-1

In view of fé%i = O(S_N), any finite number of terms i=0,...,iO _can
be neglected. For 1 > io- with iO large, we have
P(Xl(z) <i) =1, Y = ca-s"Hst,

Hence

~ -1 N .
o) = ~ C(1-¢ ) % 1 L(k) ~

PREI =N =T F e o fibo © i

ca-shy %

AN ~ —1 A AN
T R O €d-8 ) o)) =
00—

YoEol

§Nc-s7h @ -n)

byEy Y

which completes the proof. We omit the elementary calculations needed to

check g(s) = (1 - a(aLs—l]))/u(l—s)
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We thus need to compute Eog, The models A, B are easy. Here by Wald's

identity EOE_= Em - EUn = A/wo and thus

= EAG(Y) (AG(Y) 1) 5.10f\

Note that (5.10A)> (5.10B) as was to be expected from the description
of the models. In C , the expected length of [T(n-1),t(n)) is

ol 4 A for n =1, A for 1<n<m . Hence E = ol Eg_kw=a_1 M,

so that -~ A
Co(G(Y)-1)

c = (5.10C)

CIRNEY

~

with C_ determined, e.g., by the Abelian argument (5.7). The case D
is more involved so we consider only single arrivals where we found

E‘= 6(ij above. The expected length of [T(n-1),T(n)) given

{y =il is Oc—1(p—i)+ A for i Sp, A for i > p and thus we

n-1
arrive at the expression (to be somewhat simplified below)

DG () (G(y)-1) , -
- ' if ;=1 (5.10D)
¥ S I (p-1)Y, +A)

The expression (5.5) for D clearly requires some reduction to be ameneable
to numerical computations. A rather simple approach would be to compute
the P(Sn2>0), ap(sns; 0) for small values of n and use asymptotic
expressions like those of Bahadur and Ranga Rao [5] for large n.

The ladder variables can only be explicitly found in very few cases, in the

present context mainly if g is the geometric distribution or has bounded
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support. To elaborate upon the last case, we conclude the discussion by

Example 5.1 Consider a general random walk {Sn} on the integer lattice,

suppose that EXn <0, P(Xn < -p) =0, P(X.n = -p) >0 for some p =1,

and write Es " = s_pﬁ(s) with h the p.g.f. of the non-negative r.v.

X +p. Then the equation
n X
1=Ew™=wPhow (5.11)

W in the open complex unit circle and with

ERRREL
{¢E} the weak descending ladder height distribution we have

has p-1 7roots w

. p-1
b - - s Prs_ I (s-
¢7 (s) 1 s T (s-1) J.=l(s wj) (5.12)
A —p r 4=
Bsy = D) -0 () (5.13)
1-¢ (s)
N . ~ p-1 §~Wj
v 0@ (-t Gs-DLE T
Es = — = __J 1 (5.14)
1-6(s) s - h(s)
S-w.
~, p-1 J
(p-h' W) (¢-1) [T T
D = — - (5.15)
h'(8) - poP

In fact, (5.13) and the first identity in (5.14) are general random

walk results ([13]) so that elementary calculations show the equivalence
of (5.12) and (5.14). For (5.12), (5.13), see Kemperman [16] Lemma 13.4.
Alternatively, (5.17) is essentially proved in [23] within the framework
of EP/G/l with A(s) = G(a(s-1)) mixed Poisson, cf. the relation (104)
in [23] for {(s) = EsM h(s). See also [13] p.427 where (5.12)

is derived subject to the additional assumption of h having bounded
support making the application of Rouché's theorem somewhat more direct.

Finally (5.15) follows from (5.14), (5.7) and 1'Hospital's rule.
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We shall treat one additional model (though related to Ep/D/l).

Consider the fixed cycle traffic light, with the cycle of (say) unit
length divided into a period of length |G| wherée customers (say cars or
Pedestrians) can pass and one of length |R| = 1 - |G| where they cannot.
We term these the green and red period and let GYn be the number of

customers at the start of the nth green period and Gxél) the number

of customers arriving during that time. Similar notations apply for

RYn, Rxﬁl) . It seems reasonable to take Gxél), Rxél) Poisson

distributed with means o|G| , resp. o|R| , and the batch capacity, viz.

the number of customers which can pass during a green period, equal to some

fixed number p = x£2)> o . Then with Xél) = Gxil) + RXé}%
S = G St KW (5.16)
Ry =& ax@ oyt (5.17)

n n-1 "n

The solution of these relations are described by parts (ii) and (i) of
Proposition 5.2 respectively. Note in particular the intuitively obvious

fact that GYn d RYn 1+RX£I) . The equations (2.1), (5.14) reduce to

P = ea(ﬁ_l), resp. wP = ea(w—l) and we may immediately deduce that (5.1)

holds for GYn, RYn with ﬁ_l = %0 - p, & = i%Pa

p-1 S—Wj
e (P'OC) (6-1) JE]. 1-w. o~ Rx(l)
J c=8" p-=
P (as-p)
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6. The GI/M/m queue

The model is treated in a number of textbooks, e.g. Takacs [24]Ch.2.

1

denote the interarrival times, F(x) = P(Vn<k),a_ = BV

We let V,,V

1727
and 3 the service intensity. The number of customers in the system at

time t is still denoted by Q(t), but 7tT(n) = V1+...+Vh is now the
arrival of

time of customer n (n = 0,1,2,...) and the imbedded Markov chain
is given by Yn = Q(t(n)-0). Thus if sz),X§2),... are independent
with p.g.f.

g(s) = 1 Bt (s-1) dF(t) = E(mﬁ[s-l]), we have

Y =Y + 1 - Xéz) on {Yn +1-X£2);> m} (6.1)

n n-1 -1

CGorresponding relations on {Yn_l+l - X£2)< m} arve discussed in detail in

(e.g.) Kleinrock[17] Ch.6 in the formulation of the transition function,

but need not concern us. Subject to

Condition 6.1 a_lgm > 1

Condition 6.2 F is non-lattice

the existence of the limiting steady state is well-known and the form of

the solution is geometric modified in a finite number of terms, viz.

P(Y>N) = o anP(Q(=) > N+1) = BS™N  N>m-1  (6.2)

where 6>1 1is determined by the equation

1-x(?)
1=8 " =sfmels!-1]) (6.3)
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describing the associated random walk and B = AS§/(S8-1) with A the
constant explicitly determined in [24] p.148-149. Note that the analogue
of Condition 2.1 is automatic in the present setting.

It is now readily checked that the associated parameters compatible
with aP(l—Xéz) =1i) = GiP(l—Xéz) = 1) are given by aB = pS 7,
ap(dx) = e'mxp(dx)/ﬁ(_y) where vy = mB(l—S_l). The Q*-process evolves
now as the difference between a renewal process governed by F and a
Poisson process with intensity mf . Hence u~l,w2 (defined in analogy

with (2.5)) are given by

TR VR , w? = 33 aVarVn - n®B (6.4)

where, e.g., 3L - aEVn = aﬁ'(O) = ﬁ'(—y)/ﬁ(—y) and we have

Suppose that Conditions 6.1, 6.2 are in force and define

Theorem 6.1

C = oB/Bm.  Then whenever ESQ(O) <o , (1.4) holds with o? = p*w?

The proof follows just the same lines as in Sections 3-4, but is in fact
rather much simpler. As fhe regeneration instants (of one type 1i=1
only) we take the instaﬁts where all servers become busy, viz. where an
arriving customer meets m-1 customers in the system. The behaviour

is different in the Q and Q* systems in periods where not all servers

are busy. That is, if

m=inf{fn =0 : Y +1 - X(Z) <m} , n=inf{n=Zm:Y =ml} |,
- n n+l - - n

then Q(t) = Q*(t) for t€[0,T(m)) so that m takes the role of n-1.

E.g. in analogy with Section 3 we define
vN(t) =PQ(t) 2N, T(m) <t <1t(M)}

and Lemma 3.3 becomes a triviality because of Q(t) < m t€[T(m),T(n))
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Also the first passage problem reduces greatly since the paths are upwards
skipfree. Thus we need not invoke overshot variables like the B;(N)

to describe the post-0*(N) process, no analogue of Lemma 4.1 1is required
and also the proof of Lemma 3.4 admits for a number of simplifications.
Finally the proofs of Lemmata 2.1 and 3.1 are just the same and the

problem of identifying C 1is, as mentioned above, treated in the literature.

ACKNOWLEDGEMENTS

I would like to thank Simon Holmgaard and Per Tanghgj for stimulating

my interest in some of the models studied here.



-35-

REFERENCES
[1] Aldous, D.J. (1978). Weak convergence of randomly indexed
sequences of random variables. Math.Proc.Camb.Phil.Soc.
83, 117-126.
[2] Anscombe, F.J. (1952). Large-sample theory of sequential
estimation.  Proc.Camb.Phil.Soc. 48, 600-607.
[3] Asmussen, S. (1980). Equilibrium properties of the M/G/1

queue. Submitted for publication.

4] . (1982). Conditiomed limit theorems relating a random
walk to its associate, with applications to risk reserve
processes and the GI/G/1 queue. Adv.Appl.Probability 14.

[5] Bahadur, R.R. and R. Ranga Rao (1960). On deviations of the
sample mean. Awnn.Math.Statist. 31, 1015-1027.

[6] Billingsley, P. (1968). Convergence of Probability Measures.
Wiley, New York.

[7] Cinlar, E. (1975). Introduction to Stochastic Processes.

> Prentice-Hall, N.J.

[8] Cohen, J.W. (1969). The Single Server Queue. North-Holland,
Amsterdam.

[9] Csorgo,M. and R. Fischler (1973). Some examples and results in

the theory of mixing and random-sum central limit theorems.
Per.Math.Hung. 3, 41-57.

[10] De Smit, J.H.A. (1973) On the many server queue with exponential
service times. Adv.Appl.Probability 6, 170-182.

[11] Feller, W. (1949). Fluctuation theory of recurrent events.
Trans .Amer.Math.Soc. 67, 98-119.

[12] . (1966). An Introduction to Probability Theory and Its
Applications 1, 3rd Ed. Wiley, New York.

[13] . (1971) 4n Intr. ... 2, 2nd Ed. Wiley, New York.

[14] Gaver, D.P. Jr. (1959). Imbedded Markov chain analysis of a
waiting line process in continuous time. Amn.Math.Statist. 30,
698-720.

[15] Keilson, J. (1965). Green's Function Methods in Probability Theory.

Griffin, London.

[16] Kemperman, J.H.B. (1961). The Passage Problem for a Stationary
Markov Chain. The University of Chicago Press, Chicago.

[17] Kleinrock, L. (1975). Queueing Systems. Vol. I : Theory. Wiley,
New York.



[18]

[19]

[20]

[21]

[22]

[23]

[24]

-36-

Le Gall, P. (1962). Les Systemes avec ou sans Attente et
les Processus Stochastiques. Dunod, Paris.

Neuts, M.F. (1979). Queues solvable without Rouché's theorem.
Opns. Res.27, 767-781.

Neveu, J. (1975). Discrete-parameter Martingales. North-Holland,
Amsterdam.

Newell, G.F. (1965). Approximation methods for queues with
application to the fixed-cycle traffic light.  SIAM Rev. 7,

223-240.

Prabhu, N.U. (1965). Queues and Inventories. Wiley, New York.

Takdcs, L. (1961). Transient behavior of single-server queueing
processes with Erlang input. Trans.Amer.Math.Soc. 100, 1-28.

Takdcs, L. (1962). Introduction to the Theory of Queues.
Oxford University Press, New York.

S@PREN ASMUSSEN
INSTITUTE OF MATHEMATICAL STATISTICS

5 UNIVERSITETSPARKEN
DK-2100 COPENHAGEN @

DENMARK



PREPRINTS 1980

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE
INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5,
2100 COPENHAGEN ¢, DENMARK.

NO‘

No.

No.

No.

No.

No.

No.

1 Olkin, Ingram and Vath, Michael: Maximum Likelihood

Estimation in a Two-way Analysis of Variance with
Correlated Errors in One Classification.

Skovgaard, Ib M.: Transformation of an Edgeworth Expansion
by a Sequence of Smooth Functions.

Asmussen, S¢ren: Equilibrium Properties of the M/G/1 Queue.

~ Johansen, S¢gren and Keiding, Susanne: A Family of Models

for the Elimination of Substrate in the Liver.

Skovgaard, Ib M.: Edgeworth Expansions of the Distribu-
tions of Maximum Likelihood Estimators.

Tjur, Tue: A Connection Between Rasch's Item Analysis
Model and a Multiplicative Poisson Model.

Lauritzen, Steffen L. : Examples of Extreme Point Models
in Statistice.



PREPRINTS 1981 -

COPIES OF PREPRINTS ARE OBTAINABLE FROM THE AUTHOR OR FROM THE
INSTITUTE OF MATHEMATICAL STATISTICS, UNIVERSITETSPARKEN 5,
2100 COPENHAGEN ¢, DENMARK.

No. 1 Johansen, Sgren: Asymptotic Inference in Random Coeffi-
cient Regression Models.

No. 2 Asmussen, S¢gren: On the Role of a Certain Eigenvalue in
Estimating the Growth Rate of a Branching Process.

No. 3 Lauritzen, Steffen L.: Time Series Analysis in 1880. A
Discussion of Contributions made by T.N. Thiele.

No. 4 Asnmussen, Sgren: Conditioned Limit Theorems Relating a
Random Walk to its Associate with Applications to
Risk Reserve Processes and the GI/G/1 Queue.

No. 5 Johansen, S¢gren: The Statistical Analysis of a Markov
Branching Process.

No. 6 Asmussen, Sgren: Time - Dependent Approximations in some

Queueing Sysetems with Imbedded Markov Chains Related
to Random Walks.



